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A B S T R A C T

Fifth Generation (5G) networks are becoming the norm in the global telecommunications industry, and
Mobile Network Operators (MNOs) are currently deploying 5G alongside their existing Fourth Generation
(4G) networks. In this paper, we present results and insights from our large-scale measurement study on
commercial 5G Non Standalone (NSA) deployments in a European country. We leverage the collected dataset,
which covers two MNOs in Rome, Italy, to study network deployment and radio coverage aspects, and explore
the performance of two use cases related to enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low
Latency Communication (URLLC). We further leverage a machine learning (ML)-based approach to model the
Dual Connectivity (DC) feature enabled by 5G NSA. Our data-driven analysis shows that 5G NSA can provide
higher downlink throughput and slightly lower latency compared to 4G. However, performance is influenced by
several factors, including propagation conditions, system configurations, and handovers, ultimately highlighting
the need for further system optimization. Moreover, by casting the DC modeling problem into a classification
problem, we compare four supervised ML algorithms and show that a high model accuracy (up to 99%) can be
achieved, in particular, when several radio coverage indicators from both access networks are used as input.
Finally, we conduct analyses towards aiding the explainability of the ML models.
1. Introduction and background

5G cellular systems are developed to address high bandwidth,
low latency, and massive connectivity requirements of enhanced Mo-
bile Broadband (eMBB), Ultra-Reliable Low Latency Communication
(URLLC), and massive Machine-Type Communication (mMTC) use
cases. Therefore, compared to 4G technologies, i.e., LTE and LTE-A,1
5G systems are expected to satisfy more demanding and heterogeneous
Quality of Service (QoS) and Quality of Experience (QoE) requirements,
e.g., in terms of throughput, latency, and reliability.

To support such requirements, the 3rd Generation Partnership Project
(3GPP) has standardized two main 5G deployment modes in Release
15 (Rel-15), i.e., NSA and SA [1]. The main difference is that, in its so-
called LTE-assisted options, i.e., Options 3, 3a, and 3x, 5G NSA relies on
the existing 4G core network for control plane management, while 5G
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1 For the sake of brevity, Fourth Generation (4G) Long-Term Evolution (LTE) and LTE Advanced (LTE-A) will be referred to as 4G for the rest of this paper.

SA uses its own 5G core, hence, acting independently of the 4G network
(Fig. 1). Both modes require a 5G New Radio (NR) RAN composed of
gNBs, i.e., the 5G equivalent of 4G eNBs, and corresponding Physical
Cell IDs (PCIs), i.e., a reusable cell identifier at the physical layer,
which can operate in low (<1 GHz), mid (1–6 GHz), or high (>24 GHz)
frequency bands.

In the ongoing 5G deployment stages, the majority of MNOs decided
to adopt the NSA mode, since it comprises a more straightforward
and less costly solution. However, 4G-5G co-dependence in NSA in-
troduces several challenges in terms of configurations, procedures, and
performance, that require further study and investigation. Therefore,
it is key to understand the implications of the NSA architecture on
coverage, performance, and network management (e.g., gNB placement
strategies, handovers, resource allocation, network configurations, and
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Fig. 1. A schematic diagram of 5G NSA and 5G SA architectures.

so on). In this context, the rapid deployment of 5G NSA on top of
4G networks allows for conducting empirical investigations on the
above aspects, towards revealing how deployment, configuration, and
technology features affect end user performance (Section 2 provides an
overview of such studies). Such data-driven analyses are increasingly
important for 5G systems, as they perfectly complement the popular
approach of using artificial intelligence (AI) and ML for 5G and beyond-
5G network management and optimization, for which the collection
and use of reliable datasets is required towards proper testing and
validation [2].

Among several new features introduced in Rel-15, two main tech-
nologies are used in 5G for improving performance, and thus require
specific empirical analyses: SSB beamforming, which is available for
both 5G NSA and SA architectures, and DC between LTE and 5G, which
is specific to 5G NSA Option 3, thus also referred to as EUTRA-NR DC
(EN-DC).

On the one hand, SSB beamforming is a technique that uses multiple
propagation beams (up to 8 in mid-band, as per Rel-15) to direct the 5G
signal towards different UEs; SSB beam (re-)selection depends on the
encountered network coverage conditions, and is critical for increas-
ing spectral efficiency and coverage, particularly at high frequency,
e.g., millimeter wave (mmWave) [3]. On the other hand, DC allows
a UE to be simultaneously connected to and exchange data with 4G
and 5G PCIs, aiming to increase data rate and reliability [4,5]. After
presenting our measurement setup and campaign in Section 3, our anal-
yses of the impact of SSB beamforming and DC, among other aspects,
on 5G NSA coverage and performance are reported in Sections 4 and
5, respectively.

Focusing on DC, in order to exploit the advantages of using this
technique, a key aspect to address in current 5G NSA deployments is
the definition of proper policies under which a 5G PCI is added as a
data carrier for a UE. MNOs can take into account several aspects to
define such policies, e.g., the readiness of their 5G deployments, the
congestion level on both access networks, and the actual need for a
5G carrier with respect to the traffic demand of the UE. Another key
aspect in such decision is the radio coverage experienced by the UE
when both 4G and 5G PCIs are available, which the UE reports to the
network for aiding the DC decision. This aspect is extensively analyzed
in Section 6, where we adopt a ML-based approach to model the DC
decision process followed by MNOs in 5G NSA. In the analysis, we
leverage the coverage characteristics of the nearby 4G and 5G cells
as recorded in multiple locations during our measurement campaign.
Such analysis can be utilized towards providing a better understanding
of the criteria (in terms of coverage) used to decide the DC mode. In
addition, the output models can be used by MNOs and service providers
for improving deployment and network configuration aspects in view
of the future 5G NSA/SA implementations. Another aspect where the
modeling of the DC mode can be exploited is for building DC connectiv-
ity maps. A number of different platforms, such as the OpenCellID [6],
2

RTR Netztest [7] and LTE Italy [8] use crowdsourced measurements to
collect the GPS location of a wide number of cell towers from multiple
technologies (e.g., 4G, 5G) towards building large scale coverage maps,
which in general provide information on the signal quality. However,
such approaches do not offer further information about the actual type
of connectivity a UE is likely to experience at any given location on
the map (e.g., 4G or 5G). We believe that our ML models can be used
in conjunction with the existing coverage maps solutions to provide a
more rounded view of the cellular ecosystem.

In this paper, we extend our previous contributions [9] and present
a large-scale measurement study on the commercial 5G mid-band NSA
networks of two major MNOs in Rome, Italy. In particular, we em-
pirically study deployment, coverage, and performance aspects of 5G
NSA deployments in a European country, and provide key insights
on SSB beamforming and DC technologies. In terms of QoS/QoE, we
study throughput and latency/reliability aspects, aiming to showcase
the performance achievable by 5G NSA for eMBB/URLLC-like services
in comparison with 4G. Moreover, we use supervised ML to model the
DC decision process in 5G NSA, aiming to understand whether the
addition or removal of a 5G carrier can be accurately predicted by
considering the radio coverage characteristics of nearby 4G and 5G
cells. The work takes advantage of the dataset introduced in [9] and
thoroughly described in [2], where we also provide more information
on the dataset, its availability under an open-source license, and its
potential use cases.

We make the following contributions:

• Considering three different mobility scenarios, we present a com-
parative analysis of radio coverage and network deployment
strategies between two MNOs in Italy. In addition, we study
aspects related to SSB beamforming and complement its impact
on coverage.

• We explore the performance of 4G and 5G NSA by focusing on
throughput and latency/reliability aspects, executing an extensive
analysis across different scenarios.

• We model the DC decision process in 5G NSA using a ML-based
methodology. By performing an extensive study of ML algorithms
and input features, we show that a high modeling accuracy can be
achieved by considering the radio coverage characteristics of both
access networks, while we perform additional analyses to address
model explainability aspects. Such analysis can be used by MNOs
towards improving different network aspects but also for building
and integrating DC connectivity maps on top of existing coverage
maps.

