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Abstract
Modeling complex systems that consist of different types of objects leads to mul-
tilayer networks, where nodes in the different layers represent different kinds of 
objects. Nodes are connected by edges, which have positive weights. A multilayer 
network is associated with a supra-adjacency matrix. This paper investigates the 
sensitivity of the communicability in a multilayer network to perturbations of the 
network by studying the sensitivity of the Perron root of the supra-adjacency matrix. 
Our analysis sheds light on which edge weights to make larger to increase the com-
municability of the network, and which edge weights can be made smaller or set to 
zero without affecting the communicability significantly.
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1  Introduction

Many complex systems can be modeled as networks. Informally, a network is a 
collection of objects, referred to as nodes or vertices, that are connected to each 
other in some fashion; the connections are referred to as edges. The edges may 
be directed or undirected, and may be equipped with positive weights that cor-
respond to their importance. The nature of the nodes, edges, and weights depends 
on the application. Some modeling situations require more than one kind of nodes 
or more than one type of edges.

Multilayer networks are networks that consist of different kinds of edges and 
possibly different types of nodes. This kind of networks arise when one seeks 
to model a complex system that contains connections and objects with different 
properties. For instance, when modeling train and bus connections in a country, 
the train routes and bus routes define edges with distinctive properties, and the 
train and bus stations may make up nodes with diverse properties. The connec-
tions between a train station and an adjacent bus station give rise to yet another 
kind of edges along which travelers walk. Edge weights may be chosen pro-
portional to the number of travelers along an edge, proportional to the distance 
between the nodes that the edge connects, or proportional to the cost of traveling 
along an edge. Whether it is meaningful to distinguish between different kinds of 
edges and nodes, and using edge weights, depends on the nature and purpose of 
the network model.

It is often of interest to determine the ease of communication between nodes in 
a network, as well as how important a node is in some well-defined sense. Also, 
it is desirable to be able to assess the sensitivity of the measure of communica-
tion between the nodes to perturbations in the edge weights. For instance, if the 
nodes represent cities, and the edges represent roads between the cities, with edge 
weights proportional to the amount of traffic on each road, then one may be inter-
ested in which road(s) should be widened or made narrower to increase or reduce, 
respectively, communication in the network the most. The available data may be 
contaminated by measurement errors. We are then interested in how sensitive to 
errors in the data our choice of road(s) to widen or make narrower is.

The investigation of the importance of nodes and edges, as well as the sensitiv-
ity of the communicability within a network to changes in the edge weights of the 
network with only one kind of nodes and edges has received considerable atten-
tion in the literature; see, e.g., [4, 5, 8–12, 17, 19] and references therein. Several 
of the techniques discussed evaluate the exponential of the adjacency matrix of 
the network, or the exponential of the adjacency matrix determined by the line 
graph associated with the given network. The present paper extends the commu-
nicability and sensitivity analysis in [8, 19] to multilayer networks. Since mul-
tilayer networks typically have a large number of nodes and edges, we focus on 
techniques that are well suited for large-scale networks.

We consider multilayer networks that are represented by graphs that share the 
same set of vertices VN = {1, 2,… ,N} and have edges both within a layer and 
between layers. We will simply refer to this kind of networks as multilayer 
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networks. Nice recent discussions on multilayer networks are provided by Berger-
mann and Stoll [3], Cipolla et al. [6], and Tudisco et al. [22]. De Domenico et al. 
[7] describe how multilayer networks with L layers can be modeled by a fourth 
order tensor and introduce a supra-adjacency matrix B ∈ ℝ

NL×NL for the represen-
tation of such networks. In detail, let A(�) = [w

(�)

ij
]N
i,j=1

∈ ℝ
N×N be the non-negative 

adjacency matrix for the graph in layer ℓ for ℓ = 1,2,…,L. Thus, the entry 
w
(�)

i,j
≥ 0 is the “weight” of the edge between node i and node j in layer ℓ. If the 

graph is “unweighted”, then all nonzero entries of A(ℓ) are set to one. The matrix 
B ∈ ℝ

NL×NL is a block matrix with N × N blocks. The ℓth diagonal block is the 
adjacency matrix A(�) ∈ ℝ

N×N for layer ℓ, for ℓ = 1,2,…,L; the off-diagonal N × 
N block in position (ℓ1,ℓ2), with 1 ≤ ℓ1,ℓ2 ≤ L and ℓ1≠ℓ2 represents the inter-
layer connections between the layers ℓ1 and ℓ2; see Section 4 for details.

We may consider B an adjacency matrix for a monolayer network with NL nodes, 
and assume that B is irreducible. This is equivalent to that the graph associated with 
B is strongly connected; see, e.g., [13]. Hence, the Perron-Frobenius theory applies, 
from which it follows that B has a unique eigenvalue ρ > 0 of largest magnitude (the 
Perron root) and that the associated right and left eigenvectors, x and y, respectively, 
can be normalized to be of unit Euclidean norm with all components positive. These 
normalized eigenvectors are commonly referred to as the right and left Perron vectors, 
respectively. Thus,

We will assume throughout this paper that the Perron vectors x and y have been nor-
malized in the stated manner.

Following [8], we introduce the Perron communicability in the multilayer network,

where

and �NL ∈ ℝ
NL denotes the vector of all entries one. For a general adjacency matrix 

B ∈ ℝ
NL×NL associated with a monolayer network with NL nodes, the above measure 

is analogous to, but fairly different from, the total network communicability

introduced by Benzi and Klymko [1]. The latter is related to the “size” of the 
matrix exp(B) , while the measure (2) is determined by the Wilkinson perturbation 
yxT discussed in Section 2. The latter measure provides a worst-case perturbation 
of the Perron root under a small perturbation of B. We use the modified expo-
nential function exp0(M) in (2) instead of the exponential, because the Maclaurin 
series of exp(M) has no natural interpretation in the context of network modeling. 
We note that CPN(M) is easy to apply and cheaper to compute than CTN(M) and 

(1)B� = ��, �TB = ��T .

