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Game Strategies for Physical Robot
Soccer Players: A Survey

Emanuele Antonioni, Vincenzo Suriani , Francesco Riccio , and Daniele Nardi

Abstract—Effective team strategies and joint decision-making
processes are fundamental in modern robotic applications, where
multiple units have to cooperate to achieve a common goal. The
research community in artificial intelligence and robotics has
launched robotic competitions to promote research and validate
new approaches, by providing robust benchmarks to evaluate all
the components of a multiagent system—ranging from hardware
to high-level strategy learning. Among these competitions RoboCup
has a prominent role, running one of the first worldwide multi-
robot competition (in the late 1990s), challenging researchers to
develop robotic systems able to compete in the game of soccer.
Robotic soccer teams are complex multirobot systems, where each
unit shows individual skills, and solid teamwork by exchanging
information about their local perceptions and intentions. In this
survey, we dive into the techniques developed within the RoboCup
framework by analyzing and commenting on them in detail. We
highlight significant trends in the research conducted in the field
and to provide commentaries and insights, about challenges and
achievements in generating decision-making processes for multi-
robot adversarial scenarios. As an outcome, we provide an overview
a body of work that lies at the intersection of three disciplines:
Artificial intelligence, robotics, and games.

Index Terms—Robotic competition, soccer robots, strategies in
robotic games.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) and games always had a
very tight connection. Games, in fact, are one of the most

creative and demanding activity for the human brain as they
require reasoning, planning (PL), and often, intuition [1], [2].
For this reason, developing artificial agents able to compete
in games—and eventually challenge humans—has always been
one of the most appealing objectives for AI research. A recent
breakthrough in this area has been made by AlphaGO [2], a deep-
learning (DL) algorithm that won four out of five games against
the world champion in the game of GO. In a different context,
the virtual environment of the strategic videogame DOTA2,1 the
authors of [3] present an approach able to strategically operate
a team of simulated agents, winning 99.4% of the 7000 matches
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Fig. 1. RoboCup competitions are organized in different leagues deploying
various robotic platforms.

played against professionals. The team of virtual agents showed
emergent coordinated behaviors within a complex action-space
and a continuous state-space.

While research in AI and games on virtual agents is loudly
making progress, in this article, we focus on games of physical
agents (i.e., robot soccer players). Acting in a physical world
adds complexity, since perceptions are limited and error-prone,
and actions can fail in unpredictable ways. Specifically, we
investigate how physical interactions with the environment in-
fluence game strategies.

The development of a fully functional robot able to understand
and interact with the real environment is a very difficult task
regardless of the application. To promote the challenge and mo-
tivate researchers to attack such a problem holistically, different
word-wide robotic competitions have been started during the
years. Among those, RoboCup yearly organizes competitions to
challenge researchers to develop robotic systems able to compete
in the game of soccer [4].

Competitions are organized in different leagues, each of
which features a specific kind of robotic platform and has its
own research challenges (see Fig. 1). Such a framework allows
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researchers to attack the problem of robot soccer from differ-
ent perspectives, by splitting it into easier subtasks. Sports, in
general, are excellent testbeds to validate and improve robotic
systems. In soccer games, players continuously coordinate their
plays, change tactics, and adapt to the opponent. In order to play
soccer, in RoboCup, the same capabilities should be achieved
by robots that act autonomously by:

1) collecting sensor observations;
2) maintaining a representation of the state of the game;
3) reasoning and PL their actions individually and

collectively.
In this work, we survey recent developments in the context

of RoboCup soccer, by collecting research contributions from
2015 to 2019. Our main sources are the RoboCup Symposium
Proceedings [5], yearly published by Springer-Verlag. We focus
on different approaches proposed to tackle the problem of indi-
vidual and collective game strategies. We peruse the literature
by exposing different trends in the last five years, highlighting
how decision-making techniques are influenced by hardware
limitations, the size of the team, and the task to address. By
targeting recent research in robot soccer, our aim is to assess the
current state of a research body lying at the intersection among
AI, robotics, and games.

The remainder of this article is as follows. Section II recalls
the RoboCup origins and its structure in subleagues. Section III
formalizes the problem of robot behavior generation. Section IV
presents our survey of the existing literature categorizing it and
highlighting each step needed to achieve strategic team play in
robot soccer. Section V discusses the surveyed papers relating
proposed technologies and the hardware support. Finally, Sec-
tion VI summarizes this article, recapitulates its key findings,
and concludes by point to open research questions and future
directions.

II. SOCCER GAME IN ROBOCUP

The idea of using soccer as testbed for AI and robotics
application has its origin in the paper by Alan Mackworth, 1992,
who was already very active in the field publishing several con-
tributions about Dynamo robot soccer [6]. Right after, a group of
researchers started shaping the structure of RoboCup, whose first
official competition was held in 1997. Over 40 teams participated
with more than 5000 spectators. Nowadays, RoboCup, which is
run by the RoboCup Federation, is a large event with more than
1500 senior participants (researchers and university students)
and 200 teams (not including RoboCup Junior, which is devoted
to foster AI and robotics among the young generations). Besides
robot soccer, which is the main challenge, and is detailed as
follows, RoboCup includes other robotic competitions inspired
by search and rescue, home, and industrial robots, aiming at
the transfer of novel approaches and techniques into application
domains. However, in this article, we focus on robot soccer only.

Like other AI challenges, also RoboCup has a vision of
competing against human, in fact “By the year 2050, a team
of fully autonomous humanoid robot soccer players shall win a
soccer game, complying with the official FIFA rules, against the
winner of the most recent World Cup of Human Soccer.”

However, since the beginning, RoboCup realized that the
problem of developing fully autonomous robots playing sports
cannot be solved at once, and it needs to be split into subprob-
lems. To this end, the competitions have been organized in dif-
ferent leagues attacking different research aspects, ranging from
hardware design and actuation to complex collective behaviors
and opponent analysis (OA). Moreover, the setup of each league
is constantly updated to reflect the progress and introduce new
challenges incrementally.

In this section, we briefly recall the structure of RoboCup
and its scientific challenges, providing an overview of RoboCup
soccer leagues by describing their environment setup and main
research aims. Details can be found in the RoboCup website2

and in many publications (see, for example, [7] and [8]). Fig. 1
shows different robotic platforms competing in RoboCup.

During the years, several subleagues with distinct research
challenges, have evolved to attack the problem of developing
robot soccer players from multiple perspectives. Such leagues
deploy various platforms that differ in hardware and size,
which are engineered to promote research in different fields—
ranging from low-level system dynamics to high-level collective
strategies (CSs).

In fact, RoboCup features simulated soccer leagues [Simu-
lation2D (Sim2D) and Simulation3D (Sim3D)] that serve as
a proxy to foster research in complex collective behaviors—
alleviating hardware, perception, and actuation problems. Re-
search in these leagues is focused on formalizing novel ap-
proaches designed to be ultimately transferred to real robots.
More in detail, the Sim3D league features small unicycle robots
and it is specifically designed to challenge researcher in devel-
oping efficient coordination strategies. Each team is composed
of eleven autonomous agents playing in a 2-D virtual soccer
field. The game is run on a central server, the SoccerServer
that has complete observability on the game: Players poses,
ball position, and a model of the environment. The Sim3D
features simulated NAO robots adding the third dimension to the
environment. Hence, participants are forced to design strategic
soccer behaviors that also consider the much more complex
robot kinematics structures (e.g., hyper-redundant humanoid
robots). The overall goal of simulation leagues is to provide
basis for the development of real robot systems.

