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Abstract

Background: Biological networks are often used to describe the relationships between relevant entities, particularly genes and pro-
teins, and are a powerful tool for functional genomics. Many important biological problems can be investigated by comparing biological
networks between different conditions or networks obtained with different techniques.

Findings: We show that contrast subgraphs, a recently introduced technique to identify the most important structural differences
between 2 networks, provide a versatile tool for comparing gene and protein networks of diverse origin. We demonstrate the use
of contrast subgraphs in the comparison of coexpression networks derived from different subtypes of breast cancer, coexpression
networks derived from transcriptomic and proteomic data, and protein–protein interaction networks assayed in different cell lines.

Conclusions: These examples demonstrate how contrast subgraphs can provide new insight in functional genomics by extracting the
gene/protein modules whose connectivity is most altered between 2 conditions or experimental techniques.
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Key Points
� Contrast subgraphs extract the most significant struc-

tural difference between 2 networks while preserving
node identity awareness.

� They can be used to compare biological networks de-
rived from high-throughput experimental assays.

� Contrast subgraphs extracted from the comparison of
gene/protein networks provide new insight in functional
genomics.

Introduction
The development of high-throughput methods in the past few
decades has revolutionized biology by allowing the investiga-
tion of living systems from a global point of view, thanks to
the various omics technologies [1]. The huge amount of data
thus produced presents new analytical challenges for their inter-
pretation and the extraction of useful and actionable biological
information.

An important approach to such analytical task proceeds
through the generation, from the high-throughput data, of biologi-
cal networks expressing various types of relationships between the
biological entities that have been measured (see [2] for a general

introduction and [3] for a recent review). In some cases, the results
of high-throughput measurements can be directly interpreted as
networks, as in the case of protein interaction networks. In other
cases, a network structure is built as an analytical tool to facilitate
the extraction of biological information, as in the case of coex-
pression networks in which edges are established between genes
showing correlated expression profiles in transcriptomic or pro-
teomic assays. Many analytical tools developed in the context of
network science can then be applied to such networks to extract
biological information and formulate mechanistic hypotheses.

In many cases of biological interest, the most important ques-
tions can be answered not by simply analyzing a single biological
system but by comparing 2 such systems to extract their funda-
mental differences. For example, when studying a disease, it is
necessary to compare the diseased status to the normal one or
different types of disease to each other. Moreover, different omics
techniques can produce complementary insights into biological
systems, and the investigation of such differences can shed light
on the biological features best represented by each technique.
When the system of interest has been described in terms of a bio-
logical network, techniques for network comparisons become the
main tool for these investigations.

The bulk of the methods for network comparison can be cate-
gorized into 2 main classes: methods for the structural compar-
ison of networks and methods for network alignment. Methods
in the former class aim to detect global differences between net-
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works in terms of the features considered in network science, such
as connectivity distribution, clustering coefficient, and assortativ-
ity, and do not explicitly identify the individual nodes responsible
for such differences. Methods for network alignment are mostly
used to identify homologous modules in networks of different ori-
gin and are thus conceived to find similarities, rather than differ-
ences, between networks.

Recently, Lanciano et al. [4] proposed the extraction of con-
trast subgraphs as a method to identify the most important struc-
tural differences between 2 networks sharing the same nodes. In
essence, contrast subgraphs are sets of nodes whose induced sub-
graphs are densely connected in one network and sparsely in the
other (mathematical definitions and algorithms are found in the
Methods). Contrary to most methods for structural comparison,
contrast subgraphs are characterized by node identity awareness
(i.e., identify the individual nodes that are responsible for the ma-
jor differences between the networks). Thus, contrast subgraphs
can be applied to pairs of networks sharing the same nodes or
for which a suitable node-mapping function is available (such as
when considering biological networks whose nodes are genes or
proteins). The method allows rich downstream analyses based on
domain-specific knowledge on the nodes. For instance, applica-
tions in which contrast subgraphs have been employed are social
media [5] and neuroscience [4].