(2)CPN(B) = exp0(�)�
T
NL
��T�NL = exp0(�)

(
NL∑

j=1

yj

)(
NL∑

j=1

xj

)
,

exp0(t) = exp(t) − 1, � = [x1, x2,… , xNL]
T , � = [y1, y2,… , yNL]

T ,

CTN(B) = �T
NL

exp(B)�NL,
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CTN
0

(M) ∶= �T
NL

exp0(M)�NL for monolayer networks with many nodes or layers, i.e., 
when NL is large [8].

Due to the normalization of the Perron vectors x and y in (1), we have

Therefore, for the multilayer network associated with B, one has

Typically, exp0(𝜌) ≫ NL . It then follows that the quantity exp0(�) is a fairly accurate 
indicator of the Perron communicability of the graph represented by B in the sense 
that it suffices to consider exp0(�) to determine whether the Perron communicability 
of a network is large or small. The right-hand side bound in (3) will be sharpened 
slightly in Proposition 2 below.

Following the approach in [7], we form the leading eigentensors Y ∈ ℝ
N×L and 

X ∈ ℝ
N×L for the multilayer network associated with B by reshaping the Perron vec-

tors y and x, respectively. Thus, the first column of the matrix Y is made up of the 
first N components of the vector y, the second column of Y consists of the next N 
components of the vector y, etc. The joint eigenvector centrality of node i in layer ℓ 
is given by the entry in position (i,ℓ) of Y. The rows of Y represent the eigenvector 
versatility of the nodes. Moreover, the (scalar) versatility of node i is given by

The vector 1L may be replaced by some other vector in ℝL with non-negative entries 
if another weighting of the columns of Y is desired.

Remark 1  The concepts of hub and authority communicability was introduced by 
Kleinberg [14] for graphs that are defined by an adjacency matrix. An extension to 
multi-relational networks that are based on tensors is described by Li et al. [15]. We 
can define analogous concepts for tensors by using the Perron communicability. If 
we replace the matrix B in (1) by BBT, then we obtain analogously to (2) the Perron 
hub communicability

where �BBT is the Perron root for BTB and x is the Perron vector for BTB. Simi-
larly, if we replace the matrix B in (1) by BTB, then we obtain the Perron authority 
communicability

where �BTB = �BBT is the Perron root for BTB and x is the Perron vector for BTB.

We turn to special multilayer networks in which nodes in different layers are iden-
tified with each other. Thus, there are no edges between different nodes in different 

1 ≤

NL�

j=1

xj ≤
√
NL, 1 ≤

NL�

j=1

yj ≤
√
NL.

(3)exp0(�) ≤ CPN(B) ≤ NL exp0(�).

(4)�i = (Y�L)i, i = 1, 2,… ,N.

CPN(BBT ) = exp0(�BBT )�T
NL
��T�NL,

CPN(BTB) = exp0(�BTB)�
T
NL
��T�NL,
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layers; the only edges that connect different layers are edges between a node and 
its copy in other layers. Hence, in the supra-adjacency matrix B ∈ ℝ

NL×NL all off-
diagonal entries in all off-diagonal blocks are zero.

We will refer to these kinds of networks as multiplex networks. They can be rep-
resented by a third-order tensor. The graph for layer ℓ is associated with the non-
negative adjacency matrix A(�) ∈ ℝ

N×N , � = 1, 2,… , L , and a mode-1 unfolding of 
the third-order tensor that represents the network yields an L-vector of these adja-
cency matrices:

The supra-adjacency matrix B ∈ ℝ
NL×NL for the multiplex network associated with 

the matrix A in (5) has the diagonal blocks A(ℓ), � = 1, 2,… , L , and every N × N 
off-diagonal block is the identity matrix IN ∈ ℝ

N×N ; see, e.g., [7]. Hence, the cou-
pling is diagonal and uniform. One may introduce a parameter γ ≥ 0 that determines 
how strongly the layers influence each other. This yields the matrix

where ⊗ denotes the Kronecker product; see [3].
Due to the potentially large sizes of the matrices B in (1) and (6), one typically 

computes their right and left Perron vectors by an iterative method, which only 
require the evaluation of matrix-vector products with the matrices B and BT. Clearly, 
one does not have to store B, but only A in (5) to evaluate matrix-vector products 
with the matrix B in (6) and its transpose.

Remark 2  If one is interested in the Perron hub or authority communicability of the 
network, then the matrices A(ℓ) in (5) should be replaced by A(ℓ)(A(ℓ))T or (A(ℓ))TA(ℓ), 
respectively, for � = 1, 2,… , L.

Following [21, Definition 3.5], we introduce for future reference the L-dimen-
sional vectors of the marginal layer Y-centralities and the marginal layer 
X-centralities

respectively.
It is the purpose of the present paper to investigate the Perron network communi-

cability of multilayer networks that can be represented by a supra-adjacency matrix 
B ∈ ℝ

NL×NL , as well as the special case of multiplex networks that are represented 
by the matrix A ∈ ℝ

N×NL in (5). We also are interested in the sensitivity of the com-
municability to errors or changes in the entries of the supra-adjacency matrix B and 
in the entries of the matrices A(ℓ) in (5) in the case of a multiplex network. The par-
ticular structure of B in (6) for multiplex networks will be exploited.

The organization of this paper is as follows. The Wilkinson perturbation for a 
supra-adjacency matrix is defined in Section 2. This perturbation forms the basis for 
our sensitivity analysis of multilayer networks. Section 3 discusses some properties 

(5)A = [A(1),A(2),… ,A(L)] ∈ ℝ
N×NL.

