
Expert Systems With Applications 206 (2022) 117831

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Exploiting Wavelet Recurrent Neural Networks for satellite telemetry data
modeling, prediction and control
Christian Napoli a,∗, Giorgio De Magistris a, Carlo Ciancarelli b, Francesco Corallo b,
Francesco Russo b, Daniele Nardi a

a Department of Computer, Automation and Management Engineering, Sapienza University of Rome, via Ariosto 25 Roma 00185, IT, Italy
b Thales Alenia Space, via Saccomuro 24 Roma 00131, Italy

A R T I C L E I N F O

Keywords:
Time series forecast
Multivariate time series
Wavelet analysis
LSTM
wavelet recurrent neural networks

A B S T R A C T

Multidimensional times series prediction is a challenging task. Only recently the increased data availability
has made it possible to tackle with such problems. In this work we devised a novel method to exploit the
multiple correlated features in the time series. The recurrent neural networks and the wavelet transform have
been important innovations in the fields of signal processing and time series prediction. This paper proposes
a Wavelet Recurrent Network for multi-steps ahead prediction of multidimensional time series. The proposed
model combines these two elements into a neural network that predicts multiple samples in the future that
are multiple time steps ahead with respect to the input samples. This Wavelet Recurrent Network carries
out a multiresolution decomposition of the input signal through the wavelet transform, predicts the future
wavelet coefficients with the recurrent neural network and transforms the output back in the time domain.
The proposed model is applied to the prediction of satellite telemetry data, that is composed of readings
from multiple sensors which are highly correlated. The prediction of such telemetries can help the engineers
to detect anomalies in the system, that, in the context of space missions, are particularly dangerous since
they can compromise the entire mission if not handled properly. The results show that the proposed model
outperforms the recurrent network without wavelet transform both in terms of accuracy and in the width of
the forecast horizon.
1. Introduction

Time series prediction is a well studied task in many scientific
fields and it is essential in many business decision processes. The high
availability of data that characterizes the present time demands algo-
rithms with the capability of processing huge quantities of data (Duan
et al., 2017; Wang et al., 2020a; Zhang et al., 2020). In the same
direction, also the computational power has increased leading the way
to Neural Networks, that with their data driven approach and their
nonlinear nature have demonstrated ability to learn complex depen-
dencies in high-dimensional data (Hung et al., 2019; Pu et al., 2021).
Neural networks have been widely applied to multidimensional time
series prediction, and they outperformed many model based approaches
used in the past, especially for multidimensional data with nonlinear
patterns (Chakraborty et al., 1992; Wang et al., 2020b; Yang et al.,
2020).

Wavelet Transform was an important advance in signal processing
and its applications cover many different fields (Amaratunga et al.,
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1994; Lewis & Knowles, 1992; Luisier et al., 2007; Ravikanth et al.,
2020). It was proven that their ability to decompose the signal in dif-
ferent scales can be exploited by predictive algorithms to improve their
performances. In Jarrah and Salim (2019) the Haar scaling function is
used as a feature extractor for a Recurrent Neural Network that predicts
the future stock closing prices from the previous ones. In Gürsoy and
Engin (2019) it is shown that, in the prediction of the future river
discharge from the discharge collected over the year, a Feedforward
neural network that receives as input a multiresolution decomposition
of the original signal performs better than if the same architecture were
applied to the raw input. In both these works the Wavelet Decomposi-
tion is used as a feature extractor, and the neural network is trained to
predict the future signal directly from this set of features. The authors
of Capizzi et al. (2012) created a neural network that can execute both
decomposition and reconstruction of the predicted signal simulating
the wavelet function that best fits the specific prediction problem using
second generation wavelets. They implemented both the update U and
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Symbols Table

𝐿2(𝑅) The Vector space of square-integrable func-
tions

∅ The empty subspace of 𝐿2(𝑅)
V, W Subspaces of 𝐿2(𝑅)
𝜙𝑗,𝑘(𝑡) A scaling function, where 𝑗 and 𝑘 are

respectively the dilation and translation
indexes

𝜓𝑗,𝑘(𝑡) A wavelet function, where 𝑗 and 𝑘 are
respectively the dilation and translation
indexes