Here we apply contrast subgraphs to several comparisons of
biological networks derived from high-throughput data, and we
demonstrate how meaningful and novel biological information
can be extracted from such comparisons. In particular, with re-
spect to existing methods [6], contrast subgraphs exhibit 2 impor-
tant advantages. First, the same technique can be used to com-
pare homogeneous networks (i.e., obtained from the same high-
throughput assay applied to different systems, such as coexpres-
sion networks obtained from 2 different types of cancer) or hetero-
geneous ones (obtained from different assays, such as protein co-
expression and messenger RNA [mRNA] coexpression networks).
Second, the method produces a hierarchically organized list of dif-
ferentially connected modules that can be interpreted as repre-
senting separate biological processes.

Results
To demonstrate how contrast subgraphs are useful in extract-
ing biological information from the comparison of biological net-
works, we discuss 3 concrete examples, where the technique is
applied to homogeneous networks (coexpression networks and
protein–protein interaction [PPI] networks from different biologi-
cal conditions) or heterogeneous ones (coexpression networks de-
rived from transcriptomic and proteomic data).

Coexpression networks in 2 subtypes of breast cancer
Transcriptomic assays have revealed that breast cancer is, from
the molecular point of view, a highly heterogeneous disease. The
most commonly used transcriptomic-based classification of this
disease includes 5 subtypes (luminal A, luminal B, HER2 enriched,
basal-like, and normal-like), where luminal A and basal-like are
considered, respectively, the least and most aggressive subtypes
[7]. We used 2 large repositories of breast cancer gene expres-
sion data—namely, the TCGA (https://www.cancer.gov/tcga)[8]
and METABRIC [9]—to build coexpression networks separately for
tumors classified as basal-like and as luminal A. The coexpression
networks were based on Spearman’s correlation coefficients and
built following the procedure used by WGCNA [10] (see Methods).
We then extracted the contrast subgraphs from the comparison

of the 2 subtype-specific networks, separately for each dataset.
This is an example of comparison of homogeneous networks (i.e.,
obtained from the same assay) in 2 different conditions.

Figs. 1 and 2 (A and B) represent the degree distribution for the
first contrast subgraphs showing, as expected, a strong difference
between the 2 subtypes (the genes in the first contrast subgraphs
are listed in Supplementary Table S1). Analyzing these genes’ en-
richment for functional categories, as annotated in the Gene On-
tology (GO), we found immune-related processes to be coherently
more coexpressed in the basal-like subtype, both in the TCGA and
in the METABRIC cohort, while other processes related to tumor
microenvironment, such as extracellular matrix organization, are
more strongly coexpressed in the luminal A subtype (Figs. 1 and 2,
panels C and D). This indicates that the tumor microenvironment,
particularly immune cells and fibroblasts, play a prominent role
in differentiating these 2 molecular subtypes. The full list of en-
riched GO categories is provided in Supplementary Table 2. Impor-
tantly, the results obtained with the 2 independent breast cancer
cohorts show good agreement, with the top differential subgraphs
significantly overlapping for both the basal-like and the luminal
A subtypes in terms of both individual genes (all P < 2.2 · 10−16,
Fisher test) and their functional enrichments (as shown in panels
C and D of Figs. 1 and 2), supporting the reliability of the method.

The coexpression networks discussed above were based on
Spearman’s correlation. While this approach is the most com-
monly used, proportionality has been recently shown [11] to be a
better alternative to correlation when building coexpression net-
works, allowing to avoid false positives due to the compositional
nature of transcriptomic data. To verify whether our contrast sub-
graphs were robust with respect to the use of proportionality in-
stead of correlation, we built proportionality-based networks (see
Methods) and compared their contrast subgraphs to those ob-
tained from correlation-based networks. The contrast subgraphs
obtained with proportionality were in all cases highly similar to
those obtained from correlation, with a Jaccard index >0.5 in all
cases (0.71 for TCGA basal, 0.53 for TCGA luminal A, 0.79 for
METABRIC basal, and 0.80 for METABRIC luminal A; all P = 2.2 ·
10−16, exact Fisher test; Supplementary Table S3).

