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Abstract 

Robotic Process Automation (RPA) is an emerging technology in the field of 

Business Process Management (BPM) that enables the automation of intensive 

repetitive tasks (or simply routines). RPA solutions access the user interface 

(UI) layer of software (SW) applications and provide a virtual workforce of SW 

robots that are able to mimic human keyboard and mouse interactions with a 

UI as if a real person was doing them. To take full advantage of this technology, 

organizations leverage the support of skilled human experts that preliminarily 

observe how routines are executed on the UI of the involved SW applications, 

and then implement the executable RPA scripts required to automate the rou- 

tines enactment by SW robots on a target computer system. However, the 

current practice is time-consuming and error-prone, as it strongly relies on the 

ability of the human experts to correctly interpret the routines (and their vari- 

ants) to automate. In this paper, to tackle this issue, we use a design science 

research method to develop an approach, called SmartRPA, which is able to 

interpret the UI logs keeping track of many routine executions, and to automat- 

ically synthesize SW robots that emulate the most suitable routine variant for 

any specific intermediate user input that is required during the routine execu- 

tion. The approach is implemented as an open-source tool and evaluated with 

four non-functional requirements employing both syntectic and real-world data. 
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1. Introduction 

 
Robotic Process Automation (RPA) is an emerging automation technology 

in the field of Business Process Management (BPM) that creates software (SW) 

robots to partially or fully automate rule-based and repetitive tasks (or simply 

routines) performed by human users in their applications’ user interfaces (UIs) 

[1]. RPA is thought to provide the shortest route to business process (BP) 

automation by accessing only to the UI layer of IT systems rather than going 

deeply into the application code or databases sitting behind them [2]. 

In recent years, much progress has been made both in terms of research 

and technical development on RPA, resulting in many industry-specific deploy- 

ments for industrial-oriented services [3, 4, 5, 6, 7, 8, 9]. Moreover, the market of 

RPA solutions has developed rapidly and today includes more than 50 vendors 

developing tools that provide SW robots with advanced functionalities for au- 

tomating office tasks of different complexity [10]. Nonetheless, when considering 

state-of-the-art RPA technology, it becomes apparent that the current genera- 

tion of RPA tools is driven by predefined rules and manual configurations made 

by expert users rather than automated techniques [11, 12, 13]. 

As investigated in [14, 15], in the early stages of the RPA life-cycle, it is re- 

quired the support of skilled human experts that identify the candidate routines 

to automate by means of interviews and observation of workers conducting their 

daily work, and manually specify their conceptual and technical structure, of- 

ten in form of flowchart diagrams, to enable the generation of executable scripts 

(also called RPA scripts) for the concrete enactment of SW robots at run-time. 

While this approach is proven effective to execute simple rules-based logic in 

situations where there is no room for interpretation, it becomes time-consuming 

and error-prone in presence of routines that are less predictable or require some 

level of human judgment. Indeed, the designer should have a global vision of all 

possible variants of the routines to define the appropriate behaviours of the SW 

robots, which becomes complicated when the number of variants increases. The 
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issue is that in case where the flowchart diagram does not contain a suitable 

response for a specific situation, e.g., because of an inaccurate modeling activity, 

then the associated RPA scripts would not properly reflect the behaviour of the 

potential routine variant, forcing SW robots to escalate to a human supervisor 

at run-time, in contrast with the RPA philosophy. 

Although RPA is generally considered to be an easy to implement technology, 

in practice an in-depth knowledge is necessary to create reliable and scalable 

SW robots, in particular when intermediate user inputs are required to properly 

progress the execution of a routine. As a result, between 30% and 50% of initial 

RPA implementations are estimated to fail [16, 9]. Consequently, an approach 

that simplifies the realization of an RPA project, and in particular the generation 

of SW robots in presence of many routine variants, can be considered as a 

relevant artefact to investigate. This leads to the following research questions: 

 

• RQ1: Which steps are required to make the generation of SW robots less 

dependent by the intervention of RPA human experts? 

• RQ2: How can the detection of variants (and related variation points) in 

a routine be automatically achieved? 

• RQ3: What is the effectiveness of employing an approach that synthesizes 

SW robots neglecting the (manual) specification stage of the routines’ 

behaviour through flowchart models? 

 

In answering these questions, in this paper – which extends our previous work 

[17] in several directions,1 – we contribute to three recent challenges that were 

put forward in [11, 12, 13, 18], namely: (C1) the automated identification of the 

routine steps to robotize from a UI log, (C2) the automated detection of all the 

routine variants that require some user input to proceed with their execution, 

and (C3) the automated synthesis of executable RPA scripts for enacting SW 

 
1For readability purposes, the details of the additional contributions with respect to our 

previous work [17] are explained at the end of Section 10. 



4  

 

 

 
 

robots at run-time. The result is an approach and an implemented tool, called 

SmartRPA, which is able to (i) interpret the UI logs recording the mouse/key 

events that happen on the UI of the SW applications involved in many routine 

executions, (ii) discover all the variants (and variation points) of the routine 

under observation, and (iii) automatically combine them into an executable 

RPA script, which can be reactively synthesized into a single SW robot. 

Differently from the literature approaches to automated RPA scripts gener- 

ation from UI logs (cf. Section 5), which enable to automate straightforward 

routines that have essentially no variance and do not require any human in- 

tervention, the SW robots generated by SmartRPA are obtained to handle the 

intermediate user inputs that are required during the routine execution, thus 

enabling to emulate the most suitable routine variant for any specific combi- 

nation of user inputs as observed in the UI log. This makes the synthesis of 

SW robots performed by SmartRPA reactive to any user decision found dur- 

ing a routine execution. “Reactivity” highlights the fact that the behaviour of 

SW robots is determined immediately before their enactment, as it is driven by 

the specific user inputs required to execute the routine. Therefore, SmartRPA 

acknowledges the benefit of human involvement at multiple points of the rou- 

tine execution, leveraging the “humans-in-the-loop” model for the automated 

execution of routines that are less static and require variable decisioning [13]. 

We structure the paper according to the activities suggested by Johannesson 

and Perjons in [19] for delivering a design science artifact. Specifically, Section 2 

describes our research methodology. Section 3 presents the relevant background 

and preliminary concepts. Section 4 introduces a running example to explain 

the research challenges. Section 5 discusses the related work solutions that 

attempted to tackle the research challenges, with the aim to derive the technical 

requirements for the design of the SmartRPA approach, whose main steps are 

examined in Section 6. Section 7 outlines the algorithm for the automated 

detection of variation points from many routine executions. Section 8 analyzes 

the architecture and the technical aspects of the tool implementing the approach. 

Section 9 evaluates the robustness, feasibility, effectiveness and usability of the 
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approach and its implemented tool. Finally, Section 10 draws conclusions and 

trace future works. 

 

2. Research Methodology 

 
Our research methodology is inspired to the Design Science approach de- 

scribed by Johannesson and Perjons in [19]. The methodology is applied in 

four distinct sequential phases: problem formulation and objectives, require- 

ments definition, design and development, and demonstration and evaluation. 

See Figure 1 for an overview. 

 

 
Figure 1: Research methodology based on Johannesson and Perjons [19] 

 

 
Problem Formulation and Objectives. In this phase, which is tackled in 

 

Section 1, we first identify and specify the research problem to be tackled, i.e., 

the reactive synthesis of SW robots in an automated way from UI logs. Then, 

we justify its significance in the RPA field. The relevance of the problem is  

also supported by the presence of three related research challenges, i.e., C1, C2 

and C3, taken from previous works [11, 12, 13, 18]. Finally, we elaborate three 

main research questions, i.e., RQ1, RQ2 and RQ3, for guiding our research 

towards the definition of an artefact to solve the problem. Such an artefact is 

represented by an approach and an implement tool, called SmartRPA, which 

is able to interpret the UI logs keeping track of many routine executions, and 

to automatically and reactively synthesize SW robots that emulate the most 

suitable routine variant for any specific intermediate user input that is required 

during the routine execution. 
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Requirements Definition. The second phase consists of eliciting the require- 

ments on the outlined artefact. After providing the required background con- 

cepts on routines, SW robots and UI logs, we present a running example inspired 

by a real-life RPA use case to illustrate the relevance of the three challenges 

identified before. Then, we investigate the related work, including documented 

solutions to similar research challenges, with the aim to extract the technical 

requirements needed to support the design and development of SmartRPA. 

Design and Development. Based on the analysis of the related work and 

the derived technical requirements, in the third phase we make design decisions 

explicit, discussing the SmartRPA approach and describing its stages to answer 

RQ1. Moreover, we present in detail a novel algorithm to automatically identify 

routine variants and variation points from UI logs, thus addressing RQ2 and 

enabling a reactive synthesis of the SW robots. Lastly, we show the technical 

steps enacted to develop the SmartRPA approach as a real implemented tool. 

Demonstration and Evaluation. In the fourth phase, with the aim to un- 

derstand the general quality of SmartRPA to tackle the research challenges, we 

analyze four non-functional requirements on the artefact. Specifically, we first 

perform many synthetic experiments employing UI logs of increasing complexity 

to assess the robustness and feasibility of our approach to the identification of 

routine variants and variation points for the reactive synthesis of SW robots. 