𝑐𝑗 (𝑘) Approximation coefficients at approxima-
tion level j

𝑑𝑗 (𝑘) Detail coefficients at approximation level j
PROJ

|𝑉 |

𝑓 (𝑡) Orthogonal projection of function 𝑓 (𝑡) onto
the subspace 𝑉

predict P operators of the lifting scheme with neural networks, such
that the wavelet filter can be learnt by the network and adapted to the
specific task. With respect to Jarrah and Salim (2019) and Gürsoy and
Engin (2019), that do not explicitly compute the reconstruction, our
model reconstructs the signal in the time domain before computing the
loss function. However, unlike the model presented in Capizzi et al.
(2012) the wavelet decomposition and reconstruction are computed
explicitly using the Pyramidal algorithm (Teukolsky et al., 1992) hence
reducing drastically the complexity of the network and the training
time. The idea of decomposing the signal to model specifically its
different behaviors is employed also in classic model based approaches
like ARIMA. ARIMA models however require the time series to be
stationary, hence the signal is pre-processed by removing the trend
and seasonal components respectively with differencing and seasonal
differencing (Hyndman & Athanasopoulos, 2018). The seasonal differ-
encing technique assumes that the period is fixed and known. The
Wavelet decomposition instead is much more powerful since it allows
to analyze the signal at different scales decomposing it into multiple
resolution bands. In this work we will show how a neural network,
thanks to its nonlinear nature, can be used to model the complex
patterns at different scales, and consequently to predict the future
signal directly in the Wavelet domain. To the best of our knowledge this
is the first attempt to combine the Pyramidal algorithm with an Long
Short-Time Memory (LSTM) (Hochreiter & Schmidhuber, 1997) based
neural network in order to decompose the input signal and to predict
the future signal directly in the Wavelet domain before reconstructing
the output in the time domain. In particular our model exploits the
separation of the signal into wavelet bands to predict the future signal
in parallel in the wavelet domain. This is done without changing the
loss function that is still the standard Mean Squared Error and it is
computed in the time domain. Many models proposed in literature
address the problem of single-step ahead prediction, meaning that the
predicted samples are consecutive to the ones received as input, and
the multi-steps ahead prediction is obtained running the model on
the previous predictions. With this approach however the errors tend
to accumulate and consequentially the performances drop when the
forecast horizon increases. The proposed method, on the other hand, is
designed specifically to predict samples that are multiple steps ahead
in the future without relying on the intermediate predictions.

The first section gives some basic elements of the Wavelet theory,
Multiresolution approximation and Recurrent Neural Networks. Sec-
tion 3 defines the prediction problem and describes the data and the
architecture of the proposed Wavelet Recurrent Network. Section 4.1
introduces a famous architecture based on LSTM that can be adapted
2

to the task of multi-steps ahead prediction of a multivariate time series, r
which results will be compared with those obtained by the proposed
model, while Section 4.2 explains how the proposed architecture can be
used to detect anomalies in the telemetry data. In Section 5 conclusions
are drawn.

2. Wavelet transform and recurrent neural networks theory

2.1. Multiresolution approximation

A multiresolution analysis of the space of square integrable func-
tions is a sequence of subspaces with the following properties:

𝑓 (𝑡) ∈ 𝑉𝑗 → 𝑓 (2𝑡) ∈ 𝑉𝑗+1 (1)

𝑓 (𝑡) ∈ 𝑉𝑗 → 𝑓 (𝑡 − 2−𝑗𝑘) ∈ 𝑉𝑗 𝑘 ∈ 𝑍 (2)

∅ = 𝑉−∞ ⊂… ⊂ 𝑉0 ⊂… ⊂ 𝑉∞ = 𝐿2(𝑅) (3)

The idea is that a function in 𝐿2(𝑅) can be represented at different
resolution levels and the approximation at level 𝑗 is obtain projecting
the function on the subspace 𝑉𝑗 (Eq. (4))

PROJ
|𝑉𝑗 |𝑓 (𝑡) =

∑

𝑘
𝑐𝑗 (𝑘)𝜙𝑗,𝑘(𝑡) (4)

The functions 𝜙𝑗,𝑘(𝑡) = 2𝑗∕2𝜙(2𝑗𝑥 − 𝑘) in (4) are translated and dilated
version of the same function 𝜙(𝑡) that is called ‘‘scaling function’’
and the coefficients 𝑐𝑗 are referred as ‘‘approximation coefficients’’ (or
sometimes ‘‘scaling coefficients’’). Let𝑊 be the orthogonal complement
of 𝑉𝑗 in 𝑉𝑗+1, then a function can be represented at approximation level
𝑗 + 1 as its projection onto 𝑉𝑗+1 or as its projection onto 𝑉𝑗 plus its
projection onto 𝑊𝑗 (Eq. (5)).