(6)B ∶= B(𝛾) = diag[A(1),A(2),… ,A(L)] + 𝛾(�L�
T
L
⊗ IN − INL),

(7)�Y = YT�N and �X = XT�N ,
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of the Perron and total network communicabilities. A sensitivity analysis for multi-
layer networks based on the Wilkinson perturbation is presented in Section 4. Both 
Sections  3 and  4 first discuss multilayer networks that can be defined by general 
supra-adjacency matrices, and subsequently describe simplifications that ensue 
for multiplex networks that can be defined by the supra-adjacency matrix B in (6). 
Section  5 presents a few computed examples, and Section  6 contains concluding 
remarks.

2 � Wilkinson perturbation for supra‑adjacency matrices

Let B ∈ ℝ
NL×NL be the supra-adjacency matrix in (1). We assume that B is irreduc-

ible. Let ρ > 0 be the Perron root of B, and let x and y be the associated right and 
left normalized Perron vectors. Thus, all entries of x and y are positive, and ∥x∥2 = 
∥y∥2 = 1. Throughout this paper ∥⋅∥2 denotes the Euclidean vector norm or the spec-
tral matrix norm, and ∥⋅∥F stands for the Frobenius norm. The vectors x and y are 
uniquely determined.

Let E ∈ ℝ
NL×NL be a non-negative matrix such that ∥E∥2 = 1, and let ε > 0 be a 

small constant. Denote the Perron root of B + εE by ρ + δρ. Then

see [16]. Moreover,

where 𝜃 is the angle between x and y. The quantity 1∕ cos � is referred to as the 
condition number of ρ and denoted by κ(ρ); see Wilkinson [23, Section 2]. Note that 
when B is symmetric, we have x = y and, hence, 𝜃 = 0. In this situation ρ is well-
conditioned. Equality in (9) is achieved for the Wilkinson perturbation

which we will refer to as W. For E = W, the perturbation (8) of the Perron root is δρ 
= εκ(ρ) + O(ε2). We observe that all the above statements hold true if everywhere 
the spectral norm is replaced by the Frobenius norm.

3 � Some properties of the Perron and total network 
communicabilities

This section discusses a few properties of the Perron communicability and how it 
relates to the total network communicability.

Proposition 1 

(8)�� = �
�TE�

�T�
+ O(�2);

(9)
�TE�

�T�
=

��TE��
�T�

≤
‖�‖2‖E‖2‖�‖2

�T�
=

1

cos �
,

(10)E = ��T ∈ ℝ
NL×NL,

(11)CPN(B) = exp0(�)�
T
Y
�X ,
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where cX is the vector of the marginal layer X-centralities and cY is the vector of the 
marginal layer Y-centralities in (7).

Proof  The proof follows from (2) by observing that

Remark 3  When the network is undirected, one has according the definitions (7) that 
cX = cY, because x = y. This gives, by (11), the symmetric Perron communicability

Proposition 2 

where ϕ is the angle between the vector cY of the marginal layer Y-centralities and 
the vector cX of the marginal layer X-centralities in (7).

Proof  One has

where ϕ is the angle between cY and cX. Let ∥⋅∥1 denote the vector 1-norm. It is evi-
dent that

Since

we have the bound

which gives the proof by using (11).

Remark 4  When the network is undirected, by Remark 3, Proposition 2 reads

which is the same bound as (3).

Matrix function-based communicability measures have been generalized in [3] 
to the case of layer-coupled multiplex networks that can be represented by a supra-
adjacency matrix B of the form (6), i.e., by A defined by (5). Following the argu-
ment in [8], assume that the Perron root ρ of a supra-adjacency matrix B of the form 
(6) is significantly larger than the magnitude of its other eigenvalues. Then

�T
NL
��T�NL = �T

N
YXT�N = �T

Y
�X .

CPN sym(B) = exp0(�)‖�Y‖22.

CPN(B) ≤ NL exp0(�) cos�,

�T
Y
�X = ‖�X‖2‖�Y‖2 cos�,

‖�X‖1 =
NL�

j=1

xj = ‖�‖1, ‖�Y‖1 =
NL�

j=1

yj = ‖�‖1.

‖�X‖2 ≤ ‖�X‖1 = ‖�‖1 ≤
√
NL‖�‖2, ‖�Y‖2 ≤ ‖�Y‖1 = ‖�‖1 ≤

√
NL‖�‖2,

‖�X‖2‖�Y‖2 ≤ NL‖�‖2‖�‖2 = NL,

CPN sym(B) ≤ NL exp0(�),
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where CTN
0

(A) = �T
NL

exp0(B)�NL and CPN(A) refers to the Perron network communi-
cability (2) when B is of the form (6). Thus, the multiplex total network communica-
bility depends on the conditioning of the Perron root.

Remark 5  It is straightforward to see that if the network represented by the matrix 
B of the form (6) is undirected, and the Perron root ρ is significantly larger than the 
magnitude of the other eigenvalues of B, then one has

Indeed, the Perron vectors x and y coincide so that κ(ρ) = 1.

4 � Multilayer network Perron root sensitivity

Let the supra-adjacency matrix B ∈ ℝ
NL×NL be associated with an L-layer network 

as described above. Then an edge from node i in layer k to node j in layer ℓ, with 
i, j ∈ {1, 2,… ,N} , i≠j, and k,� ∈ {1, 2,… , L} , is associated with the (i,j)th entry 
w
(k,�)

ij
> 0 of the (k,ℓ)th block of order N × N of the matrix B.

Consider increasing the weight w(k,�)

ij
 of an existing edge by ε > 0 or introduc-

ing a new edge from node i in layer k to node j in layer ℓ with weight ε > 0. This 
corresponds to perturbing the supra-adjacency matrix B by the matrix εE, where 
the matrix E ∈ ℝ

NL×NL has entries zero everywhere, except for the entry one in 
position (i,j) in the block (k,ℓ). It follows from (8) that the impact on the Perron 
root of this perturbation is

The notion of multilayer network Perron root sensitivity with respect to the direction 
(i,k)→(j,ℓ), defined by

is helpful for determining which edge(s) to insert in, or remove from, a multilayer 
network.