We organize the paper as follows. Section 2 presents the related
work, while Section 3 describes the experimental design and provides
details on the collected dataset. Section 4 demonstrates results on
network deployment and radio coverage, while Section 5 analyzes
QoS/QoE performance. Section 6 focuses on the modeling of the DC
decision process using supervised ML. Last, Section 7 concludes the
paper.

2. Related work

In recent years, numerous studies based on measurements of 5G
systems have surfaced. Apart for initial performance evaluations con-
ducted on dedicated testbeds, e.g., those within the scope of the EU
5G Public Private Partnership (5G-PPP) [10] and the US Platforms for
Advanced Wireless Research (PAWR) [11] initiatives, the analysis of
5G performance has been predominantly carried out on commercial 5G
networks deployed in urban contexts.

Performance baseline metrics for commercial 5G networks were
outlined in distinct studies, i.e., [12] in the US, [13] in China, and [9]
in Europe (Italy), where several aspects were investigated, including
coverage, throughput, and latency for mid-band and/or high-band
deployments, and NSA and/or SA modes, depending on the MNOs’

deployments in the regions under study.
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Table 1
Dataset statistics per scenario and grouped by MNO, application (active dataset), and RAT/session type. We report the number of samples and sessions for the passive and active
datasets, respectively. Note that the passive dataset contains additional measurements (beyond the active counterpart measurements) that we use for a more rigorous statistical
analysis.

Passive (samples) Active (sessions)

RAT 4G 5G 4G 5G partial 5G

App – Speedtest Gaming Speedtest Gaming Speedtest Gaming

MNO 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2 𝑂𝑝1 𝑂𝑝2
IS 89.6K 127K 553K 3.8M 75 49 68 107 50 21 6 9 4 45 79 48
OW 112K 114.8K 456K 2.51M 38 147 264 176 4 18 13 14 1 6 37 33
OD 41.1K 42.9K 156.5K 1.02M 10 31 93 39 10 27 21 7 1 14 76 32
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In particular, the authors in [12] conducted a measurement study
n 5G mid-band and mmWave networks in the US, thus establishing a
erformance baseline for early commercial 5G deployments. In [14],
hey extended their work by introducing a ML-based framework for
G throughput prediction leveraging gradient boosting and seq-2-seq
odels. In addition, in [15] they analyzed handover management

nd power consumption aspects, while in [16] they complemented
heir study by proposing a holistic solution for 4G/5G handover pre-
iction. In [17] they addressed the performance of volumetric video
treaming applications in the context of 5G throughput, while in [18],
hey proposed a crowdsourced platform for data collection. Likewise,
he authors in [13] analyzed commercial 5G mid-band networks in
hina, focusing on coverage, throughput, latency, and device energy
onsumption aspects. Finally, our previous work in [9] focused on the
nalysis of coverage, deployment, and performance (throughput and
atency) aspects for 5G NSA mid-band networks in Italy, and was com-
lemented by further work in [19–21], where handover implications on
erformance [19] and outdoor-to-indoor propagation in the mid-band
requency [20,21] were discussed.

In this paper, we further extend [9] with novel analyses. In terms of
overage, deployment, and performance, we provide additional insights
n the impact of different network configurations on radio coverage
nd end-user performance (e.g., uplink throughput). Furthermore, we
nclude a new analysis on the modeling of the DC mode in 5G NSA
etworks using supervised ML classification. This study showcases
n additional ML use case that departs from previous ML use cases
n the context of data-driven 5G system analysis, which are mostly
elated to 5G throughput prediction [14,22], channel propagation mod-
ling [23], and handover prediction/forecasting [16]. We highlight that
ur analysis differs from the ones related to handovers, as it focuses
n understanding how the radio coverage characteristics of both 4G
nd 5G access networks can be used for the efficient modeling of the
C mode at any given measurement location towards providing further

nsights on deployment and network configuration aspects.

. Experimental design and dataset

This section presents the measurement campaign and provides a
escription of the collected dataset.

.1. Measurement setup and configuration

We performed a large-scale measurement campaign for two major
talian MNOs, denoted as 𝑂𝑝𝑖 (𝑖 ∈ [1, 2]) in the following, offering both
G and 5G coverage in Rome, Italy, during a period of 7 weeks between
ecember 2020 and January 2021.
Measurement Scenarios. The campaign was organized in sub-

ampaigns carried out during different day types (weekdays vs. week-
nds) and times of the day. The sub-campaigns were conducted in
ifferent urban areas in Rome, encompassing Municipalities I, VII, VIII,
X, XI, XII, and XIII, with a population density ranging from 1000
Municipality IX) to 8000 (Municipality I) inhabitants per squared km.
ub-campaigns were carried out under different mobility scenarios, de-
ined as: IS, for measurements performed at the 7th floor of a residential
3

b

ig. 2. The measurement system consisting of (a) the R&S TSMA6 toolkit (scanner and
C), (b) a GPS antenna, (c) a commercial 5G-enabled device, (d) an RF antenna, and
e) a tablet for monitoring the PC (in the TSMA6 toolkit) where the ROMES software
as running.

uilding, and different locations (offices and laboratories) at the 2nd
loor of the Department of Information Engineering, Electronics and
elecommunications (DIET) of Sapienza University of Rome; OW, for
easurements performed outdoor while walking with an average speed

f 3.63 km/h; and Outdoor Driving (OD), for measurements performed
utdoor while driving a private vehicle (car) with an average speed of
7.36 km/h. In both mobile scenarios, the average speed is significantly
ffected by the encountered traffic and road conditions (e.g., traffic
ights, road congestion, etc.).
Measurement System. The campaign was carried out using the

&S TSMA6 toolkit, an integrated system composed by a network/
pectrum scanner and an embedded Intel PC running Windows. The
C was used to run the R&S ROMES software, which allowed for real-
ime visual inspection, campaign replay, and data storing/exporting. As
hown in Fig. 2, the TSMA6 toolkit was equipped with (i) a synchro-
ized GPS antenna to enable the geo-mapping of the locations where
easurements were collected, (ii) a commercial 5G-capable device

Samsung S20) for performing active measurements, and (iii) an RF
mnidirectional antenna to allow for the continuous passive scanning
f downlink control signals from operational 3GPP technologies. The
canner was configured to perform passive measurements on four 4G
ands, i.e., Bands 1 (2110-2170 MHz), 3 (1805-1880 MHz), 7 (2620-2690
Hz), and 20 (791-821 MHz), and one 5G band, i.e., Band n78 (3.3–

.8 GHz). We used the R&S Android application called Qualipoc for
unning the active measurements, i.e., QoS/QoE tests. Note that our
etup reports measurements on the millisecond granularity. In addition,
or the active measurements, an event-based measurement update is
sed, thus the reported data may be not evenly spaced in time.

.2. Measurement methodology

To evaluate the performance of the networks under test, we used
oth passive and active measurements.
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Passive Measurements. We used the scanner to detect and decode
downlink control information, aiming to infer network deployment
and coverage characteristics. Due to the high scanner sensitivity, the
collected data is representative of the coverage experienced by the UE
in the same area, but also includes information on signals that a normal
UE may not be able to detect and decode (e.g., signals from distant
PCIs), thus allowing for a finer analysis.

To represent each measurement, we use the notation 𝒎𝑓𝑟𝑒𝑞
𝑙𝑎𝑡,𝑙𝑜𝑛𝑔 , where

[𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔] and 𝑓𝑟𝑒𝑞 are the estimated geo-location coordinates pair and
the operating carrier frequency, respectively. For 4G, 𝑘 ≥ 1 measure-
ment samples were recorded at each location, where 𝑘 represents the
number of detected 4G PCIs in that location. For 5G, due to the possible
use of SSB beamforming, measurements were reported at SSB beam
level. Hence, for each 5G PCI, the scanner decoded the characteristics
from 1 ≤ 𝑙 ≤ 8 SSB beams.