Protein vs. mRNA coexpression in breast cancer
Coexpression networks are usually built, as we did above, from
the results of transcriptomic assays, since these are less expen-
sive than proteomic assays and thus available in large numbers.
However, proteins, rather than mRNA molecules, are the predomi-
nant components of the molecular machinery performing cellular
functions. Moreover, although transcriptomics studies commonly
assume mRNA levels to be reliable indicators of corresponding
protein levels, transcript and protein expression do not always cor-
relate [12]. Indeed, synthesis and degradation rates of the 2 types
of molecules can be substantially different [13]. Additionally, a
wide range of posttranscriptional regulatory mechanisms, includ-
ing translational repression by small noncoding RNAs and local-
ization in processing bodies (P-bodies), could account for such dis-
crepancies [14]. Therefore, it is reasonable to expect that coexpres-
sion networks built from protein abundance data could provide
information that is complementary to that provided by mRNA-
based coexpression networks and possibly more biologically rele-
vant.

To analyze the differences between mRNA-based and protein-
based coexpression networks, we used the proteomic data avail-
able from CPTAC [15] for a subset of the patients with breast can-
cer included in the TCGA and built a protein-based coexpression
network, which was then compared using contrast subgraphs to
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Figure 1: Contrast subgraphs between basal-like and luminal A subtypes for METABRIC. (A, B) Degree distribution of the nodes included in each
contrast subgraph computed in the 2 coexpression networks. The P -value is obtained with the Mann–Whitney U test by comparing the 2 distributions.
(C, D) Dotplots showing the enrichment of each contrast subgraph for Gene Ontology biological processes. The color gradient indicates the false
discovery rate, while the dot size correlates with the number of nodes in the intersection between the contrast subgraph and the functional category.
Only the top 10 most significant categories are shown. GeneRatio: fraction of genes in the gene set found in the contrast subgraph.

the coexpression network obtained from the mRNA data of the
same subset of patients. In this case, the networks to be compared
are heterogeneous in that they are derived from 2 different assays.

The subgraphs with the strongest differential coexpression be-
tween the proteomic and transcriptomic data (listed in Supple-
mentary Table S4) are enriched for immune categories. Of note,
genes more connected at the protein level belong to categories
such as “complement activation” and “regulation of humoral im-
mune response,” while genes with functions in adaptive immu-
nity are overrepresented among those with higher transcriptional
coexpression (Fig. 3, full list in Supplementary Table S5). More-
over, the subgraph more connected at the protein level comprises
genes with strikingly low correlation in their mRNA and protein
expression (Fig. 3C), indicating that these genes are subject to ad-
ditional regulatory layers, thus supporting their discrepant mRNA
and protein coexpression (Cohen’s d for the difference in mRNA–
protein correlation for genes in the transcriptome or proteome
differential subgraphs: 0.52). This observation is in line with the
complement cascade being mostly regulated through proteolytic

activity and indicates that subgraphs more connected at the pro-
teome level could better represent functional coupling of pro-
cesses regulated at the posttranslational level.

Protein interaction networks in human cell lines
The analysis of PPI networks can provide functional information
complementary to that provided by transcriptomics. In particular,
the comparison of such networks derived from different cell types
or tissues can indicate those interactions that are specific to a bi-
ological context. We thus considered experimentally determined
PPI networks in 3 human cell lines (HUVEC, HEK293T, and Jurkat)
[16], derived from different human tissues: the vein of the umbil-
ical cord (HUVEC), an embryonic human kidney (HEK293T), and
T lymphocytes (Jurkat), so that we expect the respective PPI net-
works to reflect their diverse biological origins. These are widely
used cell lines for which many different omics datasets have been
produced by several labs and consortia. As the networks are de-
rived from the same assay applied to different biological contexts,
this is another example of a comparison of homogeneous net-
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Figure 2: Same as Fig. 1 for the TCGA-based basal-like and luminal A coexpression networks.

