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We report an analytical study of the vibrational spectrum of the
simplest model of jamming, the soft perceptron. We identify two
distinct classes of soft modes. The first kind of modes are related
to isostaticity and appear only in the close vicinity of the jamming
transition. The second kind of modes instead are present every-
where in the glass phase and are related to the hierarchical structure
of the potential energy landscape. Our results highlight the univer-
sality of the spectrum of normal modes in disordered systems, and
open the way toward a detailed analytical understanding of the
vibrational spectrum of low-temperature glasses.
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Low-energy excitations in disordered glassy systems have re-
ceived a great deal of attention because of their multiple

interesting features and their importance for thermodynamic and
transport properties of low-temperature glasses. Much debate
has been concentrated around the deviation of the spectrum from
the Debye law for solids, due to an excess of low-energy excita-
tions, known as the “boson peak” (1).
The vibrational spectrum of glasses is a natural problem of

random matrix theory. In fact, the Hessian of a disordered sys-
tem is a random matrix due to the random position of particles in
the sample. The distribution of the particles induces nontrivial
correlations between the matrix elements. Many attempted to
explain the observed spectrum of eigenvalues by replacing the
true statistical ensemble with some simpler ones, in which cor-
relations are neglected or treated in approximate ways (2–11).
However, most of these models are not microscopically grounded,
thus making it difficult to assess which of the proposed mecha-
nisms are the most relevant and understand their interplay.
In this work we will focus on two ways of inducing a boson

peak in random matrix models. First, it has been suggested that
the boson peak is due to the vicinity to the jamming transition
where glasses are isostatic (12, 13). Isostaticity means that the
number of degrees of freedom is exactly equal to the number
of interactions. Isostaticity implies marginal mechanical stability
(MMS): cutting one particle contact induces an unstable soft
mode that allows particles to slide without paying any energy cost
(14, 15). From this hypothesis, scaling laws have been derived
that characterize the spectrum as a function of the distance from
an isostatic point (11, 12, 16). Second, it has been proposed that
low-temperature glasses have a complex energy landscape with a
hierarchical distribution of energy minima and barriers (17). Minima
are marginally stable (18) and display anomalous soft modes (11, 19)
related to the lowest energy barriers (20–22). We will denote this
second kind of marginality as landscape marginal stability (LMS).
Both mechanisms described above are highly universal. LMS

is a generic property of mean-field strongly disordered models
(18). MMS holds for a broad class of simple random matrix
models (6, 10, 11, 16) and for realistic glass models (12, 23, 24) at
the isostatic point. Universality motivates the introduction of a
broad class of continuous constraint satisfaction problems (CCSP)
(25), in which a set of constraints is imposed on a set of continuous
variables. In the satisfiable (SAT) phase, all of the constraints can

be satisfied, whereas this is impossible in the unsatisfiable (UNSAT)
phase. A sharp SAT–UNSAT transition separates the two phases:
jamming can be seen as a particular instance of this transition. In
fact, (i) jamming properties are within numerical precision super-
universal, i.e., independent of the spatial dimension d for all d≥ 2
(26, 27), (ii) they can be analytically predicted through the exact
solution in d→∞ (17, 28), and (iii) the perceptron model of neural
networks, a prototypical CCSP, displays a jamming transition with
the same exponents (25). Based on universality, both for analytical
and numerical computations, the perceptron appears to be the
simplest model† where low-temperature glassy behavior can be
studied (25).
Here, we exploit this simplicity and characterize analytically

the vibrational spectrum of the perceptron at zero temperature
in the glass phase. Our main results are (i) the spectrum is given
by a Marchenko–Pastur law with parameters that can be com-
puted analytically; (ii) it closely resembles the one of soft sphere
glass models in all d≥ 2; (iii) it displays soft modes coming from
marginal stabilities of both kinds (LMS and MMS), allowing us
to unify both contributions and understand their interplay. Our
results are based on the replica method and random matrix
theory, and for the first time, to our knowledge, we are able to
derive all of the critical properties of jamming within the analytic
solution of a well-defined microscopic model.