In fact, the RoboCup competitions feature four other leagues
that are configured with different hardware specifics. For in-
stance, the small size league (SSL) and the middle size league
(MSL) leagues employ wheeled robot platforms. Such leagues
focus research on coordination strategies and shall represent
the first step into physical robot players. These two leagues
differ in the robot size and how information about the envi-
ronment is provided to robots. In particular, in the SSL, a set
of top-down cameras and a central computing unit are used to,
respectively, provide ground-truth positions of the robots and
send them action specifications. The omnidirectional wheels
give them stability and very high speeds. These features allow
concentrating the development efforts in other aspects such as
robot coordination and strategic team-play. It is important to

2[Online]. Available: https://www.RoboCup.org
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highlight that, even though the SSL has complete observability
on the environment and they demonstrate a clear and direct link
to soccer videogames, they differ on many levels. For example,
in videogames, the focus of the game is always on the playmaker,
and teammates move accordingly without taking the initiative.
In RoboCup, every agent is autonomous and, in most cases,
the decision process is distributed. Similarly, but with more
hardware-demanding platforms, in the middle size, the robots
have both sensors and computation onboard—deploying true
distributed agents.

The first hyper-redundant robot plays the standard platform
league (SPL), which promotes the development of robust robot
behaviors in real settings by also attacking perception, local-
ization, and bipedal locomotion issues. Importantly, teams par-
ticipating in this league must all use the same platform, which
is periodically improved by a technical committee. The SPL,
in fact, started as four-legged league deploying dog-like Sony
Aibo robots. Then, it moved to a new platform in the 2008 by
adopting the Aldebaran humanoid NAO robot. Such a league is
really important in transferring high-level individual and CSs to
complex robot platforms. A standardization of the hardware, in
fact, allows teams to focus on software development neglecting
hardware design and configuration. Each robot playing an SPL
match is fully autonomous and operates in a distributive manner
that allows participants to focus on emergent local behaviors as
well as coordinated team strategies.

Finally, more complex platforms are in the humanoid leagues
(HLs) that challenge participants to compete in soccer matches
played with humanoid robots, which foster research on hard-
ware improvements disregarding high-level cognitive skills.
This league is further split into sub-leagues. During the time
window that this work considers for the decision-making eval-
uation, there were three classes, based on the robot size: Kid
size (HKSL), teen size (HTSL), and adult size (HASL). Such
a classification allows us to address issues related to noisy
perceptions and bipedal locomotion incrementally. In these sub-
leagues, the size of the team depends on the size of the robot
platform. In the HASL, for instance, games are set up with no
more than two robots for each team. In the HTSL and HKSL,
instead, a game is played by two teams of at most three and four
robots, respectively. However, it is worth noticing that the HL
is currently being reorganized in the following two subleagues:
HKSL and HASL.

III. INTELLIGENT SOCCER PLAYERS

The notion of “intelligent agent” has been modeled in several
ways. For this discussion, we are going to adopt the architecture
shown in Fig. 6. In this model, the environment is analyzed
via the perceptions of the robot. Sensing is particularly critical
when dealing with real robots: Each agent has to create a
representation, which is consistent with the environment state.
The interaction with the environment is performed by actuators
that execute the actions planned by the agent. Each RoboCup
agent can, therefore, be modeled by using a variation of the
sense-plan-act paradigm [9]. This formalization conceives the
control of an agent as a cycle.

Fig. 2. Sim2D and Sim3D leagues. In both leagues, matches are disputed by
11 players for each team.

Fig. 3. SSL on top, and MSL during RoboCup matches. In MSL, robots must
fit a box of 52 × 52 × 80 cm. The ball used is the FIFA standard size 5 and the
playing area of the field is 22 × 14 m. SSL robots, instead, are cylindrical and
must be 18 cm in diameter and 15 cm in height. The playing area is of 12 × 9 m
and the used ball is the standard orange golf ball with a diameter of 4.3 cm.

1) Perception: Gathers information through the sensors and
turns it into the agent’s world model. In the RoboCup
agent, we have a massive acquisition of data through cam-
eras, onboard sensors of the robot, and all the teammate
agents.

2) Decision making: Chooses the next action based on the
environment model.

3) Action: Executes the action it by coordinating all the
hierarchical layers that bring the commands to actuators.

Hence, the architecture of a robotic agent links the perceptions
of the environment to the action execution. In the agent, there
is the whole decision-making process that the agent executes
to succeed in its goal. Usually, for a single-agent system, the
robot strategy that implements the decision-making process, is
decomposed into skills (in the low level) and behaviors. Con-
versely, for a multiagent system, the CS controls coordination
among the agents.
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Fig. 4. SPL. The platform is the humanoid NAO robot which is 57.4 cm ×
31 cm × 27.5 cm in size. In this league, each team is composed by not more
than five players. The field size is 9 times 6 m and the ball used is black and
white with 100 mm of diameter.

Fig. 5. HLs: HASL, HTSL, and HKSL. The number of robots per team goes
from no more than two in the HASL to at most three and four robots in the
HTSL and HKSL, respectively. The dimensions of the robots are 130–180 cm
in HASL, 80–140 cm in HTSL, and 40–90 cm height in HKSL. The ball used is
the FIFA size 1 for HKSL, size 3 for HTSL, and size 5 for HASL. The playing
area of the field is 14 × 9 m in the HASL and 9 × 6 m in HTSL and HKSL.

Fig. 6. Agent operation architecture and environment interaction.

Furthermore, the RoboCup soccer players act in competitive
settings where the game strategy needs to consider also the
presence of opponents. Hence, we structure our presentation
of the game strategies defined for the implementation of robot
soccer players as: Individual strategies (ISs) [10], CSs [11], and
finally, in opponent strategy analysis [12].

In multiagent adversarial environments, ISs are an important
discriminator to achieve successful game-play. As previously
mentioned, the robot has to use its local perceptions to recon-
struct the model of the environment. On top of this model, the

decision-making system establishes the next action to be taken.
As mentioned earlier, ISs include low-level skills and behaviors.

Low-level skills are usually defined as predefined commands
for robot actuators to implement action primitives such as
kicking, passing, dribbling, diving, and getting-up [13]. These
skills are usually represented as routines that can result from
a model whose parameters can be tuned through a learning
process or obtained through a model-free approach. On top
of the skills, individual behaviors determine the action of the
agent. Depending on the size, the structure and, most important,
on the quality of the perceptions, behaviors are developed to
face the events that might occur during a soccer match. The
execution of behaviors activate the set of skills associated with
them. For example, the behavior of the striker robot can activate
different primitive skills such as kick the ball, standing-up,
and turn the head to search for the ball. Several technologies
have been adopted to develop the behaviors. The single-agent
decision making is, usual, carried out by using state machines
(SMs) [14], planners [15], and various learning techniques, as
evolutionary learning (EL) [16], statistical learning (SL), DL
[17], deep reinforcement learning (DRL) [18]. For example, an
SM can describe the behavior of a defender that has to stop the
ball from reaching the goal by activating the low lever skills to
intercept and stop the ball. Specific decision-making procedures
can also be defined to isolated game situations when the robot
has to behave properly as can happen, for example, in a corner
kick situation.