Table 1: List of networks employed in this work

Dataset |V|

Metabric 19,307
TCGA 16,995
Properseq 7,803
CPTAC 8,300

works. We extracted the contrast subgraphs for each of the 6 pos-
sible comparisons. Each contrast subgraph thus contains proteins
with a higher density of interactions in one cell line compared
with the other. The contrast subgraphs contained from a mini-
mum of 143 (HEK vs. Jurkat and HEK vs. HUVEC) to a maximum
of 204 (HUVEC vs. HEK) proteins.

It is important to verify that the contrast subgraphs thus ex-
tracted do not simply contain proteins that are differentially ex-
pressed when comparing the 3 cell lines. Indeed, we expect pro-
teins that are upregulated in a cell line to be also easier to detect as
interacting in the same cell line, without truly reflecting cell type–
specific interactions. We compared the first contrast subgraphs
obtained for each comparison with the list of upregulated genes

obtained by comparing the transcriptomes of the same cell lines
obtained by the Human Protein Atlas [17]. The proteins contained
in the first contrast subgraph in HUVEC and, to a lesser extent,
Jurkat cells did indeed significantly overlap the corresponding up-
regulated genes: for example, when comparing HUVEC to Jurkat
cells, 112 proteins appearing in the contrast subgraph were also
transcriptionally upregulated in HUVEC cells (expected by chance
30.5, P < 2.2 · 10−16, exact Fisher test). Such enrichment was not
detected in HEK293T-specific contrast subgraphs. For example,
the contrast subgraph obtained when comparing HEK293T to HU-
VEC cells contained 28 upregulated proteins (expected 20.5, P =
0.052). Therefore, we can be confident that the HEK293T-specific
interactions contained in these contrast subgraphs are not exclu-
sively due to transcriptional upregulation of the corresponding
genes.

We thus analyzed in more depth the 2 contrast subgraphs char-
acterized by higher edge density in HEK293T compared with HU-
VEC and Jurkat cells, respectively. Remarkably, these 2 contrast
subgraphs were identical and contained 143 proteins (Supplemen-
tary Table S6). Gene Ontology enrichment analysis of these pro-
teins revealed 160 enriched biological processes (Supplementary
Table S7), including many terms related to translation and ribo-
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A B C

Figure 3: (A, B) Dotplots showing the enrichment of transcriptome vs. proteome contrast subgraphs for functional categories. The color gradient
indicates false discovery rate, while dot size correlates with the number of nodes in the intersection between the contrast subgraph and the functional
category. Only the top 10 most significant categories are shown. GeneRatio: fraction of genes in the gene set found in the contrast subgraph. (C) Violin
plot showing Pearson’s correlation between transcriptomic and proteomic levels for genes in the top differential subgraph most connected at the
proteome or transcriptome level, compared with genes not belonging to any of the 2 subgraphs.

some biogenesis, on one hand, and many related to apoptosis and
the TP53 pathway, on the other. Fig. 4 shows the proteins an-
notated “ribosome biogenesis” and “signal transduction by p53
class mediator” and their interactions in the HEK293T and HU-
VEC/Jurkat cell lines. These results suggest that HEK293T cells are
particularly suitable for the investigation of the deep relationship
between TP53 and the ribosome [ 18]. Indeed, these cells have been
used in the original experimental investigation of this relationship
[19].

These results show that contrast subgraphs can be used to
identify cell type–specific modules of interacting proteins, thus fa-
cilitating the choice of the cells to be used for experimental assays.

Methods
Extraction of contrast subgraphs
Mining contrastive structures from networks has started recently
to gain attention in the scientific literature. In this work, we lever-
age this recent literature to provide a first proposal of mining
contrast subgraphs in the biological domain. Given 2 (potentially
weighted) networks A = (V, eA(V)) and B = (V, eB(V)) defined over
the same set of nodes V, we define a contrast subgraph as a set of
nodes that is densely connected in one of the networks and sparse
in the other. In order to quantify this property, different definitions
of contrast have been provided in the literature.

