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A B S T R A C T

By means of a modified Lugiato–Lefever equation model, we investigate the nonlinear dynamics of dissipative
wave structures in coherently-driven Kerr cavities with a parabolic potential. This potential stabilizes the
system dynamics, leading to the generation of robust dissipative solitons in the positive detuning regime, and
of higher-order solitons in the negative detuning regime. In order to understand the underlying mechanisms
which are responsible for these high-order states, we decompose the field on the basis of linear eigenmodes
of the system. This permits to investigate the resulting nonlinear mode coupling processes. By increasing the
external pumping, one observes the emergence of high-order breathers and chaoticons. Our modal content
analysis reveals that breathers are dominated by modes of corresponding orders, while chaoticons exhibit
proper chaotic dynamics. We characterize the evolution of dissipative structures by using bifurcation diagrams,
and confirm their stability by combining linear stability analysis results with numerical simulations. Finally,
we draw phase diagrams that summarize the complex dynamics landscape, obtained by varying the pump, the
detuning, and the strength of the potential.
1. Introduction

Over the past decade, the generation and manipulation of dissi-
pative temporal Kerr solitons (DKS) [1] has become an increasingly
important topic in photonics, particularly for their applications to
fiber lasers and coherent frequency comb generation [2–4]. Dissipative
solitons differ from their conservative counterparts, as they require
a balance between internal dissipation and external energy flow, in
addition to the counterbalance between dispersion and nonlinearity.
DKS dynamics and stability have been extensively analyzed within
the mean-field approximation, whereby passive Kerr resonators are
described by the Lugiato-Lefever equation (LLE), which is a type of
driven and damped nonlinear Schroedinger equation [5–7]. A variety
of DKS can be formed in cavities operated in both the anomalous or in
the normal dispersion regime [8–10]. As the pump intensity increases,
DKS undergo different types of instabilities, leading to complex spa-
tiotemporal dynamics, which can be either periodic (i.e., breathers) or
chaotic [11–15].

High-order effects, such as third-order dispersion, may considerably
reduce the extension of unstable parameter regions, in favor of static
DKS, and ultimately lead to the appearance of new types of localized
states, as well as to the coexistence of bright and dark DKS [16–18].
Furthermore, the Raman effect also plays a role in the dynamics of
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localized states [19]. Some modulation techniques may provide an
additional degree of freedom to control and even suppress instabilities.
Specifically, the spatiotemporal dynamics can be controlled by intro-
ducing inhomogeneity in pumping: an intensity or a phase modulation
of the driving field [20–28]. The implementation of intensity inhomo-
geneous pumping offers several advantages: it permits to enhance the
pump-to-soliton conversion efficiency [29], and to expand the stability
region of localized solutions [30,31]. Moreover, utilizing a pump with
an inhomogeneous phase profile leads to shifts in the soliton’s temporal
position [22,23,27,32] and offers additional deterministic pathways for
DKS generation [23].

Another approach for incorporating inhomogeneous parameters in
Kerr resonators is to introduce a direct modulation within the cav-
ity, such as a longitudinally periodic modulation of the resonator
dispersion [33]. Alternatively, one can directly modulate the intra-
cavity field by incorporating an intracavity phase modulator [34–38].
In this case, one obtains the so-called synthetic dimension [36,37].
Both inhomogeneous pumping and internal modulation could impose
a phase modulation on the cavity field, thus creating an effective
periodic potential that temporally confines optical pulses and enables
precise control over spatiotemporal cavity dynamics, including the
emergence of dissipative states. Together with the stabilization of
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chaotic states [39], the potential may also lead to the emergence of
chimera-like states [35,40,41]. Recently, we have discovered that these
unstable dynamical states could be stabilized by adding a temporal
parabolic potential in both 1D [41] and 3D settings [42].

In this work, we investigate the complex nonlinear dynamics arising
in coherently driven nonlinear Kerr cavities with synchronous phase
modulation which is described through a parabolic potential in time.
We find that the potential impacts on the dynamics of the system in
an unexpected manner, leading to multiple robust high-order DKS that
exist only for a particular parameter set. We investigate the origin
of these higher-order DKS in the linear and nonlinear regimes of the
system. We show that, the emergence of these high-order states, which
are of nonlinear nature, can be understood from a purely linear mode
analysis. In addition, in the strong pump regime, we show the existence
of different high-order breathers, which may be either symmetric or
asymmetric in time, and we find that their dynamics can be elucidated
from their linear mode components. Furthermore, we observe localized
spatiotemporal chaotic states, also known as chaoticons or chimera
states [43]. Finally, we summarize the observed complex dynamics by
means of phase diagrams, which highlight the different types of system
behavior.

This paper is organized as follows: In Section 2, we introduce the
mean-field model that we are going to use for describing our system.
Section 3 is dedicated to performing a phenomenological comparison
of stable solitons under different conditions: specifically, in the absence
or in the presence of a parabolic potential. In Section 4, the origin of
high-order DKS is analyzed by means of the linear eigenmodes of the
cavity. In Section 5, we perform a bifurcation analysis of such states,
by including nonlinearity. Section 6 introduces breather solutions of
different orders within a bifurcation diagram, and Section 7 demon-
strates the chaotic nature of the chaoticons via the computation of the
Lyapunov exponents of the modal energies. Later, in Sections 8 and 9,
we unveil the organization of the different dynamical states in the form
of phase diagrams. Finally, Section 10 presents the main conclusions of
our paper.

2. Model and normalization

In the mean-field approximation, the optical field envelope �̃�(𝜏, 𝑡) of
the electric field circulating within the ring resonator, in the presence
of synchronous phase modulation [see Fig. 1(a)] is governed by the
modified Lugiato–Lefever equation (LLE) [36,41]:
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2
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where 𝑡R is the round-trip time of pulses in the resonator, 𝜏 is a fast
time, which describes the temporal profile of the intracavity waveform,
in a reference frame moving with the group velocity of light, 𝑡 is a slow
time, a continuous version of the time measuring intervals between
successive round trips in the cavity, 𝛽2 is second-order or chromatic
dispersion, 𝐿 is the cavity length, 𝛾 is the nonlinear coefficient per
round-trip, 𝛼 is the loss per round-trip, 𝑃in input power of the homo-
geneous pumping, 𝜅 is the coupling coefficient from the pump into
the cavity, 𝜃 is s the mean-value of the phase detuning between the
driving field and a cavity resonance, and 𝑉 (𝜏) represents the action of
synchronous phase modulation.