Active Measurements. We performed active measurements
through a 5G-capable UE (Fig. 2), configuring it to perform QoS/QoE
throughput and delay/reliability performance tests. Such tests were
repeated multiple times during each sub-campaign. We use the term
session to refer to each repetition.

We adopted two UE modes: (i) 5G-enabled: the UE exposes its 5G
NSA capability so that the network can decide whether to connect it
to 5G PCIs along with 4G PCIs, thus making DC possible, and (ii) 5G-
disabled: the UE only exposes its 4G capability so that the network
only connects it to 4G PCIs (DC is thus not possible in this case).
Therefore, sessions were partitioned as (i) 5G, when a 5G connection
was available throughout the session, (ii) 5G Partial, when 5G was
partially available during the session (with automatic fallback on 4G),
and (iii) 4G, when only 4G was available. These latter sessions either
belong to 5G-disabled campaigns or to 5G-enabled campaigns where a
5G PCI was never added as a further data carrier for the UE (e.g., due
to 5G coverage holes). Next, we provide a brief description for each
active test.

• Throughput Test. We used the Speedtest tool by Ookla [24]
to measure the end-to-end throughput in both 5G-enabled and
5G-disabled modes, with a target server located in Rome. The
length of each session is of about 60 seconds. Speedtest uses
Transmission Control Protocol (TCP) for performing throughput
measurements, in single or multiple connections modes. We used
the second option where a proprietary algorithm is used for
determining the number of connections [25].

• Latency/Reliability Test. We performed the Interactivity test
provided by R&S Qualipoc [26] to measure latency and reliability.
The methodology adopted in this test has been taken by European
Telecommunications Standards Institute (ETSI) as the base for
defining 5G performance testing procedures [27], and has also
been approved by the International Telecommunication Union
Telecommunication Standardization Sector (ITU-T) as a standard
methodology [28].
In the test, the UE acts as a client and sends packets to a server,
which in turn reflects each packet back to the UE. The adopted
transport protocol is User Datagram Protocol (UDP), while the
higher layer protocol is Two-way Active Measurement Proto-
col (TWAMP) [29]. The rationale of the test is that a service-
dependent interactivity score (i-score [%]) can be defined as the
perceived responsiveness of a service, and evaluated as a function
of three main Key Performance Indicators (KPIs): (i) latency,
defined as the RTT of a sent-and-reflected packet, (ii) PDV, de-
fined as the difference between the latency of a packet and the
minimum latency across all the packets, as per RFC 5481 [30],
and (iii) packet loss, defined in terms of missed packet percentage,
i.e., the ratio between packets that are lost in the network or
are received after a target delay budget and the total number of
packets scheduled at the UE side. The i-score is then evaluated
by using a model that takes into account the specificity of each
4

service. More details on i-score modeling can be found in [27,28]. (
Fig. 3. Traffic pattern used for emulating real-time online gaming services.

For our tests, we used the real-time online gaming traffic pattern
shown in Fig. 3. This pattern is symmetric in DL and UL, and
emulates different phases of a typical online multi-player gaming
application, with low-to-medium data rate (from 0.1 to 1 Mbps).
The test duration is 10 seconds and the two-way delay budget is
100 ms, according to 3GPP [31]. We executed all the tests towards
a server located in Switzerland.

3.3. Dataset statistics

Table 1 shows statistical information of our dataset for each sce-
nario, MNO, application (for active measurements), and Radio Access
Technology (RAT) vs. session type for passive vs. active measurements.

Passive dataset. We used a subset of the available features, in-
cluding spatial and temporal fields, carrier frequency identifiers, and
signal strength/quality indicators, i.e., RSRP, RSRQ, and SINR. For 4G,
such indicators were measured on the Reference Signal (RS) sent by 4G
PCIs; for 5G, they were measured on the Secondary Synchronization
Signal (SSS), sent by 5G PCIs in the SSBs [20,21]. Hence, for 5G, the
dataset includes SS-RSRP, SS-RSRQ, and SS-SINR at SSB beam level.2

The 4G and 5G passive datasets consist of approximately 527K and
8.48M samples, respectively (see Table 1). The 5G dataset size differs
significantly between the two MNOs since, during our measurements,
𝑂𝑝1 was using a single SSB, while 𝑂𝑝2 adopted SSB beamforming with
up to 8 SSBs.

Active dataset. We conducted 555 Ookla Speedtest sessions (i.e.,
197 for 𝑂𝑝1 and 358 for 𝑂𝑝2) and 1158 real-time online gaming sessions
(i.e., 657 for 𝑂𝑝1 and 501 for 𝑂𝑝2). Table 1 shows the number of sessions
for different scenarios, MNOs, and session types.

4. Network deployment and radio coverage

5G NSA network deployment presents several challenges due to
4G/5G co-dependence and adopted carrier frequencies, among others,
which may lead to reduced radio coverage and possible connectivity
issues. Therefore, it is important to understand the deployment choices
of the MNOs and study radio coverage characteristics in different
scenarios.

4.1. Network deployment

In this sub-section, we present network deployment statistics for
each MNO and provide insights on the adopted SSB beamforming
strategies.

2 The open-sourced dataset also provides additional features that cover a
ariety of 5G signals, i.e., Demodulation (DM), Physical Broadcast Channel
PBCH), Primary Synchronization Signal (PSS), and SS-PBCH.
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Fig. 4. Spatial representation of the RAN deployment for 𝑂𝑝1. The blue and red
markers indicate the estimated positions of 4G eNBs and 5G gNBs, respectively. The
black line in the background indicates the UE routes during the entire measurement
campaign. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

4.1.1. Deployment density
Across all sub-campaigns, the scanner reported a total number of

313 4G and 162 5G PCIs for 𝑂𝑝1, while, the corresponding values for
𝑂𝑝2 are 407 and 158, respectively. In addition, the number of detected
eNBs for 𝑂𝑝1 and 𝑂𝑝2 are 125 and 117, respectively. The above numbers
show that 𝑂𝑝2 has a denser 4G PCI deployment compared to 𝑂𝑝1, while
the 5G deployment is rather similar for the two MNOs. At the time
of our campaign, MNOs were collectively using around 30% of the
available PCIs for 5G, hinting at an under way 5G deployment.

As a reference example, Fig. 4 shows the eNB/gNB spatial distribu-
tion for 𝑂𝑝1 (similar results were obtained for 𝑂𝑝2). We use different
colors to differentiate between the two RATs, i.e., blue for 4G eNBs
and red for 5G gNBs. The black line represents the UE OW and OD
routes during the entire measurement campaign. Note that PCI position
estimation is a feature provided by ROMES. To infer the position of
each eNB/gNB, we perform additional processing (merging) of the data.
In addition, for 5G, the position of the gNBs is approximated using the
position estimates of the 5G PCIs and the nearest 4G eNB. This is a
reasonable assumption considering that the NSA control plane is exe-
cuted by the 4G core. Therefore, the 5G RAN is in most cases co-located
with the 4G RAN, as also confirmed by online and freely-accessible
databases, e.g., LTE Italy [8].

Overall, the results reveal that, at the time of the measurement
campaign, the 5G RAN was still sparse compared to its 4G counterpart,
possibly resulting in 5G coverage holes.

4.1.2. SSB beamforming strategies
Fig. 5(a) depicts the density histogram of #d-beams, defined as the

number of detected SSBs per PCI at each location, grouped by scenarios
and colored by MNO.