PROJ
|𝑉𝑗+1|𝑓 (𝑡) =

∑

𝑘
𝑐𝑗 (𝑘)𝜙𝑗,𝑘(𝑡) + 𝑑𝑗 (𝑘)𝜓𝑗,𝑘(𝑡) (5)

The functions 𝜓𝑗,𝑘(𝑡) = 2𝑗∕2𝜓(2𝑗𝑥 − 𝑘) in (5) are translated and dilated
version of the same function 𝜓(𝑡) that is called ‘‘wavelet function’’ and
the coefficients 𝑑𝑗 are referred as ‘‘detail coefficients’’ (or sometimes
‘‘wavelet coefficients’’).

2.2. Filter banks implementation

Wavelet and scaling functions can be defined recursively through
a finite sets of coefficients (𝑔(𝑛) and ℎ(𝑛) in Eqs. (6) and (7)) called
respectively wavelet filter and scaling filter.

𝜙(𝑡) =
∑

𝑛
ℎ(𝑛)

√

2𝜙(2𝑡 − 𝑛) (6)

𝜓(𝑡) =
∑

𝑛
𝑔(𝑛)

√

2𝜓(2𝑡 − 𝑛) (7)

These filters can be used to derive the approximation and detail co-
efficients from the approximation coefficients of the higher resolution
level (Eqs. (8) and (9)) and to derive the approximation coefficients
from the detail and approximation coefficients from the lower resolu-
tion level (Eq. (10)) where the highest resolution level approximation
coefficients are the samples of the function itself (more information on
how Eqs. (8)–(10) are derived can be found here Burrus, 2015).

𝑐𝑗 (𝑘) =
∑

𝑚
ℎ(𝑚 − 2𝑘)𝑐𝑗+1(𝑚) (8)

𝑑𝑗 (𝑘) =
∑

𝑚
𝑔(𝑚 − 2𝑘)𝑐𝑗+1(𝑚) (9)

𝑗+1(𝑘) =
∑

𝑚
𝑐𝑗 (𝑚)ℎ(𝑘 − 2 𝑚) +

∑

𝑚
𝑑𝑗 (𝑚)𝑔(𝑘 − 2 𝑚) (10)

The signal decomposition consists in the repeated application of
qs. (8) and (9) to obtain the lower resolution scaling and wavelet
oefficients from the scaling coefficients at higher resolution. The signal

econstruction is the inverse process and it consists in the repeated
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Fig. 1. Long Short-Term Memory diagram, where C is the memory cell and it contains
the state. F,I,O are respectively the forget,input and output gates. H is the hidden vector
(the output of the network) that depends both on the input X and state C.
Source: The image was taken from Jozefowicz et al. (2015).

application of Eq. (10) to obtain the higher resolution scaling coeffi-
cients from the scaling and wavelet coefficients from the lower level.
In the case of discrete input signal with finite length, the decomposition
(and reconstruction) can be computed through repeated matrix vector
multiplications (more information about the transformation matrix is
available in Teukolsky et al., 1992). The result of the decomposition is
a vector with the same length of the input that contains the coefficients
of the lower resolution level followed by the detail coefficients from
the higher levels. The maximum number of levels of decomposition is
bounded by the length of the input signal through Eq. (11).

max level = ⌊log2(
input length

filter length − 1
)⌋ (11)

