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ABSTRACT
The goal of this paper is to introduce pooling strategies for sim-
plicial convolutional neural networks. Inspired by graph pool-
ing methods, we introduce a general formulation for a simpli-
cial pooling layer that performs: i) local aggregation of sim-
plicial signals; ii) principled selection of sampling sets; iii)
downsampling and simplicial topology adaptation. The gen-
eral layer is then customized to design four different pooling
strategies (i.e., max, top-k, self-attention, and separated top-k)
grounded in the theory of topological signal processing. Also,
we leverage the proposed layers in a hierarchical architecture
that reduce complexity while representing data at different res-
olutions. Numerical results on real data benchmarks (i.e., flow
and graph classification) illustrate the advantage of the pro-
posed methods with respect to the state of the art.

Index Terms— Topological signal processing, topological
deep learning, simplicial neural networks, pooling.

1. INTRODUCTION

In the last years, Graph Neural Networks (GNNs) [1–3] have
shown remarkable results in learning tasks involving data de-
fined on irregular domains (e.g., graphs), such as social net-
works, recommender systems, cybersecurity, natural language
processing, genomics, and many more [3, 4]. However, GNNs
are designed to work with graphs, which consider only pairwise
relationships between data. On the contrary, many real-world
phenomena involve multi-way relationships as, e.g., in biologi-
cal or social networks. Some recent works in topological signal
processing [5, 6] have shown that multi-way relationships can
be described using simplicial complexes, which are specific in-
stances of hyper-graphs with powerful algebraic representation
able to model higher-order interactions among nodes.
Related works. Despite its recent birth, many contributions
have been made to the field of simplicial deep learning. In
[7], the authors introduced a basic simplicial neural network
(SNN) architecture that performs convolution exploiting high-
order Laplacians without independently exploiting upper and
lower neighbourhoods. In [8], message passing neural net-
works (MPNNs) are adapted to simplicial complexes, with the
aggregation and updating functions taking into account data de-
fined on adjacent simplices, enabling message exchange even
among signals of different orders. The work in [9] exploits
the simplicial filters introduced in [10] to design a flexible and
low-complexity simplicial convolutional networks (SCNs) with
spectral interpretability. Finally, in [11, 12], simplicial atten-
tional architectures are introduced.

Motivated by the fact that, both in convolutional neural net-
works (CNNs) and in GNNs, the introduction of pooling lay-
ers was proved to be useful for reducing the number of model
parameters while improving the learning performance, in this
work we aim to endow SCNs with pooling strategies. How-
ever, while for CNNs the pooling operation relies on aggrega-
tion based on the natural local neighbourhood provided by the
regular grid domain, even on simpler graph domains the defini-
tion of local patches is not straightforward. Early works tried to
overcome this issue by using graph clustering algorithms such
as GraClus [13] or spectral methods [14] to produce a node
assignment that generalizes the notion of locality present in
regular domains. The most recent trends are instead focused
on differentiable learnable operators that can learn a node as-
signment [15], or simply keep some nodes while discarding the
others [16, 17]. Other works [18] discuss the class of global
pooling methods that reduce the graph to a single vector, ignor-
ing topological information. To the best of our knowledge, no
previous works tackled the problem of pooling for SCNs.
Contribution. The goal of this work is to introduce pooling
strategies for SCNs. Taking inspiration from the select-reduce-
connect (SRC) paradigm [19], we introduce a general simpli-
cial pooling layer that comprises three steps: i) a local aggre-
gation step responsible for providing a meaningful summary of
the input signals; ii) a selection step responsible for selecting
a proper subset of simplices; finally, iii) a reduction step that
downsamples the input complex and the aggregated signals of
step i) based on the simplices selected in step ii). By tailoring
steps ii) and iii), we introduce four different simplicial pool-
ing layers that generalize the well-known graph pooling strate-
gies. Also, we exploit the proposed simplicial pooling lay-
ers in a jumping knowledge (JK) hierarchical architecture [20],
which aggregates the intermediate embeddings produced by the
simplicial pooling layers to produce the final output. Finally,
we assess the performance of the proposed methods on real-
world graph and trajectory classification tasks, showing favor-
able comparisons with respect to other techniques in terms of
performance and robustness to compression.