In RoboCup, single-agent behaviors are fundamental, how-
ever, soccer is by definition a team effort and CSs are key to
improve the team performance. When developing a distributed
robot system, the things become more challenging. In fact,
there are different nontrivial issues that have to be tackled, such
as communication-based coordination. The agents in RoboCup
teams are usually connected via Wi-Fi networks and share the
computed local knowledge to make decisions. Coordination is
typically distributed (with the exception of the SSL where com-
putation is centralized), even though through communication it
is possible to share meaningful information among the team,
and reconstruct a distributed common model. While this makes
it possible to do a coordination without an explicit protocol, the
delays and failures in the network make a distributed approach
more reliable.

In these leagues, in order to be effective, robots have to reason
upon local and/or global perception. Global perceptions can be
produced by external cameras over the field, or by merging
the local information acquired by each robot. External cameras
(e.g., SSL) allow for accurate perceptions that eliminate all the
uncertainty associated with perception, by recreating a scenario
similar to the one of soccer video games. Conversely, when
information is not gathered from an external source, robots
are required to act in a collaborative setting by relying and
sharing their local perceptions. In such context, probabilistic
modeling helps in reasoning on noisy local information. More-
over, since the robot environment is partially observable, a more
comprehensive belief of the world state can be reconstructed
only through communication among agents. As a result of a
collective team perception each robot can adjust its perception
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considering others inputs and, thus, better act in the environment.
It is important to remark that the reliability of such a collec-
tive perception significantly changes throughout the different
leagues. Especially in legged leagues, where the robot cameras
are not stable, the world representation of a single agent can be
narrow and very noisy. In fact, the native partial-observability
of such environments intuitively leads to an incomplete and
noisy estimation of belief states of the world and, as a result,
collective team knowledge is affected by it. In SPL, for example,
knowledge among teammates can be significantly different,
which promotes research in robust coordination protocols (and
individual behaviors) that can operate in extreme conditions
characterize by failures in the communication channels and
noisy information. However, in this survey, we do not address the
perception processes, and assume that the agent takes strategic
decision based on a world model created by observation. In
fact, direct connection (without an explicit world representation)
can be effectively implemented for skills, but not yet for more
strategic decisions.

For the CSs, we distinguish between collective behaviors,
positioning on the field, and role assignment. Under the category
of collective behaviors, we group the specific approaches devel-
oped to coordinate specific plays, for example, the pass, corner
kick, and kick in. Petri Net Plans [19] have been effectively
used in RoboCup competitions for teamwork and cooperative
behaviors. Positioning in the field is the task of determining
the position of players. Specifically, this problem resembles the
situation of video games, where all the players that are under
the control of the software must position in order to implement
the best collective action to support the human controlled player
(that we call striker). Historically, the positioning problem has
been strictly related to the role assignment, as in [20]. Role
assignment is the further step that has to be taken to have an
effective CS. Role assignment is a special case of the general task
assignment for the multirobot system. Starting in [21], utility-
based role assignment and coordination allowed us to coordinate
heterogeneous robots, with different hardware characteristic, for
playing soccer. Many others technologies have been deployed in
coordination and collective behavior problems. Markov decision
process has also been applied to the multiagent role assign-
ment [22] and, as in the individual behavior formalization, also
learning techniques have been adopted.

In multirobot adversarial scenarios (as the one we are survey-
ing), analyzing the opponent behaviors and strategies enables
the team of robots to adapt their strategy to maximize per-
formances. In leagues, where perception is efficiently solved,
it is possible to robustly analyze the opponent team [23]. To
this end, different technologies have been deployed such as
sample clusterization and pattern recognition. In particular, in
leagues with simple hardware and complex strategies, learning
approaches are widely used.

IV. STRATEGIC LEVELS IN ROBOT SOCCER

RoboCup has represented an excellent testbed for research
in AI and robotics. By embracing several leagues with real and
simulated agents, RoboCup allowed us to explore the boundaries

of AI. To this end, the game settings have been constantly
upgraded, to make them more challenging and, to some extent,
more realistic. Moreover, the developments of the research in AI
and robotics, have led to a significant evolution in the proposed
approaches: from ad-hoc modeling to various types of learning
techniques. It is worth emphasizing that learning approaches
must face the difficulties arising from training on real robots. To
this end, typically learning is supported by a simulation envi-
ronment, but the transfer of the results of the training on the real
robot is not trivial. Consequently, the most sophisticated learning
approaches are developed in the simulation leagues. This section
focuses on how the problem of behavior creation for ISs, CSs,
and OA, have been addressed using different approaches. Fig. 7
shows the correlation between different behavior, such as OA,
CSs, and ISs (on the vertical axis), and used methodologies such
as PL, learning, and others (on the horizontal axis). A discussion
on the developed approaches, their characteristics, and their use
in the RoboCup competition, is addressed later on in the survey.

A. Individual Strategies

The design of effective behaviors for the single-agent is still
one of the core issues in robot soccer players development.
Single-agent behaviors are divided into two categories based
on the abstraction level that is required for completing the
task: skills and behaviors. Skills execute primitive actions and
behaviors determine how to select them to achieve a specific
goal.

1) Skills: The idea of skill concerns the control of the ex-
ecution of complex physical actions, which require the com-
bination of multiple motion commands. For example, skills
can involve the control of actuators for performing a kick, or
the gait generation for a particular kind of walk system. Even
though the approaches used by competing teams range all the
spectrum from ad-hoc, to model-free learning, the research
is currently focused on proving the performances of learning
techniques. We first address the approaches developed in SPL.
In [36], an imitation learning [70] system is developed. The
agent has to learn the dribble and searching skills, imitating the
motion of the Striker agent (model based) of the former world
champions. Specifically a convolutional neural network is used
for this work, to learn to control speed commands for robot joints
using camera images as inputs. The learning to dribble with
the ball problem is also addressed in [63], using reinforcement
learning techniques. In this case, a hierarchical task decompo-
sition is used for this problem. This article describes and com-
pares several hierarchical learning strategies for designing robot
skills. The evaluation metrics proposed are averaged between
skill performances and sample efficiency. Interactive machine
learning (IML) is another approach for training a dribbling
engine for SPL [48]. The proposed method solves the dribbling
problem by dividing it into two subproblems: determining the
required dribbling direction and calculating walking velocities
for pushing the ball. A predictive model of ball movements is
used for improving dribbling performances, combined with a
batch incremental learning implementation of the algorithm.
Actually, IML approach can overcome typical shortcomings
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Fig. 7. Paper classification for application and approach for the time window 2015–2019. The designed approaches are subdivided in SM approach and PL
approach. Learning-based approaches are subclassified as EL, SL, DL, and DRL. The application is divided in IS, CS, and OA. IS is subdivided in skills (SK) and
individual behaviors (IB). CS is subdivided in collective behaviors (CB), positioning in the field (PF), role assignment (RA). Finally, OA is subdivided in action
sequence analysis (ASA), forecasting future opponent action (AF), utility game strategy (UGS).