Remark 6  Notice that the largest entries of x and y are strictly smaller than 1, hence 
the multilayer network Perron root sensitivity (12) with respect of any direction 
is less than κ(ρ). Indeed, x and y are unit vectors with positive entries so that, if, 
e.g., xN(ℓ− 1)+j = 1, this would imply that xk = 0 for all k≠N(ℓ − 1) + j, which is not 
possible.

CTN
0

(A) ≈ �(�)CPN(A),

C
TN sym

0
(A) ≈ CPN sym(A).

�� = ��(�)yN(k−1)+ixN(�−1)+j + O(�2).

(12)SPR
i,j,k,�

(B) ∶= �(�)yN(k−1)+ixN(�−1)+j,
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We also introduce the multilayer network Perron root sensitivity matrix associ-
ated with B, denoted by SPR(B), whose entries are given by the quantities SPR

i,j,k,�
(B) . 

The following result holds true.

Proposition 3  The multilayer Perron root sensitivity matrix is given by

where W is the Wilkinson perturbation defined by (10).

Proof  The proof follows from (12) by observing that

with W = yxT.

Remark 7  Notice that both the spectral norm and the Frobenius norm of the multi-
layer network Perron root sensitivity matrix are equal to the condition number of the 
Perron root. Moreover, the Perron communicability (2) reads

Remark 8  Following [19, Eqs (2.1)-(2.2)], the spectral impact of each existing edge 
in B can be analyzed by means of the matrix

where ○ denotes the Hadamard product.

The exponential of the spectral radius of the graph associated with B often is a 
fairly accurate relative measure of the Perron network communicability of the graph; 
cf. (3). If we would like to modify the graph by adding an edge that increases the 
Perron network communicability as much as possible, then we should choose the 
indices i, j, k, and ℓ for the new edge so that

We turn to the removal of an edge, with the aim of simplifying the graph without 
affecting the Perron network communicability much. We therefore would like to 
choose the indices 1 ≤ 𝚤, 𝚥 ≤ N and 1 ≤ k̂, �̂ ≤ L such that w(k̂,�̂)

𝚤,𝚥
 is positive and

(13)SPR(B) = �(�)W ∈ ℝ
NL×NL,

SPR
i,j,k,�

(B) = �(�)WN(k−1)+i,N(�−1)+j,

CPN(B) =
exp0(�)

�(�)
�T
NL
SPR(B)�NL.

−
1

�
B◦SPR(B) ∈ ℝ

NL×NL,

xN(�−1)+j = max
1≤q≤NL

xq, yN(k−1)+i = max
1≤q≤NL

yq.

yN(k̂−1)+𝚤xN(�̂−1)+𝚥 = min
1≤i,j≤N
1≤k,�≤L

w
(k,�)

ij
>0

yN(k−1)+ixN(�−1)+j.
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A way to determine such an index quadruple {𝚤, 𝚥, k̂, �̂} is to first order the products 
yixj, 1 ≤ i,j ≤ NL in increasing order. This yields a sequence of index pairs {iq, jq}N

2L2

q=1
 

such that

Then determine the first index pair {iq̂, jq̂} in this sequence such that w(k̂,�̂)

𝚤,𝚥
> 0 , 

where

with 1 ≤ 𝚤, 𝚥 ≤ N and 1 ≤ k̂, �̂ ≤ L.
We remark that the perturbation bound (8) only is valid for ε of small enough mag-

nitude. Nevertheless, it is useful for choosing which edge(s) to remove to simplify a 
multilayer network. This is illustrated in Section 5. It may be desirable that the graph 
obtained after removing an edge is connected. The connectedness has to be verified 
separately.

Remark 9  Notice that when the network is undirected, it may be meaningful to 
require the perturbation of the network also be symmetric. Thus, instead of consid-
ering the network sensitivity (12) with regard to the direction (i,k)→(j,ℓ), we inves-
tigate the sensitivity of the network with regard to perturbations in the directions 
(i,k)→(j,ℓ) and (j,ℓ)→(i,k). This results in the expression

where we have used that x = y. This expression is analogous to (12).

We conclude this section with a discussion on multiplex networks. In such a net-
work, an edge from node i to node j in layer ℓ, with i, j ∈ {1, 2,… ,N} , i≠j, and 
� ∈ {1, 2,… , L} is associated with the entry w(�)

ij
≥ 0 of the adjacency matrix A(ℓ). 

Increasing the weight w(�)

ij
> 0 of an existing edge by ε > 0, or introducing a new 

edge by setting a zero weight w(�)

ij
 to ε > 0, means perturbing A in (5) by �P , where

Here ON ∈ ℝ
N×N denotes the zero matrix. The perturbation �P corresponds to per-

turbing the supra-adjacency matrix B by an NL × NL block matrix with all null N × 
N blocks except for the ℓth diagonal block A(ℓ) in which the (i,j)th entry is set equal 
to ε.

Introduce the multiplex Perron root sensitivity SPR
i,j,�

(A) with respect to the direc-
tion (i,j) in layer ℓ,

yiqxjq ≤ yiq+1xjq+1 ∀ 1 ≤ q < N2L2.

iq̂ = N(k̂ − 1) + 𝚤, jq̂ = N(�̂ − 1) + 𝚥

S
PR sym

i,j,k,�
(B) ∶= �(�)(yN(k−1)+ixN(�−1)+j + yN(�−1)+jxN(k−1)+i)

= 2xN(k−1)+ixN(�−1)+j,

(14)
P = [ON ,… ,ON ,P

(�)

ij
,ON ,… ,ON] ∈ ℝ

N×NL with P
(�)

ij
= �i�

T
j
∈ ℝ

N×N .