2. BACKGROUND

Simplicial complex and signals. Given a finite set of vertices
V , a k-simplex Hk is a subset of V with cardinality k + 1. A
face of Hk is a subset with cardinality k and thus a k-simplex
has k + 1 faces. A coface of Hk is a (k + 1)-simplex that
includes Hk [5,21]. The lower neighbourhood N↓ of Hk is the
set of simplices with which it shares a face. Similarly, the upper
neighbourhood N↑ of Hk is the set of simplices with which it
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shares a co-face. A simplicial complex XK of order K is a
collection of k-simplices Hk, k = 0, . . . ,K such that, for any
Hk ∈ XK then Hk−1 ∈ XK if Hk−1 ⊂ Hk. We denote the
set of k-simplex in Xk as Dk := {Hk : Hk ∈ XK}, with
|Dk| = Nk and Dk ⊂ XK .

A k-simplicial signal is defined as a mapping from the set
of all k-simplices contained in the complex to the real numbers:

zk : Dk → R, k = 0, 1, . . . ,K. (1)

In this paper, w.l.o.g., we will focus on complexes X2 of order
up to two, thus with a set of vertices D0 = V with |V| = V ,
a set of edges D1 = E with |E| = E and a set of triangles
D2 = T with |T | = T . Given a simplex Hk−1 ⊂ Hk, we
write Hk−1 ∼ Hk to indicate that the orientation of Hk−1 is
coherent with the one of Hk, whereas Hk−1 ̸∼ Hk if it is not.
Algebraic representations. The structure of a simplicial com-
plex XK is described by the set of its incidence matrices Bk,
with k = 1, . . . ,K. The Bk’s describe which k-simplices are
incident to which (k − 1)-simplices:

[Bk]i,j =


0 Hk−1,i ̸⊂ Hk,j ;

1 Hk−1,i ⊂ Hk,j and Hk−1,i ∼ Hk,j ;

−1 Hk−1,i ⊂ Hk,j and Hk−1,i ̸∼ Hk,j .

(2)

From the incidence information, we can build the high order
combinatorial Laplacian matrices [22] of order k = 0, . . . ,K:

L0 = B1B
T
1

Lk = BT
k Bk +Bk+1B

T
k+1 = Lk,d + Lk,u (3)

LK = BT
KBK .

The term Lk,d in (3), also known as lower Laplacian, encodes
the lower adjacency of k-order simplices; the second term Lk,u,
also known as upper Laplacian, encodes the upper adjacency of
k-order simplices. Thus, for example, two edges are lower ad-
jacent if they share a common vertex, whereas they are upper
adjacent if they are faces of a common triangle. Note that the
vertices of a graph can only be upper adjacent if they are inci-
dent to the same edge. This is why L0 contains only one term,
and it corresponds to the usual graph Laplacian.
Hodge Decomposition. High order Laplacians admit a Hodge
decomposition [21], such that any k-simplicial signal zk ∈
RNk can be decomposed as:

zk = BT
k zk−1 +Bk+1zk+1 + zk,h, (4)

for k = 0, 1, . . . ,K. The first term BT
k zk−1 of (4) is called

irrotational component, the second term Bk+1zk+1 solenoidal
component, and the third term zk,h harmonic component. In
the sequel, we will focus w.l.o.g. on edge flow signals and com-
plexes of order 2. Therefore, we will drop the subscripts and
denote z1 with z, L1 with L, L1,d with Ld, L1,u with Lu and
X2 with X . Moreover, we denote the lower and upper neigh-
borhoods of the i-th edge with Ni,↓ and Ni,↑, respectively.