Then, to answer RQ3, we perform a controlled experiment involving real users 

exploiting the use case of our running example to investigate the effectiveness of 

the SmartRPA approach when compared to a traditional model-based approach 

for the generation of SW robots. Finally, we quantify the usability of the UI 

provided by the tool implementing the SmartRPA approach. 

 
3. Background and Preliminary Concepts 

 
RPA can be seen as an evolution of screen scraping solutions [20], which 

sought to visualize screen display data from legacy applications (having no 

means for automated interfacing) to display such data using modern UIs. The 



7  

 
 
 

 

strength of RPA is that it does not replace existing applications or manipulate 

their code, but rather works with them in a way similar to a human user. In this 

section, we present the required background on RPA and preliminary concepts 

on routines, SW robots and UI logs needed to understand our approach. 

 
3.1. Preliminaries on Routines and SW Robots 

 

RPA moves around the concept of replacing routine work with automation. 

According to [21], a routine can be classified as a structured process that reflects 

highly predictable and repetitive work with low flexibility requirements (i.e., the 

amount of variants to the expected process path is limited) and controlled inter- 

actions among process participants. 

While many overlapping definitions of RPA can be found in the research lit- 

erature, in this paper we adopt the one proposed by Gartner in 2017 [22], which 

defines RPA as a class of tools that enable users to specify routines involving 

[if, then, else] statements on structured data, rules, user interface interactions, 

and operations accessible via APIs. Such routines are encoded as scripts that 

are executed by SW robots, operated via control dashboards. 

Depending on how the control dashboard is exploited, it is possible to dis- 

tinguish among unattended and attended SW robots. 

• Unattended SW robots are able to fully automate routines without any 

intermediate human intervention. This happens when all execution paths 

are always the same independently by the specific inputs provided to the 

routine executions. For example, for the management of insurance claims 

(when claims are received in a structured form), unattended SW robots 

offer an efficient solution for their automated processing and validation. 

However, any variant to the expected behaviour of the routine is consid- 

ered as an exception and, thus, redirected to human supervision. 

• Attended SW robots work alongside humans, and are suitable for rou- 

tines where some decisions or checks need to be made that require human 

judgement during the routines’ execution. Therefore, attended SW robots 
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may require data from a user to properly progress the enactment of the 

routine. For example, a document-driven routine lends itself to attended 

automation because a human is entering information via a document, and 

different values of the provided information may potentially trigger the 

execution of different variants of the routine. 

In a nutshell, unattended SW robots represent the simplest case of the at- 

tended perspective [18], since user inputs are not required for driving the rou- 

tine’s execution. On the other hand, attended SW robots are suitable in pres- 

ence of routine variants recorded in the UI log. We define a routine variant as a 

specific execution of a routine that differs from the other executions of the same 

routine by at least one event. An event refers to the enactment of a user action 

(coupled with some execution data, like the name of the application where the 

action occurred, etc.) within a specific routine execution recorded in a UI log 

at a specific moment in time. The presence of different events in many routine 

executions may potentially determine alternative behaviours of the routine itself. 

This is particularly true when some events are triggered only by specific user 

inputs (and not by others) provided at the time of the routine execution. These 

events act as a variation point of the routine, where a user choice needs to be 

made between multiple possible variants. We will show an example of routine 

variants and variation points in the running example of Section 4. 

 
3.2. Preliminaries on User Interface Logs 

 

A UI log in its raw form consists of a timestamped sequence of events 

recorded during one user session.2 Such events include all the user actions re- 

quired to accomplish one or more relevant routines using the UI of one or many 

SW application/s. For instance, in Figure 2, we show a snapshot of a generic UI 

log captured using a dedicated action logger (that we will extensively discuss in 

Section 8) during the execution of two generic routines. The employed action 

 
2We interpret a user session as a group of interactions that a single user takes within a 

given time frame on the UI of a specific computer system. 
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Figure 2: Snapshot of a UI log captured during the executions of two generic routines 

 

 
logger enables to record the events happened on the UI, enriched with several 

data fields describing their payload. For a given event, such fields are useful  

to keep track the name and the timestamp of the user action performed on  

the UI, the involved SW application, the human/SW resource that performed 

the action, etc. In general, events recorded by different SW applications are 

characterized by different data fields. For example, the events generated by a 

spreadsheet (e.g., an Excel spreadsheet) contain information such as spreadsheet 

name and position of the involved cell or range of cells, while Web-based events 

are characterized by the name of the corresponding HTML web page. 

As shown in Figure 2, a UI log may contain multiple and interleaved exe- 

cutions of one/many routine/s (cf. the blue/red boxes that group the events 

belonging to two generic different routines), as well as redundant behavior and 

noise. We consider as redundant any event that is unnecessarily repeated during 

the execution of a routine, e.g., a text value that is first pasted in a wrong field 

by mistake and then is moved  in the right place through a corrective action  

on the UI. On the other hand, we consider as noise all those events that do 

not contribute to the achievement of any routine target,  e.g.,  a window that  

is resized. In Figure 2, the sequences of events that are not surrounded by a 

blue/red box could be safely labeled as noise. 

We conclude this section by introducing the concepts of routine trace, which 
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represents an execution instance of a routine within a UI log (e.g., the events 

surrounded by a blue/red box belong to two routine traces related to two dif- 

ferent routines), and of routine-based log as a container that stores the routine 

traces extracted by a UI log and related to a specific routine. Conceptually 

speaking, routine-based logs resemble event logs in Process Mining [23]. 

 

4. Running Example 

 
In this section, we describe a RPA use case inspired by a real-life scenario 

at Department of Computer, Control and Management Engineering (DIAG) of 

Sapienza  Università  di  Roma.   The  scenario  concerns  the  filling  of  the  travel 

authorization request form made by professors, researchers and PhD students 

of DIAG for travel requiring prior approval. The request applicant must fill a 

well-structured Excel spreadsheet (cf. Figure 3(a)) providing some personal in- 

formation, such as her/his bio-data and the email address, together with further 

information related to the travel, including the destination, the starting/end- 

 
 

(a) Excel spreadsheet (b) Google form 

Figure 3: UIs involved in the running example 
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ing date/time, the means of transport to be used, the travel purpose, and the 

envisioned amount of travel expenses, associated with the possibility to request 

an anticipation of the expenses already incurred (e.g.,  to request in advance  

a visa). When ready, the spreadsheet is sent via email to an employee of the 

Administration Office of DIAG, which is in charge of approving and elaborating 

the request. The delivery of the travel authorization request in the email inbox 

of an employee triggers the starting of the routine procedure described below. 

For each row in the spreadsheet, the employee manually copies every cell in 

that row and pastes that into the corresponding text field in a dedicated Google 

form (cf. Figure 3(b)), accessible just by the Administration staff. In addition, if 

the request applicant declares that s/he would like to use her/his personal car as 

one of the means of transport for the travel (by filling the dedicated row labeled 

with “Car” in the spreadsheet), then the employee has to activate the request on 

the Google form (in this case, a dialog box labeled “Own car request” appears on 

the UI, cf. Figure 3(b)) and then accept (only in this case a special insurance  

is automatically activated for the part of the travel that will be performed  

with the car) or reject the personal car request. When the data transfer for a 

given travel authorization request has been completed, the employee presses the 

“Submit” button to submit the data into an internal database. Once the form 

is submitted, a confirmation email is sent automatically to the applicant. 

The above routine procedure (in the following, we will denote it as Rexample) 

is usually performed manually, it is time consuming (as it must be repeated for 

any new travel request) and prone to errors. For the sake of understandability, 

we show in Figure 4 the flowchart model of Rexample, represented through the 

ISO/IEC 19510:2013 standard BPMN notation. 

Analyzing the BPMN model in Figure 4, it becomes clear that a proper exe- 

cution of Rexample requires a path on the UI made by the user actions reported 

in Table 1.3  Note that actions openWorkbook and openGoogleForm can be per- 

 
3Note that the user actions recorded in a UI log can have a finer granularity than the 

high-level ones used here just with the purpose of describing the routine’s behaviour. 
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formed in any order, and the sequence of actions ⟨ getCell, copy, clickTextField, 

paste⟩  can be repeated for any travel information to be moved from the Excel 

spreadsheet to the Google form. Finally, in case of a car request to be evaluated 

(activateCarRequest), the execution of accept or reject is exclusive. 

Depending on the order/choice/number of repetitions of the above user ac- 

tions, many different variants of Rexample can be potentially emulated. However, 

the behaviour implied by Rexample semantically changes only after the enact- 

ment of the action activateCarRequest, which requires an explicit user decision 

between the possibility of accepting or rejecting the personal car request. There- 

fore, the actions accept and reject represent a variation point of the routine, that 

forks its execution flow into two well distinguished exclusive branches. 

The majority of commercial RPA tools enable  RPA  user  experts  to  tag 

the variation points directly in the flowchart model.   That is,  Rexample can    

be modeled and properly emulated by a SW robot if an in-depth knowledge of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Flowchart model of Rexample describing its main steps 
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Name Description 

loginMail to access the client  mail 

accessMail to access the specific email with the travel request 

downloadAttachment to download the Excel file including the travel request 

openWorkbook to open the Excel  spreadsheet 

openGoogleForm to access the Google Form to be filled 

getExcelCell to select the cell in the i-th row of the Excel spreadsheet 

copy to copy the content of the selected cell 

clickGoogleFormTextField to select the specific text field of the Google form where the content of the cell should be pasted 

paste to paste the content of the cell into the corresponding text field of the Google form 

activateCarRequest to activate in the Google form the dialog box for approving or rejecting the car request 

accept to press the button on the Google form that approves the request 

reject to press the button on the Google form that rejects the request 

formSubmit to press the button to finally submit the Google form to the internal database 

 

Table 1: User actions required to execute Rexample 

 

 
the anatomy and working of the routine is available during the modeling task. 