of ML, such as data reliability and sample efficiency, but it
requires a human intervention in order to perform. Other HLs,
such as simulated ones, use learning for improving modeled
skills such as running and dribbling. For this purpose in [31],
the PPO algorithm is used. The aim is to obtain natural gaits, even
sacrificing performances. SimSpark [71] is used to simulate a
NAO humanoid robot, using visual and force sensors to control
actuators. The results are natural running and dribbling skill.
However, some of those skills still have problems in switching
to a real robot implementation due to hardware instability. We
have seen that much work has been done for learning skills
in humanoid robots. The complexity in bipedal walk-engine
modeling encouraged the research in Learning methods for such
a topic. However, ground skills are fundamental also for wheeled
robots. In [69], an extension of the decision-making module, a
tool used for handling the decision-making process in RoboCup
SSL is proposed. Their aim is to develop a temporal-difference
reinforcement learning system based on a multilayer perceptron
as a function approximator. They develop different skills using
this system: Shooting skills and passing skills. The authors
conduct nine experiments to develop and evaluate these skills
in various playing situations. Reinforcement learning in SSL is
also addressed in [38]. In this work, an implementation of deep
RL into the skills tactics and plays architecture is shown. The
implementation relies on a deep deterministic policy gradient
algorithm for learning a go-to-ball skill and aim-and-shoot skill.
They evaluate performances in comparison with their previous
modeled ones, using a physically realistic simulator.

2) Individual Behaviors: Behaviors determine what the
robot should do depending on the game state and the current

goal. Deciding when to shoot, pass, dribble, or perform a con-
trast fall under this concept. In recent past, behavior modeling
has mainly relied on SMs and PL systems, both in wheeled,
and humanoid robots. In [46], CABSL, a widely used sys-
tem for behavior implementation, is presented. CABSL is an
extension of the previously introduced XABSL [72] language
and stands for C-based agent behavior specification language.
CABSL has been created entirely in C++. The agent behavior
is constructed as a hierarchical set of SMs. Its structure is
composed of basic building blocks: options, states, transitions,
and actions. Options are the implementations of the SM. A
behavior starts from a single option, the root, then are called
other options. The options are organized hierarchically. Each
option describes a skill or a simple motion of the robot. Every
state can call another option or execute the associated action.
In the first part of each state, there is a transition part which
may cause the switch to another state (before the execution
of the action). Furthermore, to keep the code clean, CABSL
supports also the use of libraries as collections of functions
and variables that may be called inside transition and action
boxes.

Other HLs rely on SMs for behavior implementation, as
described in [55]. HASL also uses this kind of system. Interest-
ing extensions to SMs have been addressed in works like [28]
and [34]. The first is about the implementation of fuzzy SMs
for the behavior of agents in a multirobot environment. The
model includes elements of training to increase the agility of
the behavior of the agent. The second paper presents active
self-deciding stack, a lightweight variant of hierarchical SMs. It
is used in the RoboCup HKSL.
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If SMs only reason about the current state, PL can perform
inferences on future outcomes of actions. In RoboCup SPL,
after several years of use of CABSL, some teams are switching
to PL-based systems. Röfer et al. [33] present the skills and
card system. A skill is a behavior component that executes a
task; it roughly corresponds to the notion of primitive actions
presented in this survey. A card associates actions with the
conditions under which they should be executed. Cards are
characterized in the PL fashion by using pre- and postconditions.
The execution consists in computing which cards satisfy the
precondition and in selecting one of them in accordance with
the given goal. Even if the skills and cards system adopts pre-
and postconditions to model actions, it still lacks forward state
exploration using a prediction model. The work done in [57]
is based on the exploration of future states. They introduce a
method for fast decision making. The outcome of each possible
action is simulated based on the estimated state of the situation.
The simulation of a single action is split into several simple
deterministic simulations, considering the uncertainties of the
estimated state and of the action model. Each of the samples
is then evaluated separately, then combined in comparison with
other actions for the overall decision. PL is a suitable solution
also for sophisticated platforms like the HASL robots, the work
in [35] shows the performances of hierarchical PL methods for
the NimbRo robot.

Learning approaches have been proposed also for behaviors,
however, the good performances of modeling approaches have
slowed down the development of these methods. In [56] and [66],
two different SL methods are used for solving behavioral prob-
lems. In the first, a learning to rank algorithm is used for
determining state evaluation for a decision-making process. In
the second, a linear regression approach is used for determining
the position of the goalkeeper agent in an MSL game. Rein-
forcement learning methods have been widely used for behavior
creation. In [40], a simulated 3-D striker agent is trained to score
a goal without previous knowledge, using a transfer learning
approach instead of the classical reward shaping. In [58], the
problem is addressed using a method based on a combination of
Monte Carlo search and data aggregation to adapt discrete-action
soccer policies for a defender robot to the strategy of the oppo-
nent team. By exploiting a simple representation of the domain, a
supervised learning algorithm is trained over a first collection of
data consisting of several simulations of human expert policies.
Monte Carlo policy rollouts are then generated and aggregated
to previous data to improve the learned policy over multiple
epochs and games. Finally, in [62], the classical bandit approach
is exploited for solving the task of static free-kicks for agents.

B. Collective Strategies

Without coordination playing soccer is not successful. Hence,
CSs play a key role for the performance in the RoboCup soccer
game. Our discussion on CSs is structured into the following:

1) collective behaviors, which regards situations where a
certain task needs the combined execution of actions from
multiple robots to be accomplished;

2) positioning on field strategies that succeed the goal of
maintaining the right position of robot soccer players on
the field to maximize team performances;

3) role assignment, a process that determines which player
has to take a specific role in a game situation to maximize
the cumulative task utility of the entire team.

1) Collective Behaviors: The creation of specific behavior
realized as part of the collaboration of multiple robots is, so,
an essential field of player development. Collective behaviors
discussed in this section are as follows: pass strategies, coordi-
nated movements, and corner-kicks strategies. Ad-hoc methods
can be quite effective for this purpose, as shown in [32], where
the winner team of SSL assert that their passing strategy was
fundamental to success. In this work, suitable passing points
are extracted using search-based interception prediction (SBIP)
as a bases for a dynamic passing points searching algorithm.
After selecting all possible passing points, they use a value-based
best pass strategy, getting the scores of each pass by calculating
the weighted average of the pass point features. The features
have been selected, taking into account game situations as the
distance of the passing point from the goal or the interception
time of teammates. Other structures, like PL with a deep action
selection horizon, are used for modeling multirobot environ-
ments. In [50], an approach based on a modification of extended
behavior networks is proposed. This approach is made with a
situation-dependent utility function based on the effects of the
executed actions. The use of PL-based systems like the previous
one is frequent for the implementations of collective behaviors.
In [49], the skills tactics and play coordination architecture is
presented. This system is developed for centralized-multirobot
teams. STP enables sophisticated team plays both in the MSL
and the SSL. To adapt this practice to distributed systems, they
use a voting system. In Sim3D league, throughout the years,
the deployment of learning-based approaches has been very
compelling, and usually resulting in the winning strategy [43].
Learning-based methods perform well also for the analysis of
highly dynamic situations for determining the team strategy.
In [41], a mimicking process for Sim2D agents is developed. It
is proposed a method for improving the performances of a team
by mimicking a stronger one. A neural network is employed to
model the evaluation function. This network is trained by using
positive and negative action sequences extracted from game
logs. The experiment results in actual improvement of game
performances. In [54], the team learning process is obtained
through the mechanism of imitation learning combined with
a semisupervised system for clustering teams’ formations. If
learning and mimicking opponents’ strategies are essential, it is
equally important to learn how to coordinate robots concerning
the teammates’ signals. In human interaction, gestures cover an
essential role. For handling this kind of communication between
robots, it is necessary to recognize and generalize enough the
teammate’s message will. Di Giambattista et al. [25] present
a DL method for determining the pose of a teammate robot
in the SPL. The system is built on a custom version of the
OpenPose net. After the recognition of the other NAO robot’s
pose, the approach consists of a set of coordination strategies in
peculiar game situations like corner-kicks and kick-offs. Using

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on December 28,2023 at 13:42:50 UTC from IEEE Xplore.  Restrictions apply. 