We observe that, at the time of the measurement campaign, 𝑂𝑝1 did
not support SSB beamforming, hence, the percentage for #d-beams = 1
across all scenarios is 100%. On the contrary, the scanner detected up
to 8 SSB beams for the PCIs of 𝑂𝑝2. In this case, we observe that the
likelihood of detecting a single SSB beam is significantly higher than the
rest #d-beams counts. This is due to the possible presence of locations
with insufficient 5G coverage, where the high scanner sensitivity allows
for detecting spurious SSBs from likely distant PCIs. Furthermore, for
all scenarios, we see that the likelihood of detecting higher SSB beam
counts becomes small with the exception of #d-beams = 8. We believe
this is due to the presence of locations with excellent 5G coverage
(e.g., the scanner was in Line of Sight (LoS) with a given PCI), where
although SSBs are beamformed, the scanner was still able to detect
5

Fig. 5. SSB beamforming deployment analysis. Both subfigures are grouped by sce-
nario. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

and decode all the beams transmitted by surrounding PCIs (e.g., due
to signal reflection). Across scenarios, we did not notice significant
differences. Therefore, a 5G UE would not be able to detect and decode
all the available SSBs from PCIs in urban scenarios unless it operates
under good coverage conditions.

Fig. 5(b) complements the above analysis by showing the impact
of SSB beamforming on coverage, by depicting the highest perceived
SS-RSRP at each #d-beams count for 𝑂𝑝2. For each scenario, the me-
dian values follow an increasing trend as #d-beams increases, i.e., the
probability of a higher SS-RSRP increases when multiple SSB beams
are detected. We further look into the average number of 5Gs PCIs
for 𝑂𝑝2 uniquely detected at each measurement point during our sub-
campaigns. This number varies among the different scenarios, i.e., 11
for IS, 11 for OW, and 7 for OD. Even though less PCIs are reported
in the OD scenario, we observe that, on average, SS-RSRP in OW and
OD is higher than SS-RSRP in IS by approximately 3 dB. This result
indicates that a higher density of deployed and detected PCIs does not
always result in a higher coverage, as it is possible that such PCIs are
either far away or are not in LoS with the UE (e.g., due to buildings
or other obstacles). A single, stronger (in terms of RSRP) PCI would
be sufficient to achieve a better coverage, particularly when outdoor
and indoor scenarios are compared, considering the additional power
losses due to signal penetration in the indoor case [20]. We highlight
that these initial discussions on coverage are in line with the results
shown in the next sub-section, where we provide further details on both
MNOs.

Takeaway remarks: The above results provide useful insights for
better understanding the current deployment strategies followed by
the operators while pinpointing significant shortcomings, such as the
5G coverage holes (shown in Fig. 4). In addition, they reveal to what
extent 5G SSB beamforming is currently adopted by each operator as
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Fig. 6. Distribution of (a) 4G RSRP [dBm], (b) 4G RSRQ [dB], (c) 4G SINR [dB] across carrier frequencies (in a letter-value plot format and order by highest to lowest frequency)
and (d) 5G SS-RSRP [dBm] (e) 5G SS-RSRQ [dB] (f) 5G SS-SINR [dB] (in an ecdf format), for 𝑂𝑝1 and 𝑂𝑝2 and grouped by scenario. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
Table 2
Median values for 4G RSRP [dBm] and 5G SS-RSRP [dBm] for each combination of operator, scenario, and band of operation.

IS OW OD

4G
Band B20 B3 B1 B7 B20 B3 B1 B7 B20 B3 B1 B7

𝑂𝑝1 −75.7 −92.28 – −97.3 −81.99 −93.27 – −90.07 −85.57 −107.95 – −100.95
𝑂𝑝2 −92.79 −94.97 −99.12 −106.8 −77.46 −81.01 −81.29 −91.51 −83.73 −92.69 −92.98 −101.97

5G
Band n78 n78 n78

𝑂𝑝1 −96.8 −105.1 −111.7
𝑂𝑝2 −99.3 −107.2 −105.1
well as its impact on coverage. MNOs can leverage such results towards
deriving strategies for optimal 5G RAN planning and deployment.

4.2. Radio coverage

We now focus on the analysis of radio coverage, showing how it
varies between MNOs and across different scenarios.

Given a location, radio coverage is determined as the highest RSRP
(4G) and SS-RSRP (5G) perceived among all detected PCIs. To establish
a performance baseline, we first look at 4G radio coverage. Figs. 6(a),
6(b), and 6(c) depict the distribution of the observed 4G RSRP, RSRQ,
and SINR, respectively, in a letter-value plot format grouped by sce-
narios, dissected by MNOs, and colored by 4G carrier frequencies.
In the following, the analysis will focus only on the RSRP indicator,
since all three 4G parameters has a similar behavior across the three
scenarios. The upper part of Table 2 summarizes the results for RSRP by
presenting the median values for each combination of MNO, scenario
and band of operation.

We observe that the two MNOs have quite different coverage prop-
erties. In particular, for 𝑂𝑝1, the median RSRP across all bands for IS
and OW scenarios is on par (−90.51 dBm and −89.05 dBm, respectively),
while it decreases to −98.84 dBm for OD. On the contrary, 𝑂𝑝2 expe-
riences the best vs. worst RSRP conditions in OW (median value of
−82.89 dBm) vs. IS (median value of −97.5 dBm), respectively, while the
median RSRP is −92.92 dBm in OD. We also notice that, for both MNOs,
the RSRP standard deviation increases between IS and OW/OD, with
an average difference of 4 dB and 4.5 dB for 𝑂𝑝1 and 𝑂𝑝2, respectively,
which is expected considering that a mobile UE will experience higher
coverage variability. For both MNOs the median RSRP shows a slow
degradation as the UE moving speed increases, with an average RSRP
6

difference between OW and OD of 9.79 dB and 10.03 dB for 𝑂𝑝1
and 𝑂𝑝2, respectively. Last, across the available carrier frequencies,
we observe a decreasing pattern for RSRP as the frequency increases,
due to worse penetration and propagation properties of high frequency
signals.

Likewise, Figs. 6(d), 6(e), 6(f) depict the distribution of the 5G
SS-RSRP, SS-RSRQ, and SS-SINR as an empirical CDF function. As both
MNOs use a single frequency band for providing 5G service (mid-band),
data is no further dissected. To provide a fair comparison between 4G
and 5G, we focus our attention on the SS-RSRP indicator; results are
summarized in the lower part of Table 2 by presenting the median
values for each combination of operator and scenario. We observe that
for both MNOs SS-RSRP is significantly higher in IS than in OW/OD
scenarios, where drops of up to 11.6 and 7.9 dB are observed for
𝑂𝑝1 and 𝑂𝑝2, respectively. Interestingly, the results for the two MNOs
are rather different when comparing OW and OD scenarios: for 𝑂𝑝1
the coverage is markedly better in OW than in OD, with a gap of
6.6 dB, while 𝑂𝑝2 measurements show similar coverage for the two
scenarios, with a slight advantage (2.1 dB) in OD; a likely explanation
for the differences between the two MNOs ties back to the use of SSB
beamforming by 𝑂𝑝2, and further highlights its effect on coverage.

Takeaway remarks: On par with the discussions in the previous sub-
section, these results provide valuable insights on the performance of
5G mid-band radio coverage across different scenarios. Such discussions
can be further exploited towards efficient deployment and management
of the 5G NSA infrastructure, as well as a baseline for future 5G SA
deployments.

5. Application performance

In this section, we present a comparative analysis of throughput and

latency/reliability performance between 4G and 5G NSA networks.
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Table 3
Median values for DL and UL throughput, and i-score measured during our measurement campaign, for IS, OW, and OD scenarios.
Scenario Session connectivity MNO DL Thput [Mbps] UL Thput [Mbps] i-score [%]

IS 4G 𝑂𝑝1 36.30 8.740 65.50
𝑂𝑝2 31.95 22.800 61.40

5G partial 𝑂𝑝1 500.00 13.55 65.10
𝑂𝑝2 382.00 19.60 85.30

5G 𝑂𝑝1 618.50 13.90 70.70
𝑂𝑝2 455.00 23.15 86.50

OW 4G 𝑂𝑝1 27.15 23.95 58.40
𝑂𝑝2 20.70 31.60 65.20

5G partial 𝑂𝑝1 368.00 13.20 52.20
𝑂𝑝2 127.50 14.35 44.40

5G 𝑂𝑝1 527.00 18.80 71.40
𝑂𝑝2 254.50 10.70 46.00

OD 4G 𝑂𝑝1 37.40 26.00 59.55
𝑂𝑝2 27.30 24.10 67.60

5G partial 𝑂𝑝1 249.50 25.55 58.35
𝑂𝑝2 190.00 17.15 59.90

5G 𝑂𝑝1 372.00 11.30 75.75
𝑂𝑝2 340.50 17.10 83.40
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Fig. 7. DL throughput grouped by MNO and scenario. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

5.1. Throughput analysis

We start our analysis by presenting the DL and UL throughput
results.