The presence of a synchronous phase modulation has been generally
modeled by introducing a cosine-type potential of the form 𝑉 (𝜏) =
𝐽M cos(𝛺M𝜏), where 𝛺M and 𝐽M are the modulation frequency and the
depth of the phase modulator, respectively [35,36]. This potential can
be Taylor-expanded as 𝑉 (𝜏) = 𝐽M(1 − 1
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we focus on the limited regime 𝛺M𝜏 ≪ 1, where the potential is
approximately expressed as

𝑉 (𝜏) = 𝐽 (1 − 1𝛺2 𝜏2). (2)
2

M 2 M
Fig. 1. The physical model Eq. (4) could be applied to a passive coherently-driven
cavity in (a) and to a bottle resonator in (b).

In this regime, Eq. (1) can be rewritten, by using the normalized
scale transformations and dimensionless parameters

𝑡 = 𝑡𝛼∕2𝑡𝑅,

𝜏 = 𝜏
√

𝛼∕|𝛽2|𝐿,

𝐴 = �̃�
√

2𝛾𝐿∕𝛼,

𝑃 =
√

8𝜅𝑃in𝛾𝐿∕𝛼3,

𝛿 = 2(𝜃 − 𝐽M)∕𝛼,

𝐶 = 𝐽M𝛺
2
M|𝛽2|𝐿∕𝛼2,

(3)

as the dimensionless equation

𝜕𝐴
𝜕𝑡

= i 𝜕
2

𝜕𝜏2
𝐴 − i𝐶𝜏2𝐴 + i|𝐴|2𝐴 − (1 + i𝛿)𝐴 + 𝑃 , (4)

where three dimensionless variables govern the dynamics of the cavity:
the cavity detuning 𝛿, the pump 𝑃 , and the potential strength 𝐶.
It is important to emphasize that the shape of the potential can be
easily tailored by designing the voltage profile driving the electro-
optic modulator (EOM) [44], thus effectively eliminating the high-order
terms in phase modulation. However, the exploration of high-order
effects, such as third-order dispersion and cubic phase modulation,
remains a significant avenue for future work.

It is worth noting that Eq. (4) can also be utilized to describe
bottle microresonators [see Fig. 1(b)] [45–47], where the potential
term results from the bump shape of the bottle structure or the in-
homogeneous pump beam. In this case, one needs to replace the fast
time variable 𝜏 with the spatial variable 𝑥. In both cases, parabolic
potentials create Hermite-Gaussian modes in the temporal or spatial
domain [see Fig. 1]. Besides, parabolic potentials have been previously
considered in conservative systems for studying, e.g., vortex solitons
in Bose–Einstein condensates [48,49], and in dissipative systems for
studying mode-locked nanolasers [50,51], multimode fiber lasers [52],
and for stabilizing 3D solitons [42].

To compute the solutions of Eq. (4), we have performed direct
numerical simulations by means of a pseudo-spectral method, and
numerical path continuation through the software package AUTO-
07p [53].

To apply the last method, Eq. (4) has to be recast into a fifth-order
ordinary differential equation (ODE), as we describe in Appendix A.
After that, the linear stability analysis of the previous computed solu-
tions is obtained by solving the linear eigenvalue problem associated
with Eq. (4).

3. Influence of the potential on dissipative soliton dynamics

Let us start by considering the impact of the potential on the
cavity dynamics. This is done by comparing different solutions, with
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Fig. 2. In the left panels, we compare the field power profile |𝐴(𝜏)|2 in the absence of the potential (𝐶 = 0, red 𝛿-scan) in (a), or in the presence of the potential (𝐶 = 1, red
𝛿-scan) in (b) and (𝐶 = 1, blue 𝛿-scan) in (c), when varying the detuning 𝛿. In the center and right panels, we trace the field intensity |𝐴(𝜏)|2, with or without the potential, for
selected values of the cavity detuning 𝛿: green curves refer to 𝐶 = 0, red curves to 𝐶 = 1, red 𝛿-scan, and blue curves to 𝐶 = 1, blue 𝛿-scan; 𝛿 = 4 in (i,ii), 𝛿 = 0 in (iii), 𝛿 = −2 in
(iv), 𝛿 = −8 in (v), 𝛿 = −12 in (vi). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
or without the potential. The colormap in Fig. 2(a) shows the steady-
state field power of numerical solutions of Eq. (4) without the potential
term −i𝐶𝜏2𝐴 (setting 𝐶 = 0), when the cavity detuning 𝛿 gradually
increases for 𝑃 = 2.5. Here we call it a red 𝛿-scan, since it corresponds
to increasing the wavelength (red-shift) of the pump. This red 𝛿-scan
process is carried out in the following manner: we use a final steady-
state solution (a solution until convergence is obtained) 𝐴(𝜏, 𝑡 = 𝑡f inal)
with a detuning 𝛿𝑛 as the initial condition 𝐴(𝜏, 𝑡 = 0) with the new
detuning 𝛿𝑛+1, where 𝛿𝑛+1 > 𝛿𝑛. In this way, one may obtain all the
steady-state solutions (instead of transient solutions), with a significant
reduction of the convergence time in simulations. Fig. 2(a) shows that
the intra-cavity field starts from the homogeneous solution at 𝛿 = −15:
when the detuning increases, |𝐴(𝜏)|2 increases from 0.03 up to 1.17
at 𝛿 = −0.9 in the region I [see the marks on the top of Fig. 2(a)].
By further increasing 𝛿, Turing patterns emerge in region II between
−0.9 ≤ 𝛿 ≤ 0.2, then chaotic patterns appear in region III between
0.2 < 𝛿 < 3.2. Finally, the occurrence of stable time-localized dissipative
soliton solutions is observed in region IV, between 3.3 ≤ 𝛿 ≤ 7.7.

However, when the parabolic potential −i𝐶𝜏2𝐴 is included, different
dynamics are discovered. Fig. 2(b) shows a red 𝛿-scan, analogous to
the one depicted in Fig. 2(a), but now for 𝐶 = 1. As we can observe,
the presence of the potential leads to a clear difference in the intra-
cavity dynamics. To better compare these two scenarios, in Fig. 2(i–vi)
we plot the power distribution |𝐴(𝜏)|2 of the different states for the
same parameter set, with the potential (see red curves) and without
the potential (see green curves). For the stable soliton regime, the
profiles are very similar, except that the homogeneous background is
suppressed by the potential [see Fig. 2(i,ii)]. In addition, the parabolic
potential also stabilizes the unstable regimes of region II and III in
Fig. 2(a), leading to the formation of a stable soliton [see Fig. 2(iii),
for 𝛿 = 0]. We have reported this stabilization in a previous work [41].