3. SIMPLICIAL CONVOLUTIONAL NETWORKS
WITH POOLING LAYERS

The Hodge decomposition in (4) suggests to separately filter
the components of simplicial signals. Indeed, the work in [10]

introduced linear shift-invariant (LSI) filters for simplicial sig-
nals, which can be seen as a generalization of LSI graph filters
that exploit both upper and lower connectivities. A simplicial
convolutional neural network is made by the concatenation of
several layers composed by a point-wise non-linearity applied
to a bank of LSI simplicial filters plus a residual connection [9].
In this paper, we generalize the layer structure of [9] introduc-
ing a a family of pooling strategies encoded into the mapping
P(·). In particular, letting X ∈ RE×G be the matrix collecting
G edge signals on its columns, the layer of an SCN endowed
with pooling mechanisms (SCNP) can be written as:

Y = σ

[
P

(
Jd∑
p=1

Lp
dXDp︸ ︷︷ ︸
Zd

+

Ju∑
p=1

Lp
uXUp︸ ︷︷ ︸
Zu

+XH︸︷︷︸
Zh

)]
, (5)

where Y ∈ RE′×F , with E′ ≤ E; the filters and residual
weights

{
Dp

}Jd

p=1
,
{
Up

}Ju

p=1
and H ∈ RG×F are learnable

parameters, while the order Jd and Ju of the filters, the number
F of output signals, and the non-linearity σ(·) are hyperparam-
eters to be chosen at each layer. Therefore, an SCNP of depth
L is built as the stack of L layers defined as in (5); the SCN
layer in [9] is recovered from (5) removing the pooling stage.

3.1. Design of simplicial pooling mapping

In this paragraph, we present a general formulation for a sim-
plicial pooling mapping, which will then be tailored to design
four different pooling strategies. Let us first denote the input to
the pooling mapping in (5) as Z = Zd + Zu + Zh ∈ RE×F ,
and let the simplicial complex structure be encoded into X =

(Lu,Ld). We also denote as Z′ ∈ RE′×F the output of the
pooling layer in (5). Then, formally, we define a simplicial
pooling layer as the mapping

P : (X ,Z) 7→ (X ′,Z′), (6)

which takes as input a simplicial complex X and signals Z ∈
RE×F defined on it, and returns as output a sub-complex X ′ ⊂
X and signals Z′ ∈ RE′×F defined on it, with E′ < E.

Following the pooling paradigm introduced in [19] for
GNNs, we propose to model the layer in (6) as the composition
of three operations: a local aggregation step, a selection step,
and a reduction step. The local aggregation step is responsible
for providing summary signals Z̃ ∈ RE×F of the input sig-
nals Z ∈ RE×F leveraging the connectivity induced by the
complex X . Formally, we define it as the local mapping:

(Aggregation) A : (X ,Z) 7→ (X , Z̃). (7)

The mapping in (7) is local in the sense that the aggregated
signals [Z̃]i of the i-th edge are function only of the signals of
its (lower and/or upper) neighbours [Z̃]j , j ∈ Ni,↓ and/or Ni,↑.

The selection step is responsible for choosing a subset E ′ ⊂
E of edges that will compose the 1-skeleton of the sub-complex
X ′. Formally, we define it as a mapping:

(Selection) S : (X , Z̃) 7→ E ′. (8)
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Fig. 1. Example of simplicial pooling and JK hierarchical architecture.

The cardinality of E ′ is tuned via the pooling ratio r ∈ (0, 1] (a
hyperparameter to be chosen), such that |E ′| = E′ = ⌊r · E⌋.

Finally, the reduction step is responsible for properly down-
sampling the input complex X and the aggregated signals Z̃
to obtain the output sub-complex X ′ and the output signals
Z′ ∈ RE′×F , based on the edge set E ′ chosen through the
selection set. Formally, we define it as a mapping:

(Reduction) R : (E ′,X , Z̃) 7→ (X ′,Z′). (9)

We assume that the reduction mapping in (9) is given by the
concurrent application of two independent operations, i.e., R =
(RS ,RC), which separately downsample signal and simplicial
complex structure, respectively, and are defined as:

(Signal reduction) RS : (E ′, Z̃) 7→ Z′, (10)

(Complex reduction) RC : (E ′,X ) 7→ X ′. (11)

The operations (10)-(11) compute the signals Z′ and the com-
plex structure X ′ at the output of the pooling layer, respectively.