But without such a knowledge, which is based on careful observation sessions of 

human users that perform routine tasks in their computer systems, it becomes 

extremely complex both to identify the candidate steps of the routine to specify 

in the flowchart model (cf. C1) and the detection of those variants that would 

require some user inputs to proceed with their execution (cf. C2). In a nutshell, 

the ability of commercial RPA tools to emulate all the possible behaviours of 

the routine depends by the correctness of the modeling task, without which is 

not possible automatically generate the executable RPA scripts to be embedded 

into the SW robots (cf. C3). 

In this direction, in the next section we first present the relevant approaches 

from the research literature that are able to mitigate the above challenges by 

skipping the modeling activity of the flowchart diagram. Then, in an attempt 

to fully address them, we derive a set of technical requirements to realize our 

SmartRPA approach. 
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5. Related Work Analysis and Requirements Specification 

 
The research literature proposes many approaches that are targeted to au- 

tomatically discover and implement the behaviour of SW robots by interpreting 

the working of the routines stored into previously recorded UI logs. 

Towards the addressing of C1, the works [24, 25] provide an approach, cou- 

pled with an implemented tool, that leverages process mining techniques to (i) 

keep track of UI actions performed within Excel and Google Chrome into an 

event log, and (ii) extract the fragments of a routine that can be eventually au- 

tomated by a third-party RPA tool. Similarly, in [26] it is presented the Desktop 

Activity Mining tool, which is able to record the user actions performed during 

an office-based routine task on a UI, and to discover a process model describing 

the behaviour of such routine. Note that the proposed tool is based on recording 

the mouse click coordinates on the screen and store them in a dedicated UI log, 

and thus it can not replicate the same user’s observed behavior performed in 

different computer systems, lacking portability. 

Even if the works [24, 25, 26] do not tackle the issue of synthesizing exe- 

cutable RPA scripts from the identified candidate routines, they had the vision 

that the behaviour of a routine can be inferred by observing and interpreting the 

footprint of the routine itself from a UI log that keeps track of its user actions. 

This directly leads to three technical requirements that need to be met to tackle 

C1: 

Req1 - Recording UI Logs: A feature to record the low-level user actions 

executed during one (or many) routine(s) enactment on the UI in form of 

a UI log is strongly needed to keep track of its behaviour. 

Req2 - Extraction of Routine-based Logs from a UI Log: A UI log may 

contain interleaved executions of one/many routine/s. As the target is to 

reason on the behaviour of a single routine per time, it is needed to pre- 

process the UI log to: (1) identify which user actions contribute to which 

routines inside the UI log; (2) organize such actions into well-bounded 

routine traces and (3) store them into a dedicated routine-based log. 
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Req3 - Events Abstraction: A routine-based log is characterized by low-level 

user actions, and thus may contain noise and redundant actions (cf. Sec- 

tion 3 for their definition) that must be filtered out from the log itself. 

 

With the aim to tackle C2, in [27], the authors propose a self-learning ap- 

proach to automatically detect high-level RPA-rules from historical low-level 

behaviour logs. An if-then-else deduction logic is used to infer rules from be- 

haviour logs by learning relations between the different routines performed in 

the past. Then, such rules are employed to facilitate the SW robots instantia- 

tion. A similar approach is adopted in [28], where the FlashExtract framework 

is presented. FlashExtract allows to extract relevant data from semi-structured 

documents using input-output examples, from which one can derive the rela- 

tions underlying the working of a routine. Finally, in [29] the authors identify 

repetitive edits to text documents by keeping track of a graph of edits and 

suggest automation rules for SW robots. 

The above works have provided a relevant contribution for the semi- 

automatically detection of variation points of a routine, with the aim to support 

the manual development of SW code by RPA expert users. In the direction of 

realizing a fully automated approach to the detection of routine variants and 

variation points, we can derive the following requirement: 

Req4 - Automated  Detection  of  Variation  Points:  An  algorithm  that 

is able to automatically detect the variation points of a routine from a 

routine-based log is required to reactively generate SW robots that emu- 

late properly the behaviour of the routine. 

Concerning C3, the literature proposes only a relevant solution, called Ro- 

bidium [30], that tackles this challenge. Robidium is an approach and an open- 

source tool that enables to generate executable scripts (by only interpreting UI 

logs) that can be enacted by the commercial RPA tool UI Path.4 

 
4www.uipath.com 

http://www.uipath.com/
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The main feature of Robidium is that it automates only the most frequent 

routine variant among the ones discovered in the UI log. This because Robidium 

synthesizes RPA scripts that do not require intermediate user inputs during 

their execution, i.e., it is focused on the generation of unattended SW robots 

(cf. Section 2). On the other hand, in order to synthesize attended SW robots, 

the following requirement is needed: 

Req5 - Automated and Reactive Generation of SW Robots:  A solu- 

tion that is able to automatically and reactively synthesize RPA  scripts  

is required for the generation of attended SW robots able to enact the 

most suitable routine variant depending on the specific input conditions 

at hand. 

It is worth to notice that another group of approaches exists towards SW 

robots automation, which focuses on learning the structure of a routine from 

natural language descriptions of the procedure underlying the routine itself. In 

this direction, the work [31] defines a new grammar for complex workflows with 

chaining machine-executable meaning representations for semantic parsing. In 

[32], the authors provide an approach to learn activities from text documents 

employing supervised machine learning techniques such as feature extraction 

and support vector machine training. Similarly, in [33] the authors adopt a deep 

learning approach based on Long Short-Term Memory (LSTM) recurrent neural 

networks to learn the relationship between activities of a routine task. The above 

works assume the availability of textual documentation of suitable quality and 

completeness at the outset, and neglect the fact that users can perform steps in 

a routine that are not fully documented to deal with variations and exceptions. 

This may potentially led to imprecise results in the description of the routine’s 

anatomy. Therefore, these works seems to be particularly suitable to discover 

the desired structure of a routine, in contrast with the observed one, like happens 

in all the log-based approaches discussed so far. 

Finally, a third group of approaches exist that aim to eliminate human- 

dependent training [34, 35]. They rely on probabilistic and machine learning al- 
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gorithms to automatically train SW robots, so that any manual effort is avoided. 

These approaches are currently the least mature if compared with the others 

discussed above, but potentially with the best promises for realizing fully auto- 

mated intelligent RPA approaches. 

 

6. Design of the SmartRPA Approach 

 
From a methodological perspective, SmartRPA has been conceptualized and 

designed towards addressing the five technical requirements discussed in Sec- 

tion 5. In addition, the approach underlying SmartRPA takes inspiration from 

the RPM (Robotic Process Mining) framework presented by Leno et al. in 

[18]. RPM aims to support analysts to produce executable specifications of rou- 

tines, in form of SW robots, interpreting the routine executions stored in a UI 

log. Specifically, RPM envisions a pipeline of three main stages that consist of: 

(i) collecting and pre-processing UI logs corresponding to executions of one or 

more routine executions; (ii) identifying and discovering candidate routines to 

be automated with RPA tools; and (iii) synthesizing executable RPA scripts. 

Robidium [30] is a concrete example of how to realize the RPM approach. 

To address the technical requirements, SmartRPA incorporates the three 

main stages of the RPM framework within a larger approach that includes five 

operational steps to be applied in sequence: (i) Log Recording, (ii) Log Process- 

ing, (iii) Event Abstraction, (iv) Process Discovery, and (v) Script Generation, 

as shown in Figure 5. Note that such methodological steps are useful not only 

to tackle the technical requirements, but also serve as our answer to RQ1. 

 
 

   Log    

Processing 
Event    

Abstraction 
Process    

Discovery 
Script 

Generation 

 
Figure 5: Overview of the SmartRPA approach 

 

 

Log Recording. SmartRPA belongs to the category of those approaches that 

learn how to automate routines “by examples”. Therefore, a UI log that keeps 

 

Log 
Recording 
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track of the low-level user actions generated during the interaction with the 

UIs of multiple SW applications within the execution of a routine is required to 

derive its structure. To this end, a training session in which several users perform 

the same routine to be automated is necessary to properly record the specific 

UI actions involved in its execution. While there exist many monitoring and 

recording solution in the Human-Computer Interaction field [36] that keep track 

of the actions that a user is doing on the screen of a computer system (recorded 

as mouse click coordinates) during a controlled experiment, in SmartRPA we 

need dedicated recording features to produce a raw UI log corresponding to 

many executions of the same routine during a pre-defined period of time (cf. 

Req1). At the end of the training session, the outcome of this step will consist 

of as many UI logs as are the users that performed the routine under analysis 

from the start to the end. 

Log Processing. It comes into play to pre-process the recorded UI logs and 

make them suitable for being properly interpreted. Since any UI log obtained 

from the previous step keeps track of single, independent execution of the ob- 

served routine, a merging activity is needed to combine them into a single, larger 

UI log. In a nutshell, the content of any recorded UI log obtained after a training 

session will be considered as a single trace of the (larger) UI log being generated. 