SPR
i,j,�

(A) ∶= �(�)yN(�−1)+ixN(�−1)+j,
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which is analogous to the quantity (12) for more general multilayer networks. Thus, 
if P is defined by (14) and A by (5), one has from (8) that �� ≈ �SPR

i,j,�
(A) . Analo-

gously, consider reducing the (i,j)th entry w(�)

ij
> 0 of the adjacency matrix A(ℓ) by ε 

and assume that 0 < ε ≪ 1 and 𝜀 < w
(�)

ij
 . Then the modified network associated with 

the tensor A − �P is non-negative and connected if the network associated with A 
has these properties. Then �� ≈ −�SPR

i,j,�
(A).

Moreover, as shown in Remark 9, when considering an undirected multiplex net-
work, we obtain the expression

 Recall that the Perron root sensitivity matrix (13) for general multilayer networks 
depends on the Wilkinson perturbation W ∈ ℝ

NL×NL of the supra-adjacency B as 
well as on the condition number κ(ρ). By assuming that B is of the type in (6), the 
results in the following section will lead to analogous properties of the multiplex 
Perron root sensitivity matrix SPR(A) , whose nonvanishing entries are given by the 
quantities SPR

i,j,�
(A).

4.1 � Exploiting the structure of multiplex networks

Consider the cone D of all non-negative block-diagonal matrices in ℝNL×NL with L 
blocks in ℝN×N and let M|D denote the matrix in D that is closest to a given matrix 
M ∈ ℝ

NL×NL with respect to the Frobenius norm. It is straightforward to verify that 
M|D is obtained by replacing all the entries outside the block-diagonal structure by 
zero.

Let E ∈ D be such that ∥E∥F = 1, and let ε > 0 be a small constant. Then

with equality for the D-structured analogue of the Wilkinson perturbation

see [18]. The quantity

will be referred to as the D-structured condition number of ρ and denoted by �D(�) . 
For E in (16), the perturbation (8) of the Perron root is �� = ��D(�) + O(�2).

Thus, the D-structured analogue of the Wilkinson perturbation is the maxi-
mal perturbation for the Perron root ρ of a supra-adjacency matrix of the type (6) 
induced by a D-structured perturbation. The following result holds.

S
PR sym

i,j,�
(A) ∶= 2xN(�−1)+ixN(�−1)+j.

(15)
�TE�

�T�
=

��TE��
�T�

≤
‖�‖2‖��T �D‖F‖�‖2

�T�
=

‖��T �D‖F
�T�

,

(16)E =
��T �D

‖��T �D‖F
;

‖��T �D‖F
�T�

= �(�)‖��T �D‖F
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Proposition 4  The multiplex Perron root sensitivity matrix is given by

where W is the Wilkinson perturbation defined by (10) and D is the cone of all non-
negative block-diagonal matrices in ℝNL×NL with L blocks in ℝN×N.

Proof  In the multiplex associated with the matrix A in (5) and represented by the 
matrix B in the form (6), the parameter γ that yields the weight of the inter-layer 
edges, i.e., the influence of the layers on each other, is determined a priori by the 
model. Thus, SPR(A) ∈ D , because admissible perturbations only affect intra-edges. 
Hence, one obtains from Proposition 3 that the multiplex Perron root sensitivity 
matrix consists of just the projection into D of (13) obtained by replacing all the 
entries of W outside the block-diagonal structure by zero. This concludes the proof.

Analogously to (13), the multiplex Perron root sensitivity matrix is the product of 
the maximal admissible perturbation and the relevant condition number of the Per-
ron root. Thus, SPR(A) is given by the product of the D-structured condition number 
of ρ, �D(�) , and the D-structured analogue of the Wilkinson perturbation W:

Hence, the Frobenius norm of the multiplex Perron root sensitivity matrix is equal 
to the structured condition number �D(�) of the Perron root; see Remark 7 for the 
general case of a multilayer network.

The above argument quantitatively shows that the Perron communicability in 
multiplexes is less sensitive, both component-wise and norm-wise, than the Perron 
communicability in more general multilayer networks.

Remark 10  Following the argument in Remark 7, we define the effective Perron 
communicability in a multiplex network,

Moreover, observing that

we obtain the upper bound

which is sharper than (3).

We conclude this subsection by defining the multiplex Perron root sensitivity 
matrix

SPR(A) = �(�)W|D ∈ ℝ
NL×NL,

SPR(A) = �(�)‖W�D‖F
W�D

‖W�D‖F
.

CPN(A) =
exp0(�)

�(�)
�T
NL
SPR(A)�NL.

�T
NL
SPR(A)�NL ≤ NL‖SPR(A)‖F = NL�D(�),

CPN(A) ≤ NL exp0(�)‖W�D‖F,
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where

Here W (�) ∈ ℝ
N×N is constructed by multiplying the ℓth column of Y by the ℓth row 

of XT, for ℓ = 1,2,…,L, where the matrices X, Y ∈ ℝ
N×L are determined by reshap-

ing the right and left Perron vectors x and y of B; see Section 1 for the definition of 
X and Y.

Remark 11  Analogously to Remark 8, we note that the spectral impact of each exist-
ing edge in A can be studied by means of

 cf. [19, Eqs (2.1)-(2.2)].

4.2 � Exploiting the sparsity structure of multiplex networks

When considering perturbations of existing edges, we take into account the pro-
jection of the Wilkinson perturbation W into the cone S of all matrices in D with 
the same sparsity structure as diag[A(1),A(2).… ,A(L)] . The argument that lead to 
the structured results (15) and (16) holds true for any (further) sparsity structure 
of the matrix diag[A(1),A(2),… ,A(L)] . Moreover, �S(�) ≤ �D(�) ≤ �(�) . One has 
the following result for the multiplex Perron root structured sensitivity matrix 
SPR struct(A) , whose nonvanishing entries are given by the quantities SPR

i,j,�
(A) that 

correspond to the positive entries of B.