Model
We propose to use the perceptron as a minimal model for
jamming. In doing so, we heavily rely on a universality hypoth-
esis. Rather than looking for physical realism, we posit that we
can capture many interesting features of low-energy excitations
in the glass phase close to jamming on the basis of the following

Significance

The vibrational spectrum of glasses displays an anomalous
excess of soft, low-frequency modes with respect to crystals.
Such modes are responsible for many anomalies in thermody-
namic and transport properties of low-temperature glasses.
Many distinct proposals have been formulated to understand
their origin but none of them results from the analytic solution
of a microscopically grounded model. Here we solve analyti-
cally the spectrum of a simple model that belongs to the same
universality class of glasses, and identify two distinct mecha-
nisms that are responsible for the soft modes.

Author contributions: S.F., G.P., P.U., and F.Z. designed research, performed research,
contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: silvio.franz@lptms.u-psud.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1511134112/-/DCSupplemental.

†There is of course the possibility of a weak dependence of the jamming exponents on d.
In that case our results would be exact only for d → ∞, yet they can be expected to
provide a very good approximation in d < ∞.

www.pnas.org/cgi/doi/10.1073/pnas.1511134112 PNAS | November 24, 2015 | vol. 112 | no. 47 | 14539–14544

PH
YS

IC
S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

R
O

M
A

 L
A

 S
A

PI
E

N
Z

A
 S

IS
T

E
M

A
 B

IB
L

IO
T

E
C

A
R

IO
 D

I 
A

T
E

N
E

O
 o

n 
Fe

br
ua

ry
 1

2,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

15
1.

10
0.

50
.1

05
.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1511134112&domain=pdf
mailto:silvio.franz@lptms.u-psud.fr
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1511134112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1511134112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1511134112


three properties of particle systems: (i) the relevant degrees of
freedom, the particle positions, are continuous variables; (ii) in
hard spheres, impenetrability can be seen as a set of constraints––
inequalities––on the distances between spheres; (iii) spheres can be
made soft by relaxing the impenetrability constraint and imposing a
harmonic energy cost to any overlaps (12).
Let us now introduce a general class of CCSP where a set of N

continuous variables x= fx1, . . . , xNg is subject to a set of M
constraints of the form hμðxÞ> 0 (μ= 1⋯M). The “hard” version
of the problem corresponds to allowing only configurations that
satisfy the contraints; the “soft” version corresponds to giving an
energetic penalty to each violated constraint. This can be enco-
ded in an energy, or Hamiltonian, or “cost” function‡.

H½ x�= «

2

XM
μ=1

h2μθ
�
−hμ

�
, [1]

where θðxÞ is the Heaviside function. For all configurations x, one
obviously has H½x�≥ 0. There are thus only two possibilities: either
all of the constraints can be satisfied and the ground-state energy
is HGS = 0 (SAT phase), or HGS > 0 (UNSAT phase). These two
phases are separated, in the thermodynamic limit N→∞, by a
sharp SAT–UNSAT phase transition (29). The hard case corre-
sponds to «=∞, and the UNSAT phase is then forbidden.
Particle systems correspond to a special choice: the xi are

d-dimensional vectors confined in a finite fixed volume; each
constraint is the “gap” between two given particles, so it has the
form hμ =

��xi − xj
��− σ, where σ is the particle diameter; the index

μ= fi< jg takes M =NðN − 1Þ=2 values corresponding to all pos-
sible particle pairs. Plugging this into Eq. 1, the reader will im-
mediately recognize the soft-sphere Hamiltonian used in most
studies on jamming (12, 30). Because jamming is the point
where the energy first becomes nonzero upon increasing σ, we can
identify it with the SAT–UNSAT transition for this special choice of
the constraints.
The spherical perceptron is probably the simplest abstract

CCSP where, appropriately rephrased, the three ingredients
above are combined (25). The variables x belong to the unitary
N-dimensional sphere with

P
ix
2
i = 1, and one considers M = αN

constraints of the form

hμ = ξμ · x− σ > 0, [2]

defined in terms of vectors, ξμ = fξμ1, . . . , ξμNg composed by
quenched independent identically distributed (i.i.d.) random vari-
ables with independent Nð0,1Þ components. The control parame-
ters of the system are thus α and σ, and jamming defines a line in
the (α, σ) plane separating the SAT and UNSAT phases. The sign
of σ is crucial: for σ > 0 the perceptron is a convex CCSP, with a
unique energy minimum (31, 32); for σ < 0 the problem is non-
convex and multiple minima are possible (25).
In the following, h•i indicates an average on the minimum en-

ergy configurations for a given realization of quenched disor-
der (i.e., of the ξμ), whereas h•i indicates an additional average
over the disorder. We will also introduce a special notation for
(α times) the average moments of the gap distribution in a given
configuration,