Thus, if compared with the description of UI logs performed in Section 2, we 

can say that SmartRPA enables to interpret UI logs that are routine-based, i.e., 

logs that can be already considered as well segmented, since the enactment of 

any training session will be represented by a specific routine trace in the log (cf. 

Req2). Of course, this does not prevent the presence of noise and redundant 

user actions in the recorded routine traces, whose presence will be reduced in 

the next steps. 

Event Abstraction. This step is targeted to convert the routine-based UI  

log (that will be later employed to generate the executable RPA scripts), which 

contains the low-level user actions recorded during the interaction with the 

UI, into a high-level version of it. Such high-level version can be used for 
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diagnostic and analysis purposes by expert RPA analysts to: (i) filter out noise, 

i.e., irrelevant events for the routine execution. For instance, applications related 

to the operating system such as Windows Updater may start automatically 

while the UI log is being recorded,  and they may dirty the recording phase    

of the users during their training session, thus they need to be filtered out; 

(ii) group similar events, mitigating noise (cf. Req3). Moreover, the high- 

level routine-based UI log will be used to derive the flowchart representing the 

abstract workflow describing the routine behaviour, employing dedicated high- 

level descriptive labels to represent the high-level activities. We notice that  

the Event Abstraction step is an addition with respect to the RPM framework, 

which instead focuses on discovering the anatomy of a routine only for execution 

purposes. 

Process Discovery. This step has a twofold objective: 
 

• It takes in input the high-level routine-based log generated by the Event 

Abstraction component to derive the workflow describing the users’ ob- 

served behavior in the UI. This workflow can be analyzed by an RPA 

analyst to look at the high-level structure of the routine under analysis. 

• Moreover, the knowledge of the workflow underlying the routine, coupled 

with the low-level version of the routine-based UI log, will be used to 

support the detection of the most suitable routine variant according to 

the intermediate user inputs observed into the UI log, and its encoding 

into a SW robot. In Section 7, it is reported a detailed discussion about 

the algorithm implemented to the identification of the routine variants 

and the related variation points (cf. Req4), necessary to obtain a reactive 

synthesis of the SW robot. 

It is worth to notice that in the RPM framework the Process Discovery step 

shown above is (in part) realized through the second stage of the framework, 

targeted to the identification and discovering of the candidate routines to be 

automated. In SmartRPA, the knowledge about which routine has to be auto- 

mated is already embedded into the UI logs obtained by performing the training 
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session at the outset. Moreover, during the Event Abstraction step, the routine 

is further cleaned from noise and redundancies, keeping just the events in the 

UI that can contribute to the routine automation. 

Script Generation. First of all, this step allows a RPA analyst to personalize 

the values stored in the events of the most suitable routine variant  detected  

in the previous step, before the generation and enactment of the SW robot. 

Finally, taking into account the edits made, SmartRPA can finally generate the 

required executable RPA script to run the SW robot that emulates the most 

suitable routine execution on the UI, by scanning the recorded low-level events 

stored in the routine-based UI log and converting them into executable pieces 

of SW code (cf. Req5). 

 
7. An Algorithm for the Automated Detection of Variation Points of 

a Routine 

To properly address RQ2, in this section we present an algorithm to identify 

different variation points of a routine by inspecting multiple executions of the 

routine itself inside the low-level routine-based log obtained as the outcome of 

the Event Abstraction step. A variation point is a point in the routine execution 

where a user choice needs to be made between multiple possible variants (cf. 

Section 3). The identification of variation points is fundamental to synthesize 

SW robots that emulate the most suitable routine variants in relation to the 

intermediate user inputs provided during the routine enactment. To be more 

specific, Algorithm 1 takes in input the low-level routine-based log and builds 

in output a new routine-based log that clearly categorizes the user actions that 

contribute to the identification of a new routine variant, distinguishing them 

from the (other) actions that are common to any routine trace recorded in the 

UI log. In the following, we discuss the main steps of Algorithm 1 relying on 

the running example explained in Section 4. 

 

Aligning (line 2). The first step of the algorithm consists of aligning the dif- 

ferent executions recorded in the routine-based log to make them more similar 
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Algorithm 1 Reactive Synthesis of SW Robots 

1: procedure generateRoutineVariant(df: DataFrame) 

2:        df  ← align rows ▷ Aligning step 

3:       df[“duplicated”] ← mark duplicated rows ▷ Marking step 

4: resultDF = None 

5: previousDecidedDF = None 

6:        groups ← group rows of df ▷  Grouping step 

7:       for groupDF in groups do  ▷ Iterating step 

8: if groupDF.duplicated == True then ▷  no decision to take 

9:  rows ← get the rows of the first trace from groupDF 

10: resultDF.append(rows) 

11: else ▷  variation point 

12: if previousDecidedDF then 

13: IDs ← case IDs of traces compliant with previousDecidedDF 

14: filteredDF ← rows with case ID in IDs from groupDF 

15: decisionDF ← remove redundant rows from filteredDF 

16: else 

17: decisionDF ← remove redundant rows from groupDF 

18: end if 

19: decisionDialog ← show decision dialog built from decisionDF 

20: decidedDF ← rows of decisionDF selected in decisionDialog 

21:  resultDF.append(decidedDF ) ▷  append rows from decidedDF 

22:  previousDecidedDF ← decidedDF ▷ save current decision 

23: end if 

24: end for 

25: return resultDF 

26: end procedure 

 
from each other, when possible. This means, on the one hand, removing user 

actions that are irrelevant for the execution of the SW robot,  such as spe-   

cial URLs like about:blank or chrome://newtab/ or low-level events such as 
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enableBrowserExtension or afterCalculate. And, on the other hand, iden- 

tifying and moving in the same point of any trace of the log those sequences 

of events underlying exactly the same behaviour in different traces (e.g., copy- 

/paste activities from a specific cell to specific text field) but originally located 

in different points among the various traces. 

 

Marking (line 3). To enact the most suitable routine variant, it is important 

to identify which variation points need to be considered within many routine 

executions. To this end, the very first step consists of marking as “duplicated” 

those rows that underly exactly the same event performed on the UI in differ- 

ent routine traces of the log. In a nutshell, the it-h row of a routine trace is 

considered as duplicated if it includes an event that is exactly the same in the 

it-h row of all the other routine traces. We evaluate two events as identical if 

the following data fields have the same value for the event in the it-h row in all 

the recorded routine traces: 

• category : represents the category of the user action, e.g., Browser, Oper- 

atingSystem, Clipboard, and MicrosoftOffice; 

• application: name of the application where the user action occurred, e.g., 

Google Chrome, Microsoft Excel, etc.; 

• concept:name: name of the user action recorded by the Action Logger 

component; 

• event src path: source path in the operating system related to a user ac- 

tion. It could indicate the path of a file or folder opened, modified, created 

or deleted. It could also denote the path of an executable program that 

has been opened or closed; 

• event dest path: destination path in the operating system related to a user 

action. If a file or folder is renamed, the new path name is present in this 

column; 
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• browser url hostname: hostname of the url recorded within a routine- 

based log. Two rows could have different URLs but the same hostname 

(e.g., www.uniroma1.it/students and www.uniroma1.it/contacts both have 

uniroma1.it as hostname); 

• xpath: XML Path Language is a query language for selecting nodes in a 

page. It is used to uniquely identify a HTML element in a webpage. 

 

 
Figure 6: Excerpt of the routine-based log describing 3 out of 50 routine traces of Rexample 

 
 

Only the above subset of data fields associated to an event in the UI log is 

evaluated to the detection of duplicate rows, because some data fields are always 

different among the several executions of a routine. For example, the case ID of 

a routine trace or its timestamp are unique, and would always lead to false results 

http://www.uniroma1.it/students
http://www.uniroma1.it/contacts
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if they were considered, because all the rows would always result different (i.e., 

not duplicated), leading to the identification of many wrong variation points. 

To sum up, if an event appears in all the routine traces of a routine-based log 

and the rows associated to that event have the same values for all the data fields 

discussed above, it means the users executed always the same user action on the 

UI at a specific point of the routine execution during their training session. As 

a consequence, such “duplicated” events would not lead to any variation point 

of the routine. 

On the other hand, if there exists at least a user that performed an action 

on the UI in the i-th step of a routine trace that differs (according to the data 

fields listed above) from the actions performed at the same i-th step of the 

other routine executions, then it means that the associated event only appears 

in certain routine traces and not in others, thus identifying a variation point. 

As a consequence, we mark as “not duplicated” all the i-th rows of any routine 

trace under analysis. From a technical point of view, a new column accepting 

boolean values called duplicated is added to the routine-based log. Figure 6 

shows a fragment of the user actions belonging to 3 different routine traces   

of Rexample identifying a variation point that leads to three different routine 

variants. For each row, if the corresponding duplicated field is set to True, it 

means the user action associated to that row is present in all the routine traces 

of the routine-based log and the values contained in the aforementioned data 

fields are the same across all the routine traces. Otherwise, duplicated is set to 

False. 