Proposition 5  The multiplex Perron root structured sensitivity matrix is given by

where W is the Wilkinson perturbation defined by (10) and S is the cone of all non-
negative block-diagonal matrices in ℝNL×NL with L blocks in ℝN×N having the same 
sparsity structure as the diagonal block matrices of the supra-adjacency matrix B in 
(6) that represents the multiplex.

Proof  As for Proposition 4, the proof follows by observing that the multiplex Perron 
root structured sensitivity matrix SPR struct(A) consists of the projection into S of W, 
because only perturbations of existing intra-edges are admissible. □

We have the following component-wise and norm-wise inequalities:

SPR(A) = �(�)W,

(17)W ∶= [W (1),W (2),… ,W (L)] ∈ ℝ
N×NL.

−
1

�
A◦SPR(A);

SPR struct(A) = �(�)W|S ∈ ℝ
NL×NL,
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Remark 12  Following the argument in Remark 10, we are in a position to introduce 
the notion of structured Perron communicability in a multiplex network,

and obtain by using

the sharper upper bound

Finally, one may alternatively represent SPR struct(A) as

where W|S is obtained from W in (17), by projecting each matrix W(ℓ) into the cone 
S
(�) of all non-negative matrices in ℝN×N having the same sparsity structure as the 

matrix A(ℓ), for ℓ = 1,2,…,L.

4.3 � Symmetry patterns of multiplexes

Let the network be represented by a symmetric supra-adjacency matrix B of the type 
(6). Applying the arguments in the preceding subsections to the cone of all the sym-
metric matrices in D [all the symmetric matrices in S ] leads to the same structured 
analogue of the Wilkinson perturbation as W|D [as W|S ]. Indeed, as the network is 
undirected, the right and left Perron vectors coincide, so that the Wilkinson pertur-
bation W = yxT = yyT is a symmetric matrix.

5 � Computed examples

This section presents some examples to illustrate the performance of the methods 
discussed above. The computations were carried out  using Matlab R2015b. The 
calculation of the Perron root and the left and right Perron vectors can easily be 
evaluated by using the Matlab functions eig for small networks. For large-scale net-
works these quantities can be computed by the two-sided Arnoldi algorithm, which 
was introduced by Ruhe [20], and has been improved by Zwaan and Hochstenbach 
[24]. Specifically, we used the function eig in Examples 1 and 2, and the two-sided 
Arnoldi algorithm in Example 3.

SPR struct(A) ≤ SPR(A),

‖SPR struct(A)‖F ≤ ‖SPR(A)‖F.

CPN struct(A) =
exp0(�)

�(�)
�T
NL
SPN struct(A)�NL,

�T
NL
SPR struct(A)�NL ≤ NL‖SPR struct(A)‖F = NL�S(�)

CPN struct(A) ≤ NL exp0(�)‖W�S‖F ≤ NL exp0(�)‖W�D‖F.

S
PR struct(A) = �(�)W|S,
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5.1 � Example 1: A small synthetic multilayer network

We construct a small directed unweighted general multilayer network with N = 4 
nodes in each layer and L = 3 layers, illustrated in Fig. 1. The network is represented 
by a supra-adjacency matrix B ∈ ℝ

12×12 , whose 4 × 4 diagonal blocks are adjacency 
matrices that represent the graphs of each layer. The off-diagonal blocks represent 
edges that connect nodes in different layers. This results in a nonsymmetric matrix 
B, whose Perron root is ρ(B) = 2.3471; the condition number of the Perron root is 
κ(ρ(B)) = 1.0248.

Let ε = 0.3 and let W denote the Wilkinson perturbation (10). Then ρ(B + εW) 
= 2.6512. Thus, the perturbation εW of B increases the spectral radius by 0.3041 as 
can be expected since εκ(ρ(B)) = 0.3074. If we replace the matrix W by the matrix of 
all ones, normalized to be of unit Frobenius norm, then the spectral radius increases 
by only 0.2561. Clearly, this is not an accurate estimate of the actual worst-case sen-
sitivity of ρ(B) to perturbations.

The largest Perron root sensitivity is SPR
2,4,3,2

(B) = 0.2241 ; cf. (12). This suggests 
that increasing the weight of the edge connecting node 2 in layer 3 and node 4 in 
layer 2 results in a relatively large change in the Perron root.

In general, we expect the Perron root to increase more when introducing new 
edges or increasing edge weights that correspond to the largest entries of the Per-
ron root sensitivity matrix SPR(B) than when introducing randomly chosen edges 
or increasing randomly chosen edge weights. Table  1 confirms this for Example 
1. Similarly, we expect a smaller decrease in the Perron root when decreasing the 
weights that correspond to the smallest entries of the matrix SPR than when decreas-
ing random weights. Table 2 confirms this for Example 1.

The smallest entries of the matrix SPR(B) also give the candidate edges to remove 
in order to simplify the network. However, we have to check the connectedness 
of the network after removal of an edge. Let B̂ denote the supra-adjacency matrix 
obtained by removing the edge (1,1)→(4,1), that connects node 1 in layer 1 and 
node 4 in layer 1. Then 𝜌(B̂) = 2.3270 . Therefore, this removal decreases the Perron 

Fig. 1   Example 1: Layers are presented from left to right in the order L = 1, L = 2, and L = 3. The edges 
connecting nodes from same layer are marked in black. The edges connecting nodes from different layers 
are marked in red
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root only by an order of 10− 2. Thus, the network represented by the supra-adjacency 
matrix B can be simplified by removing the edge (1,1)→(4,1) without a significant 
impact on the Perron network communicability. The graph obtained after removal of 
this edge is connected.