½hn�= 1
N

XM
μ=1

hnμθ
�
−hμ

�
. [3]

For future reference, it is useful to provide a simple dictio-
nary between physical quantities in particles systems and in the

perceptron. The energy is clearly identified with H ∝ ½h2� in both
cases. The pressure is proportional to ∂H=∂σ ∝ ½h� in particle
systems, and the same definition can be used for the perceptron.
The gaps between pair of particles correspond to the con-
straints hμ. The forces, which act from a constraint μ to a variable
i, are naturally defined as the μ-contribution to the total force
Fi =−∂H=∂xi acting on xi, namely, f μi =−ð∂hμ=∂xiÞhμθð−hμÞ. The
total number of contacts in spheres is the number N½1� of violated
constraints with hμ ≤ 0; one can keep the same definition for the
perceptron. In the following we will approach jamming from the
UNSAT phase, where ½hn�→ 0 from nonzero values§ for all n> 0,
whereas, for continuity, ½1� tends to the fraction of binding con-
straints, i.e., those such that hμ = 0. The isostaticity condition is that
the number of binding constraints equals the number of degrees of
freedom and can therefore be written as ½1�= 1. As already men-
tioned, α and σ play the role of control parameters that are
analogous to the packing fraction in the sphere problem. In
addition, the Debye–Waller factor corresponds to the Edwards–
Anderson parameter (see below and ref. 28). Finally, note that
rattlers, i.e., particles that at jamming are involved only in non-
binding constraints, cannot exist in the perceptron, because each
variable xi is connected to all of the constraints.

Vibrational Spectrum
We now present our main technical result, which is the exact
computation of the eigenvalue spectrum of the Hessian of H½x�
in its points of minimum (we now choose «= 1). We enforce
the spherical constraint through a Lagrange multiplier ζ and con-
sider the modified Hamiltonian Hζ½x�=H½x�− ðN=2Þζðx2 − 1Þ.
The first-order minimization conditions read

∂Hζ

∂xi
=
XM
μ=1

ξμi hμθ
�
−hμ

�
−Nζxi = 0. [4]

Multiplying by xi and summing over i we can obtain a relation
between ζ and the distribution of the gaps hμ in the minimum,
namely ζ= 1=N

P
μðh2μ + σhμÞθð−hμÞ= ½h2�+ σ½h�. The Hessian ma-

trix, normalized with N, reads

Mij =
1
N

∂2Hζ

∂xi∂xj
=
1
N

XM
μ=1

ξμi ξ
μ
j θ
�
−hμ

�
− ζδij. [5]

Notice that in the SAT phase, all of the gaps hμ are positive and
both ζ and the elements of M are trivially equal to zero. We
concentrate therefore on the UNSAT phase, where there is a
nonvanishing fraction ½1� of negative gaps hμ.
In principle, in the point of minima of H, ξμi ξ

μ
j and θð−hμÞ that

appear in Eq. 5 could be effectively correlated; however, to the
leading order in large N these correlations can be neglected
because each hμ is the sum of a large number of ξμi . The matrix
M is thus equivalent to a random matrix from a modified
Wishart ensemble (33), with an effective number of random
contributions equal to N½1� and a constant term ζ added on the
diagonal:

Mij ∼
1
N

XN½1�

μ=1

ξμi ξ
μ
j − ζδij = ½1�Wij − ζδij, [6]

whereWij = ðN½1�Þ−1PN½1�
μ=1 ξ

μ
i ξ

μ
j is a standardWishart matrix (34) with

“quality factor” Q= 1=½1�. It follows that for large N the eigen-
value spectrum of M obeys the modified Marchenko–Pastur
(MP) law (35):

‡Note that the choice of the exponent 2 in Eq. 1 is arbitrary but corresponds to the
common choice of a soft harmonic repulsion in the context of sphere packings; other
exponents can be chosen and the results remain qualitatively similar, see ref. 12. §All the moments [hn], including n = 0, are clearly equal to zero in the SAT phase.
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ρðλÞ=
8<
:

ð1− ½1�Þδðλ+ ζÞ+ νðλÞ ½1�< 1

νðλÞ ½1�> 1
,

νðλÞ= 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ− λ−Þðλ+ − λÞp
λ+ ζ

1λ−,λ+ðλÞ,

λ± =
� ffiffiffiffiffi½1�p

± 1
�2

− ζ.