Lanciano et al. [4] define the contrast subgraph as the set of
nodes S ⊆ V that maximizes the function f (S) = eA(S) − eB(S) −
α(|S|

2 ), where eA(S) and eB(S) are the number of edges (or the sum
of edges’ weight in case of a weighted network) in the subgraph
induced by S in the networks A and B, respectively, and α is an in-
put scalar. This definition aims at identifying a set of nodes, whose
induced subgraph is dense in A and sparse in B. The regulariza-
tion term α(|S|

2 ), governed by the parameter α, can be used to tune
the target size of S: in fact, all the edges whose weight is smaller
than α giving a negative contribution to the objective function,
thus preventing larger solutions. To maximize this function, the
authors map their problem to an instance of the Generalized Op-
timal Quasi Clique problem proposed by Cadena et al. [20]. Their
algorithm is based on an Semi-Definite Programming optimiza-

tion problem, which makes it practical only for smaller instances
of networks (e.g., brain networks).

A variant formulation for this problem, by Yang et al. [21], aims
at maximizing f (S) = eA (S)−eB (S)

|S| : they show that their problem is
NP-hard and proposed a simple heuristic. It is worth observing
that their problem corresponds to the classic densest subgraph
problem (DSP) [22] on a weighted network, where the weight of
an edge is given by eA(S) − eB(S). DSP is one of the most im-
portant primitives in graph mining, which has been studied ex-
tensively in literature for its many potential applications. Given
a graph, it aims at finding the subgraph with maximum aver-
age degree (i.e., e(S)

|S| ). When the graph is unweighted or positively
weighted, DSP can be solved exactly in polynomial time by means
of an inefficient max-flow-based algorithm [22]. An efficient 1

2 -
approximation of the exact solution can be obtained by a greedy
“peeling” algorithm that at every iteration removes the nodes with
the current minimum degree and among all intermediate sub-
graphs produced by this process; in the end, it returns the one
maximizing the objective function [23,24]. Unfortunately, when
the graph has weights that can be negative, as in our case, these
algorithmic results do not carry on (indeed, the contrast subgraph
problem by Yang et al. [21] is NP-hard).

Tsourakakis et al. [5] recently analyzed the performance of the
greedy peeling for the densest subgraph with negative weights
problem. Let deg+(v) be the positive degree of node v (i.e., the sum
of the weights of its positive edges) and deg−(v) its negative degree.
They provide the following lower bound on the solution’s quality:
ρ∗
2 − �

2 , where ρ∗ is the optimum value of the DSP problem, and
� = max

v∈V
|deg−(v)|.

In order to improve such result, they propose a variant of the
greedy peeling (algorithm 1), introducing a parameter C that gov-
erns the importance of deg+(v) in order to avoid the bad instances
for which the greedy peeling could fail. It is sufficient to tune
this parameter and run algorithm 1 several times to obtain a bet-
ter result without a significant increase in computing time. Given
its efficiency and scalability, and the fact that it has a certified
lower bound on the quality of the solution provided, in our exper-
iments,we employ algorithm 1 to mine the contrast subgraphs of
coexpression and PPI networks.
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Figure 4: Subnetworks of the HEK293T (top) and HUVEC (bottom) cell line PPIs limited to proteins involved in “ribosome biogenesis” (blue), “signal
transduction by p53 class mediator” (purple), and in both processes (yellow) together with their interactions. The green edges join a protein involved in
one of the 2 biological processes to one involved in the other. The abundance of green edges in the top panel illustrates that the many interactions
between these 2 processes are specific to the HEK293T cellular context. The figure for Jurkat cells would be identical, as all the interactions shown in
the bottom panel happen to be common to the 3 cell lines.
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In the literature reviewed above, the contrast subgraph is
the one subgraph maximizing the contrastive objective function.
However, although according to our algorithm 1, the extraction
is limited to the subgraph that maximizes the contrast function,
a straightforward heuristic to mine the top-k contrast subgraphs
can be easily implemented by simply iterating algorithm 1 for k
times, removing from the graph at each iteration the edges ob-
tained in output.