5.1.1. Downlink throughput
Fig. 7 shows the achieved DL throughput from Speedtest sessions in

different scenarios, grouped by session type and MNO, with a summary
of the achieved median DL throughput also provided in Table 3.

We observe that, in comparison to 4G, 5G (i.e., 5G and 5G Partial)
rovides significant DL throughput gains. In IS, the 5G average median
hroughput values for 𝑂𝑝1 and 𝑂𝑝2 are 560 and 419 Mbps, respectively,
ith 𝑂𝑝1 providing the highest DL throughput value of 701 Mbps in
particular 5G Partial session. In contrast, the 4G median throughput

alues for 𝑂𝑝1 and 𝑂𝑝2 are only 36 and 32 Mbps, respectively.
The 5G throughput gain in IS reduces as the propagation conditions

hange in OW/OD, with the highest throughput variability experienced
n 5G Partial sessions. These sessions include, by definition, situations
ith unstable DC, i.e., a 5G carrier was added or removed on top of 4G

arriers during the execution of the active test session, which we also
efer in the following to as handovers from 4G to 5G, and vice versa.
herefore, these results suggest that unstable DC in NSA, e.g., due to
oor 5G coverage, can be detrimental to throughput performance, as
lso observed in [12,13]. It is interesting to observe that for both 5G
nd 5G Partial sessions the trends and the relative gaps for throughput
cross scenario follow closely those observed for SS-RSRP, and reported
n Table 2. For both MNOs the highest throughput is in fact measured in
7

he IS scenario, where both experience the highest SS-RSRP, but while P
or 𝑂𝑝1 the throughput decreases steadily as the mobility increases (as
S-RSRP does), this is not true for 𝑂𝑝2, for which the throughput in the
D scenario is slightly larger than in the OW one; this is in line with

he slightly higher SS-RSRP observed in OD vs. OW.
In order to further analyze throughput performance, Fig. 8 shows

xamples of time series collected during a 5G-enabled (a) and a 5G-
isabled (b) IS campaign for 𝑂𝑝1. The first sub-figure of Fig. 8(a)
hows that the 5G DL throughput achieves about 700 Mbps in most
f the sessions. We also observe that 5G uses a MCS index up to
7 (second sub-figure) and consequently a modulation order up to
56-QAM, which is possible in radio conditions as good as the ones
egistered in these sessions (see the high SINR in the fourth sub-figure).
ence, as reported in the third sub-figure, 5G ends up using a high
ransport Block Size (TBS) of around 50 000 Bytes, as a result of the
doption of high MCS and possibly large allocated bandwidth, i.e., the
esource blocks allocated to the UE. Assuming the UE is connected to
single PCI/carrier, the total available channel bandwidth is between

–20 MHz for 4G systems, while it can reach up to 100 MHz for 5G
id-band networks [32]. In our measurements, we observed that both
NOs allocate a channel bandwidth of 78.120 MHz for 5G (resulting

rom subtracting 940 kHz of each guard band from a 80 MHz spectrum
llocation, as per Italian regulation) as opposed to a maximum of 45
Hz for 4G as a result of varying level of Carrier Aggregation (CA)

n 4G. When such a large TBS is transported in a short Transmission
ime Interval (TTI) of 0.5 ms (due to the sub-carrier spacing of 30
Hz adopted by both MNOs, as confirmed by our measurements), 5G
chieves high throughput.

In the 5G-disabled scenario (Fig. 8(b)), 4G shows lower throughput
ompared to 5G (around 100 Mbps, see first sub-figure), due to the
maller allocated channel bandwidth in 4G, the use of lower MCS
ndex (<20) (second sub-figure) and thus modulation orders. Hence, 4G
ses a lower TBS (third sub-figure), which in turn explains the lower
hroughput. Good radio conditions were also observed for 4G (fourth
ub-figure), but to a lower extent compared to 5G, and thus impacting
he choice of MCS and modulation.

As mentioned in Section 1, 5G NSA enables DC between 4G and 5G
ATs [4]. In our dataset, we observe that, via DC, the UE is connected

o both 4G and 5G PCIs. As a result, 𝑂𝑝1 schedules DL traffic on
oth 4G and 5G carriers, leading to significant capacity contributions
n both 4G PDSCHs and 5G PDSCHs. Fig. 9(a) shows a set of time
eries recorded during an IS campaign for 𝑂𝑝1, where we see that the
L throughput at the application layer (first sub-figure) includes the
ontributions from both 5G and 4G PDSCHs (second and third sub-
igures). Fig. 9(b) shows the results in the same location for 𝑂𝑝2, where
e see that, when DC is activated, 𝑂𝑝2 predominantly uses the 5G

DSCHs, therefore, resulting in lower throughput.
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Fig. 8. An example of DL throughput for 5G (a) and 4G (b), with corresponding values of MCS, TBS, and SINR (𝑂𝑝1, IS scenario).
Fig. 9. An example of different 5G and 4G PDSCH aggregation strategies for 𝑂𝑝1 (a) and 𝑂𝑝2 (b) in a IS scenario.
.1.2. Uplink throughput
We now discuss the achieved UL throughput in different scenarios

nd for different session types and MNOs.
Fig. 10 shows the UL throughput for each scenario and MNO, with

summary of the achieved median UL throughput also provided in
able 3. First, we observe in the figure that the 5G UL throughput is
ignificantly lower than the DL counterpart (Fig. 7). This is justified
y several factors, including UE power limitations and the use of the
ime Division Duplex (TDD) scheme in the 5G mid-band under analysis.
s indicated in our dataset, the adopted TDD pattern results in a
L/UL resource split of 7:2 slots, which significantly limits the UL
pportunities. We also notice reduced MCS and modulation (up to 64-
AM), resulting in smaller TBS and decreased throughput. An example

s shown in Fig. 11 for 𝑂𝑝1 in an IS scenario.
When comparing across scenarios, we see that, in IS, the 5G median

L throughput is approximately 5 Mbps higher than 4G for 𝑂𝑝1, while
hese two values are quite similar for 𝑂𝑝2, with a higher variability
egistered for 4G. Surprisingly, for 𝑂𝑝1, we observe that both 4G and 5G
hroughput in IS is lower than the throughput measured in the mobile
utdoor scenarios (OW/OD). We explain this result by further inspect-
ng both the usage of DC in UL and the 4G/5G coverage experienced
8

y the UE during the corresponding measurement campaigns. First, we
Fig. 10. UL throughput grouped by MNO and scenario. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

notice that, when the UE is connected to both 4G and 5G PCIs via DC,
a large portion of the UL traffic is redirected on the 4G carrier, with
only a small portion of it actually being transmitted on the 5G carrier
via 5G PUSCH (Fig. 12(a) for 𝑂𝑝1). This contrasts with the use of DC in
DL for 𝑂𝑝1 (Fig. 9(a)), where we observe that the 5G PCI carries most
of the DL traffic. For 𝑂𝑝 , we instead see a predominant use of the 5G
2
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Fig. 11. An example of achieved UL throughput for 5G with corresponding values of
CS, TBS, and SINR (𝑂𝑝1, IS scenario).