2.3. Long short-term memory recurrent network

Recurrent Neural Networks were an important advance in neu-
ral computing for sequential data processing. The main limitation of
Feedforward Neural Networks (FFNN), in the context of time series
prediction, consists in the fact that the output depends only on the
current input and, in order to train these networks to predict the
future values of a time series, the signal is split into blocks with fixed
sizes, where the size of each block is the number of input neurons.
For this reason FFNN are not able to capture temporal dependencies
that are longer than the current input sequence. Moreover in FFNN
each output depends equally on any input, hence they inherently do
not account for temporal dependencies or any ordering in the data.
Recurrent Neural Networks were introduced to add ‘‘memory’’ of the
past inputs such that the output depends not only on the current input
but also on the previous ones. This mechanism can be implemented
adding to a FFNN a feedback loop that connects the output back to
the hidden layer (Kubat, 1999). This kind of architecture can learn in
theory temporal dependencies with arbitrary time lag, but in practice
they do not for the problem known as Vanishing or Exploding Gradi-
ent (Pascanu et al., 2013). Long Short-Term Memory (LSTM) recurrent
networks (Hochreiter & Schmidhuber, 1997) overcome this limitation
using a different architecture that enforces constant error propagation.
This architecture is based on a memory cell and a set of gates that
control the amount of information that flows from the input to the
memory cell and from the memory cell to the output (Fig. 1).
3

3. Proposed wavelet recurrent network

3.1. Data

We have at our disposal simulated data that emulate the operation
of a LEO (Low Earth Orbit) satellite. In particular we studied the sensors
monitoring a Reaction Wheel (RW), which is a type of flywheel used
primarily by spacecrafts for three-axis attitude control. The RW has a
high pointing accuracy and it is particularly useful when the spacecraft
must be rotated by very small amounts, for example for keeping a
telescope pointed at a star. The Reaction Wheel was equipped with four
sensors monitoring: the current absorbed, the temperature, the velocity
and the commanded torque (see Fig. 2). Each sensor sends its data
to Earth in fixed sampling intervals that differ from sensor to sensor,
hence the four sequences must be downsampled in order to be aligned.
Moreover, the satellite does not operate exclusively in a nominal mode,
and can have non-nominal behaviors such as flights maneuvers. The
data collected under these circumstances are marked with a special flag
and are filtered by the system in order to mitigate the false positive
rate. TAS-Italia industry1 provided us the simulation of four months of
observation data, one of those with an anomalous behavior.

3.2. Input pipeline

The Satellite telemetries are collected from four sensors that mea-
sure different pieces of information of the same physical component.
A reliable predictive model should consider these correlations, hence
the problem is formulated as a multivariate time series prediction task
where each data point has four features, corresponding to the four
sensors. The Wavelet Recurrent Neural Network (WRNN), that will
be described in the next section, receives as input the multiresolution
decomposition of the signal. For this reason the signal is split into
blocks which length must be chosen carefully since it determines the de-
composition level according to Eq. (11). Specifically, it was chosen such
that it contains one period of the lower frequency periodic component
that has a period of about two hours, as shown in Fig. 3.

The final length was rounded up to 2048 samples per channel
such that it was a power of two (this is necessary because at each
decomposition level the number of coefficients is halved).

For the wavelet decomposition, the Daubechies wavelet and scaling
filters (Daubechies, 1992) with four vanishing moments have been
selected. The Daubechies family is an orthonormal wavelet system
which filters have the minimum length given the number of vanishing
moments. In particular the decomposition uses the filters with four
vanishing moments because they can approximate the trend of the
signal at the lower resolution scale. Fig. 4 compares the Daubechies
filters varying the number of vanishing moments.

Once the input signal is converted in the wavelet domain two
filtering techniques are applied to simplify the task of the recurrent
network. The first technique is hard thresholding (Donoho & Johnstone,
1994) (Eq. (12)), that is used in signal processing for denoising and it
consists in replacing with zero the coefficients which absolute value is
below a fixed threshold.

𝑑′𝑗 (𝑘) =

{

𝑑𝑗 (𝑘) 𝑖𝑓 𝑑𝑗 (𝑘) > 𝜏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

The second one consists in replacing the higher resolution detail coef-
ficients with zeros. This approach allows to reduce drastically the load
of the network, since the number of coefficients is halved. However
if the wavelet system is chosen properly (especially the number of
vanishing moments) these coefficients should carry few information
and the reconstruction should not be affected by this substitution. Fig. 5
shows the reconstruction of the signal from the coefficients where the
higher resolution detail coefficients are replaced with zeros.

1 https://www.thalesgroup.com/it/global/activities/space

https://www.thalesgroup.com/it/global/activities/space
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Fig. 2. A sample of telemetry data. Each line corresponds to a sensor: motor current (blue line), temperature (orange line) and angular speed (green line).

Fig. 3. Input signal over a time period of 12 h. The vertical lines highlight the lower frequency periodic component, that has a period of 1 h 43 m.