Grouping (line 6). Once all the rows of the low-level routine-based log have 

been marked, for each routine trace, the algorithm evaluates them sequentially 

(following the timestamped ordering of events in the trace) and creates different 

groups of events according to the following conditions: 

1. all the sequential rows having the column duplicated set to False, that 

precede (but are not preceded by) a row with the column duplicated set 

to True, are added to a new group. It is worth noticing this condition is 



25  

 
 
 

 

satisfied only when a routine trace starts with a sequence of rows having 

the column duplicated set to False; 

2. all the sequential rows having the column duplicated set to False that 

precede a row with the column duplicated set to True (and for which 

condition 1 does not hold), are added to a new group; 

3. all the sequential rows having the column duplicated set to True are added 

to a new group. 

In a nutshell, a new group of events will be created for any different sequence 

of events in a routine trace having the column duplicated set to True or False. 

When the above 3 steps have been applied for any routine trace in the UI log, 

the i-th groups of each trace will be merged in a larger i-th group associated to 

the UI log. To better understand the rationale of the grouping procedure, let’s 

analyze the routine-based log depicted in Figure 6: 

• the sequence of rows [0,4] has the column duplicated equals to True, since 

the user actions associated to that rows are present in all the 3 recorded 

routine traces, and the values contained in the aforementioned columns are 

the same across all the routine traces. They violate grouping conditions 

1 and 2 but satisfy condition 3. Then, they are added to a group, namely 

A (cf. Figure 7); 

• row 5 has the column duplicated equals to False and it follows grouping 

condition 2, thus it is added to a new group, namely B (cf. Figure 7); 

• the sequence of rows [6,8] has the column duplicated equals to True for 

the same reason of the first item. It violates grouping conditions 1 and 2 

but satisfies condition 3, thus it is added to a new group, namely C (cf. 

Figure 7). 

The same reasoning can be performed for the other routine traces of the routine- 

based log. Indeed: 

• the sequences of rows [9,13] and [19,23] are added to group A; 



26  

 
 
 
 

• the sequences of rows [14,15] and [24,25] are added to group B; 

 
• the sequences of rows [16,18] and [26,28] are added to group C. 

 

 
Figure 7: Grouping rows of the low-level routine-based log 

 

 
 

Iterating groups (lines 7-25). Once all groups have been identified, they are 

analyzed one by one in a cycle. For each identified group, namely groupDF (line 

7), if the corresponding column duplicated is True for all the rows contained in 
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it (line 8), it means that all the routine traces in that group contain the same 

user actions. In this case, since that group does not identify a variation point, 

the rows of the routine trace appearing first in the group (line 9) are directly 

added to resultDF (line 10). Note that choosing the rows of another trace 

rather than the first one recorded in the group would lead to the same effect. 

Conversely, if the column duplicated is False, it means that we have detected a 

variation point to be considered. 

When a variation point is detected by the algorithm, it is important to 

ensure that it is consistent with respect to the routine path that was executed 

until that point. Indeed, during each iteration, the rows associated with the 

previous decided user actions (decided user action are those actions selected 

when a variation point is identified) are saved in previousDecidedDF (line 22). 

A custom routine-based log called decisionDF is created to store the rows of 

the current decision about which user actions enact in presence of a variation 

point. In the first cycle iteration, no decision has been made, so decisionDF is 

generated only from the rows of the group that is currently processed (line 17). 

In the subsequent iterations, the current group along with the previous decision 

are taken into account to find the next possible variation point. The case IDs 

of the routine traces that have rows in common with the previous decision are 

selected (line 13). Then, the rows of the routine traces having those case IDs 

are picked from the current group groupDF and stored in filteredDF (line 14). 

This step ensures that the next possible variation point is in the routine path 

that starts from the previous detected variation point. 

Finally, decisionDF is generated from the rows in filteredDF (line 15). In 

this step, redundant rows are filtered out. Two or more rows of different routine 

traces are considered as redundant if the associated user actions store the same 

values for the columns mentioned in the step “Marking ”. At this point, the user 

can choose which user actions to enact in the range of any identified variation 

point by means of a custom dialog (e.g., see Figure 8) that is launched just 

before the script generation step of the approach. 

The custom dialog displays data from decisionDF (line 19), which is used 
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Figure 8: Custom dialog window to enact the user actions of 3 routine traces of Rexample in 

presence of a variation point 

 
 

to bound together all the rows of a routine trace into a single line when a 

variation point is detected. To better understand this, consider the group of rows 

with column duplicated equals to False in Figure 7 containing 5 rows belonging 

to 3 different routine traces. The user has to decide which user actions of which 

routine trace enact, so these 5 rows are grouped together by their ID, and the 

names of the user actions related to each routine trace are flattened into a 

single line. Indeed, the dialog in Figure 8 shows a variation point that contains 

3 different user inputs that led to 3 different execution variants of Rexample: 

each line represents a routine trace because it has a unique case ID, and all the 

user actions names of each routine trace are flattened into the same line. 

Once the user decides which user actions to execute (line 20), the cor- 

responding rows are appended to the output routine-based log resultDF (line 

21). It contains all the rows related to user decisions as well as rows with column 

duplicated equals to True (common to every routine trace). Note that resultDF 

will be the input of the Script Generation step of the SmartRPA approach. 

 

8. Architecture and Development of SmartRPA 

 
Starting from the approach outlined in Figure 5, the architecture of 

SmartRPA integrates five main SW components developed in Python that en- 

able the reactive synthesis of SW robots according to the to intermediate user 

inputs recorded in the UI logs, thus emulating the most suitable routine variant 
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Figure 9: SmartRPA architecture 

 

 
for any recorded combination of user inputs. An overview of the SmartRPA 

architecture is shown in Figure 9. The tool can be downloaded and tested at: 

https://github.com/bpm-diag/smartRPA 

The first SW component of the architecture is an Action Logger that 

concretely implement the Log Recording step. The Action Logger provides a 

Graphical User Interface (GUI) that allows a user to select which SW applica- 

tions s/he wants to record user actions on. All the applications that are not 

available in the host operating system of the user’s computer are disabled by 

default. Then, the user can start the training session by clicking on the “Start 

logger” button, as shown in Figure 10. The Action Logger provides three cate- 

gories of logging modules: 

 

• System Logger : It detects those user actions not related to specific SW 

applications, i.e.: creation, renaming, movement and deletion of files/fold- 

https://github.com/bpm-diag/smartRPA
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(a) Windows (b) MacOS 

 

Figure 10: GUI of SmartRPA both on Windows and MacOS 

 

 
ers; copy/paste of files/folders; opening/closing of applications; usage of 

double-click and hotkeys; insertion/remotion of USB drives. 

• Office Logger : It detects the user actions performed within Microsoft Of- 

fice applications, i.e.: Excel, Word and PowerPoint. 

• Browser Logger : It detects the user actions performed on web browsers, 

i.e.: Google Chrome, Mozilla Firefox, Microsoft Edge and Opera. 

 
Of course, multiple users can run the Action Logger on their computer 

system many times performing the same routine in different training sessions. 

When a training session is completed, i.e., when the routine of interest has been 

executed from the start to the end, the user can push the “Stop logger” button to 

stop the recording of user actions. The logging modules interact with a Logging 

Server implemented with the Flask framework,5 which is in charge to store the 

user actions captured by the logging modules and organize them as events into 

 
5https://palletsprojects.com/p/flask 

https://palletsprojects.com/p/flask
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several CSV6 routine-based logs. Each CSV routine-based log contains exactly 

one (long) trace of user actions performed in a single training session by a single 

user. From a technical point of view, (i) system events are recorded using differ- 

ent Python modules, including PythonCOM (to access the Windows APIs and 

COM objects like the Microsoft Office suite), and MacFSEvents for MacOS; 

(ii) events generated by Microsoft Office applications are recorded using the 

Office JavaScript APIs; and (iii) browser events are recorded using dedicated 

JavaScript web extensions developed for each supported web browser. 

In Figure 11, we show a snapshot of a CSV routine-based log recorded in one 

training session involving the execution of the routine presented in the running 

example. 

 

 
Figure 11: Snapshot of the routine-based log captured during an execution of Rexample 

 
 

The second SW component of the architecture implements the Log Pro- 

cessing step. Specifically, after n training sessions, the Logging Server will 

deliver the n created CSV routine-based logs to the Log Processing component, 

which uses Algorithm 2 to import them into a single Pandas dataframe.7 A 

dataframe is a two-dimensional size-mutable and heterogeneous tabular  data 

 
6CSV files are file formats that contain plain text values separated by commas.  CSV files 

can be opened by any spreadsheet program, such as Microsoft Excel, Google Sheets, etc. CSV 

is only capable of storing a single sheet in a file, without any formatting and formulas. 
7https://pandas.pydata.org/ 

https://pandas.pydata.org/
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Algorithm 2 Processing CSV routine-based logs 

procedure processLogs(fileList ) 

createDirectories() ▷  where files will be saved 

dfs ← list() ▷  list of dataframes 

for any CSV log in fileList do 

df ← import CSV log into a DataFrame 

df ← rename columns to match XES standard 

df ← sort rows by timestamp 

df ← create case:concept:name column based on the first timestamp 

dfs.append(df ) 

end for 

combinedDF ← combine all dataframes in dfs into a single one 

logXES ← export(combinedDF) ▷  exported as XES file 

return (combinedDF, logXES ) 

end procedure 

 
structure with labeled axes (rows and columns), which is used as the main ar- 

tifact to represent routine-based logs in SmartRPA. Of course, SmartRPA also 

produces an XES8 (eXtensible Event Stream) version of the datastream that 

will contain exactly n traces, one for each recorded CSV routine-based log and 

can be inspected using the most popular process mining tools, such as ProM,9 

Disco10 or Apromore.11 The dataframe created by Algorithm 2 consists of low- 

level events with fine granularity associated one-by-one to a recorded user action 

(e.g., mouse clicks, file selections, etc.). Each row of the dataframe includes 45 

columns with relevant data about the recorded event, i.e., its payload, such as: 

the timestamp, the application that generated the event, the resources involved, 

etc., cf. Figure 11. 