[7]

This result is very general: for any minimum of H, Eq. 7 holds for
specific values of the parameters ½1� and ζ. Also, the eigenvectors
of Wishart matrices are delocalized (36) and are asymptotically
distributed according to the uniform Haar measure on the
sphere. The same properties hold for the eigenvectors of the
Hessian of the perceptron. We will see that Eq. 7 reproduces
all of the known features of low-energy excitations close to jam-
ming: its main virtue is to relate these features to a few charac-
teristics of the gap distribution.
The condition of minimum of H requires that all of the ei-

genvalues of the spectrum are positive or zero. For ½1�< 1, this
implies ζ≤ 0, which can only happen if σ > 0. Thus, for σ < 0,
necessarily ½1�≥ 1. In that case we need λ− ≥ 0, i.e.,

� ffiffiffiffiffi
½1�

p
− 1
�2

≥ ζ=
�
h2
	
+ σ½h�. [8]

Equality in Eq. 8 corresponds to a marginally stable minimum
whose spectrum touches zero. It also implies that at jamming,
where ½h� and ½h2� vanish and ½1� tends to the number of binding
constraints, marginally stable minima are necessarily isostatic
with ½1�= 1. Note that in the context of sphere packings, Eq. 8
translates into a relation between the excess of contacts δz∼ ½1�− 1
and the pressure p∼ ½h�, which reads δz2 ≥Const. × p and has been
derived in ref. 14.
We now need to compute the moments ½hn� that enter in Eq. 7.

Unfortunately, this computation cannot be done analytically for
a single minimum or a single sample. Instead, we are able to
compute the average h½hn�i over all of the absolute minima of
the Hamiltonian. Because the moments ½hn� are self-averaging
for large N, this provides information over the typical absolute
minima of the Hamiltonian as a function of the control pa-
rameters ðα, σÞ. In the following paragraphs we report the
computation of h½hn�i; for simplicity, unless otherwise specified
we drop the averages and replace h½hn�i→ ½hn�.
Thermodynamic Analysis: The Convex Domain
Thermodynamic and disorder averages can be computed with the
aid of the replica method (18). The partition function is written as
an integral over a certain number of copies of the system, the av-
erage of the disorder is taken, and the resulting integral is evaluated
through the saddle-point method for N→∞. As a result, one
should minimize a free energy which is a function of the average
overlap between replicas, qab =hxa · xbi (qaa = 1 due to the spherical
constraint). The minimization is not possible for a generic matrix qab
and one has thus to make an ansatz on the structure of the matrix
minimizer, which codes for the organization of the ergodic com-
plonent in the system (18). If ergodicity holds and there is a single
component, the replica symmetric (RS) qab = q for a≠ b ansatz is
appropriate. The RS free energy for the perceptron is (31)

FRS =−
T
2



logð1− qÞ+ q

1− q

�

− αT
Z

Dqðh+ σÞlog
�Z

D1−qðy− hÞ  e−βy2θð−yÞ=2


,

[9]

where DqðhÞ= dh exp½−h2=ð2qÞ�= ffiffiffiffiffiffiffiffi
2πq

p
and DðhÞ=D1ðhÞ. This

expression must be minimized with respect to q.

We have two distinct situations when T→ 0. (i) In the SAT
phase, because there are many solutions, different replicas can
be in different solutions and q< 1 at T = 0 (31): from Eq. 9 one
can show that the ground-state energy is E0 = 0. (ii) In the
UNSAT phase, the replicas are in the unique absolute energy
minimum and q= 1 at T = 0. For T→ 0, due to harmonic vibra-
tions, q= 1− χT +OðT2Þ. The limit T→ 0 must therefore be taken
with q→ 1 and χ = βð1− qÞ fixed. The parameter χ diverges
approaching the SAT–UNSAT transition from the UNSAT phase,
while q→ 1 approaching the transition from the SAT phase.
Let us now focus on the UNSAT phase. Evaluating the most

internal integral by saddle point, one finds

E0 =hHi=−
1
2χ

+
α

2ð1+ χÞ
Z0
−∞

Dðh+ σÞh2, [10]

and optimizing over χ gives the equation

�
1+

1
χ


2

= α

Z0
−∞

Dðh+ σÞh2. [11]