Fig. 4. Comparison between db2,db4 and db8 Daubechies filters. The plots on the left show the original signal while the ones on the right are the reconstructions using only the
lower approximation level scaling coefficients. While db4 and db8 provide a good approximation of the signal db2 does not. This experiment shows that four vanishing moment
are enough to represent the signal at a low level of approximation.
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Fig. 5. On the left the original signal, on the right the signal reconstructed from the wavelet coefficients where the high detail coefficients cd8 are set to zero.
Fig. 6. Wavelet Recurrent Neural Network architecture. The input wavelet coefficients are split according to their resolution band. For each resolution band there is a specific
recurrent network that produces the encoding of the past coefficients and a dense layer that uses the encoding to predict the future coefficients (with the exception of the higher
resolution detail coefficients that are all zero). Then the predicted coefficients (and the zero vector for the higher resolution detail coefficients) are concatenated and passed to the
reconstruction algorithm that outputs the future signal.
3.3. Model architecture

The model architecture is illustrated in Fig. 6, it is composed of
multiple LSTM encoders and dense layers (one for each band of the
multiresolution decomposition). The proposed WRNN, as described in
the previous section, processes the input in blocks of 2048 samples per
channel. Hence the time unit, referred as ‘‘step’’, corresponds to about
two hours of signal. The LSTM encoders process a sequence of 5 steps
and each of them receives the coefficients from a specific resolution
band. For each LSTM there is a dense layer that uses the encoding to
predict the coefficients at that resolution level for a single step that
is 10 steps ahead in the future (about 20 h ahead in the future). The
output coefficients from each band are the input of the reconstruction
algorithm (described in Section 2.2) that returns a vector with the same
shape of the input containing the samples of the predicted signal. In
conclusion, the proposed Wavelet Recurrent Network uses about ten
hours of signal (10240 samples per channel) to predict the two hours
(2048 samples per channel) that are about twenty hours ahead in the
future.
5

3.4. Training

For the training phase, according to the common practice, we split
the dataset into training, validation and test splits, using the three
observation periods without anomalies for training (80% training and
20% validation) and the fourth observation period for testing. The input
of the network is the signal that was split into blocks and transformed in
the Wavelet domain. Then the network splits the coefficients according
to their resolution level and each split is processed by a parallel branch
composed of an LSTM layer and a final dense layer. The parallel
branches are trained together because the loss is computed once on the
reconstructed signal in the time domain. The output of each branch
is the vector of wavelet coefficients of the future signal for a specific
resolution level. Before computing the loss, the output coefficients
are concatenated and the signal is reconstructed with the reconstruc-
tion algorithm. The decomposition and reconstruction algorithms were
implemented in TensorFlow (Abadi et al., 2015). In particular we im-
plemented the Pyramidal algorithm using only differentiable operations
(multiplications by circulant matrices and permutation matrices), such
that the wavelet decomposition and reconstruction can be inserted
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Fig. 7. Illustration of an RNN encoder–decoder for multi-steps ahead prediction. The first recurrent unit (RNN1) loops on the input steps to produce the encoding ℎ𝑝. The second
recurrent unit (RNN2) receives as its first input the encoding ℎ𝑝, then it loops on its previous predictions to produce the output sequence.
into a differentiable computational graph. Hence, even though the
parameters of the decomposition and reconstruction algorithms are
fixed, the network can be still trained end to end with Gradient Descent.
We trained the network for about 70 epochs using Mean Squared Error
loss and the Adam optimizer with default parameters and we adopted
early stopping to prevent overfitting.

4. Results

In Section 4.1 the proposed model is compared with an LSTM
encoder–decoder architecture. After the evaluation of the performances
for the prediction task we will explain how the proposed architecture
can be used to detect anomalies in spacecraft telemetry data (in Sec-
tion 4.2). In particular we will describe the experiment and the results
that we obtained.