 
8XES is the standard for the storage, interchange, and analysis of event logs [37] 
9http://www.promtools.org/ 
10https://fluxicon.com/disco/ 
11https://apromore.org/ 

http://www.promtools.org/
https://fluxicon.com/disco/
https://apromore.org/
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At this point, an Event Abstraction component is used to produce a high- 

level routine-based log from the low-level one, by performing the following steps: 

1. Filtering noise/irrelevant events. The Action Logger records many low- 

level events in the dataframe-based routine-based log, such as the in- 

teraction with the browser windows (e.g., user actions “resize”, “open”, 

“close”), tabs (e.g., user actions “move”, “open”, “close”) and content 

(page zoom, installing extensions). From a workflow perspective, these 

events are not relevant for any RPA analyst that aims to understand the 

general behaviour of the routine. For this reason, they are filtered out by 

the high-level routine-based log under construction. 

2. Grouping similar events. Within a dataframe-based routine-based log, 

different low-level events can refer to the same high-level concept. For 

example, in a web page, the Action Logger can capture 7 different types 

of clicks, based on the element that’s being clicked (“clickButton”, “click- 

TextField”, “doubleClick”, “clickTextField”, “mouseClick”, “clickCheck- 

boxButton”, “clickRadioButton”). All these events just indicate that the 

user, during the training session, has clicked on an interactive element 

on the UI, thus the high-level workflow of the routine may just show the 

action “Click on button”, because from the RPA analyst perspective it is 

not relevant what kind of click was performed. 

3. Creating descriptive labels. Any recorded event provides a low-level de- 

scription of the nature of the user action performed. For example, if the 

user edits a cell in Excel, the Action Logger records one of these events: 

“editCellSheet”, “editCell”, or “editRange”. From the RPA analyst per- 

spective, all such events refer to the same concept of “Editing a cell”. To 

this aim, to make the user action underlying an event more descriptive for 

the RPA analyst, further information (stored in the low-level dataframe- 

based routine-based log) can be added to its label, such as the cell and 

the sheet edited, the value inserted, etc. This allows us to create a (more) 
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descriptive label for any event in the high-level routine-based log, e.g., 

“Edit cell B3 on Sheet 1 with value ‘x’ ”. 

 

Algorithm 3 Event Abstraction 
 

procedure getHighLevelEvents(df: DataFrame) 

df ← filter irrelevant rows from df 

df ← group similar events in df 

for row in df do 

descriptiveRow ← create descriptive string for each event 

end for 

return a high-level dataframe-based routine-based log 

end procedure 

 
Concretely, the Event Abstraction component is realized enacting the above 

steps through Algorithm 3, and the outcome will be an high-level routine-based 

log to be used by the next component of the architecture. 

At this point, the Process Discovery component of the architecture comes 

into play. Starting from the high-level routine-based log generated by the Event 

Abstraction component, it applies the heuristic miner algorithm (the decision 

to employ the heuristic miner has been driven by its ability to discover highly 

understandable flowcharts from a BPM analyst perspective [38]) implemented 

in PM4PY [39] to derive the high-level workflow describing the overall users’ 

observed behavior as a Directly-Follows Graph (DFG). We show in Figure 12 a 

portion of the high-level workflow discovered from the high-level routine-based 

log associated to our running example. 

Then, it applies Algorithm 1 (described in detail in Section 7) to automat- 

ically detect the different routine variants among all the routine traces stored 

in the low-level dataframe-based routine-based log, by evaluating the potential 

intermediate user inputs required to emulate the most suitable version of the 

routine on the UI. 

Finally, there is the Script Generation component. Once the routine 
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Figure 12: DFG describing a portion of the high-level workflow of Rexample 

 

 
variant to automatize is selected, before its enactment with a SW robot, it is 

possible for an RPA analyst to personalize the values stored in its events through 

a custom dialog window (cf. Figure 13). 

The tool automatically detects the events that can be edited, such as typing 

something in a web page, renaming a file, pasting a text or editing an Excel 

cell, and dynamically builds the GUI to let the RPA analyst editing them.  

After confirmation, the low-level dataframe-based routine-based log is updated. 

Finally, the Python executable script based on the selected RPA routine and 

[Chrome] Open tab 

1 

1 

1 

[Clipboard] Copy and Paste -> 'Lucia Costa' 

[Chrome] Navigate to bpm-diag.github.io 

[Chrome] Write in text input 'full_name' on bpm-diag.github.io -> 'Anna Greco' 

1 

[Chrome] Submit button on bpm-diag.github.io 

[Chrome] Click radio 'radio-car-request' 

with value 'car_reject' on bpm-diag.github.io 

[Chrome] Click radio 'radio-car-request' with 

value 'car_accept' on bpm-diag.github.io 

1 

[Chrome] Click radio 'radio-car' with value 'car_yes' on bpm-diag.github.io 

1 

1 

 
1 

[Chrome] Copy and Paste -> 'Anna Greco' 

[Chrome] Click text input 'full_name' on bpm-diag.github.io 

1 

[Chrome] Copy and Paste -> 'Lucia Costa' 

1 

1 

1 

[Clipboard] Copy and Paste -> 'Anna Greco' 

1 

(1) 



36  

 
 
 

 

 
 

Figure 13: Custom dialog window to personalize editable fields of Rexample 

 

 
updated with the RPA analyst’s edits, is generated by scanning the recorded 

low-level events in the dataframe-based log and converting them into executable 

pieces of SW code in Python, through Algorithm 4. To properly work the script 

generation algorithm relies on Automagica,12 an Open Source framework for 

process automation, and Selenium,13 a popular suite of tools for automating 

web browsers. 

SmartRPA is also able to generate executable RPA scripts compatible with 

UiPath, a tool that allows to design automation processes in a visual man- 

ner. Once the routine variant to automate along with the RPA analyst’s edits 

has been generated, the UiPath script is accordingly created. UiPath files are 

 
12https://github.com/automagica/automagica 
13https://www.selenium.dev/ 

https://github.com/automagica/automagica
https://www.selenium.dev/
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Algorithm 4 Python Script Generation 

1: procedure generatePythonSWRobot(df: DataFrame) 

2: for row in df do 

3: pythonEvent ← generatePythonEvent(row ) 

4: write pythonEvent to Python file 

5: end for 

6: end procedure 

 
written in XAML (Extensible Application Markup Language), a declarative 

language based on XML. A sample XAML file is shown in Figure 14. It is 

composed by a Main Sequence containing in turn multiple sequences, based on 

the category of the user actions. For example, all the user actions related to the 

browser should be wrapped by a Browser Activities sequence, because they all 

share the same browser. Likewise, all the user actions from Excel should go into 

the Excel Activities sequence, because they all refer to an Excel spreadsheet. 

The same thing applies for System and Microsoft Office user actions. Every 

sequence contains a series of activities. An activity is a block of XML code 

 

 
Figure 14:  UiPath sequence 
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with a list of parameters. In order to generate the SW robot, XML activities 

are generated from each event in the low-level dataframe-based routine-based 

log using lxml14 Python library. Activities are created with Python methods 

which take parameters as input and return XML nodes, as shown in Algorithm 

5.  The algorithm describes the process to generate a UiPath SW robot from   

a given low-level dataframe-based routine-based log. The main XML sequence 

Algorithm 5 UiPath Script Generation 
 

1: procedure generateUiPathSWRobot(df: DataFrame) 

2: mainSequence ← create main XML sequence 

3:         activities ← dict() ▷  dictionary to store XML activities 

4:        lastIndex ← False ▷  True in the last loop iteration 

5:      categoryChange ← False     ▷  True when there is a change in category 6: 

for row in df do 

7: XMLNode ← generateXMLNode(row ) 

8: activities[currentCategory ].append(XMLNode) 

9: if categoryChange or lastIndex then 

10: mainSequence.append(createSequence(activities[‘Browser’] )) 

11: mainSequence.append(createSequence(activities[‘MicrosoftOffice’] )) 

12: mainSequence.append(createSequence(activities[‘OperatingSystem’] )) 

13: activities.clear() ▷  empty dictionary 

14: end if 

15: end for 

16:       write mainSequence to XAML file ▷  UiPath Project 

17: end procedure 

 

that will contain all other sequences is created, along with a dictionary to store 

activities based on their category (browser, office, system). For each event in 

the low-level dataframe-based routine-based log, a corresponding XML node is 

generated and appended to the dictionary based on its category. When there 

 
14https://lxml.de/ 

https://lxml.de/
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is a change in category and in the last loop iteration, user actions are wrapped 

in a sequence specific for that category and added to the main sequence. The 

activities dictionary is cleared before restarting the loop, to prevent duplicate 

activities in the main sequence. Finally, the generated XML sequence is written 

as a XAML file that can be opened and run in UiPath. 