5.2 � Example 2: The Scotland Yard data set

This example considers the Scotland Yard transportation network created by the 
authors of [3]. The network can be downloaded from [2]. It consists of N = 199 
nodes representing public transport stops in the city of London and L = 4 layers that 
represent different modes of transportation: boat, underground, bus, and taxi. The 
edges are weighted and undirected. More precisely, the edges in the layer that rep-
resents travel by taxi all have weight one. A taxi ride is defined as a trip by taxi 
between two adjacent nodes in the taxi layer; a taxi ride along k edges is considered 
k taxi rides. The weights of edges in the boat, underground, and bus layers are cho-
sen to be equal to the minimal number of taxi rides required to travel between the 
same nodes.

The Perron root of the supra-adjacency matrix B is ρ(B) = 17.6055, and its condi-
tion number is κ(ρ(B)) = 1. Let ε = 0.3 and let W be the Wilkinson perturbation (10). 
Then ρ(B + 𝜖W) = 17.9055. Thus, the spectral radius increases by 0.3. This can be 
expected since εκ(ρ(B)) = 0.3. If we replace the matrix W by the matrix of all ones, 
normalized to be of unit Frobenius norm, then the spectral radius increases by only 
0.006. This is not an accurate estimate of the actual worst-case sensitivity of ρ(B) to 
perturbations.

Table 1   Example 1: The four largest entries of the Perron root sensitivity matrix and Perron roots for the 
supra-adjacency matrix obtained by increasing/introducing the weights w(k,�)

i,j
 , and Perron roots for supra-

adjacency obtained by increasing/introducing the weight of random edges by ε = 0.3

{i,j,k,ℓ}  SPR
i,j,k,�

(B) ρnew Random edges 𝜌̃new 

{2, 4, 3, 2} 0.2241 2.4903 {1, 3, 3, 3} 2.4041
{4, 3, 2, 3} 0.1725 2.4592 {2, 4, 2, 2} 2.4479
{2, 3, 3, 3} 0.1717 2.4593 {1, 3, 1, 1} 2.3975
{3, 4, 2, 2} 0.1694 2.4627 {2, 3, 1, 1} 2.3727

Table 2   Example 1: The four smallest entries of the Perron root sensitivity matrix and Perron roots for 
the supra-adjacency matrix obtained by decreasing the weights w(k,�)

i,j
 , and Perron roots corresponding to 

decreasing the weight of random edges by ε = 0.3

{i,j,k,ℓ}  SPR
i,j,k,�

(B) ρnew Random edges 𝜌̃new 

{1, 2, 2, 1} 0.0073 2.3439 {3, 3, 2, 3} 2.2822
{3, 4, 3, 3} 0.0211 2.3407 {2, 4, 2, 2} 2.2728
{1, 4, 1, 1} 0.0271 2.3397 {1, 2, 3, 3} 2.2935
{1, 2, 1, 1} 0.0331 2.3332 {2, 3, 3, 3} 2.2633
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The largest entry of the Perron root sensitivity matrix is SPR
89,67,2,2

(B) = 0.2407 . 
Increasing the weight of the edge e89,67,2,2 that connects the nodes 89 and 67 in 
layer 2 typically results in a larger increase in the Perron root than when increas-
ing a weight of a randomly chosen edge. For instance, when increasing the weight 
of the edge e89,67,2,2 by 0.3, the Perron root is increased by 0.1458; see Table 3 for 
illustrations.

We also note that the Perron root ρ(B) does not change significantly when setting 
the entry (162,560) of B to zero. This models the removal of the edge that connects 
node 162 in layer 1 to node 162 in layer 3 in the network. This edge corresponds to 
the smallest entry of the Perron root sensitivity matrix SPR

162,162,1,3
(B) = 3.2279 ⋅ 10−15.

Now consider perturbations of existing edges. We compute the multiplex Perron 
root structured sensitivity matrix SPR struct(A) and compare the changes in the Perron 
root when increasing the weights of existing edges according to the largest entries of 
SPR struct(A) and increasing the weights of randomly chosen existing edges. This is 
illustrated by Table 4. As expected, the Perron root changed the most when consid-
ering edges associated with a large entry in the matrix SPR struct(A).

Finally, we note that the Perron root of the network is not very sensitive to 
removal of edges that correspond to the smallest entries of the matrix SPR struct(A) ; 
see Table 5.

5.3 � Example 3: The European airlines data set

The European airlines data set consists of 450 nodes that represent European air-
ports and has 37 layers that represent different airlines operating in Europe. Each 
edge represents a flight between airports. There are 3588 edges. The network 

Table 3   Example 2: The three largest entries of the Perron root sensitivity matrix and Perron roots for 
the supra-adjacency matrix obtained by increasing the weights w(k,�)

i,j
 by ε = 0.3, and Perron roots corre-

sponding to same increase for random edges

{i,j,k,ℓ}  SPR
i,j,k,�

(B) ρnew Random edges 𝜌̃new 

{89, 67, 2, 2} 0.2407 17.7513 {103, 40, 4, 4} 17.6055
{89, 13, 2, 2} 0.2041 17.7299 {7, 188, 3, 3} 17.6055
{13, 67, 2, 2} 0.1821 17.7161 {174, 162, 3, 3} 17.6055

Table 4   Example 2: Sensitivity 
of the Perron root to structured 
increase of weights by ε = 0.3

{i,j,ℓ}  SPR struct

i,j,�
(A) ρnew Random edges 𝜌̃new 

{89, 67, 2} 0.2407 17.7513 {13, 52, 3} 17.6057
{89, 13, 2} 0.2041 17.7299 {74, 46, 2} 17.6085
{67, 13, 2} 0.1821 17.7161 {108, 117, 4} 17.6055
{67, 111, 2} 0.1315 17.6861 {98, 97, 4} 17.6055
{89, 140, 2} 0.1309 17.6858 {158, 142, 4} 17.6055
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can be represented by a supra-adjacency matrix B (6), where the block-diagonal 
matrices contain ones if an airline offers a flight between the two corresponding 
airports, and zeros otherwise. Each off-diagonal block is the identity matrix; this 
reflects the effort required to change airlines for connecting flights. The network 
can be downloaded from [2].