ANTONIONI et al.: GAME STRATEGIES FOR PHYSICAL ROBOT SOCCER PLAYERS: A SURVEY 349

this gesture-based system, a robot can communicate the will
of executing actions such as long passages, short passages, or
faints.

All the learning methodologies seen so far are based on the
presence of a model knowledge. To learn collective behaviors
without relying on a knowledge model are often used reinforce-
ment learning techniques. There are several applications of this
approach in RoboCup both in multiagent strategies, as and in
single-agent ones. In [24], they provide a comparison of the two
main approaches to tackle this challenge, namely independent
learners and joint-action learners (JAL). The methods are imple-
mented and evaluated in a multirobot cooperative and adversarial
scenario, the two versus two free-kick tasks, where scalability
issues affecting JAL are less relevant given the small number of
learners. They implement the systems using DRL approaches
for both of them. The final results are convincing, with the robot
managing to complete the task with good performances in both
the methods, but with a better average reward obtained by the
JAL approach. In reinforcement learning tasks, it is essential to
determine rewards signals for agents. In [29], a methodology for
obtaining reward signals for teams of robots directly rewarding
the field and the configuration of teams on it is proposed.

2) Positioning in the Field: Another key part of the team
strategy is selecting the correct formation on the field by choos-
ing the position of the agents to optimize the performance in
the game. A well placed formation allows having an advan-
tage in a wide variety of game situations, both attacking or
defending. Positioning on the field is achieved using several
approaches, including SMs and learning algorithms. The work
in [68] demonstrates the importance of team positioning in the
wheeled leagues. They propose an approach for robot coordi-
nation based on the use of utility maps to improve the strategic
positioning of a robotic soccer team. They design utility maps for
adapting to several different situations, to make them adaptable
to different opponents’ strategies. Maps are used in a set of
game contexts: passes in free-play, choosing the best position,
shooting, and receiving the pass. Röfer et al. [47] describe a set
of “advanced team tactics” that they implemented in order to win
their matches. The authors, in fact, take advantage of adaptive
coordination, and by changing the roles of robots during the
active phases, they manage to organize sophisticated positioning
strategies for the ball passing, dribbling, and cover weak points
of the team. The implemented strategy is based on the presence
of a single active agent called striker, which has the task of
playing with the ball. Three inactive agents, two defenders, and
a supporter have the task of positioning themselves in the best
possible point on the field for supporting the striker play. The
core of the presented strategy is to handle the chance of receiving
a long-distance shoot from the opponent, by placing the defender
robots. The supporter instead has the task of positioning in the
field for receiving the striker pass or rebounding the ball in case
of an opponent’s goalkeeper save.

To overcome the limitations of the models developed for
team positioning, teams also implement learning approaches.
Several kinds of learning are applied here. One of them is
the EL [73]. In [30], FEASO, a distributed framework for the
RoboCup Sim3D based on EL, is proposed. It is used for the

strategic optimization of robots by improving the placement
of robots on the field. Their approach comprises the following
three modules: evolutionary algorithm execution, parallel fitness
evaluation, and fitness computation. The problem of positioning,
taking into the opponent’s team play, in Sim2D is addressed also
in [60]. In this work, the authors use an approach based on a
sequence of Bayes estimators. The implemented model is used
for determining the association of player formation against the
opponents during corner-kicks.

3) Role Assignment: Role assignment is the part of coordi-
nation, which allocates the right task to the right agent. In the
RoboCup context, it can involve the choice of which robot should
perform an offensive or a defensive role. A large number of
ad-hoc modeled coordination systems have been implemented
for the RoboCup environment, especially in the SPL. In this
environment, much work has been done to develop the best
communication and role switching between robots. Role assign-
ment is essential to cover the soccer field well and to avoid
dangerous situations coming from the opponents’ strategies.
Riccio et al. [64] introduce a novel approach for coordinating
teams of robots. The key contribution consists in exploiting rules
governing the scenario by identifying and using contexts. The
method relies upon two well-known methods for coordination:
distributed task assignment and distributed world modeling.
Contexts could be considered as specific configurations of the
operational environment. Situations where robots know where
the ball is and situations where they do not are examples of
contexts.

Given the complexity of the task, many different approaches
have been tried during the last years. Some of these methodolo-
gies involve complex data structures as graphs or SMs. Many
algorithms for coordination use SMs as a base instead of ad-hoc
methods. For instance, in [37], they use a custom version of the
Raft algorithm. Raft is a consensus algorithm. It is decomposed
in several independent subproblems, and it then addresses all
significant pieces needed for obtaining a sound system. The
coordination presented in this article is based on the election of a
leader, balancing the disadvantage of centralized and decentral-
ized approaches. For instance, in [34], they implement a form
of coordination inside the SM that controls the robot behavior.
Switching between roles for performing a routine is, in fact, a
type of implicit coordination. In 2015, in [61], a method based
on the selectively reactive coordination algorithm is proposed.
This method consists of two layers, one layer which allows the
team to project the outcome of the chosen formation without
taking into account the opponents. The other, called individual
opponent-reactive layer, adjusts the result taking into account the
opponents’ actions. Finally, in [53], a centralized PL system is
used as a base for coordination of Humanoid HTSL 3 versus
3. This system is based on the collection of common world
modeling. The PL system uses the shared information from
robots to build a global map. Using this map, it computes a
utility function on the planner, based on assigned roles and their
possible future actions.

To encourage alternative forms of coordination,
RoboCupSoccer SPL offered for several years a complex
challenge called the “drop-in” challenge. The trial consists
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of creating two teams of five robots composed of players
from different teams. In this context, coordination can be
complex; robots can have access just to a part of the teammates’
information, because messages contain a standardized part and
a team-specific one. The problem of developing strategies and
coordination for such an environment is addressed in [44].

C. Opponent Analysis

In games, in order to have an holistic understanding on the en-
vironment, opponent players need to be modeled and integrated
in the robots knowledge-base. Players in fact have to formalize
opponents as an obstacle to their mission, and react to them
strategically. To this end, several approaches have been proposed
to analyze opponent behaviors, forecast future situations and
evaluate the current game situations. Accordingly, we organize
this section to categorize major contributions to the OA problem.