A screencast with installation instructions and showing the working of 

SmartRPA is available in the github repository of the tool at: https://github. 

com/bpm-diag/smartRPA/. 

 

9. Evaluation 

 
In this section, we present the results of a multi-step evaluation performed on 

SmartRPA to investigate the extent to which our approach satisfies four relevant 

non-functional requirements, namely robustness, feasibility, effectiveness and 

usability. The target is to understand if SmartRPA can potentially complement 

the traditional model-based solutions provided by commercial RPA tools. 

 
9.1. Assessing the Robustness and Feasibility of the Algorithm for the Auto- 

mated Detection of Variation Points 

To investigate the robustness and feasibility of our approach to the reactive 

synthesis of SW robots from UI logs, we performed several synthetic experi- 

ments employing UI logs of increasing complexity. Specifically, we generated 

240 different UI logs (containing in total 150.000 different routine traces), in a 

way that each UI log was characterized through a unique configuration obtained 

by varying the following input settings: 

• log size: number of traces in the UI log (250/500/750/1000); 

 
• trace size: number of events in each routine trace (25/50/75/100); 

 
• events size: number of possible different events to be considered for the 

creation of a trace (40/80/120); 

https://github.com/bpm-diag/smartRPA/
https://github.com/bpm-diag/smartRPA/
https://github.com/bpm-diag/smartRPA/
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• variation points: number of different variation points included in the UI 

log (1/2/3/4/5). 

Note that the amount of possible decisions to be taken in a variation point was 

generated randomly, ranging from 2 to 10 possible outgoing decisions. Follow- 

ing our definition of variation points explained in Section 3.1, each UI log was 

generated creating log traces having a similar structure in terms of recorded 

events, except for the presence of the variation points. Repeated events and 

concurrency are allowed inside a UI log. However, since they have been ran- 

domly introduced in UI logs, we can not provide solid findings related to their 

impact on the identification of the variation points. The synthetic UI logs gen- 

erated for the test are available for testing and experiments repeatability at: 

https://doi.org/10.5281/zenodo.6518291. 

The target was to investigate if the amount and anatomy of variation points 

discovered by SmartRPA is the same that was synthetically introduced in the 

sample routine executions recorded in the UI logs (i.e., robustness), and to 

measure the performance of the entire approach to generate a SW robot by 

solely using the UI logs (i.e., feasibility ). 

Concerning the robustness of the approach, for all the 240 tested logs the ap- 

proach was able to always discover the correct variation points to be considered 

for the synthesis of SW robots. It is worth noticing that this result is justified 

by the fact that we employed a fixed (yet large) alphabet of user actions for  

the generation of the sample UI logs, in line with the assumption that a routine 

reflects highly predictable and repetitive work with low flexibility requirements 

(and, consequently, with a low and predictable number of variants) [21]. On 

the other hand, in case of more flexible procedures, our algorithm would detect 

a new variation point any time there are distinct user actions (cf. Section 7) 

recorded at the same point of different executions of the same routine. This 

would lead to a consistent growth of the amount of identified variation points, 

which is not wrong in principle, but that could not be suitable to concisely rep- 

resent the behaviour of a routine. Therefore, we can state that our algorithm 

https://doi.org/10.5281/zenodo.6518291
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Event size: 40 
  

Time 
 

Trace size 1 2 3 4 5 

25 0.453 0.452 0.53 0.409 0.423 

50 0.417 0.433 0.417 0.425 0.419 

75 0.439 0.511 0.424 0.43 0.431 

100 0.454 0.416 0.421 0.424 0.431 

Event size: 80 
  

Time 
  

Trace size 1 2 3 4 5 

25 0.422 0.428 0.43 0.413 0.412 

50 0.427 0.425 0.444 0.417 0.428 

75 0.42 0.428 0.553 0.422 0.437 

100 0.442 0.434 0.428 0.438 0.432 
 

Event size: 120 Time 

Trace size 1 2 3 4 5 

25 0.413 0.507 0.421 0.416 0.421 

50 0.421 0.412 0.417 0.42 0.421 

75 0.425 0.433 0.438 0.451 0.429 

100 0.437 0.433 0.428 0.532 0.523 

 

Table 2: Experimental results showing the feasibility of SmartRPA to the reactive generation 

of SW robots (only logs with 1000 traces are shown here). The time (in seconds) is the average 

per trace. 

 

 
 

for the detection of variation points is robust if the UI logs have the features 

outlined in the experiment settings. In absence of further experiments, we can 

not state anything about the robustness of the algorithm when our working 

assumptions are contradicted, i.e., when more flexible (i.e., non repetitive) pro- 

cedures are executed. Note that the literature proposes dedicated approaches 

to detect the decision points in case of less flexible processes to be analyzed, 

e.g., see [40], even if the granularity of the process activities is less fine than the 

one of the user actions involved in a routine execution. 

Concerning the feasibility, it was measured in terms of the computation time 

required to generate a SW robot starting from UI logs of growing complexity. 
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The results, which are summarized in Table 2, indicate that the total computa- 

tion time grows with the number of traces in the UI log,15 ranging from ∼ 100ms 

for UI logs with 250 traces up to ∼ 500ms for event logs with 1000 traces. This 

result was expected, since more traces in a UI log means more executions to 

analyze and interpret. On the other hand, if we consider a fixed log size, it 

seems that the performance of the approach scales very well in case of an in- 

creasing number of variation points to be discovered and log traces/alphabet of 

events of growing size. Sometimes, it has been also observed that SmartRPA 

gets faster by adding events in a trace, which suggests that the performance of 

the approach does not suffer the presence of a larger alphabet of events. 

 
9.2. Evaluating the Effectiveness of SmartRPA 

 

In order to address RQ3, we enacted a controlled experiment involving 

real users exploiting the use case of our running example to investigate the 

effectiveness of the SmartRPA approach when compared to UiPath, which is 

one of the major vendors in the RPA market according to [10], and realizes the 

“traditional” model-based approach for the generation of SW robots. 

To this end, we conducted a user study based on the running example pre- 

sented in Section 4, by asking to 20 different administration employees to fill the 

Google Form using the data from the Excel spreadsheet containing the informa- 

tion to apply for a travel request. All the user actions were enacted on distinct 

computer systems having different features and operating system. During the 

execution of their routine, the employees were coupled with a first group of 20 

(out of a sample of 40) Master students of the course of Process Management 

and Mining (PMM) held at Sapienza University of Rome (one student per em- 

ployee), which were requested to observe the execution steps of Rexample. We 

denote with p1 this first group of users.  In parallel, a second group of 20 users 

 
15For the sake of space, the table includes only the results related to UI logs containing 1000 

traces. The complete list of results can be analyzed at: https://doi.org/10.5281/zenodo. 

6518291 

https://doi.org/10.5281/zenodo.6518291
https://doi.org/10.5281/zenodo.6518291
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were remotely connected to the computer systems of the employees, with the 

target to record the user actions performed on the UI of such systems exploit- 

ing the Action Logger component of SmartRPA, thus generating at the end   

20 different UI logs. We denote with p2 this second group of users. It is worth 

noticing that all the PMM students involved in the user study can be considered 

as expert users in business process modeling and automation. 

At this point, we requested to any of the 20 expert users in p1 to employ 

UiPath to model a flowchart diagram associated to Rexample and generate the 

associated SW robot using the functionalities of the UiPath framework. On the 

other hand, we asked to any of the 20 expert users in p2 to exploit the UI logs 

storing the executions of Rexample as inputs to use SmartRPA for the generation 

of the associated SW robot. 

To assess the effectiveness of SmartRPA to synthesize SW robots from UI 

logs, we investigated the following experimental hypothesis H1: Employing the 

SmartRPA approach, thus neglecting the manual specification stage of the rou- 

tine behavior, is more effective than employing traditional approaches that re- 

quire to manually specify and implement the behaviour of SW robots by means 

of flowchart models. To this aim, we have first built the null hypothesis H0: 

Employing the SmartRPA approach does not provide any advantage in terms 

of effectiveness if compared with traditional modeling-driven RPA approaches. 

Then, to support or reject H0, a between-subject approach was used, i.e., each 

user in p1 (p2, respectively) was assigned to a different experimental condition, 

related to the exclusive use of UiPath (c1) or SmartRPA (c2) to perform the 

required steps for the generation of the SW robot for Rexample.  Any user in    

p1 (p2, respectively) was preliminarily instructed about the functionalities of 

UiPath (SmartRPA, respectively) through a short training session. Notice that 

we selected users that were completely unaware about the use of both UiPath 

and SmartRPA before the starting of the experiment. 

We evaluated the validity of H0 by asking any expert user that completed 

the user study the following three questions: 
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• Q1: The development life-cycle of a SW robot (from the definition of the 

routine behavior to the generation and execution of the associated SW 

robot) is a time-consuming task. Do you agree? 

• Q2: The extraction of the routine’s knowledge required for the develop- 

ment and execution of a SW robot is a complex task. Do you agree? 

• Q3: Once a SW robot has been generated, the monitoring of its execution 

and the inspection of its behaviour is a complex task. Do you agree? 