Similarly as Taylor et al. [21], we only include N = 417 nodes from the larg-
est connected component of the network. This component defines the supra-adja-
cency matrix B. Its largest eigenvalue is ρ(B) = 38.3714 and κ(ρ(B)) = 1. Let ε 
= 0.3 and let W be the Wilkinson perturbation. Then ρ(B + εW) = 38.6714. Thus, 
the spectral radius increases by 0.3 as expected since εκ(ρ(B)) = 0.3.

If we replace the matrix W by the matrix of all ones, normalized to be of unit 
Frobenius norm, then the spectral radius increases by only 0.091.

The smallest entry of the Perron root sensitivity matrix is 
S
PR

202,202,31,28
(B) = 5.1845 ⋅ 10

−13 . This suggests that the cost of changing from the 
Czech airline to the Niki airline at Valan Airport can be avoided without influenc-
ing the communicability of the network.

The two largest entries of the Perron root sensitivity matrix are 
S
PR

38,2,1,1
(B) = 0.0040 and SPR

157,2,1,1
(B) = 0.0034 . This indicates that the Perron 

root may be increased the most by increasing the number of flights operated by 
the Lufthansa airline between the Munich and Frankfurt Am Main airports and 
between Düsseldorf and Frankfurt Am Main airports.

Finally, we consider structured perturbations. Table 6 shows important changes 
in the Perron root when increasing the weights w�

i,j
 corresponding to the largest 

entries of the multiplex Perron root structured sensitivity matrix SPR struct(A) com-
pared to increasing weights of random existing edges by ε = 0.3. On the other 
hand, removing random edges decreases the Perron root more than removing 
edges that correspond to the smallest entries of SPR struct(A) ; see Table 7.

Table 5   Example 2: Sensitivity 
of the Perron root to removal 
of edges

{i,j,ℓ}  SPR struct

i,j,�
(A) ρnew Random edges 𝜌̃new 

{175, 162, 4} 2.0199 ⋅ 10− 12 17.6055 {67, 111, 2} 16.6289
{7, 6, 4} 4.6646 ⋅ 10− 12 17.6055 {102, 103, 4} 17.6055
{30, 17, 4} 4.7102 ⋅ 10− 12 17.6055 {11, 100, 3} 17.6054
{17, 7, 4} 4.7552 ⋅ 10− 12 17.6055 {79, 46, 2} 17.4191

Table 6   Example 3: Sensitivity 
of the Perron root to structured 
increase of weights ε = 0.3

{i,j,ℓ}  SPR struct

i,j,�
(A) ρnew Random edges 𝜌̃new 

{2, 38, 1} 0.0040 38.3738 {31, 157, 13} 38.3719
{2, 157, 1} 0.0034 38.3734 {246, 12, 2} 38.3717
{157, 38, 1} 0.0033 38.3734 {32, 164, 2} 38.3715
{50, 2, 1} 0.0026 38.3730 {27, 64, 28} 38.3719
{50, 38, 1} 0.0026 38.3729 {107, 78, 2} 38.3718
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We conclude that the Perron communicability of the European airlines network 
is not so sensitive to removing flights operated by Wideroe Airlines between several 
airports. Meanwhile, increasing the number of flights operated by the Lufthansa air-
line would increase the communicability of the network significantly.

5.4 � Example 4: General multilayer network

We consider an example of a general multilayer network, where interactions are 
allowed between different nodes in different layers. The network has 160 nodes, 6 
layers, and 148 edges that may be directed. The network can be downloaded from 
https://​github.​com/​wjj03​01/​Multi​plex-​Netwo​rks.

The Perron root of the supra-adjacency matrix B associated with the network, 
and its condition number are ρ(B) = 8.1324 and κ(ρ(B)) = 1.3277, respectively. Let 
ε = 0.3 and let W be the Wilkinson perturbation. Then the Perron root of B + εW 
is 0.3990 larger than ρ(B). This can be expected since εκ(ρ(B)) = 0.3983. The larg-
est entry of the Perron root sensitivity matrix is SPR

6,24,1,1
(B) = 0.3389 . Increasing the 

weight of the edge connecting node 6 and node 24 in layer 1 by 0.3 increases the 
Perron root by 0.0998.

We used ε = 0.3 in all computed examples. The conclusions drawn would have 
been the same if instead ε = 0.1 were used.

6 � Conclusion

This paper investigates the communicability of multilayer networks by introducing 
the concept of Perron communicability for this kind of networks. The communica-
bility is measured by the Perron root of the supra-adjacency matrix associated with 
the network. The Perron vectors of this matrix help to determine which edge weights 
to increase or reduce in order to increase or reduce, respectively, the Perron commu-
nicability the most. Our analysis also addresses the question of which edges can be 
removed without changing the Perron communicability much.
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Table 7   Example 3: Sensitivity of the Perron root to structured removal of edges

{i,j,l}  SPR struct

i,j,�
(A) ρnew Random edges 𝜌̃new 

{350, 316, 35} 1.5058 ⋅ 10− 11 38.3714 {61, 2, 1} 38.3689
{202, 144, 35} 1.5300 ⋅ 10− 11 38.3714 {64, 170, 6} 38.3695
{316, 144, 35} 1.6606 ⋅ 10− 11 38.3714 {237, 15, 4} 38.3697
{202, 270, 35} 1.4789 ⋅ 10− 11 38.3714 {71, 80, 4} 38.3704
{350, 144, 35} 3.6032 ⋅ 10− 11 38.3714 {26, 15, 9} 38.3691

https://github.com/wjj0301/Multiplex-Networks
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