4.1. Prediction

Recurrent Networks have been widely used for time series pre-
diction, in particular LSTM have demonstrated the ability to learn
complex temporal dependencies with a time lag greater than 1000
steps (Hochreiter & Schmidhuber, 1997). However training directly a
simple LSTM network to predict 22528 points (2048 points that are
20480 points ahead in the future) from the 10240 points in the past
was not feasible. Even an iterative approach, in which the model is
trained to predict a smaller number of samples and, at validation time,
it is fed back with the previous predictions to increase the forecast
horizon, was not sufficient, because, due to the error propagation (Boné
& Crucianu, 2002), the model deviated from the correct prediction
before it could reach the desired point in the future. For this reason
the Wavelet Recurrent Network was compared with an LSTM encoder–
decoder (Sutskever et al., 2014) that is a more general model that
learns a mapping between the input and output sequence without any
previous assumptions on those sequences, and can be trained directly to
predict the samples that are multiple steps ahead in the future from the
past samples. This architecture (illustrated in Fig. 7) was introduced for
natural language translation, but it was successfully adopted for com-
plex time series prediction (Park et al., 2018). In particular, to enforce
fairness, we compared both architecture on the same temporal horizon.
However, to make this comparison feasible we had to downsample
the signal by a factor 16 for the LSTM encoder–decoder, because the
training was not feasible with the available hardware. This fact high-
lights another important advantage of our method, namely the ability
to predict huge amounts of data with much less training time than the
baseline. In particular the proposed architecture exploits the separation
of the signal into wavelet bands to predict the future signal in parallel
directly in the wavelet domain. The decomposition of the input data
allows to predict longer sequences because the temporal correlation
is considered only within the same wavelet band. This assumption is
supported by the intuition that the signal can be decomposed into
different frequency bands that are connected to different phenomena,
and it is also supported by the empirical results. Indeed, despite the
different sampling rate (the WRNN processes 16 times more data), the
6

Table 1
Percentage error for the Wavelet Recurrent Network and the LSTM
encoder–decoder for the task of multi-steps ahead prediction. The two
models are compared on the same temporal horizon, however the input
of the LSTM encoder–decoder has been downsampled by a factor 16.
MAAPE (%)

WRNN LSTM encoder–decoder

CH0 5.55 6.44
CH1 5.73 6.55
CH2 3.54 5.15
CH3 0.78 1.62

training time is halved with respect to the baseline. In this way it was
possible to compare the two models on the same temporal horizon. In
particular the LSTM encoder–decoder was trained to predict directly
128 points that are 1280 points ahead in the future from the 640 points
in the past received as input.

The Mean Arctangent Absolute Percentage Error (MAAPE) (Kim &
Kim, 2016) was used to compare those models. It is a variation of
the Mean Absolute Percentage Error that, instead of computing the
mean of the absolute percentage errors (APE), computes the arctangent
of the absolute percentage errors (see Eq. (13), where 𝑦 is the true
value and 𝑦̂ is the predicted value). In this way it avoids the ‘‘outliers’’
problem (Makridakis, 1993) according to which the APE is indefinite
when the true value is close to zero, because the Arctangent Absolute
Percentage Error (AAPE) is always bounded in [0, 𝜋2 ].

𝑀𝐴𝐴𝑃𝐸 = 100 × 1
𝑁

∑

𝑛
arctan(|

𝑦𝑛 − 𝑦̂𝑛
𝑦𝑛

|) (13)

According to Table 1, that measures the performances of both
models on the validation set, the Wavelet Recurrent Network has the
smallest percentage error in each channel, despite it processes 16 times
more data. Fig. 8 shows the results of the two models on the same
window.

The results show that our WRNN performs better than the LSTM
encoder–decoder both in terms of training time and prediction error.
This can be explained by the fact that our WRNN considers the temporal
correlations only within each wavelet bands. In particular it assumes
that the information carried by the coarse signal is independent from
the one carried by the details. This makes sense in the domain of the
satellite telemetries, where low frequency components may depend on
the orbit period, while high frequency oscillations may depend on the
noise introduced by the sensors and other components may be related
to different causes. We took advantage of this assumption to devise an
efficient architecture that is able to process very long sequences with
respect to a simple LSTM, where the input is processed one sample at a
time. The wavelet recurrent network introduced in Capizzi et al. (2012)
is not designed for multi-steps ahead prediction. Hence a direct com-
parison of the results would require a re-implementation of the model
from scratch, which would be too costly. However we can still affirm
that the proposed WRNN converges much quicker still obtaining good
results. This because in our method the wavelet filters, that are used in
the Pyramidal algorithm for the decomposition and reconstruction, are
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Fig. 8. The Wavelet Recurrent Neural Network (WRNN) and the LSTM encoder–decoder are compared on the same input for the task of multi-steps ahead prediction.
fixed and consequently the complexity of the network is reduced. In
particular the proposed WRNN took about 70 epochs of training for
convergence, while the Wavelet recurrent network by Capizzi et al.
(2012) was trained for hundreds of epochs.