1) Action Sequence Analysis: In the RoboCup setting, oppo-
nents analysis represents very challenging task due to partial ob-
servability and a very unpredictable and dynamic environments.
To several approaches propose domain-specific state represen-
tation and clusterize them to extract pattern in opponent state
sequences. For example, Iglesias et al. [42] determine opponent
strategies on simulated robots by analyzing previous game logs,
and extracting a set of predefined actions, which are then pair
with game states and organized in decision trees [74]. In the same
context, Yasui et al. [67] propose instead an approach based on
a dissimilarity function to classify opponent strategies on real
robot platforms. In particular, they exploit such classification to
determine action sequences using cluster analysis. The work has
been later extended by Adachi et al. [59] and Adachi et al. [26].
The former improves classification of opponent actions by de-
creasing the computational demand of the approach, while the
latter proposes an online formalism for the clustering algorithm.
In all settings, the authors exploit their classification to adapt
their formation to the opponents, guard them, and decrease their
chances to score.

2) Forecasting Future Opponent Actions: Once opponent
actions have been classified and their strategy formalized, a
crucial step is to forecast their action and predict their intentions.
Predicting the opponent intentions in fact can truly improve the
performance by preventing strategic positioning and anticipate
opponent attacking formations. To this end, Li and Chen [65]
propose two approaches based on a fuzzy inference system
(Mamdani-type fuzzy and Sugeno type-fuzzy) to determine
players intentions in small corner-cases such as passing or not
passing the ball to teammates. They conduct an exhaustive
experimental evaluation that shows that by modeling opponents
intentions they can double their chances of winning a match.
Conversely, Suzuki and Nakashima [27] use a model-free ap-
proach to learn game states utilities in a simulated setting. They
introduce forward simulation for situation evaluation (FOSSE),
which is a two-step algorithm that forecasts future states and de-
termines the strategic team positioning to respond to opponents
attacks. FOSSE uses recursive neural networks for predicting
future states and a simple forward model to conduct utility state
evaluation.

On a different (more complex) platform, Rizzi et al. [45]
propose an opponent forecasting algorithm on a humanoid robot
within the SPL. The authors introduce situation-aware fear
learning (SAFEL), a real-time algorithm to analyze and syn-
thesize behavioral models based on LeDoux’s architecture [75].
SAFEL allows an agent to learn behavior profiles and to respond
accordingly.

3) Utility of Game Situations: Several approaches to strate-
gic game-play in robot soccer matches formalize a methodology
to evaluate game situations with a utility function—that can be
either defined by experts or learned from experience. OA is
extremely valuable in generating accurate utilities. Moreover,
the majority of existing approaches are learned-based since the
search-space is too big and cannot be embedded with prede-
fined rules. In fact, Michael et al. [51] propose an approach to
behaviors detection and identification. Their goal is to develop
a domain-independent methodology to classify states of the
environment based on recurrent neural networks that encode past
experience. The approach is also used to learn conceptors that
are lower dimensional manifolds that describe robot trajectories
and, enable utility state predictions more easily. A different
supervised approach is presented in [39] where the authors
exploit a dataset of soccer matches to classifies game states
and evaluate the likelihood of scoring for each playing team.
In particular, the utility function derived measures the estimated
time until a team scores.

V. DISCUSSION

In this section, we dive more in depth, and discuss major
constraints that the robot embodiment and environmental con-
straints forces on soccer competitions. We elaborate on how re-
searchers drive their efforts in deploying holistic robotic systems
that can be robust and effective.

A. Rules and Hardware Constraints

Different aspects influence the choice of an approach, or
a game strategy, to implement. In fact, within the RoboCup
competitions, researchers are challenged to attack the game
of soccer from different angles and in different environmental
configurations. When we closely observe the RoboCup leagues
and the environments they recreate, we can classify them as
continuous, dynamic, nonepisodic, and nondeterministic envi-
ronments. Continuous because the perceptions and actions are
not in a limited number. Dynamic since the environment can
change while an agent is deliberating, for instance, due to the
opponents. Nonepisodic and nondeterministic since there are no
episodes, and, the next state of the environment is not entirely
determined by the current state and the actions performed by
the agents. However, one characterization of the environments
does change among the different configurations. In fact, within
the RoboCup leagues the level of observability does change,
spanning from fully observable environments (e.g., SSL) to
partially observable ones (e.g., ASL). In particular, each league
provides different operating settings. For instance, in the SSL,
all robots have unique identification patterns that are accurately
tracked by a central vision system. Such a setup alleviates the
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Fig. 8. Paper classification for approaches and platform for the time window 2015–2019. The model-based approaches are subdivided in SM approach and PL
approach. Learning-based approaches are subclassified as EL, SL, DL, and DRL. In bold, we highlight contributions that report results of the proposed approaches
obtained during the deployment in matches of official RoboCup competitions.

Fig. 9. Paper classification for application and platform for the time window 2015–2019. The applications are subdivided in OA, CS, SI.

partial-observability constraint and opens up to a wide range of
research fields spanning from learned-based techniques to OA
and high-level coordination strategies. Fig. 9 shows that stable
platforms better supports OA and, more in particular, full observ-
ability simplifies the opponent tracking problem and promotes
research in opponent behavior understandings, as in [59], [26],
and [67]. In the simulation league, the environmental setting
does not provide a central vision system, but virtual perception
systems are generally more reliable and virtual agents do not
break nor malfunction. This is a key to explore new methodology
and techniques, and to attack the soccer game problem in a
more controlled setting. This led to have learning approaches
in official competitions, as shown in Fig. 8. The MSL is a
wheeled league featuring relative big robots that have onboard an
omnicamera providing an egocentric, but complete point of view

of the soccer field. This forces developers to explicitly formalize
errors and noise that characterize real vision system, but aids
teams to safely improve on robot coordination and individual
game strategies. Here, we can still find some attempt to have
accurate [76]. Moving into an environment configuration similar
to the one of human soccer, the SPL forces all teams to use
the same robot platform. Such a constraint suggestively puts all
teams on the same starting point, where the determining factor
of the match is the skill of each team to implement effective
software solutions maximizing the platform at disposal. Finally,
the HL can be considered the most hardware-driven league,
where teams need to build their own robots and can overlook
on high-level behavior models both individual and collective.

Fig. 9 shows how the robot platform influences the application
of the different approaches. In this analysis, the x-axis reports
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Fig. 10. Coordinated CSs compared to the deployed platform.

the platforms with increasing hardware complexity (as in the
previous case), while the y-axis highlights three types of appli-
cations or use-cases, namely ISs, CSs, and OA. It is noticeable
that there is not an emergent trend in the research of CS and IS
as they are completely balance across platform categories. This
hints to the fact that in multirobot, adversarial scenarios, in order
to achieve the satisfactory performance both individual and CSs,
must be addressed. In other words, in robot soccer competitions
success is defined by both and not their individual contributions,
despite the varying league constraints exposed earlier.

Nevertheless, more can be discussed on the OA row. Major
contributions on the topic are dictated by the perception system.
In fact, both for simulated and real platforms perceptions are
provided, and robots operate in a fully observable environment.
This is a key to analyze opponent behaviors, classify them, and
react accordingly. As mentioned, the partial observability on a
humanoid robot naturally affects the possibility to thoroughly
analyze opponents, and as a consequence, it is not a mandatory
skill on such platforms. However, as in the previous scenario,
we can notice that the first attempts to transfer OA approaches
to complex platforms are (again) in the humanoid SPL. Rizzi
et al. [45] develop an approach to analyze opponent behaviors
and to define strategic individual responses. This is another con-
firmation that approaches are scaling progressively toward more
complex platforms even though, at the moment, OA remains an
active research topic only for platforms with a reliable perception
system.