The algorithm takes as input a graph G, defined over the set of
vertices V and the set of edges E, and a scalar C ∈ (0, +∞). It consid-
ers at the beginning the first candidate solution (Hn) as the whole
set of nodes V (line 1). Then, it selects iteratively the node v that
has minimum global degree Cdeg+(v) + deg−(v) (line 3), removes
it from the graph, and stores the current version of the graph (Hi

at the ith iteration) as a candidate solution (line 4). Finally, it re-
turns the solution among the candidate ones that maximizes the
objective function f (S) = e(S)

|S| .

Construction of coexpression networks
Normalized fragments per kilobase of transcript per million frag-
ments mapped (FPKM) breast cancer data from the TCGA project
and corresponding clinical annotations were obtained through
TCGA biolinks [25], and METABRIC gene expression data and
metadata were obtained from www.synapse.org (Synapse ID:
syn1688369) [9]. All samples correspond to pretreatment primary
breast tumors, analyzed in bulk without any cell-type separation,
thus comprising not only cancer cells but also the tumor microen-
vironment. TCGA data acquisition and preprocessing were previ-
ously described [26, 27]. No additional batch corrections or gene
selection based on differential expression were performed. Probe
names were converted in gene symbols, and for gene symbols cor-
responding to multiple probes, the most expressed probe across
all samples was considered. ENSEMBL IDs were converted into
gene symbols using biomaRt [28]. The TCGA data comprised 1,102
tumor samples (including 194 basal-like and 567 luminal A), while
METABRIC comprised 1,981 tumor samples (including 328 basal-
like and 719 luminal A). In TCGA, genes with FPKM <1 in more
than 50 samples were filtered out, and data were log transformed
using an offset of 1. Proteomic CPTAC data were downloaded from
the original publication [15] and comprised 80 samples, includ-
ing 77 in common with the TCGA transcriptomic dataset, which
were used in the proteome vs. transcriptome network compari-
son. Adjacencies were computed using the Spearman’s correla-
tion coefficient ρ between gene or protein expression, transformed
into (0.5 · (1 + ρ))12. This transformation of the correlation value
is identical to the one used by WGCNA [10] and provides a soft
thresholding by suppressing small correlations without using a
hard cutoff. Note that no hard cutoff was used, and the coexpres-

sion networks analyzed were all complete. Proportionality-based
coexpression networks were built with the same procedure (in-
cluding soft thresholding) by replacing the Spearman’s correlation
coefficient with the ρ proportionality coefficient using the propr
package [29]. Functional enrichment was performed using cluster-
Profiler [30], considering only categories with an adjusted P value
less than 0.05. The overlap between contrast subgraphs obtained
from different datasets was evaluated by Fisher’s exact test using
as universe the genes present in both networks.

Analysis of PPI constrast subgraphs
PPI networks obtained in HEK293T, HUVEC, and Jurkat cells were
obtained from the supplementary material of the original pub-
lication [16]. PPI networks were filtered to include only proteins
described in all cell lines. RNA sequencing data for the same cell
lines were obtained form the Human Protein Atlas [17]. As these
data do not contain replicates, lists of genes upregulated in each
comparison were obtained by requiring |log2FC| > 1 on the nor-
malized transcripts per million (TPM) values after logarithmic
transformation with unit pseudocount.

Discussion
Gene networks have proved to be a valuable tool to understand
some general principles governing biological systems, revealing
a modular organization of gene interactions [31], at least partly
linked to shared function [32]. Comparing molecular networks
across different contexts is nevertheless essential to explore the
biology of dynamic systems, with gene and protein interactions
changing over time or upon perturbations, such as disease or en-
vironmental stresses.