More interestingly, the potential also extends the stable DKS exis-
tence into a large negative detuning region [see Fig. 2(b)]: without the
potential, only homogeneous steady-states exist [cfr. with Fig. 2(a)].
Figures Fig. 2(iv)-(vi) compare these two scenarios (plotted by the
green curves for 𝐶 = 0 and the red curves for 𝐶 = 1) for 𝛿 =
−2, −8, −12, respectively. The difference in DKS order manifests in the
number of side peaks that are present in each state: as we can see, the
number of peaks changes when increasing 𝛿 in Fig. 2(b). Note that,
3

when decreasing 𝛿, the power of the DKS side peaks varies significantly
with their order.

We have also implemented a 𝛿-blue scan by progressively reducing
the detuning 𝛿 from a large detuning value 𝛿 = 10. The result is
illustrated in Fig. 2(c). The individual examples with corresponding
𝛿 are plotted as blue curves in Fig. 2(i-vi), respectively. For 𝛿 > 2.6,
a small amplitude localized state, which does not exist in the 𝛿-red
scan, appears [see, e.g., the one depicted in blue in Fig. 2(ii)]. This
state corresponds to a modification of the homogeneous background
state. For 𝛿 < 2.6, the DKS appearance follows the same sequence as
in Fig. Fig. 2(b) [see the states plotted by the red and blue curves in
Fig. 2(iii) for 𝛿 = 0]. When decreasing 𝛿 even further, DKS of different
order coexist for the same range of 𝛿 values (e.g., for −2.1 < 𝛿 <
−1.8), as we can appreciate from the discrepancy between Fig. 2(b) and
Fig. 2(c) [see in more detail Fig. 2(iv) for 𝛿 = −2]. All of these states
are quite robust attractors of the system.

At this stage, we may ask ourselves a few questions, such as: how are
these different DKS organized from a bifurcation perspective, and how
does their nature change with the control parameters of the system?
Our main aim in the rest of this paper is to answer, step by step, these
two questions.

4. Modal analysis in the absence of Kerr nonlinearity

In this section, we will analyze the linear eigenmodes of the cavity
field, which give rise to the high-order resonant states, enabling us to
uncover some of the essential features of the system. Subsequently, we
will derive the coupled mode equations of the model from Eq. (4) to
demonstrate the different pumping rates for each mode. Finally, we will
examine the linear resonance of the cavity by ignoring the Kerr effect.

Let us first ignore, besides nonlinearity, also the effects of pumping,
dissipation, and cavity detuning. This leads to the linear eigenvalue
equation

�̂�0𝜓𝑛(𝜏) = i𝛿𝑛𝜓𝑛(𝜏), (5)

where �̂�0 = i𝜕2𝜏 − i𝐶𝜏2 is a linear operator, accounting for the presence
of second-order or chromatic dispersion and the parabolic potential:
𝜓 and 𝛿 are the corresponding eigenmodes and eigenvalues. The
𝑛 𝑛
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Fig. 3. (a) Hermite–Gauss eigenmodes 𝜓𝑛(𝜏) (solid curves) located in correspondence
of their eigenvalues 𝛿𝑛, and the parabolic potential −𝐶𝜏2 (dashed black curves) of the
system, when 𝐶 = 1. (b) Linear stable solutions |𝐴(𝜏)|2 in the absence of the Kerr
effect, vs. detuning 𝛿. (c) Even mode excitation efficiency 𝑀nor,2𝑛 (plotted by circles)
and total energy of solutions, as in panel (b), vs. detuning 𝛿. (d) Modal energies |𝐶𝑛|

2

vs. detuning 𝛿, by decomposing the solutions in (b) on the eigenmodes in (a).

latter determine the resonance frequences which are equally spaced and
given by

𝛿𝑛 = −2
√

𝐶(𝑛 + 1∕2). (6)

The former are Hermite–Gaussian (HG) functions, given by

𝜓𝑛(𝜏) = (2𝑛𝑛!)−
1
2 𝜋−

1
4 exp

(

− 𝜏2

2𝑎2𝜏

)

𝐻𝑛

(

𝜏
𝑎𝜏

)

(7)

where the scaling factor is

𝑎𝜏 = 𝐶−1∕4, (8)

and 𝐻𝑛 is the Hermite polynomial. The relation between eigenfunctions
𝜓𝑛(𝜏), eigenvalues 𝛿𝑛 and the parabolic potential −𝑖𝐶𝜏2 is illustrated in
Fig. 3(a).

Eigenmodes 𝜓𝑛(𝜏) satisfy the orthonormality condition

∫ 𝜓𝑛(𝜏)𝜓𝑚(𝜏)d𝜏 = 𝛿𝑛𝑚,

and since they form a complete orthogonal basis, any time evolution
solution 𝐴(𝜏, 𝑡) of Eq. (4) can be expanded on the HG mode basis,

𝐴(𝜏, 𝑡) =
𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡𝜓𝑛(𝜏), (9)

where the mode complex amplitude reads

𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡 = ∫

∞

−∞
𝐴(𝜏, 𝑡)𝜓𝑛(𝜏)d𝜏, (10)

and the mode energy corresponds to |𝐶𝑛|
2.

To continue further with our modal analysis, let us focus on how
the pump influences the evolution of each mode separately. To do so,
we first substitute Eq. (9) into Eq. (4) and project on the mode 𝜓 . This
4

𝑛

leads [see Appendix B] to a set of ODEs
d𝐶𝑛(𝑡)
d𝑡

=𝑒−𝑖𝛿𝑛𝑡 ∫

∞

−∞
𝑃𝜓𝑛(𝜏)d𝜏

+𝑒−𝑖𝛿𝑛𝑡 ∫

∞

−∞
i|𝐴|2𝐴𝜓𝑛(𝜏)d𝜏

−𝑒−𝑖𝛿𝑛𝑡(1 + i𝛿)𝐶𝑛.

(11)

Note that these ODEs govern the mode dynamics, which is equivalent
to the field dynamics in Eq. (4). Now each ODE governs the dynamics
of one mode, while the interaction of modes results from the nonlinear
coupling term [the second term in Eq. (11)].

The first term in Eq. (11) corresponds to the pumping rate into each
mode. Ignoring the factor leading to a phase change, the pumping rate

𝑀𝑛(𝜏) = ∫

∞

−∞
𝑃𝜓𝑛(𝜏)d𝜏, (12)

depends on the mode amplitude distribution [see Fig. 3(a)]. From this,
we can define the mode excitation efficiency via the normalized pumping
rate 𝑀nor,𝑛 =𝑀𝑛∕𝑀1.