PUSCH for UL data transmission (Fig. 12(b)), in alignment with the DL
case (Fig. 9(b)).

Second, we observe that the UE experiences the worst average 4G
coverage in IS compared to OW/OD, particularly in terms on RSRP (a
similar 5G coverage is instead observed across the scenarios). These two
aspects together lead to the conclusion that, for 𝑂𝑝1, the 4G coverage
has a significant impact on both 4G and 5G UL throughput due to
the pronounced use of the 4G carrier in both cases, with lower 4G
coverage leading to lower throughput, as observed for 𝑂𝑝1 in IS. In
his same scenario (𝑂𝑝1, IS), it is worth observing how, although not
ully exploited, adding the 5G carrier in DC mode helps to slightly
mprove the performance, with 5G Partial and 5G sessions having
igher throughput than 4G sessions. In addition, in Fig. 10, similarly
o the DL case, 5G performance seems more susceptible to mobility
OW/OD), likely due to coverage holes and variability. This results in
hroughput values lower than 4G, particularly for 𝑂𝑝2. Overall, our

results are in line with previous analyses [12] and suggest that MNOs
have focused on assuring significant DL throughput gains for the initial
roll out of their 5G NSA networks, with the UL counterpart requiring
further enhancement.

Takeaway remarks: Our analysis compares the performance of 4G
and 5G NSA networks, highlighting 5G’s superior downlink throughput
which is a key requirement for eMBB use cases. However, 5G’s uplink
throughput is notably lower due to factors like UE power limitations
and the TDD scheme used. Handovers between 4G and 5G due to,
for instance, variable 5G coverage can negatively impact performance.
While significant gains in downlink throughput have been achieved
with the rollout of 5G NSA networks, there is a need for further
improvements in uplink capabilities and handling mobility challenges.

5.2. Latency/reliability analysis

Beyond delivering high throughput, 5G is also expected to lower the
communication latency towards supporting URLLC. In this section, we
present the latency/reliability performance results obtained during the
real-time online gaming tests.

Figs. 13 and 14 show the obtained results in different scenarios, for
4G, 5G Partial, and 5G sessions, with a summary of the results with
respect to the i-score also provided in Table 3.

Figs. 13(a) and 13(b) show that 5G provides the lowest median RTT
9

and PDV across all scenarios and MNOs. However, due to unstable 5G d
coverage, a high variability is observed for these KPIs in 5G Partial
sessions, e.g., in OW/OD for 𝑂𝑝1. Fig. 14(c) shows the missed packet
percentage. Starting with 𝑂𝑝1, there are almost no missed packets in
either 4G or 5G sessions in all scenarios. However, there are missed
packets in both mobile scenarios during 5G Partial sessions. This clearly
shows that, similarly to the throughput case, 5G NSA handovers from
4G to 5G, and vice versa, may lead to latency/reliability performance
degradation. Fig. 14(d) (top) shows the i-score for 𝑂𝑝1. Having the
lowest median RTT and PDV, and nearly no missed packets, 5G sessions
rovide the highest i-score in all scenarios. However, while 5G Partial

sessions provide an i-score similar to 4G in IS, they also provide the
worst i-score in OW/OD due to increased missed packets. Considering
𝑂𝑝2 and referencing the bottom of Fig. 14(c), we observe almost no
acket loss in IS across all sessions. Yet, in OW/OD, both 5G Partial
nd 5G sessions experience missed packets. This is further illustrated
y the bottom of Fig. 14(d), where 5G sessions have the highest i-score

in IS, while a clear performance decrease for 5G and 5G Partial sessions
is observed in OW/OD.

As also discussed in [19], these results are tightly coupled with DC
policies in 5G NSA. Indeed, if not carefully configured, such policies can
lead to sub-optimal choices in adding/removing/using a 5G data car-
rier, eventually leading to performance losses that appear particularly
detrimental for latency/reliability-sensitive services.

Takeaway remarks: Our study highlights that while 5G outperforms
4G in stationary settings for real-time online gaming (a key URLLC
use case), its performance in mobile scenarios is less consistent. This
inconsistency is attributed to factors like handover policies in NSA and
unstable coverage. The conclusion emphasizes that while 5G shows
promise in enhancing the latency/reliability for sensitive applications
like online gaming, its full potential is not yet fully realized under
conditions involving mobility.

6. DC decision process modeling

In this section, we study the modeling of the DC mode in 5G
NSA networks leveraging a ML-based methodology. First, we describe
the post-processing of our dataset and carry out an exploratory data
analysis to gain insights about the dataset’s attributes towards under-
standing whether modeling of the DC mode can be achieved by only
leveraging traditional statistics. Next, we present the ML experimental
setup, carry out the performance evaluation, and conduct additional
analyses focusing on model explainability aspects.

6.1. Dataset post-processing

For modeling the DC mode, we merge both active and passive fea-
tures (see Section 3) into a unified dataset. In particular, we extract two
groups of variables, i.e., (i) RSRP, RSRQ, SINR, SS-RSRP, SS-RSRQ, and
SS-SINR and (ii) DC Mode (5G-Connected or 5G-NotConnected, defined
in Section 6.3). As the scanner reports the radio coverage properties
from multiple 4G/5G cells at each location, we only include the ones
offering the highest RSRP/SS-RSRP values, respectively. We further
collect additional metadata such as time, UE’s geo-location coordinates
(Latitude and Longitude), MNO name, and sub-campaign name. Such
information is essential for assigning primary keys during merging but
also for specific analyses presented in later subsections.

We only consider sub-campaigns that involve a certain degree of
mobility, i.e., OW and OD. In particular, we use data from 71 sub-
ampaigns (40 OW and 31 OD) resulting in approximately 244K mea-

surement samples (i.e., 96K for 𝑂𝑝1 and 148K for 𝑂𝑝2). Since data are
ot equally distributed between the two DC modes (33%–67% in favor
f 5G-NotConnected), we adopt the Synthetic Minority Oversampling
Echnique (SMOTE) [33] to generate synthetic samples from the mi-
ority class (5G-Connected). As a result, the sizes of the newly balanced

atasets for 𝑂𝑝1 and 𝑂𝑝2 are 125K and 195K, respectively.
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Fig. 12. An example of different 5G and 4G PUSCH aggregation strategies for 𝑂𝑝1 (a) and 𝑂𝑝2 (b) in a IS scenario.
Fig. 13. Real-time online gaming application performance grouped by MNO and
scenario. (a) shows the median RTT, (b) shows the PDV. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
10
Fig. 14. (Continued from Fig. 13) Real-time online gaming application performance
grouped by MNO and scenario. (c) shows the missed packet percentage, and (d) shows
the i-score. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 15. Letter plots for visualizing the distribution of the LTE and 5G variables,
rouped by DC mode and split per MNO; (a) 𝑂𝑝1 and (b) 𝑂𝑝2. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version
of this article.)

6.2. Exploratory data analysis

We next conduct a series of statistical tests to get a better under-
standing of the dataset’s characteristics but also to determine whether
it is feasible to differentiate between the two modes by considering
the statistical properties of the radio coverage indicators. Figs. 15(a)
and 15(b) depict the distribution of all six variables in a letter-value
plot fashion grouped per DC mode for 𝑂𝑝1 and 𝑂𝑝2, respectively. We
observe that across both MNOs, the range of each variable do not varies
in a great extent across the two DC modes, a result suggesting that it
is rather difficult to identify the DC mode by considering the range of
distribution of the radio coverage indicators.