Finally, Fig. 10 classifies collective coordination strategies
with respect to different robot platforms. On the x-axis the
platform categories divided in accordance with the RoboCup
leagues, while on the y-axis, we divide in between designed and
learned coordination approaches. Effective coordinated strate-
gies represent the ultimate objectives for soccer robot teams
and a determining factor that characterizes successful robotic
systems. By analyzing the figure, we can clearly see one of
the most sharp categorizations of the surveyed papers. In fact,
all simulated platforms adopt a learning approach, whilst real
platforms a predesigned one. In the SPL quadrant, the work

by Catacora Ocana et al. [24] represent an outlier that shows
a learning-based approach on a real platform. In this work, the
authors exploit DRL to address robot coordination in partic-
ular situations such as penalty-kicks. Suggestively, coordina-
tion approaches heavily depend on the platform used and the
most sophisticated solutions are deployed on simulated and
wheeled robot platforms. However, the mission is to scale such
methodologies to all physical platforms. The process gradually
progressing as we notice that researchers in the SPL started to
investigate learning coordination strategies also on humanoid
robots.

B. Approaches and Deployment in Competition

As observed, in RoboCup competitions, proposed techniques
can be coarsely divided in two major categories. Accordingly,
Fig. 7 provides a visual representation of such a dichotomy
by comparing predesigned and learning approaches. Here, we
assume a different point of view that abstracts from the RoboCup
leagues, and analyzes how the robot embodiment affects team
strategies and can influence the approach implemented by re-
searchers. To this end, Fig. 8 organizes the surveyed contribu-
tions by highlighting proposed approaches on the x-axis and
used platforms on the y-axis. The x-axis shows a moderate
range of options spanning from static SMs to learning-based
approaches. Suggestively, presented approaches are divided in
two macrosegments. The former is represented by predesigned
approaches that are divided into two subclasses: SM and PL.
Similarly, the latter is represented by learning-based approaches
that are further divided into the following four subclasses: EL,
SL, DL, and DRL. On the y-axis, instead, we show the robot
platforms in five categories. By examining the platform axis
bottom-up, we highlight the complexity of the robotic platform
kinematic chain in increasing order.

It is worth mentioning that simulated robots are considered
as the most basic hardware embodiment and therefore occupy
the first segment on the axis. In particular, Sim2D robots are
modeled as simulated unicycles, while simulated humanoids
resemble the NAO robot. Intuitively, in such a context, simu-
lated platforms do not represent a real limitation, which opens
up to a very rich scenario for exploring and evaluating novel
techniques. As can be observed in the figure, approaches de-
veloped on simulated platforms have a clear bias in exploring
learning-based techniques, whereas only two contributions are
not learning behavioral models, but rather focus on single-agent
strategies [28] and OA [42]. Moreover, simulated humanoids
support a broad and balanced exploration of learning techniques,
which suggests that there is no dominant trend in the research
strategies, and hyper-redundant simulated robots do not rep-
resent a limit or bias for researchers. In contrast, simulated
unicycle robots feature a very basic platform, and proposed
contributions show a dominant pivot in DL. In such a scenario,
robots are deployed in a very dynamic environment, and neural
networks are usually preferred due to their generalization capa-
bilities. It is important to highlight that also DRL approaches
are recently receiving more attention as both reported papers
are from 2019—achieving state-of-the-art results in transfer
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learning [40] and in learning effective strategies [29]. Proceeding
on the platform axis, wheeled robots represent the first step into
real platforms analysis, where we group small- and middle-sized
wheeled. It is important to highlight that middle-sized robots
have omni-directional cameras on board as well as their compu-
tation unit. Instead, small-sized robots are remotely controlled
by a central processing unit that collects perception by exploiting
a set of top-down looking cameras placed above the soccer field
and commands the robots via Wi-Fi. Interestingly, the third row
of Fig. 8 shows a clear cut in explored approaches, which are
mainly focused on nonlearning techniques. Learning-based so-
lutions are being investigated only recently; however, all papers
in the DRL quadrant rely on small-sized platforms, suggesting
a strong dependency between the hardware characteristics and
deployed technique. Researchers relying on middle-sized plat-
forms prefer more controlled solutions, which they can explain
in the case a failure occurs. Moreover, in such a context, robots
operate in a fully decentralized fashion, which seems to make the
exploration of learning-based techniques more difficult. Then,
standard humanoid platforms have a particular hardware config-
uration within RoboCup competitions. The platform deployed
is the humanoid NAO robot. Teams are not allowed us to alter
the platform, which enables researchers to focus on high-level
cognitive tasks. Key issues in using such a robot are partial
observability and bipedal locomotion. The tradeoff between a
ready-to-use but hyper-redundant platform reflects in an unbi-
ased exploration of the research field; research works equally
employ existing techniques. It is important to notice that DL
approaches are always investigated when perception and data
gathering are robust and reliable (e.g., simulated robots, fully
observable). This suggests that individual and CSs are not only
limited by the hardware, but also the reliability of the perception
system plays a role. In this setting, such a constraint is less
strict and, although the perceptions are not much more reliable
with respect to other humanoid platforms, the standardization
of the platform allows researchers to exploit learning-based
technologies in partial, noisy, and fully decentralized settings.
The most hardware-demanding category is represented by large
humanoid robots, which gathers custom robots with different
sizes. In this context, strategic game-play does not find large
support by the platform as researchers center their efforts on ma-
neuvering the hyper-redundant platforms. Hence, implemented
behaviors are basic, and the environments are more structured.
As a consequence, there is not a widespread use of need to
deploy learning-based techniques yet, and all contributed papers
describe predefined static approaches. This further remarks our
findings that hardware represents a challenge in behavior gener-
ation; thus, when developing game strategies, physical aspects
must be taken into account to achieve good results.

Fig. 8 shows an interesting relationship between the approach
adopted for strategic game-play and the physical platform.
Learning-based techniques are preferred when complex indi-
vidual and CSs are needed. However, existing methods assume
a simple platform and do not scale to large and more hardware-
demanding robots. Nevertheless, it is worth remarking that such
a distinction is going to blur in the next years. We are already

observing that techniques developed both in simulations and
small-sized platforms are scaling up to more complex platforms
such as the humanoid SPL. It is not a surprise that such a
phenomenon begins within the SPL, where a more stable and
controlled environment is configured. Additionally, Fig. 8 also
shows approaches that have already been successfully deployed
in RoboCup competition. The contributions marked in bold
are, in fact, the ones that have been deployed and used in the
real games, while in black, approaches that did not yet led to
successful deployment in the competitions but that are important
to report in order to provide a complete picture of the ongoing
research within the RoboCup environment and its future devel-
opments. We can notice that SMs are almost always deployed in
competitions. This is due to the fact that SMs tradeoff between
computational efficiency and expressive power. On the other
hand, learning-based methods and automated PL still struggle
to achieve a complete deployment in this kind of situation. In
particular, it is easy to see that simulated leagues, such as the
Sim3D, always manage to effectively implement the behavior
developed in research also in competition. This is given by the
absence of strong hardware limitations that other leagues could
have.