Many of the methods that have been developed for the com-
parison of biological network focus on structural properties and
often lack node identity awareness; other methods focus on net-
work alignment and aim at finding commonalities, rather than
differences, between networks. Here we have shown that con-
trast subgraphs can provide a versatile tool to identify the mod-
ules with the strongest difference in connectivity between 2 net-
works. The method can be applied to networks of different bio-
logical and technical origin, and its node identity awareness al-
lows downstream biological analyses, providing insight on the bi-
ological processes affected by differential connectivity. It should
be noted that for the specific case of coexpression networks, sev-
eral comparative methods that do retain node identity awareness
have been developed (reviewed in [6, 33]). However, most of these
methods are specifically targeted to correlation-based networks
and are not immediately applicable to other biological networks
such as PPI networks. Other methods of network analysis that re-
tain node identity awareness, the most prominent being probably
community detection [34], cannot be directly applied to the task of
finding the most significant differences between 2 networks. Our
method could be considered a “supervised” version of community
detection, where we maximize a function related to the difference
in modularity, rather than modularity itself.

In this work, we applied contrast subgraphs to 3 pairs of bi-
ological networks to illustrate their usefulness, especially when
followed by downstream functional enrichment analysis of the
differential modules.

Breast cancer is one of the leading causes of mortality in
women worldwide, for which no general efficacious treatment is
available due to disease heterogeneity. It is usually classified ac-
cording to gene expression profiling of the tumor (PAM 50 assay)
into 5 molecular subtypes correlated with prognosis and response
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to treatments: luminal A, luminal B, basal-like, HER2 positive, and
normal-like [35, 36]. In particular, the basal-like subtype does not
respond to targeted treatments such as hormonal blockage or Her-
ceptin and shows poor outcome.

We analyzed the different organization of c-expression net-
works between the aggressive basal-like and the relatively
slowly growing luminal A subtypes. We find that the top dif-
ferentially connected subgraphs comprise genes enriched for
microenvironment-related functions in 2 independent cohorts
with associated transcriptome datasets (METABRIC [9] and TCGA
[8]). On one side, the subgraph with a stronger connection in the
basal-like subtype is enriched for immune functions, while on the
other side, the genes more connected in the luminal A subtype
are enriched for categories such as “extracellular matrix,” indica-
tive of microenvironmental regulation of structural components
of the extracellular milieu. Indeed, tumor cells are surrounded by
a varied ensemble of mutually interacting cell types, comprising
immune cells, stromal cells, and blood vessels, among the most
frequent cell types. These cells can either restrain tumor growth
or support cancer cells by providing metabolites and growth fac-
tors and reshaping the extracellular matrix. Overall, nontumoral
cells surrounding the tumor epithelium have been demonstrated
to change their expression profiles [37] and to impact not only on
tumor growth but also on disease progression and metastasis, as
well as on drug resistance [10, 38, 39].

In particular, the immune system plays a fundamental role in
cancer progression: at tumor onset, cytotoxic immune cells rec-
ognize and kill tumor cells, driving the evolution of less immuno-
genic cancer cells able to evade immune detection [40]. Paradox-
ically, immune cells such as anti-inflammatory M2 macrophages
can have protumoral effects [41], and their distribution and com-
position change with tumorigenesis [37,42]. For these reasons, im-
mune cells are currently being investigated as potential therapeu-
tic targets [43, 44]. Interestingly, we previously reported that differ-
entially coexpressed networks between normal and tumor tissues
are often enriched for immune-related categories [33]. Specifi-
cally, the composition of the immune infiltrate has been shown
to vary across breast cancer subtypes [45, 46], with higher T-cell
infiltration in the most aggressive (i.e., basal-like) subtype [47],
thus explaining the enrichment for “T-cell activation” of genes
more strongly coexpressed in the basal-like subtype. On the other
side, extracellular matrix remodeling can influence the stiffen-
ing of the collagen surrounding the tumor [48], influencing cancer
cells’ migration and invasion [49]. Interestingly, both in the TCGA
and in METABRIC, genes with stronger coexpression in the lumi-
nal A subtype are enriched for “extracellular matrix disassembly”
(comprising matrix metalloproteases such as MMP2, MMP14, and
MMP16), indicating that the activity of enzymes loosening the ex-
tracellular matrix fibrils is, as expected, higher in this subtype and
thus confirming that the contrast subgraph method reliably re-
trieves robust and biologically informative sets of genes.