In summary, the general pooling mapping P in (6) is given
by the composition of the three operations in (7)-(9), i.e.,

P = R ◦ S ◦ A. (12)

We assume that the aggregation in (7) is kept fixed (e.g., max
or mean). Also, the complex reduction in (11) is computed as
follows: if an edge e belongs to E but it is not in E ′, the lower
connectivity is updated by disconnecting the nodes that are on
the boundary of e, while the upper connectivity is updated by
removing the triangles that have e on their boundaries.

3.2. Simplicial pooling strategies

In this paragraph, we customize the selection and signal reduc-
tion steps in (8) and (10) to design four pooling strategies.
Max pooling: The first method is an extension of the Max
Pooling strategy commonly used in CNNs. It selects the subset
of edges E ′ by ranking the absolute values of the sum of the
aggregated signals Z̃ of each edge. Formally, we define:

S : y =
∣∣∣Z̃ 1

∣∣∣ , E ′ = topE′(y), (13)

RS : Z′ = [Z̃]i∈E′ , (14)

where 1 is the vector of all ones, and topE′(·) selects the in-
dexes of the the E′ largest entries of its vector argument.

Top-k pooling: The next layer is a generalization of those pro-
posed in [16, 18] for GNNs. It selects the subset of edges E ′

ranking a learnable weighted combination of the aggregated
signals Z̃ of each edge. Then, it computes the reduced sig-
nals as a scaled version of Z̃ with coefficients in [0, 1] given by
a normalization of the aforementioned weighted combination.
Formally, we have:

S : y =
Z̃ p

∥p∥2
, E ′ = topE′(y) (15)

RS : Z′ = [Z̃⊙ tanh(y1T )]i∈E′ , (16)

where p is a learnable vector, and ⊙ is the Hadamard product.

Self-Attention Pooling: This method is a generalization of
SagPool [17]. The main difference with Top-k is that the rank-
ing is computed over the output of a simplicial convolutional
layer as in (5) without pooling and with one output signal, here
briefly denoted as SCN. Formally, we have:

S : y = SCN(Z̃,Ld,Lu), E ′ = topE′(y), (17)

RS : Z′ = [Z̃⊙ tanh(y1T )]i∈E′ . (18)

Separated Top-k pooling: The Hodge Decomposition in (4)
and the consequent structure of the SCNP layer in (5) suggest
to design pooling layers based on the computation of three dif-
ferent aggregated signals: Z̃d (obtained from Zd), Z̃u (obtained
from Zu), and Z̃h (obtained from Zh). Consequently, we will
have three corresponding score vectors yd, yu, and yh, respec-
tively. Thus, the “separated” version of the Top−k layer in
(15)-(16) is given by:

S :

yd =
Z̃d pd

∥pd∥
, yu =

Z̃u pu

∥pu∥
, yh =

Z̃h ph

∥ph∥
E ′ = topE′(yd + yu + yh)

(19)

RS :


Z′

d = [Z̃d ⊙ tanh(yd1
T )]i∈E′

Z′
u = [Z̃u ⊙ tanh(yu1

T )]i∈E′

Z′
h = [Z̃h ⊙ tanh(yh1

T )]i∈E′

Z′ = Z′
d + Z′

u + Z′
h

(20)

where pu, pd, and ph are learnable vectors. Also all the pre-
vious methods can be reformulated in this “separated” version,
but we leave their presentation and assessment for future works.
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Method
Graph Classification Edge Flow Classification

DD PROTEINS MSRC21 NCI109 Ocean Drifters Synthetic Flow

GCNs Top-k 72.32± 2.65 70.82± 2.24 80.35± 4.37 68.67± 1.14 N/A N/A
SelfAtt 72.88± 2.47 71.02± 2.56 77.68± 1.09 70.41± 0.89 N/A N/A

SCNPs

NoPool (SCNs) 78.98± 2.64 70.61± 1.33 86.32± 3.38 68.77± 0.51 98.25± 1.11 100.0± 0.0
Random 79.66± 2.16 72.86± 3.11 88.42± 2.00 68.14± 1.24 76.25± 6.72 98.82± 0.58
Max 72.88± 3.39 70.61± 2.33 89.82± 1.47 67.17± 1.62 100.0± 0.0 100.0± 0.0
Top-k 75.42± 4.56 76.61± 2.04 90.18± 1.57 67.55± 2.45 100.0± 0.0 100.0± 0.0
SelfAtt 76.27± 3.37 71.63± 2.64 85.96± 2.48 66.78± 1.39 86.13± 5.89 99.99± 0.04
SepTop-k 70.06± 2.05 71.63± 4.23 90.18± 3.64 67.65± 1.32 99.62± 0.56 100.0± 0.0

Table 1. Accuracy on graph and trajectory classification. The results are reported as mean ± std over 5 random seeds.