It should be noted that the pumping rate for each eigenmode differs,
as demonstrated in Eq. (12). For the 𝜏-asymmetric odd modes (𝑛 =
1, 3, 5, …), combined with coherent pumping, one obtains a pumping
rate of 𝑀nor,2𝑛+1 = 0 for the odd modes, since opposite amplitude
components with respect to 𝜏 = 0 cancel their contributions to the
mode excitation efficiency. In other words, the homogeneous coherent
pumping actively suppresses the asymmetric eigenmodes, leading to
the predominance of symmetric properties in most of the system’s
solutions. For even-symmetric modes (𝑛 = 0, 2, 4, …), in contrast, the
pumping rates 𝑀nor,2𝑛 are non-vanishing, and they decrease with the
eigenvalue 𝛿2𝑛 (i.e., increasing 𝑛), as depicted by the circles in Fig. 3(c).

The differences in the mode excitation ratios can be confirmed by
performing numerical simulations of Eq. (4), without the nonlinear Kerr
term i|𝐴|2𝐴. To do so, we compute the steady-state solutions of the
system as a function of 𝛿 for 𝑃 = 2.5. The field power distribution
|𝐴(𝜏)|2 resulting from these computations is depicted in Fig. 3(b).
The shape of this distribution is associated with the mode shapes of
Fig. 3(a). As a result, the field power distribution expands its temporal
range as 𝛿 decreases, and it is symmetric with respect to 𝜏 = 0. The
similarity between Fig. 3(a) and Fig. 3(b) indicates that the resonant
contribution predominantly comes from even modes, while odd modes
are suppressed.

This is more obvious when we plot the corresponding total field
energy 𝐸(𝛿) = ∬ |𝐴(𝜏, 𝛿)|2d𝜏 [see the black curve in Fig. 3(c)]. Here,
the resonance peaks only appear at 𝛿 values corresponding to the
even mode eigenvalues. When compared with the excitation efficiency
𝑀nor,2𝑛, these peaks exhibit a very similar tendency. Furthermore, we
can decompose all of the linear states on the HG mode basis by using
Eq. (10). The results are depicted in Fig. 3(d), where the mode energies
|𝐶𝑛|

2 are traced vs. detuning 𝛿. From here, we can conclude that the
linear cavity resonances are related to the presence of even HG modes
only, since all odd modes are left unexcited by the pump.

5. Bifurcation structure of high-order dissipative Kerr solitons

At this point, we are ready to introduce the Kerr nonlinearity
i|𝐴|2𝐴, which permits us to analyze the emergence of DKS, and non-
linear modifications of cavity resonances. The Kerr effect introduces
an intensity-dependent phase shift, equivalent to altering the detuning
as 𝛿′ = 𝛿 − |𝐴|2 [see Eq. (4)]. This is particularly pronounced in
resonance peaks due to their relative higher intensities, necessitating
a larger detuning 𝛿 to effectively mitigate the phase modifications.
This adjustment results in a noticeable shift in the resonance peak
positions, manifesting as 𝛿 = |𝐴|2+𝛿′, ultimately leading to their tilting
in the positive detuning direction or the emergence of bistabilities.
An example of this nonlinear resonance is illustrated in Fig. 4(a) for

𝑃 = 2.5. To compute this bifurcation diagram, we need to follow a
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Fig. 4. Bifurcation diagram vs. 𝛿, showing the total energy of stable (unstable) solutions
y solid black (pink dot) curves in (a), and their mode energies |𝐶𝑛|

2 in (b) for the
arameters (𝑃 , 𝐶) = (2.5, 1). For comparison, linear solutions in the absence of the Kerr
ffect are also plotted by the dashed gray curve in (a). The regime of bistable solutions,
reated by fold bifurcations (F), are marked by the transparent colored regions. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

ath-parameter continuation approach, which allows us to numerically
ompute the nonlinear steady-state solutions, such as DKS, of the cavity
ield. Indeed, each point on the diagram of Fig. 4(a) corresponds to a
ifferent DKS state. The linear stability of these states is shown by using
olid (dashed) lines for stable (unstable) states.

For a better comparison, in Fig. 4(a) we also plot the linear reso-
ances by using a dashed gray curve. The resonance peaks associated
ith the DKS not only shift, but also tilt towards positive values of
. Such tilts may lead to the appearance of bistable regions, where
wo stable states coexist [see the transparent red and blue regions in
ig. 4(a)]. The DKS modify along this bifurcation diagram, as depicted
n Fig. 4(i)-(iii). The examples of the small and high-amplitude local-
zed states (i).1 and (ii).2 in the red region are plotted in Fig. 4(i),
espectively. The main bistable region extends between the fold (F)
ifurcations F1,1 and F1,2, which are connected through an unstable DKS
ranch [see the dashed pink line in Fig. 4(a)]. When decreasing 𝛿, the
igh-amplitude DKS become unstable at F2,2 and start to nucleate two
ide peaks. Following up the resonance, the side peaks grow larger in
mplitude, until eventually the DKS stabilizes at F2,1. Two examples of
KS in the narrow blue region, are plotted in Fig. 4(ii) for 𝛿 = −2.
he 𝛿 interval between these points corresponds to a second bistable
KS region. By decreasing 𝛿 even further, the DKS morphology becomes
ore complex, since new subsidiary peaks appear. An example of such

tates is shown in Fig. 4(iii).
At this point, we may make use of what we learned in Section 4,

nd analyze the DKS by projecting them on the HG modes, all along
he nonlinear resonances of Fig. 4(a). By doing that, we compute
he modification of the mode energy |𝐶𝑛|

2 as a function of 𝛿, for
different mode orders (𝑛) [see Fig. 4(b)]. This leads to observing that
5

all DKS have multimode components, although, for every resonance
Fig. 5. Bifurcation diagram vs. 𝛿, showing the total energy of stable (unstable) solitons
by solid black (pink dot) curves in (a), and the mode energy |𝐶1|

2 in (c) for the
parameters (𝑃 , 𝐶) = (3.5, 1). A zoomed region between −4 ≤ 𝛿 ≤ 5.1 in (a) is shown in
(b). Fold and Hopf bifurcation points are marked at corresponding positions by F and
H. The individual breather solutions at different 𝛿 are marked by the points (i–vii),
and are plotted in Fig. 6. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

peak, there is always a single mode that dominates. Moreover, for two
stable solutions between any two consecutive fold bifurcations, there
is a sharp change of modal energy with respect to the corresponding
resonance modes. For example, the two solutions (ii).1 and (ii).2 in
Fig. 4(a,ii), located on the second resonance peak, where the mode
𝑛 = 2 is dominant, exhibit different modal contents. The same holds
for the first resonance peak.