Also, one can show that

½hn�= α

ð1+ χÞn
Z0
−∞

Dðh+ σÞhn. [12]

Jamming is the point for which χ→∞, or

αRS
J ðσÞ=

 Z0
−∞

Dðh+ σÞh2
!−1

  , [13]

which coincides with the result of ref. 31. Also, 1=χ ∝ e vanishes
linearly in the distance « from the line αRS

J ðσÞ, and from Eqs. 11
and 12 we obtain that E0 = ½h2�=2= 1=ð2χ2Þ∝ e2 vanishes qua-
dratically (12, 30). We can thus identify the line αRS

J ðσÞ with
the jamming transition, because E0 > 0 for α> αRS

J ðσÞ whereas
E0 = 0 for α≤ αRS

J ðσÞ. From Eqs. 12 and 13 we get ½1�< 1 on the
jamming line (Fig. 1), where the system is thus hypostatic and
not critical (25).
From Eq. 12 we can compute the moments that enter in Eq. 7.

Recall that the RS solution implies a unique minimum of the
energy, so the average h½hn�icoincide with the value of ½hn� in the
absolute minimum. In the UNSAT phase for σ > 0 we get: (i) for
large α, ½1�> 1 and λ− > 0: the spectrum is gapped; (ii) for
αJ αRS

J ðσÞ, λ− > 0 and ½1�< 1 with ζ< 0: the spectrum is gapped
and it has 1− ½1�modes with eigenvalue λ=−ζ> 0; (iii) the same
remains true at jamming for σ > 0 and α= αRS

J ðσÞ, except that the
1− ½1� modes vanish trivially because ζ= 0. When σ→ 0, λ− ∝ σ2

vanishes so the gap closes on the line σ = 0.
Finally, one can study the stability condition of the RS solution

by considering a small perturbation of the matrix qab and checking
if this perturbation lowers the free energy. A standard computa-
tion (32, 37) leads to the stability condition. In the SAT phase
where q< 1, the RS stability condition is α≤ αcðσÞ as computed in
ref. 25; the line αcðσÞ falls in the SAT region for σ ≤ 0. In the
UNSAT phase, we get the condition

�
1+

1
χ


2

≥ ½1�⇔
Z0
−∞

Dðh+ σÞ�h2 − 1
�
≥ 0, [14]

which is verified for σ ≥ 0 whereas it is violated for σ < 0.
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In summary, for σ < 0 and α> αcðσÞ the RS solution is unstable
(as depicted in Fig. 1) and one must consider a solution for qab
that is not invariant under permutation symmetry, usually denoted
a replica symmetry-breaking (RSB) solution (18). Where the RS
solution is correct, the spectrum is gapped.

Thermodynamic Analysis: The Nonconvex Domain
In the region of nonconvex optimization σ < 0, ergodicity is broken
at low temperatures and large α. The RS solution is unstable and
the structure of the matrix qab is parametrized by a function qðxÞ
defined in the interval x∈ ½0,1�, which encodes the values of the
overlaps of replicas that populate different metastable states of the
system. This is called a full replica symmetry-breaking (fullRSB)
ansatz (18). In particular this implies that at T = 0 there are many
quasi-degenerate minima of the Hamiltonian. The value of qð1Þ= qEA
is the Edwards–Anderson order parameter that describes the
overlap of replicas confined in the same metastable state. The
fullRSB equations for the perceptron have been written, e.g., in
ref. 38. In general they can only be solved numerically, but the
scaling around the jamming transition can be obtained analytically
(17, 25, 28). Here we discuss the main results of this analysis; a
detailed derivation will be reported elsewhere.
As in the RS case, qEA = 1− χT in the UNSAT phase with

χ→∞ at the jamming transition. The jamming line falls in the
fullRSB region for all σ < 0 (Fig. 1) and can thus be computed
numerically solving the fullRSB equations at T = 0; however, we
expect a small difference with the RS computation, and in gen-
eral the RS result is an upper bound, αfullRSB