In addition, in Fig. 16 we present the Spearman’s rank correlation
between each variable of interest using heatmap visualizations. We
make the following observations. The correlation between the DC mode
and the coverage indicators averages approximately −8×10−4 and −0.2
for 𝑂𝑝1 and 𝑂𝑝2 respectively, a result that is in line with Fig. 15. We
further observe that the correlation within the groups of LTE variables
(RSRP, RSRQ, and SINR) and 5G variables (SS-RSRP, SS-RSRQ, and SS-
SINR) is very high for both MNOs, which is expected considering that
each variable measures the strength or quality of the cellular network
signal from a slightly different perspective. On the other hand, the
correlation between the two groups varies significantly across 𝑂𝑝1 and
𝑂𝑝2 (0.406 and 0.008, respectively) which suggests that the MNOs
have distinct network configurations in terms of how the 5G RAN
is deployed on top of the existing 4G RAN. The above observation
motivates our decision to exploit supervised ML for building classifiers
towards modeling the DC decision process in 5G NSA networks.

6.3. ML modeling

Our goal is twofold; first, to determine whether it is possible to
11

accurately predict the DC mode using one or more combinations of
Fig. 16. Heatmaps representing the Spearman’s rank correlation between all available
variables split per MNO; (a) 𝑂𝑝1 and (b) 𝑂𝑝2. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

the radio coverage parameters, and second, to pinpoint the importance
and impact of the input features to the ML models. We leverage the
measurements collected during 5G-enabled sub-campaigns (described in
Section 3.2), and define the following two options for the DC Mode.

• 5G-Connected, for scenarios where the UE was instructed by the
network to establish a connection to a 5G PCI on top of an existing
connection to one or more 4G PCIs;

• 5G-NotConnected, for scenarios where the UE was not instructed
by the network to establish a connection to a 5G PCI and thus
only maintained the existing connection to one or more 4G PCIs.

We further highlight that the second option only includes scenarios
where, apart for 4G PCIs, at least one 5G PCI was also detected at
the UE’s location, thus making DC theoretically possible. We instead
exclude scenarios where no 5G PCIs were detected, since in these cases
DC cannot be achieved in practice, e.g., due to lack of 5G coverage.

Experimental setup. We test four different ML algorithms: (i)
Decision Trees (DTs), which comprise the simplest tree-based ML al-
gorithm, (ii) Support Vector Machines (SVM) [34], which are a set of
supervised learning methods that utilize the concept of kernel functions
to solve problems involving both linear but also non-linear data, (iii)
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Table 4
ML model hyperparameters.

Algorithm Hyperparameters

DT –

SVM Kernel function: Radial

XGB # trees: 100
Maximum tree depth: 6
Learning rate: 0.3
Tuning of regularization: 0
Column sampling: 1
Minimum leaf weight: 1
Row sampling: 1

RF # trees: 500
# features: Square root of total features

eXtreme Gradient Boosting (XGB) [35], which is an implementation
of distributed Gradient Boosted Decision Trees (GBDT) for improving
speed and performance, and (iv) RF [36], which adopts the concept of
ensemble learning towards improving the performance of DTs.

We evaluate the performance of our models by adopting repeated k-
fold cross-validation with three repeats and five folds, with the exception
of SVM. As SVM models are not tree-based, they require significantly
larger run time to train (≈200−300 times larger in average compared to
the other tree-based methods when using the same experimental setup).
After testing with different configurations, we found that additional
folds and/or repeats had a negligible improvement in SVM model
performance, i.e., <0.5% in terms of accuracy on average. Therefore,
onsidering the tradeoff between performance and run time, we mod-
fied the control settings to three folds and zero repeats for SVM. In
erms of parameter tuning, we set the number of trees for RF to 500

and the number of features randomly sampled in each individual tree
to the square root of the total number of available features used in each
model (default), while for SVM, we used the radial kernel function. We
summarize the hyperparameters for all four algorithms in Table 4. Last,
we split our dataset into training and testing by assigning two-thirds of
the data to the former and the remaining one-third to the latter.

6.4. Performance evaluation

The performance evaluation section is divided into three parts; ML
evaluation, where we evaluate the performance of our ML models using
classification accuracy as a metric, Model explainability, where we focus
on explainability aspects of the RF models, and Feature Contributions,
where we show the impact of each feature to the classification model.

6.4.1. ML evaluation
Prior to evaluating the performance of our models, we conduct a

feature importance analysis via Recursive Feature Elimination (RFE),3 a
ethod that uses a recursive approach to eliminate the weakest feature

ne at a time. Results show that, for 𝑂𝑝1, SINR is the most important
eature, with RSRQ and RSRP being second and third, while for 𝑂𝑝2,

RSRP is the most important, followed by SINR and SS-RSRP. For both
MNOs, RFE shows that the best performance is achieved by using five
(out of six) input features (i.e., all but SS-RSRQ) with an accuracy
of 99.07% and 99.34% for 𝑂𝑝1 and 𝑂𝑝2, respectively, obtained on
the training data.4 Even though RFE dictates the use of the above
five features for our models, we conduct the analysis using different
combinations of the input features pool. By doing so we get a more
holistic understanding of the ML models performance when less (or

3 https://www.rdocumentation.org/packages/caret/versions/6.0-
2/topics/rfe.

4 Other feature importance methods, such as the Learning Vector Quantiza-
ion (LVQ) or the Boruta algorithm (https://cran.r-project.org/web/packages/
oruta/Boruta.pdf) provide slightly different results.
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c

more, i.e. all six) features are used while leveraging the results to
validate the output of RFE.

Table 5 shows the classification accuracy, defined as the ratio
(percentage) of the number of correct predictions to the total number
of predictions, obtained for each ML model, algorithm, and MNO. The
table is divided into five groups (namely I–V ), that differ in terms of
the number of input variables used for each model: group I shows
esults obtained by using a single feature, group II considers two

features, group III moves to three features, group IV considers the
output features as indicated by RFE, i.e., five features, and finally group
V reports results obtained when all the six features are combined. For
group II, combinations of input features included both cases where the
two features are related to a single technology (labeled as LTE and
5G) or to different technologies (labeled as cross-technology). For each
group, we underline the highest accuracy model across each pair of
MNO and algorithm, and highlight the highest accuracy model across
each MNO using bold text.

Evaluation of ML algorithms. We first compare the performance
across the four ML algorithms. We observe that on average, RF out-
performs XGB, SVM, and DTs by 6.03%, 22.95%, and 29.25% for 𝑂𝑝1,
and 7.02%, 21.55%, and 25.11% for 𝑂𝑝2, respectively. In particular, in
none of the models, RF provides inferior performance than the other
three algorithms. Among the rest, XGB performs significantly better
than SVM, which, in turn, outperforms DTs by a slight margin. As
a result, we observe that tree-based models (with the exception of
DTs which act as a baseline) provide superior performance, with RF
achieving a staggering 99% for 𝑂𝑝2 when five parameters are used, a
result consistent with the RFE output.

Evaluation across MNOs. Next, we evaluate the models perfor-
ance across the two MNOs. We find that on average, the difference

etween 𝑂𝑝1 and 𝑂𝑝2 for DTs, SVM, and RF is negligible, i.e., 4.67%,
.93%, and 0.54% in favor of 𝑂𝑝2, while for XGB, the classification
ccuracy is superior for 𝑂𝑝1 by only a slight margin (0.44%). The above
esult suggests that the two MNOs follow similar policies when it comes
o network configuration as the ML models behave similarly across the
wo datasets.
Evaluation across the number of input variables. Next, we look

nto the performance of the ML models with respect to the number of
nput variables. We find that for both MNOs, the average (across all
lgorithms and models) classification accuracy increases as the number
f input variables increases. In particular, for 𝑂𝑝1, the level of increase
etween groups I and II, II and III, III and IV, and IV and V is
.26%, 4.15%, 3.72%, and 2.47%, respectively. Likewise, for 𝑂𝑝2, the
orresponding difference values are 9.8%, 4.01%, 4.22%, and 1.12%.
or group I, both XGB and RF provide the best performance when RSRP
s used as the input variable regardless of the MNO. On the other hand,
Ts and SVM perform best when SS-RSRP (𝑂𝑝1) or SS-SINR (𝑂𝑝2) are
sed as input. Likewise, for groups II and III, both XGB and RF are
uperior when LTE variables are used as input (i.e., RSRP and SINR),
hile the remaining two algorithms achieve their highest accuracy
hen 5G variables are used. Regardless, the highest performance is
ffered by RF when five parameters are considered, with an accuracy
f 98.6% and 99% for 𝑂𝑝1 and 𝑂𝑝2, respectively. The above results
ighlight the significance of considering the parameters dictated by
FE as input to any of the ML models under study, as each of these
arameters, even not equally important, provides valuable information
o the model and considerably increase the classification accuracy.
Spatial mapping of the model predictions. We now focus on the