As we will see in Sections 6 and 8, by increasing the pump ampli-
tude 𝑃 , one increases the overall field power, until new bistable regions
appear, leading to more complex spatiotemporal dynamics.

6. Breathers of different orders

In the standard LLE model [i.e., Eq. (4) with 𝐶 = 0], by increasing
𝑃 , different dynamical instabilities arise, which lead to the formation
of time-evolving breathers and chaos [54,55]. In this section, we will
explore how the potential modifies such dynamics, as well as the
appearance of high-order breathers.

Fig. 5(a) shows the DKS bifurcation diagram for 𝑃 = 3.5. Although it
is similar to that shown in Fig. 5(a), now the resonance peaks tilt even
for lower values of 𝛿, leading to the formation of fold bifurcations F3,
F4 at the third and fourth resonance peaks. For the first two resonance
peaks, the linear stability analysis shows that DKS states undergo
several Hopf bifurcations (H1,1, H1,2, H2) leading to the emergence of
breathing dynamics.

Let us take a closer look at this dynamical regime [see the close-up
view of the region −4 ≤ 𝛿 ≤ 5 shown in Fig. 5(b)]. When decreasing
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Fig. 6. Different breathers, corresponding the bifurcation diagram in Fig. 5, are plotted here for (i,ii) 𝛿 = 2.4, (iii) 𝛿 = −2, (iv) 𝛿 = −1, (v) 𝛿 = −0.5, (vi) 𝛿 = 0, (vii) 𝛿 = 0.5, when
𝑃 = 3.5, 𝐶 = 1. Sub-figures on the top, middle, and bottom panels, marked by (1), (2) and (3), respectively, correspond to the time evolution of power |𝐴(𝜏, 𝑡)|2, total energy
∬ |𝐴(𝜏, 𝑡)|2d𝜏 and modal energies |𝐶𝑛(𝑡)|

2, and to the time evolution of real and imaginary parts of the mode amplitudes 𝐶𝑛(𝑡), for each 𝛿 in (i–vii).
𝛿, the first instability that appears is H1,1. Here stable single-peak DKS
destabilize, leading to breather states such as that of Fig. 6(i.1), where
we show the evolution of |𝐴(𝜏, 𝑡)|2 with 𝑡 for 𝛿 = −2.4. To represent
the modification of the breathers with 𝛿, in Fig. 5 we plot (by using
purple dots) the maxima and minima of the breather energy evolution
vs. time 𝑡: 𝐸(𝑡) = ∫ |𝐴(𝜏, 𝑡)|2d𝜏. This also allows us to distinguish among
different breathing behaviors.

The power of the breather at 𝜏 = 0, i.e., |𝐴(𝜏 = 0, 𝑡)|2, exhibits
periodic oscillations, as it can be appreciated in Fig. 6(i.1). Fig. 6(i.2)
shows the periodic temporal evolution of the breather energy 𝐸, and
the modal energies of the first three modes (i.e., |𝐶0,1,2|

2) by using
black, red, dark green and blue curves, respectively. These periodic
oscillations correspond to the nearby trajectories which are depicted
in the reduced phase space plane {Re[𝐶𝑛(𝑡)], Im[𝐶𝑛(𝑡)]} that is shown in
Fig. 6(i.3).

By reducing 𝛿 even further [see Fig. 5(b), which provides a magni-
fied view of a region in Fig. Fig. 5(a)], 𝜏-asymmetric breathers appear
within the 𝛿-interval 1.23 ≤ 𝛿 ≤ 2.4: e.g., see Fig. 6(ii.2), when 𝛿 = 2.4.
At the frontier between these symmetric and asymmetric states, we find
a narrow region where they coexist [see the close-up view in Fig. 5(b)].
While the evolution of modes 𝜓0,2 is similar for both symmetric and
asymmetric states, the contribution of the odd mode 𝜓1 only appears
in the latter [see the purple curve in Fig. 6(ii.2) and (b.3)]. Therefore,
asymmetric breathers can be easily identified by tracing out the odd
modal energy components. To better clarify this point, in Fig. 5(c)
we plot the modification of |𝐶1(𝑡)|

2 with 𝛿 for all oscillatory states.
Thus, when |𝐶1(𝑡)|

2 = 0 the DKS state is symmetric, and asymmetric
otherwise. One clearly notices that, by reducing 𝛿, the asymmetric
breathers become symmetric again at 𝛿 = 1.23. The last breather dies
out at H1,2 (𝛿 = 0.78), and then a single-peak DKS persist until F2,2
(𝛿 = −1) [see Fig. 5(b)].

Asymmetric breathers emerge due to a balance between the mode
suppression of homogeneous pumping and asymmetric mode excita-
tion by Kerr nonlinearity. Therefore, these breathers usually appear
when the pumping is relatively strong, and 𝛿 approaches a regime
between two adjacent symmetric modes, where the asymmetric modes
are favored.

The breathers arising from H2 undergo a Feigenbaum-type of di-
agram, as shown in purple in Fig. 5(a),(b), where a period-doubling
cascade eventually leads to temporal chaos [55,56]. In these states,
the energy component that is associated with 𝜓 is well populated,
6

2

as shown in Fig. 6(iii) for 𝛿 = −2. Owing to the contribution of
asymmetric modes, the breather exhibits zigzag-type-like oscillations,
where most of the energy on one side is exchanged with the other side
[see Fig. 6(iii.1)]. For these breathers, the energy exchange between
modes is much larger than its total energy fluctuation [see Fig. 6(iii.2)].
Therefore, in the region between H2 and P1, fluctuations of the total
energy are very small [see Fig. 5(b)], while the modal energy fluctua-
tions (e.g., associated with 𝜓1) are relatively large [see Fig. 5(c)]. For
𝛿 < 𝛿H2

, 𝜓2 is dominant, and DKS are similar to those depicted in red
in Fig. 4(ii).

By further increasing 𝛿, a period-doubling bifurcation (P2) occurs
at 𝛿 = −0.85 [see Fig. 5(b)], and the breather diagram splits into
four branches. Two examples of symmetric and asymmetric breathers
in this regime are shown in Fig. 6(v,vi) for 𝛿 = −0.5, 0, respectively.
The period-doubling process continues, and eventually the cavity states
evolve into the chaos-like breather states shown in Fig. 6(vii) for
𝛿 = 0.5. Between F2,2 and H1,2 [see Fig. 5(b)], breather states coexist
with DKS, which are eventually met by continuously increasing 𝛿. It
is noteworthy that the bifurcation diagram depicts the emergence of
dissipative soliton chaos through a period-doubling route.