3.3. Hierarchical Architecture
In this paragraph, we introduce a JK hierarchical architecture
aimed at exploiting the different data representations obtained
after each pooling stage l ∈ {1, ..., L}. A pictorial overview
of the proposed JK hierarchical architecture is shown in Fig.
1. In particular, applying a readout operation, each interme-
diate compact representation obtained at the output of layer l
collapses the current signals (and complex) into a single em-
bedding vector. For instance, a possible choice is concatenating
the mean and the maximum of the current signals. These vec-
tors are then aggregated to compose a global final embedding.
For instance, if the same number of output signals is used at
each layer, the intermediate representations can be summed to
obtain a single global embedding vector. Finally, the global em-
bedding can be passed through a multi-layer perceptron (MLP),
if it is needed for the task. In the case of transductive (semisu-
pervised) tasks, both the intermediate and global embeddings
might be unnecessary and can be neglected.

4. NUMERICAL EXPERIMENTS
In this section, we assess the performance of the proposed
simplicial pooling layers and hierarchical architecture on two
learning tasks: trajectory classification [8], and real-world
graph [23] classification 1. We compare the four proposed sim-
plicial pooling layers with a random pooling strategy, and with
plain SCNs having no pooling layers. Also, for graph classifi-
cation, we show the results obtained using GCNs [3] equipped
with the “graph counterpart” of the proposed simplicial pool-
ing layers. All the hyper-parameters are tuned to obtain the
best performance per each dataset, except for the pooling ratio,
which we keep fixed at r = 0.7. We compute the intermediate
and global embeddings via mean-maximum concatenation and
sum, respectively. The models are trained for 150 epochs using
the Adam optimizer [24] and early stopping with patience 25.
All the experiments are averaged on five random seeds.

We first test the proposed simplicial pooling on two flow
classification tasks, namely the synthetic flow and ocean drifter
datasets, whose details can be found in [6, 8]. In Table 1 (right
side), we compare the accuracy obtained by all the considered
methods, illustrating the gain introduced by the proposed sim-
plicial pooling layers for both datasets. Then, to assess the
accuracy-complexity tradeoff obtained by the proposed strate-
gies, in Fig. 2 we show the accuracy of the classification task

1https://github.com/domenicocinque/spm
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Fig. 2. Accuracy versus pooling ratio.

versus the pooling ratio for the synthetic flow dataset consider-
ing three pooling methods. As we can see from Fig. 2, the accu-
racy mildly decreases with the pooling ratio, especially for the
Separated Top-k strategy, illustrating the very good accuracy-
complexity trade-off obtained by the proposed methods.

Finally, we study the performance of the proposed sim-
plicial pooling layers on real-world graph classification tasks
on the popular TUDataset [23] collection. To obtain simpli-
cial complexes from the graphs, we follow the clique complex
lifting procedure proposed in [8], while the input edge signals
are computed as the average of the graph signals of the bound-
ary nodes. Then, in Table 1 (left side), we can see how, in
most cases, the proposed SCNPs outperform SCNs with ran-
dom pooling layers or no pooling, and the GCNs counterpart
architectures.

5. CONCLUSIONS
In this paper, we have proposed a general formulation of a pool-
ing layer for simplicial convolutional neural networks, designed
as the composition of a local aggregation mapping, a selection
mapping, and a reduction mapping. The proposed methodology
is then tailored to design four different simplicial pooling lay-
ers, which generalize known graph pooling strategies for sim-
plicial neural architectures. Numerical results on real and syn-
thetic benchmarks illustrate the favorable performance of the
proposed strategies with respect to other methods available in
the literature. Future extensions include more complex simpli-
cial architectures [8], or cell complex neural networks [25–27].
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