J ðσÞ< αRS
J ðσÞ, so we

did not perform the fullRSB computation. Let us once again call
« the distance from the jamming line. Combining the results of
(17, 25, 28) with the original results derived in this work, the
following properties can be obtained analytically for e→ 0:

i) the system is isostatic with ½1�= 1 identically for all σ < 0 and
α= αfullRSB

J ðσÞ;
ii) in the UNSAT phase χ ∼ e−1=2; the average energy vanishes at

jamming as hHi∝ ½h2�∝ e2; the average gap is ½h�∝ e; and the
excess of contacts above the isostatic value is ½1�− 1∼ e1=2;

iii) in the SAT phase, the Edwards–Anderson order parameter
behaves as 1− qEA ∼ eκ;

iv) at jamming (e= 0) the probability distribution of the gaps,
defined as gðhÞ=Probðhμ = hÞ, satisfies gðhÞ∼ h−γ for h→ 0+,
whereas the distribution of absolute values of the forces
satisfies Pðf Þ∼ f θ for f → 0+;

v) the values of the critical exponents κ= 1.41574 . . . , γ =
0.41269 . . . ,   θ= 0.42311 . . . are obtained analytically and co-
incide with the ones of soft spheres in mean field.

We can next focus on the spectrum and compute λ− and ζ that
appear in Eq. 7. We obtain that

vi) λ− vanishes identically in the fullRSB phase, because the con-
dition λ− = 0 coincides with the LMS condition.{ Hence, in the
fullRSB UNSAT phase, the spectrum is ρðλÞ∼ ffiffiffi

λ
p

=ðλ+ ζÞ for
small λ and energy minima are marginally stable.

vii) ζ is positive in the UNSAT phase but it goes to zero, as
expected, at the jamming transition. Therefore, at jamming
ρðλÞ∼ 1=

ffiffiffi
λ

p
has a much larger density of soft modes. Slightly

away from jamming, ρðλÞ∼ ffiffiffi
λ

p
for λ � ζ, then reaches a max-

imum ρðλ∼ ζÞ∼ 1=
ffiffiffi
ζ

p
, and then decreases as ρðλÞ∼ 1=

ffiffiffi
λ

p
for λ � ζ.

We thus identify two distinct contributions to soft modes: the
fullRSB structure (LMS) induces marginality with ρðλÞ∼ ffiffiffi

λ
p

whereas
the proximity to jamming (MMS) induces a much stronger con-
tribution with ρðλÞ∼ 1=

ffiffiffi
λ

p
.

Note that although each of points (i)–(vii) has been derived
separately through scaling arguments or numerically (11–17, 20,
28), here for the first time, to our knowledge, we derive all of
them in a unified way from the analytical solution of a well de-
fined microscopic model.

Comparison with Numerical Data
The results of the previous section can be compared with the
numerical minimization of the soft perceptron Hamiltonian given
in Eq. 1. To obtain numerically the minima ofH, we use the following
procedure. We start from a random assignment x0 of the variables
and we use the routine gsl_multimin_fdfminimizer_vector_bfgs2 of
the GNU Scientific Library library (39), which uses the vector
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to min-
imize a function. To implement the spherical constraint, we
minimize HA½x�=H½x=jxj�+ Aðx2 − 1Þ2, where A is an irrelevant
number of order 1. Note that this algorithm produces local minima
that do not necessarily coincide with the absolute ones in the
nonconvex domain σ < 0. Therefore, the equilibrium calculation
should not necessarily provide exact results for the minima that we
produce numerically; however, the differences––if any––between
the minima found numerically and the theoretical expectations for
the absolute ones are very small. This is probably because we work
in a regime of fullRSB where relevant metastable states have
energy density equal to the one of the ground state (18).
In Fig. 2 we report the spectrum computed numerically and we

compare it with the theoretical prediction. As expected, in the
RS phase the absolute minimum is unique and can be easily found
numerically. Hence, the theoretical prediction perfectly coincides
with the analytical result. On the contrary, in the fullRSB phase
the numerical algorithm gets stuck into local minima. However,
even in this case the spectrum is described by an MP law, which
confirms that the result in Eq. 7 holds for all minima. Moreover,
we find λ− = 0, suggesting that the local minima found by the al-
gorithm are marginally stable.
We checked the expected delocalization properties of the ei-

genvectors of the Hessian through the statistics of the inverse
participation ratio, which for a given normalized eigenvector vi
is defined as y=

PN
i=1v

4
i , and is of order Oð1=NÞ for delocalized

eigenvectors. We found that the distribution of y is independent
of α and σ. Moreover, the average value of Ny tends to the value
3 implied by the Haar distribution on the sphere.
In Fig. 3 we report the value of Λ− = ð ffiffiffiffiffi½1�p