 
Questions are rated with a 7-point average numerical scale structured as 

follows: 1 (“Strongly Disagree”), 2 (“Disagree”), 3 (“Somewhat Disagree”), 

4 (“Neither Agree nor Disagree”), 5 (“Somewhat Agree”), 6 (“Agree”), 7 

(“Strongly Agree”). We kept the same difference (numerical 1) between subse- 

quent points of the scale, as suggested by [41]. The choice to employ a 7-point 

scale (rather than a 5-point scale) is supported by the findings of Sauro [42], 

which states that in case of a questionnaire consisting of few questions “hav- 

ing seven points tends to be a good balance between having enough points of 

discrimination without having to maintain too many response options”. 

To evaluate the answers associated to Q1, Q2 and Q3 we performed a com- 

parison of the rates obtained from the questionnaire, respectively in the cases of 

c1 and c2. Specifically, for each question, we employed a 2-Sample t-test with a 

95% confidence level to determine whether the means between the two distinct 

populations (i.e., independent groups p1 and p2) involved in c1 and c2 differ. 

Before running the 2-Sample t-test, we first exploited the Kolmogorov Smirnov 

Statistic (KS Test) to establish the normality of the distribution of the collected 

data [43], and then we checked that the variances and standard deviations in 

both groups were approximately equal [42]. 

Finally, we measured the level of statistical significance analyzing the result- 

ing p-value, choosing 0.05 as the threshold value. The results of the analysis 

are summarized in Figure 15.  It appears evident that the null hypothesis H0  

is statistically supported by the results obtained for Q3, while it is rejected for 
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Figure 15: Effectiveness of SmartRPA: p-values associated to each question. 

 

 
Q1 and Q2. Concerning Q3, there is a strong evidence that a traditional model- 

based approach based on designing routines by means of flowchart diagrams 

(like UiPath) is more effective to monitor the behaviour of the (running) SW 

robots associated to the routines and to inspect the related RPA scripts. On 

the other hand, to skip completely the modeling task by employing an approach 

based only on UI logs enables a faster generation of SW robots (cf. Q1) requir- 

ing solely the knowledge stored in the UI logs (cf. Q2). In summary, we can 

conclude that log-based approaches like SmartRPA increase the degree of au- 

tomation of the design-time steps required to generate SW robots, reducing the 

intervention of human experts in this phase. Therefore, H1 can be considered 

as validated for Q1 and Q2 but rejected for Q3, where model-based approaches 

appear to be more effective to monitor the working of the running SW robots. 

 
9.3. Quantifying the Usability of the UI of SmartRPA 

 

Last but not least, we investigated the degree of usability of the UI developed 

for SmartRPA. Specifically, we administered the SUS (Software Usability Scale) 

questionnaire (which is one of the most widely used methodology to measure 
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the users’ perception of the usability of a tool [44]) to the 20 expert users that 

were involved in the experimental condition c2, i.e., that used SmartRPA. The 

questionnaire consists of 10 statements evaluated with a 5-point numerical scale 

that ranges from 1 (“strongly disagree”) to 5 (“strongly agree”). At the end of 

the questionnaire, an overall score is assigned to the questionnaire. The score 

can be compared with several benchmarks presented in the research literature 

to determine the degree of usability of the tool being evaluated. In our test, we 

made use of the benchmark presented in [42], which associates to each range of 

the SUS score a percentile ranking varying from 0 to 100, indicating how well 

it compares to other 5,000 SUS observations performed in the literature. 

The collection of the ranks associated to any statement of the SUS is reported 

in Figure 16, calculated following the steps discussed in [42]. Since the average 

SUS score obtained by the tool was 79.3, according to the selected benchmark 

[42], the usability of the tool corresponds to a rank of A-, which indicates a 

degree of usability among very good and excellent. 

 
Figure 16: Computation of the SUS overall score 

 

 

 
9.4. Threats to Validity 

 

A series of common issues may influence the results of our evaluation, such 

as the (random) selection of the sample of users who performed the experiments 

(even if from a well-defined population, which mitigates the issue), the selection 



47  

 
 
 

 

of the statistical tests to evaluate the collected data, etc. 

Notably, while the controlled experiments employed to measure the effective- 

ness of SmartRPA appears to have an high internal validity due to the control of 

the experimental conditions exercised throughout the experiment, on the other 

hand, this control can cause the experiment to have a questionable external 

validity. This is due to the complexity to replicate the experimental conditions 

in real-world settings that have many extraneous variables at play, making the 

findings less generalizable. However, we observe that we do not claim that our 

results are representative of all RPA literature, or to be generalizable to other 

fields or contexts. 

Concerning the experiments’ findings, we claim that their validity is bound 

to the experiments settings. For example, in the case of the experiment to 

measure the effectiveness of SmartRPA, using a 2-Sample t-test with a 95% 

confidence level enables us to state that we are 95% confident that the null 

hypothesis H0 is partially rejected. However, performing a further experiment 

that includes more users and the application of a second confidence level (e.g., 

set to 99%) could support more substantial evidence of the results. 

 

10. Conclusion 

 
While RPA is currently used for automating routines and high-volume tasks 

requiring a manual intervention of expert users, the aim of SmartRPA is to 

automatically develop SW robots directly from the users’ observed behavior. 

SmartRPA offers an innovative contribution to RPA technology with the goal  

of mitigating some of its core downsides. 

In this paper, we leverage a design science research method [19] to build 

the SmartRPA approach, which is able to interpret the UI logs keeping track  

of many routine executions, and to automatically synthesize SW robots that 

emulate the most suitable routine variant for any specific intermediate user 

input that is required during the routine execution. 

Notably, using SmartRPA, all the routine executions recorded by the tool 
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can be automated, an high-level flowchart diagram is presented to expert users 

for potential diagnosis operations, and the executable RPA scripts to drive the 

working of a SW robot are generated by solely interpreting the routine execu- 

tions stored in the routine-based log, selecting step-by-step the most suitable 

routine variant. 

From a technical perspective, the script generation algorithm takes into ac- 

count only the platform where the SW robot is going to be run, regardless of the 

operating system used to capture the log. For example, if the selected routine 

variant was recorded on MacOS, but the tool is being executed on Windows, 

the RPA script will be generated taking into account this aspect, e.g., by con- 

verting the information about the system paths. This guarantees cross-platform 

compatibility across UI logs recorded on different platforms, as suggested by the 

guidelines principles of RPM. Last but not least, SmartRPA creates executable 

RPA scripts also for UiPath. These scripts can then be executed via the in- 

terface of UiPath. In addition, the tool allows us to personalize some input 

fields of the selected routine variant before executing the related RPA scripts 

(either on Windows/MacOS systems or within UiPath Studio), thus supporting 

those steps that require intermediate manual user inputs. As a consequence, 

this makes the working of SW robots flexible and adaptable to several real- 

world situations. To sum up, we consider SmartRPA as an important first step 

towards the intelligent fully automated generation of SW robots. 

The main weakness of the approach is correlated with the quality of infor- 

mation recorded in real-world UI logs. Since a UI log is fine-grained, routines 

executed with many different strategies may potentially affect the robustness of 

our approach to the detection of variation points. For this reason, as a future 

work, we are going to perform a robust evaluation of the algorithm on further 

real-world case studies including heterogeneous UI logs obtained from different 

application domains. 

Moreover, in SmartRPA we have currently neglected the segmentation issue 

[18, 45]. Segmentation is the challenge to automatically understand which user 

actions contribute to which routines inside a UI log, which is trivially already 
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solved in SmartRPA because UI logs are generated through controlled train- 

ing sessions. Nonetheless, as a future work, we aim at including a segmentation 

component in the SmartRPA architecture to enable the analysis of unsegmented 

UI logs obtained in more inclusive training sessions that are not focused just 

on single routines. While partial solutions to the segmentation issue have been 

recently explored in [46, 47], we also plan to investigate how to integrate exist- 

ing Artificial Intelligence based solutions in BPM that address similar research 

challenges, cf. [48, 49]. 

This paper extends previous work in [17] in several directions and includes 

many new elements that were previously neglected: 

• A revised introduction that makes immediately clear for the reader the 

research problem to be tackled, its significance in the RPA field, and the 

proposed contribution to solve the problem, driven by three main research 

questions (cf. Section 1). 

• A new section that describes the phases of our design-science based re- 

search methodology (cf. Section 2). 

• A new section that makes the background and the relevant preliminary 

concepts explicit (cf. Section 3); 

• A revised related work section where we discuss the relevant state-of-the- 

art approaches that are able to mitigate the research challenges, and we 

derive a set of technical requirements to realize our SmartRPA approach 

(cf. Section 5). 

• A new section (cf. Section 7) presenting an algorithm to the automated 

identification of the variation points of a routine, to enable the selection 

of the most suitable routine variants to be implemented with a SW robot 

(thus, not just the most frequent one, removing the most evident weakness 

of our previous work); 

• An improved description of the various architectural components of the 

tool (and in particular of the script generation algorithm) to provide the 
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reader with a complete understanding of the proposed approach, and a new 

contribution describing how the generated scripts can be automatically 

encoded in a format readable by the commercial RPA tool UiPath (cf. 

Section 8); 

• A robust evaluation section to investigate the extent to which the proposed 

approach satisfies four relevant non-functional requirements, namely ro- 

bustness, feasibility, effectiveness and usability, employing both synthetic 

and real-world datasets (cf. Section 9); 

• All other sections of the previous work have been edited and refined to 

present the material more thoroughly. 
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BPbots. 
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