7. Chaoticons

In previous sections, we have discussed the emergence and features
of DKS and breathers of different orders. However, another type of
dynamical state exists, which is dramatically different from the former
two. In prior work, we named such types of states as chaoticons [42], by
following Ref. [43]. In this section, we perform a more detailed analysis
of such states, and confirm their chaotic nature by calculating their
Lyapunov exponents [57].

In order to better address the study of these states, in Fig. 7(a) we
show a bifurcation diagram where the modification of the field energy
with 𝑃 is illustrated for 𝛿 = 0.8. For small 𝑃 , the system exhibits stable
DKS, which exist below the Hopf bifurcation point H1,1. After crossing
this point, symmetric breathers arise and persist in the interval 2.6 <
𝑃 < 3.5, until reaching H1,2. Note that these bifurcations correspond
to those shown in Figs. 4(a) and 5(a). Here we are just considering a
different slice of the (𝛿, 𝑃 )-parameter space (see Section 8).

At H1,2, DKS stabilize again, and remain stable until C2 (𝑃 ≈ 4.6).
After this point, the total field energy exhibits significant random fluc-
tuations [see Fig. 7(a)], in contrast to DKS and breathers. These random
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Fig. 7. Bifurcation diagram, showing the total field energy vs. 𝑃 in (a), and the largest
Lyapunov exponent of modal energy associated with mode 0 (red circles) and mode 2
(blue circles) in (b) vs. 𝑃 , when 𝛿 = 0.8 and 𝐶 = 1. The zoomed region in (b) is shown
in (c). An example of the time evolution of the field |𝐴|2 is shown in panel (d); the
total energy (black curve), and modal energies |𝐶0,1,2|

2 (red, dark green, blue curves)
are shown in panel (e), where 𝑃 = 4.7. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

fluctuations are characteristics of spatiotemporal chaotic behavior. An
example of such a state is shown in Fig. 7(d), where we plot the time
evolution of the field power |𝐴|2 for 𝑃 = 4.7. The chaoticon exhibits an
irregular evolution, which is very different from the breathers case, as
shown in Fig. 6.

This irregular behavior can also be observed by plotting the time
evolution of the total and the modal energies, 𝐸 and |𝐶𝑛(𝑡)|

2, respec-
tively [see Fig. 7(e)]. The formation of this dynamical state results
from the localization effect that the potential has on the spatiotemporal
chaotic dynamics, which is observed when 𝐶 = 0 [55,58]. Note that in
Fig. 7(a) chaoticons and stable DKS coexist in the interval 4.5 ≤ 𝑃 ≤ 4.6.

The Lyapunov exponents, which are obtained by linearizing the
dynamics of finite-dimensional systems (in ODEs) around a given tra-
jectory, can be used to measure the growth rate of generic small
perturbations around such a trajectory, and therefore determine its
chaotic nature [59,60]. Although our system is infinite-dimensional
(i.e., a PDE), its modal structure allows us to apply the previous
approach in order to characterize the states that we have found. To do
this, we need to run a sufficiently long simulation, until all solutions
7

stabilize. In this way, we can obtain the time evolution of the mode
energies |𝐶𝑛|2 [ see for example, Fig. 6(i,2) and Fig. 7(e)]: from these,
we may compute their Lyapunov exponents.

Fig. 7(b) shows the modification of the largest Lyapunov exponent
associated with modal energies |𝐶0(𝑡)|

2 (i.e., 𝜆0, see red ◦) and |𝐶2(𝑡)|
2

(i.e., 𝜆2, blue ◦) along the bifurcation diagram of Fig. 7(a). The theory
states that steady-state attractors, such as solitons, are characterized by
negative exponents. Whereas complex behaviors, such as our chaoti-
cons, exhibit positive exponents; time-periodic states (e.g., breathers)
have near zero Lyapunov exponents [60]. According to this theory,
Fig. 7(b) clearly shows the existence of three different regimes (I–III),
which we describe below:

I : DKS exist below H1,1, as confirmed by a negative exponent;
II : breathers (between H1,1 and H1,2) have almost zero exponents

(< 0.03);
III : chaoticons exists for 𝑃 > 4.5, as confirmed by their large positive

exponents (> 45).

Note that these calculations are in perfect agreement with the bifurca-
tion analysis shown in Fig. 7(a).

It is worth highlighting that while in our work the chaotic localized
states are achieved by phase modulation, similar dynamics have been
demonstrated by modulating the driving field amplitude [40].

8. Influence of pump: 𝜹 vs. 𝑷 phase diagram

So far, we have discussed the bifurcation structure of the solutions
of Eq. (4) by slicing the parameter space in two different ways. First,
in Sections 5 and 6 we have fixed the pump to the values 𝑃 = 2.5, 3.5,
and we studied the modification of the dynamics when varying 𝛿. Later,
in Section 7 we have fixed the detuning (𝛿 = 0.8), and analyzed the
modification of the stability of DKS when varying the pump strength 𝑃 .
In this section, we unveil the organization of the different dynamical
states of the system in the (𝛿, 𝑃 )-parameter phase diagram for 𝐶 = 1.

In Fig. 8(a) we show, in a 3D representation, how the 𝐸 vs. 𝛿
bifurcation diagrams modify when the pump strength 𝑃 changes. For
𝑃 < 1.03, there are four resonance peaks with low amplitude along 𝛿,
which are located around the linear eigenvalues 𝛿𝑛 of the system. By
increasing the strength of the pump, the first pair of fold points F1,1 and
F1,2 is generated at the first resonance peak. These are represented by
the red curve F1. By further increasing 𝑃 , at higher resonance peaks,
new fold bifurcation pairs nucleate marked by blue F2, green F3, orange
F4, and brown F5 curves. The pink regions show the unstable regimes,
and are limited by different Hopf bifurcations (see purple curves H𝑚,
where 𝑚 = 1, 2, 3, 4).

The parameter space can also be characterized by projecting
Fig. 8(a) into the (𝛿, 𝑃 )-plane. This leads to the (𝛿, 𝑃 )-phase diagram
which is shown in Fig. 8(b), where we can easily differentiate several
regions of different dynamical behavior [see video S1 in the Supple-
mentary Materials]. By inspecting this diagram, we may notice that
the appearance of folds F2,𝑚, F3,𝑚, F4,𝑚, F5,𝑚 with 𝑚 = 1, 2 (therefore,
of DKS bistable regions) at high-order resonance peaks requires larger
values of the pump 𝑃 ; the bistable regions that they enclose widen with
increasing 𝑃 ; so does the DKS energy.