As a second application context, we employed our differen-
tial subgraph retrieval to compare biological networks derived
from different kinds of molecular data: transcriptomics and pro-
teomics. The possibility of comparing networks from different
data types is indeed a strength of our method. We made use of the
large breast cancer TCGA cohort of primary tumors, which have
been profiled both through RNA sequencing and mass spectrom-
etry [15], and defined gene modules whose connectivity can be
revealed only at the proteomic level, likely due to posttranscrip-
tional regulatory mechanisms influencing protein translation and
degradation. Intriguingly, the 2 top differential modules show a
significant difference in their transcript–protein agreement, sup-

porting the hypothesis of intervening posttranscriptional mecha-
nisms being involved in the proteome subgraph regulation. Again,
these top differential subgraphs are enriched for immune-related
categories. Interestingly, adaptive immune system genes are more
connected at the transcriptional level, while innate immune sys-
tem genes are more connected at the protein level.

Specifically, the proteomic subrgraph is significantly enriched
for the complement cascade, comprising proteins such as C2, C3,
C4A, C4B, and C5, in addition to complement regulators such as
C4BPB. This could be interpreted as the innate immune system
being poised for a rapid activation in the presence of a stimulus
in the form of a pathogen or of a tumor cell, hence relying on a
fast and coordinated translation of readily available transcripts or
on the coordinated recruitment and degradation of constitutively
produced proteins. Indeed, critical complement proteins (e.g., C3
and C5) are mainly produced by the liver and circulate in the
serum [50], thus making varying levels of these proteins in breast
independent of changes in gene expression in situ. Moreover, both
activation and silencing of the complement system are mostly
regulated at the protein level: a proteolytic cascade mediated by
convertases leads to the amplification of complement activity [51,
52], while regulators such as CD55 and CD35 promote the degra-
dation of C3 and C5 convertases, preventing the formation of the
membrane attack complex [53]. The adaptive immune response,
on the other hand, acts more slowly, requiring days or even weeks
to become established. Therefore, transcription is not a limiting
factor in its response, making transcriptionally regulated mod-
ules easily detectable. Many studies have found activation of the
complement system in tumors and an increased complement ac-
tivity in the sera of patients with cancer. In turn, this activation
can lead to changes in adaptive immunity [54, 55], with the re-
cruitment and activation of specific cell lymphocytic populations,
which then reflect on gene expression. The CR2 complement re-
ceptor and the regulator of T-cell maturation PRDM1 [56] are in-
deed comprised in the transcriptomic subgraph and overall en-
riched for lymphocyte activation and differentiation.

In the third example, we showed that the comparison of PPI
networks obtained from different human cell lines can reveal
how proteins involved in different biological processes can have
context-dependent interaction patterns. Importantly, such differ-
ences were not apparent from differential expression analysis of
the same cell lines. These results suggest, in particular, that con-
trast subgraphs can be useful in selecting the cellular contexts
most suitable for the experimental analysis of the interaction and
mutual dependence of different biological processes.

An important limitation of our method, shared with commu-
nity detection algorithms, is the lack of a quantitative measure of
confidence on the contrast subgraphs obtained. This is partially
compensated by the robustness shown by the method with re-
spect to the use of independent datasets and of different methods
for network construction, although we recognize that such extrin-
sic controls are not always available in practice.

Conclusion
Contrast subgraphs are a promising and versatile method to
identify the most relevant differences between biological net-
works while preserving node identity awareness, thus allowing
the translation of such information into biological insight.

Availability of Source Code and Requirements
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� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: none
� License: MIT
� biotoolsID: bio_contrast_subgraph
� RRID: SCR_022853

Data Availability
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