4.2. Anomaly detection

Another important task, that is the primarily purpose of telemetry
data, is anomaly detection. It consists in the identification of patterns
in the data that deviate from the normal behavior. The reason why this
task is so hard is the problematic definition of ‘‘normal behavior’’. A
good predictor, trained on ‘‘normal’’ data, implicitly defines a model of
‘‘normality’’ that can be used to detect anomalies as deviations between
the predicted and the real values (as shown in Fig. 9). In our case
the dataset contained just a single known anomaly, that was left in the
test split. However we were able to identify and perfectly localize it
through the analysis of the residuals of the forecast produced by our
model, where a residual is defined as:

𝑒(𝑡) = |𝑦(𝑡) − 𝑦′(𝑡)| (14)
7

where 𝑦(𝑡) and 𝑦′(𝑡) are respectively the true and predicted values at
time 𝑡. In particular, we first analyzed the distributions of the residuals
over long observation periods. These distributions allow to notice im-
mediately whether or not an anomaly has occurred, even though they
do not allow to localize the anomaly in time. Fig. 10 shows two distribu-
tions corresponding to two observation periods, where the first contains
the known anomaly. We can see that the distribution of the residuals
corresponding to the period with no anomalies is almost a Gaussian
with zero mean, while the second is a bimodal distribution, where the
principal mode (the one with higher probability) corresponds to the
normal behavior while the second one corresponds to the abnormal
behavior. Once the anomalous period is identified it is possible to lo-
calize the anomaly by plotting the evolution of the residuals (as shown
in Fig. 11). An important characteristic of an anomaly detection system
is its ability to distinguish noise from outliers (or anomalies) (Salgado
et al., 2016). In our case, and even in most real scenarios, the data
is acquired from sensors that introduce a certain amount of noise in
the measures. For this reason, it is very important not to confuse the
aforementioned noise with anomalies. At this purpose, the ability of
the proposed method of decomposing the signal comes at hand since it
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Fig. 9. This figure shows a single step of predicted signal (in orange) against the true signal (in blue). In the left figure the true signal is taken from a normal period while in
the right figure the true signal is anomalous. We can observe that in the first picture the prediction is quite accurate, while in the second one it deviates significantly from the
ground truth.

Fig. 10. Distribution of the residuals of two distinct periods from the trainingset. The one on the left refers to a period with no anomalies, while the one on the right refers to
the period with the known anomaly.

Fig. 11. In this plot we see the evolution of the residuals in the anomalous period. From the first two channels (first row) we can clearly identify the anomaly, that can be
localized in the period that goes from the first block, to the block number 80.
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Fig. 12. The figure shows the distribution of the residuals for each wavelet band. In particular we can observe that the anomaly is localized in the low frequency components of
the signal.
can easily separate the noise from the anomalies under the assumption
that they live in different wavelet bands. With the proposed approach,
we can also compute the error directly on the wavelet coefficients
and analyze the residuals independently for each wavelet band (as
shown in Fig. 12). The same principle can also be used to inject prior
knowledge in the method, since if we know that anomalies cannot
appear in some wavelet bands we can safely ignore them.

5. Conclusion

The difficulty in the prediction of satellite telemetries resides both
in the multi-dimensionality of the input data and in the high number of
samples. The proposed wavelet recurrent network was able to capture
long term dependencies building an internal model of the signal that
allowed to predict a high number of samples with a large time lag
between the input samples and the predicted ones leveraging the
multiresolution decomposition performed by the wavelet transform.
The proposed model outperformed the LSTM recurrent network both in
terms of accuracy and in the number of predicted samples. The predic-
tion of telemetry, especially when the predicted data is multiple steps
ahead in the future, allows acting in advance in order to be prepared
to handle the probable configuration that the monitored system could
assume in the near future. We also showed how the proposed method
can be applied to the task of anomaly detection, that is of paramount
importance in the field of telemetry analysis. However we were not able
to properly evaluate the model for this second task, since our dataset
contains only a single example of anomaly. We therefore leave more
comprehensive experimentation in this area for a future work.
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