Within each bistable region, two DKS of different order coexists
for the same set of parameters, as illustrated in the five insets in
Fig. 8(b). In each case, the higher-order DKS on each upper branch of
the bifurcation diagram has two significant side peaks, when compared
with the corresponding lower-order DKS located on the bottom branch.

With increasing 𝑃 , the high-order DKS (on the top branch of each
resonance peak) becomes unstable. This leads to the formation of
breathers in the unstable regions, which are separated by the Hopf
bifurcation curves (see purple lines). Examples of this type of breathers
are illustrated in Fig. 6(i,ii). The type of breathers which are located in
the region surrounded by H2, on the second resonance peak, is shown

in Fig. 6(iii–vii). Similarly, higher-order breathers also appear at the
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Fig. 8. Bifurcation diagrams of field energy vs. detuning 𝛿 for different pump strength 𝑃 in (a). Gray (pink) regions represent the stable soliton solutions of different orders
(unstable solutions: breathers, chaoticons). The fold-points-connected curves (F𝑚,1 and F𝑚,2), the Hopf-points-connected curves (H𝑚), and the curves of chaoticon onset (C𝑚) at each
resonance peak 𝑚 in (a) are represented in the phase diagram in (b), which is the top view of (a). The solid (dashed) curve represents that the curve is at the top (lower) layer.
On the one hand, increasing pumping folds the phase diagram, leading to the formation of bistable solutions (including solitons, breathers, and chaoticons). On the other hand,
varying the detuning changes the solution order at different resonances surrounding each peak. For comparison, fold bifurcations F0,1 and F0,2 and Hopf bifurcation H0 of the
original LLE model (𝐶 = 0) are also plotted by the gray and shallow purple curves. . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
top branches of the third and fourth resonance peaks, respectively, and
they are marked by the curves H3, and H4 [see Fig. 8(b)].

Chaoticons are located inside the region which is separated by the
curves F2,2 and C2 (yellow dashed) on the second resonance peak, and
the region between the curves F3,2 and C3 on the third resonance peak.
One can expect that for a larger pump, this state will appear in a region
of higher-order resonances.

Let us compare the results of the model of Eq. (4) with the original
LLE model [i.e., Eq. (4) with 𝐶 = 0]. In Fig. 8, we have added the fold
bifurcation (see the gray curves F0,1, F0,2) and Hopf bifurcation (see
the shallow purple curve H0) of solutions of the LLE model, where no
parabolic phase modulation is present. This comparison allows us to
clearly observe the effects of adding the parabolic phase potential:

I : In the low detuning regime, Turing patterns and chaos (see the
full phase diagram in Ref. [58]) are partially removed by phase
modulation;

II : The breather states are stabilized by phase modulation, as seen
from the shifts of the Hopf bifurcation (from H0 to H1,1) to a lower
detuning value;

III : Parabolic phase modulation leads to the emergence of high-order
soliton resonances, which are totally absent when 𝐶 = 0.

9. Influence of potential strength: 𝜹 vs.
√

𝑪 phase diagram

The parabolic potential strength 𝐶 [see Eq. (4)] has a very important
impact on the system dynamics, since 𝐶 not only modifies the system
eigenvalues, but also varies the temporal width of the different states.
Here, we discuss how the potential strength modifies the dynamics
of the system, and we illustrate our findings by means of a (𝛿,

√

𝐶)-
phase diagram for fixed 𝑃 . We have chosen

√

𝐶 and not 𝐶, since the
eigenvalues have a linear dependence on

√

𝐶 [see Eq. (6)].
Fig. 9(a) shows the modification of 𝐸 vs. 𝛿 bifurcation diagrams

when changing
√

𝐶, for 𝑃 = 3.5. Fig. 9(b), in contrast, shows the
projection of Fig. 9(a) onto the (𝛿,

√

𝐶)-plane. As we can see, the
8

position of resonance peaks linearly increases with
√

𝐶, which is consis-
tent with our theoretical expectations [see Eq. (6)]. However, the size
of bistable regions (see fold bifurcations) remains almost fixed, since
the tilting largely depends on the field peak power. Moreover, with
increasing

√

𝐶, the breathing regions gradually shrink, and eventually,
they disappear. This indicates the relevance that the potential has in
suppressing oscillatory instabilities and stabilizing DKS.

From another perspective, the reduction of
√

𝐶 impacts the system
in different ways, including the widening of the DKS unstable regions,
the positive tilting of high-order resonances, and the broadening of
the DKS states. Furthermore, by decreasing 𝐶, high-order resonance
peaks converge to the same loci, except for the fundamental one. This
transition may link to the homoclinic snaking type of structure which
is observed for 𝐶 = 0 [10,61], although the confirmation of this
conjecture needs further investigations.

10. Conclusions

In this work, we delve into the complex dynamics of dissipative
wave structures in coherently-driven nonlinear Kerr cavities with a
parabolic potential. The dynamics are governed by a modified version
of the Lugiato–Lefever equation. We find that the potential significantly
alters the system behavior. To show this, we have compared the stable
states of the Kerr cavities in the absence and in the presence of the
parabolic potential, by scanning the cavity detuning.

Our results have revealed that the potential may stabilize complex
spatiotemporal wave dynamics in favor of static DKS. Furthermore, we
have discovered that the potential is also behind the emergence of DKS
of higher orders. To understand the formation of these higher-order
DKS, we have first analyzed the linear eigenmodes of the system, and
found that odd modes are suppressed owing to the coherent pump-
ing. Whereas even modes are favored, exhibiting different excitation
efficiencies.

The inclusion of the nonlinear Kerr effect tilts the resonance of
these eigenmodes (towards a positive detuning), leading to bistable
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Fig. 9. (a) Bifurcation diagrams of field energy vs. detuning 𝛿 for different potential
strength

√

𝐶 in (a), when 𝑃 = 3.5. (b) Phase diagram vs. detuning 𝛿 and potential
strength

√

𝐶, which is the top view of (a). The notations are the same as Fig. 8. The
importance of the potential in suppressing oscillatory instabilities and stabilizing DKS
becomes apparent as

√

𝐶 increases. As
√

𝐶 decreases, the high-order resonance peaks
converge to the same location, with the exception of the fundamental peak.

DKS of different orders. By projecting the DKS on the eigenmodes,
we demonstrated that the mode components of high-order DKS are
primarily supported by the mode energy of corresponding orders.