PL methods offer the possibility to reason about future ac-
tions, allowing the agent to perform plans that take into account
the evolution of the environment. However, PL approaches
can often require many resources for the exploration of the
state space, particularly in complex environments like the ones
that the RoboCup leagues propose. Moreover, the development
and generation of complete offline plans are not rewarding for
dynamic environments. In fact, PL techniques require precise
modeling of both the environment and of its evolution and in
the situations provided by the RoboCup competitions is nearly
impossible to achieve. The aforementioned PL problems are
often mitigated by using online and bounded PL techniques that
allow the agent to plan on a limited subset of the state space.
These systems allow reducing the needed precision environment
modeling, given the chance of monitoring the game evolution.
Also, the reduced state expansion led to an intensive implemen-
tation of these approaches also in hardware bounded leagues as
the humanoid SPL one.

End-to-end DL approaches, on the other hand, do not require
human modeling at all. By exploiting this category of ap-
proaches, it is possible to automatically learn the game behaviors
using the agent experience or a precollected dataset. This kind
of algorithms are extremely useful to tackle problems difficult
to model; such as dynamic game situations and complex control
problems. However, such techniques have been deployed less
frequently onto real robots. This lack of real robot implementa-
tion is given by the huge computational cost [77] that this kind of
methods require. Moreover, another problem related to the use of
DL on physical robots is the “sample efficiency,” this category
of approaches requires a large amount of training samples in
order to make the algorithms converge to a competitive solution
in the policy search-space. During the learning process, compu-
tational time and complexity of the algorithms might represent
a prohibitive cost that in most situations, still, cannot be paid.
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Additionally, DL methods often work as a black-box. This is not
always suitable given the need of teams to evolve and refine the
code as the competition takes place. Humanoid SPL is surely
one of the leagues that contributes more on the topic, but still,
the use of the DL for behavior generation struggles to be widely
implemented in the game due to all the disadvantages of holistic
learning solutions.

Summarizing, we have seen the implementation of the dif-
ferent approaches and their use in the several leagues of the
RoboCup competition. At the current stage, as highlighted in
Fig. 8, model-based methods represent the preferred in-game
implementation due to the practical use, quick adaptability and
intelligible solutions. The figure also shows that more complex
approaches, are incrementally finding an application in scenarios
as humanoid and SPL leagues that, given the complexity of the
platform, can benefit from the chance of reasoning in advance
of the possible outcomes of the agents’ actions. Finally, it is
important to note that DL techniques do find a widespread in
game application only in leagues that are lightly bounded to
the hardware constraints—like the simulated ones. The use of
learning for decision in the physical robot leagues still struggle
to be adopted given the computational cost required by this
kind of approaches, sample inefficiency, and lack of intelligi-
bility. However, this does stop researchers to experiment and
explore these methodologies that conversely represent the most
advanced research topics in these years. In fact, we do report
several learning-based contributions that even if (in the majority
of the cases) are not deployed directly in the real competitions,
they do contribute to improve components of the robotics system
and decision-making strategies being combined with PL-based
approaches.

VI. CONCLUSION

Competitions in RoboCup have become more and more
dynamic and complex through the years. The year 2050 is around
the corner and researchers are working around the clock to
improve the state-of-the-art and win the RoboCup challenge.
Recently, research on behavior generation and decision making
started to be a key research topic for the competition, shifting
attention—especially in certain leagues—from hardware and
low-level control to decision making. In this survey, we have
addressed the issue of creating behaviors for physical agents in
robotic soccer. Through an overview of research on the topic
over the last five years. The main objective of this article is
to illustrate the trends in research on behavior creation and, in
addition, to shed light on the different characteristics that portray
the decision-making processes in each league. We have shown
how 1) OA, 2) CSs, and 3) ISs take advantage of the use of a
wide range of AI solutions, such as PL systems, SMs, machine
learning, and reinforcement learning. We have also seen how the
hardware of robots can affect the effectiveness and complexity
of these behaviors. The work carried out in leagues with high
mobility and reliable perceptions (such as simulated ones) has
its primary focus on developing sophisticated strategies for
team play. On the other hand, critical hardware leagues like the

humanoid focused effort on behavior modeling for individual
agents. This article also shows the change in the research trend
on behavior, which, over the years, is increasingly targeting
learning algorithms and group methodologies. Behavior design
in RoboCup offers multiple possibilities for future develop-
ments. The increasing hardware capacity of robots allows for the
use of more sophisticated and heavy algorithms. Moreover, the
evolution in predictive methods is allowing us to create solutions
able to develop gaming strategies at multiple levels. More and
more leagues are shifting their development standards toward
PL and machine learning approaches, making ad-hoc modeling
increasingly obsolete.

Another critical open track is the creation of heterogeneous
teams for RoboCup. Until now, teams always played with ho-
mogeneous teams composed of identical robots. The aim is,
like for real soccer games, to create teams with different robots
with different skills. Some work has already been done in this
direction. In humanoid and SPL leagues, the problem has been
addressed with the drop-in competition. Also the MSL [78]
has a technical challenge called cooperative mixed-team play
in which teams need to demonstrate the team play between
two or more robots from different teams. Also, in Sim2D and
Sim3D, heterogeneous teams have been composed to perform
the drop-in. In 3-D league [79], in the drop-in player challenge,
each team contributed two drop-in field players to a game where
both teams consisted of drop-in field players. Players were
scored exclusively by their average goal difference across all
of their games. To accurately measure their performance, every
team played at least one game against opponents from each other
team. A total of nine teams participated in the challenge. Game
pairings were chosen by a greedy algorithm that tries to even
out the number of times agents from different teams play with
and against each other [79].

In the SPL, the drop-in competition has been bench-marked
and has been analyzed by Genter et al. [44]. In the HL, the
strategy for handling robots from different teams playing to-
gether has been analyzed by Paetzel et al. [80], which proposes to
revise the competition scheme, moving away from participating
with a team of robots to participating with a single robot that
preserves the competitive element of the ranking performance
of individual robots and awarding trophies. They propose a set
of rules, which shall be continuously judged during the game,
composed of positive and negative actions suitable to rank the
robot behavior. However, despite these previous efforts, the goal
of achieving completely different teamwork between players
remains far away. In real football, players have entirely different
physical characteristics and specific skills. This diversity in
playing style guides the development of the initial strategy and
also the evolution of the decisions of all players. This high
difference in the characteristics of individual agents still remains
an objective for RoboCup.

Over the years, RoboCup competitions always evolved to
improve developed approaches and continuously challenge re-
search works. The goal is to raise the level of the competi-
tion until they match real-world settings. The research within
the Robocup environment is fundamental for bridging AI and
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games to the real world. In fact, implementing AI algorithms
in real-world environments puts researchers in front of several
challenges that must be tackled in order to transfer AI onto
physical agents, such as noise in perception, limited environment
knowledge, and reduced computational power. All these issues
are being addressed in the RoboCup, which nowadays represents
excellent testbed for researchers that are focusing on the inter-
section of AI, games, and robotics to transfer state-of-the-art
technologies in the real world.
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He has been the principal investigator of several collaborative projects funded
by FP7, H2020, and several other research funding institutions.

Mr. Nardi is a EurAI Fellow, and was a President of RoboCup Federation
from 2011 to 2014.
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