− 1Þ2 − ð½h2�+ σ½h�Þ,
where the moments ½hn� are evaluated on the numerically obtained
minima. According to Eq. 7, this quantity should tend to the value

Fig. 1. Phase diagram of the model. The RSB region is delimited by the
dashed blue line, σ < 0 and α> αcðσÞ. The jamming line αJðσÞ that separates
the SAT from the UNSAT phase, as estimated by the RS solution Eq. 13, is
depicted as a full red line. The exact αJðσÞ should be computed within the
fullRSB ansatz for σ < 0, but we expect only a small difference as confirmed in
Fig. 3. (Inset) The density of contacts ½1� along the jamming line. Jamming is
isostatic (½1�= 1) for σ ≤ 0 and hypostatic (½1�< 1) for σ > 0.

{In technical terms, λ− = 0 is equivalent to the vanishing of the replicon mode of the
fullRSB free energy.
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of the edge of the spectrum λ− in the thermodynamic limit N→∞.
As expected, we observe that Λ− is positive and follows the analytic
RS prediction for σ > 0, whereas for σ < 0 we observe that Λ− → 0
for N→∞. Also, in Fig. 3 we report the moments ð½1�− 1Þ2, ½h�,
and

ffiffiffiffiffiffiffiffi
½h2�

p
as a function of σ in the UNSAT phase. As predicted by

the scaling analysis of the fullRSB solution, these quantities vanish
linearly in e= σ − σJ, where σJ is the jamming point. We see
therefore that all of the regimes predicted by the theory are
observed in numerical simulations.

Characteristic Frequencies and the Boson Peak
We now show that defining the frequency ω=

ffiffiffi
λ

p
and the density

of states DðωÞ= ρðλÞðdλ=dωÞ, our spectrum reproduces the sa-
lient features of the boson peak phenomenology as described in
the Introduction. Following ref. 11, we define the characteristic
frequencies ωp =

ffiffiffi
ζ

p
, ω0 =

ffiffiffiffiffi
λ−

p
and ωmax =

ffiffiffiffiffi
λ+

p
, and from Eq. 7

we obtain

DðωÞ= 1
π

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω2 −ω2

0

��
ω2
max −ω2

�q
ω2 +ω2

*

, ω0 ≤ω≤ωmax. [15]

In the RS phase, we have ω0 > 0 and the spectrum is gapped, but
in a d-dimensional, translationally invariant system one should
see a Debye spectrum DðωÞ∼ωd−1 for ω<ω0. For small ω0 � ω*,
following ref. 11, one expects in dimension d

DðωÞ∼
8<
:

ωd−1 ω � ω0,
ω2�ω2

*
ω0 � ω � ω*,

flat ω* � ω � ωmax,
[16]

the phononic regime being absent for d→∞ and in the percep-
tron. For d= 3, DðωÞ displays a cross-over between two ω2 re-
gimes at ω0, the second having a larger prefactor because ωp is
small, which results in a boson peak (11).
In the LMS (fullRSB) phase, λ− = 0 and thus ω0 = 0 identically.

We get

DðωÞ= 1
π

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
max −ω2

p
ω2 +ω2

*

∼
�
ω2 for  ω � ω*,
flat for  ω* Kω≤ωmax,

[17]

and the phonons should be completely hidden by the soft LMS
excitations. Here ωp > 0 away from jamming, whereas ωp =ffiffiffi
ζ

p
∼

ffiffiffiffiffiffiffiffi
σ½h�p

∼
ffiffiffi
e

p
when the distance from jamming « goes to zero.

The result in ref. 17 is fully consistent with the boson peak
anomaly in the excitation spectrum of soft-sphere packings as
known from simulations and scaling arguments (11, 12, 14, 23,
24, 40), confirming the superuniversal behavior of glassy systems
close to jamming. They are also fully consistent with the results
of ref. 11, with the advantage that here we can obtain a fully
microscopic expression of the characteristic frequencies ω0 and
ωp. Details are given in the Supporting Information.