Increasing the pump strength unveils the presence of breathers of
different types and orders. Among them, asymmetric breathers emerge,
as a result of the interaction of odd modes. In addition, we have
discovered the existence of chaoticons (i.e., localized spatiotemporal
chaotic states), which have been characterized in terms of Lyapunov
exponents.

To summarize all these complex dynamics, we have computed sev-
eral phase diagrams in the (𝛿, 𝑃 ) and (𝛿,

√

𝐶)-parameter space, which
permits to organize and classify the different regimes and states of the
dissipative wave structures.

It is worth mentioning that such internal phase modulation in-
troduces inhomogeneity in the system, by breaking the translation
invariance and leading to the emergence of new dynamics. Finally,
potential experimental observations of these dynamics, in comparison
with numerical predictions, may be achieved by adopting the scheme
presented in Ref. [36], by substituting the synchronous cosinusoidal
periodic phase modulation with a parabolic modulation.
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Appendix A. Spatial dynamical system for path-numerical contin-
uation

This appendix shows how the path-continuation method is used
to compute the bifurcations diagrams of this work by using AUTO-
07p [53].

Inserting

𝐴(𝜏) = 𝑢(𝜏) + i𝑣(𝜏) (A.1)

into Eq. (4), we obtain the coupled equations

𝜕𝑡𝑢 = −𝜕2𝜏𝑣 − 𝑢 − (𝑢2 + 𝑣2)𝑣 + 𝛿𝑣 + 𝐶𝜏2𝑣 + 𝑃 ,

𝜕𝑡𝑣 = +𝜕2𝜏 𝑢 − 𝑣 + (𝑢2 + 𝑣2)𝑢 − 𝛿𝑢 − 𝐶𝜏2𝑢.
(A.2)

For steady-state solutions, these equations satisfy 𝜕𝑡𝑢 = 𝜕𝑡𝑣 = 0;
therefore, they are solutions of the ordinary differential equations

−d2𝜏𝑣 − 𝑢 − (𝑢2 + 𝑣2)𝑣 + 𝛿𝑣 + 𝐶𝜏2𝑣 + 𝑃 = 0,

d2𝜏𝑢 − 𝑣 + (𝑢2 + 𝑣2)𝑢 − 𝛿𝑢 − 𝐶𝜏2𝑢 = 0,
(A.3)

where d2𝜏 ≡ d2
d𝜏2 . By defining the new variables 𝑢1 = 𝑢, 𝑢2 = 𝑣,

𝑢3 = d𝜏𝑢 = d𝜏𝑢1 and 𝑢4 = d𝜏𝑣 = d𝜏𝑢2, 𝑢5 = 𝜏, the system of Eqs. (A.3)
can be recast as the dynamical system:

d𝜏𝑢1 = 𝑢3,

d𝜏𝑢2 = 𝑢4,

d𝜏𝑢3 = −𝑢1 − (𝑢21 + 𝑢
2
2)𝑣 + 𝛿𝑢2 + 𝐶𝑢

2
5𝑢2 + 𝑃 ,

d𝜏𝑢4 = −𝑢2 + (𝑢21 + 𝑢
2
2)𝑢 − 𝛿𝑢1 − 𝐶𝑢

2
5𝑢1,

d𝜏𝑢5 = 1.

(A.4)

Due to the symmetry of the steady-state solutions, we can consider
Neumann boundary conditions on just the half of domain, and write

𝑢3(0) = d𝜏𝑢(0) = 0,

𝑢3(𝑅) = d𝜏𝑢(𝑅) = 0,

𝑢4(0) = d𝜏𝑣(0) = 0,

𝑢4(𝑅) = d𝜏𝑣(𝑅) = 0,

𝑢5(0) = 0,

(A.5)

where 𝑅 is the half of domain size. The boundary value problem defined
by Eq. (A.4) and the boundary conditions (A.5) can then be solved using
AUTO-07p, as described in Ref. [62].
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Appendix B. Ordinary differential equations of the modal

This appendix shows the derivation of the set of modal differential
equations [Eq. (11)] from the partial differential equation [Eq. (4)].

First, we simplify some terms in Eq. (4). To do so, substituting
Eq. (9) into the left hand side of Eq. (4) yields

𝜕𝐴
𝜕𝑡

= 𝜕
𝜕𝑡

[ 𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡𝜓𝑛(𝜏)

]

=
𝑁
∑

𝑛=0

d𝐶𝑛(𝑡)
d𝑡

𝑒𝑖𝛿𝑛𝑡𝜓𝑛(𝜏) +
𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡 ⋅ 𝑖𝛿𝑛𝜓𝑛(𝜏).

(B.1)

By substituting Eq. (9) into the first two terms on the right-hand side
of Eq. (4), and using Eq. (5), we have

�̂�0𝐴 = �̂�0

𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡𝜓𝑛(𝜏)

=
𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡 ⋅ �̂�0𝜓𝑛(𝜏)

=
𝑁
∑

𝑛=0
𝐶𝑛(𝑡)𝑒𝑖𝛿𝑛𝑡 ⋅ 𝑖𝛿𝑛𝜓𝑛(𝜏).

(B.2)

Then, we substitute Eqs. (B.1) and (B.2) into Eq. (4), and implementing
algebraic simplification, we obtain
∞
∑

𝑛=0

d𝐶𝑛(𝑡)
d𝑡

𝑒𝑖𝛿𝑛𝑡𝜓𝑛(𝜏) = �̂�1𝐴 + 𝑃 , (B.3)

where �̂�1 = i|𝐴|2 − (1 + i𝛿). Next, we project Eq. (B.3) on mode 𝑛,

∫

∞

−∞

∞
∑

𝑚=0

d𝐶𝑚(𝑡)
d𝑡

𝑒𝑖𝛿𝑚𝑡𝜓𝑚(𝜏)𝜓𝑛(𝜏)d𝜏 = ∫

∞

−∞

[

�̂�1𝐴 + 𝑃
]

𝜓𝑛(𝜏)d𝜏. (B.4)

inally, by doing the simplification, we end up with the set of coupled
ode ODEs of the model

d𝐶𝑛(𝑡)
d𝑡

=𝑒−𝑖𝛿𝑛𝑡 ∫

∞

−∞
𝑃𝜓𝑛(𝜏)d𝜏

+𝑒−𝑖𝛿𝑛𝑡 ∫

∞

−∞
i|𝐴|2𝐴𝜓𝑛(𝜏)d𝜏

−𝑒−𝑖𝛿𝑛𝑡(1 + i𝛿)𝐶𝑛

(B.5)

where each ODE governs the dynamics of an individual mode while
being phase-coupled through the field intensity |𝐴|2.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.chaos.2023.114064.
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