Conclusions
The soft perceptron is simple enough to allow for a fully analytic
characterization of vibrational spectra around UNSAT energy
minima. Whereas for any minimum of the Hamiltonian the
spectrum has the form of an MP law, here we computed the
parameters of this distribution only for the absolute minima.
Superuniversality of the jamming transition allows us to hypothe-
size that the predicted form and parameter evolution of the
spectrum captures many of the low-energy features of the
spectrum of soft-sphere systems. We find two kinds of soft ex-
citations, as described in ref. 11. The first ones are related to the
existence of a complex energy landscape characterized by a
multiplicity of quasi-degenerate marginally stable minima. Due
to this LMS, the low-energy spectrum is DðωÞ∼ω2. The second
ones are related to the proximity to an isostatic jamming point,
where the spectrum is DðωÞ∼ω2=ðω2 + eÞ. Hence, above a typical
frequency ωp ∼ e1=2 the density of states is flat, as found in soft
spheres (12, 14). Note that in particle systems the Debye contri-
bution of phonons to the spectrum scales as ωd−1; hence, as soon

Fig. 2. Spectrum of the Hessian for N= 1,600, α= 4, and σ= 0.5, 0, − 0.3,
averaged over 208 samples, in linear (main panel) and semilog (Inset) scales.
The MP law given in Eq. 7 with RS parameters (full lines) perfectly repro-
duces the data for σ≥ 0, whereas deviations are observed for σ < 0, where
instead a MP law with ζ= 0.037 and ½1�= ð1+ ffiffiffi

ζ
p Þ2 = 1.42 (hence λ− = 0 and

λ+ = 4.76) perfectly fits the spectrum (dashed line).

A

B

Fig. 3. (A) The combination Λ− = ð ffiffiffiffiffiffi½1�p
− 1Þ2 − ð½h2�+ σ½h�Þ as a function of σ

for α=4 and several N, averaged over 100 samples. In the thermodynamic
limit this tends to the edge of the spectrum of the Hessian. Stability requires
Λ− ≥ 0 for N→∞. For σ> 0, Λ− tends to values greater than 0 that coincide
with the analytical RS result (full line). For σ < 0 the data indicate marginal
stability, Λ− → 0 for N→∞. (B) The moments ð½1�− 1Þ2, ½h�, and

ffiffiffiffiffiffiffiffi
½h2�

p
as a

function of σ for α= 4,  N= 1,600 (points with dashed lines as guides to the
eye). Full lines are the RS predictions. Although deviations between theory
and simulations are observed in the behavior of ½1�, there are no appreciable
differences for ½h� and ½h2�. As predicted by the theory these quantities
vanish linearly at the jamming point estimated here at σJ ≈−0.409, which is
very well approximated by σRSJ =−0.405234.
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as d> 3 the contribution of the LMS soft modes should overcome
the one of phonons. In d= 3 the two contributions are of the same
order, and therefore LMS modes might be mixed with phonons.
However, we think that LMS might explain why anomalous soft
modes distinct from phonons, that are responsible for the plasticity
of the glass, are observed in 3D soft-sphere packings in the jam-
med phase for low frequencies ω<ω* in the boson peak region
(11, 14, 19–22). A way to test this idea would be to compute nu-
merically the vibrational spectrum of soft spheres in d≥ 3 and
investigate the evolution with d. Localized soft modes (e.g., the
buckling modes discussed in refs. 16, 27) are also likely to emerge
in finite-dimensional systems and complicate the analysis.
Let us stress once again that all of our results have been

obtained analytically through the exact solution of a well-defined
model, and there is hope that they will be derived in a mathemat-
ically rigorous way in the future. Beyond their direct relevance
for the physics of jamming, our results also open a connection
between jamming/packing problems and constraint satisfaction
problems with continuous variables, which we conjecture to display
an SAT–UNSAT transition in the same (super)universality class of
jamming (25).

The analysis can be extended in several directions. First, one
can study the spectrum in the SAT (unjammed) phase, corre-
sponding to hard spheres, despite the fact that the energy is zero.
In fact, one can study the problem at finite temperature using the
Thouless–Anderson–Palmer approach (41, 42) and then take the
limit T→ 0 by properly scaling the frequencies (16, 20, 23, 24).
This computation would provide an elegant analytic approach to
reproduce the experimental results obtained for colloids in refs.
43, 44. Other quite straightforward extensions could be the study
of the statistics of avalanches (45), and the study of a “quantum
perceptron” to investigate how LMS affects the thermodynamic
properties in the quantum regime, which could shed light on the
mechanisms that induce tunneling two-level systems in glasses (46).
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