F model that includes all six variables and use a geo-spatial visual-
zation to study how the predictions generated by the model distribute
n the space. Fig. 17 shows an example of an OW sub-campaign. We
se a different color scheme to represent each predicted DC mode,
.e., orange for 5G-NotConnected, and purple for 5G-Connected. We draw
lack circles to represent the regions where RF predicted the wrong

lass.

https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/rfe
https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/rfe
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
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Table 5
Classification accuracy (%) per MNO and ML algorithm. The table is further grouped according to the number of input variables. For each group,
the best model across each MNO and ML algorithm is highlighted using underlining, while the best model across each MNO is highlighted
using bold text.
Input feature(s) 𝑂𝑝1 𝑂𝑝2

DT SVM XGB RF DT SVM XGB RF

I. One input variable

RSRP 59.3% 60.7% 79% 86.2% 61.1% 60.9% 76.3% 84.5%
RSRQ 54.3% 56% 70.1% 73.4% 55.2% 55.4% 67.8% 71.5%
SINR 55.4% 55.6% 75.9% 81.5% 54.3% 55.1% 71.9% 78.2%
SS-RSRP 59.7% 60.9% 68.9% 70.9% 60.8% 61.4% 69.5% 72%
SS-RSRQ 56.8% 57.6% 64.8% 65.3% 61.4% 61.5% 68.3% 68.4%
SS-SINR 54.1% 56.1% 66.8% 68.3% 65.2% 64.9% 72.1% 72.6%

II. Two input variables

LTE

RSRP + RSRQ 59.3% 63.3% 86.5% 94.5% 61.1% 61.4% 85.5% 95.4%
RSRP + SINR 57.2% 65% 89.2% 94.7% 61.1% 62.5% 85.5% 95.5%
RSRQ + SINR 54.9% 60.1% 88.1% 94.4% 54.6% 59% 85.7% 95.1%

5G

SS-RSRP + SS-RSRQ 59.7% 66.1% 79.6% 87.8% 66.4% 69.2% 79.9% 87.5%
SS-RSRP + SS-SINR 61.7% 66.6% 80.7% 91.9% 66.5% 69.4% 80.6% 93%
SS-RSRQ + SS-SINR 56.5% 68.5% 79% 83.1% 66.7% 73.3% 80.8% 84.5%

Cross-technology

RSRP + SS-RSRP 59.7% 66.1% 84.3% 94.2% 63.5% 68% 83.4% 95%
RSRQ + SS-RSRQ 54.6% 60.2% 81.3% 88.3% 61.4% 64.5% 80.8% 89.1%
SINR + SS-SINR 56.5% 60.5% 82% 94% 66.7% 68.4% 82.9% 94.5%

III. Three input variables

RSRP + RSRQ + SINR 57.2% 67.7% 90.8% 96.1% 61.1% 65% 89.5% 96.5%
SS-RSRP + SS-RSRQ + SS-SINR 61.7% 72.7% 85.3% 95.1% 69.3% 76.8% 86.4% 96%

IV. Five input variables (RFE output)

All (except SS-RSRQ) 57.9% 76.7% 95% 98.6% 67% 78.5% 92.7% 99%

V. Six input variables

All 64.5% 80.3% 94.8% 98.5% 66.5% 82.3% 94.1% 98.8%
Fig. 17. GPS traces for an example OW sub-campaign. The color of each point
represent RF’s predicted DC mode, i.e., orange for 5G-NotConnected, and purple for
5G-Connected. Black circles highlight areas where the model generates wrong DC mode
predictions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

We observe that, in this example, the errors are localized in two
particular regions and are not dispersed across the route. Given that the
RF model achieves an accuracy up to 98.8% and thus it can be used to
predict the DC mode based on the underlying radio conditions of the
nearby cells, we argue that such a mapping can be particularly helpful
for MNOs or service providers towards identifying regions where such
scenarios of unclear DC mode are likely to take place. Such insights
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can be then used for improving deployment and network configuration
aspects for future 5G NSA deployments.

6.4.2. Model explainability
The concept of model explainability refers to a set of methods that

allow humans to better understand and explain the decisions generated
by a ML model. Model explainability not only solves the ’black box’
aspect of many ML algorithms, but it can also aid towards debugging
and troubleshooting during development.

We focus on explainability aspects of the RF models, considering
its superior performance compared to the other three ML algorithms.
The most common approach when it comes to explaining the decision-
making of a RF model is by plotting its decision boundaries, which are
defined as surfaces used to separate data points belonging to a different
class. Visualization of decision boundaries is possible by either using
a 2-D or a 3-D plane. Figs. 18(a) and 18(b) depict the 2-D decision
boundaries with respect to the best performing ML model of group II
(Table 5), for 𝑂𝑝1 and 𝑂𝑝2, respectively, where the y-axis is the RSRP
while the x-axis is the SINR. We use a different color to highlight each
decision plane along with the data points belonging to each of the
two classes, i.e., red for 5G-Connected and blue for 5G-NotConnected.
To reduce visual clutter, we only include test data from a single OD
campaign. Note that even though the dataset provides the geographical
information (i.e., latitude and longitude) for each measurement point,
these are not part of the model’s decision making, thus, are not included
in the plots.

We observe that for both 𝑂𝑝1 and 𝑂𝑝2 decision boundaries form
multiple ‘island’ areas of variable sizes. These areas do not seem to
follow any particular defined patterns, which does not allow for using
any sort of threshold values to determine either of the two classes; a
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Fig. 18. Decision boundaries of a RF model that uses two independent variables,
i.e., RSRP, and SINR, for 𝑂𝑝1 (a) and 𝑂𝑝2 (b). The color indicates the DC mode,
i.e., blue for 5G-NotConnected and red for 5G-Connected. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

result that further highlights the complexity of the DC decision prob-
lem. Across the two MNOs, we observe that decision boundaries present
some differences only distinguishable in a high level. For example, for
𝑂𝑝1, one of the largest 5G-NotConnected ‘island’ areas is in the lower
range of both SINR and RSRP, i.e., [−20,−12] dB and [−130,−110] dBm,
respectively, whereas, for 𝑂𝑝2, data points within the same range have
a higher probability of being classified as 5G-Connected. Even though
similar observations can be made for other areas of the figures in a
high level, precisely characterizing the operating points of each class is
a rather hard task.

6.4.3. Feature contributions
Following the model explainability route, next we measure the

impact of each feature to the RF model by looking into aspects related
to the concept of feature contributions. We adopt Forest Floor [37],
a novel methodology for interpreting and visualizing the decisions
generated by a RF model. Forest Floor relies on feature contributions,
which are computed by leveraging information from the tree network
of a RF model. RF assigns a probability value to each class and then
uses a majority vote mechanism to reach a decision. Therefore, feature
contributions are defined as the change of the predicted probability
given to each class. Figs. 19 and 20 show the results obtained by
Forest Floor for two example features (RSRP and SS-RSRP) for 𝑂𝑝1 and
𝑂𝑝2, respectively. The y-axis shows the additive change of predicted
probability for each data sample and for each of the two classes, while
the x-axis shows the value range for each feature. The sum of changed
probability across the two classes for any data sample adds to zero.

We observe that the change in the predicted probability for RSRP
shows the highest variance across the two classes. Between the two
MNOs, the probability change (y-axis) for each class follows a different
pattern. In particular, for 𝑂𝑝1, measurement data with reported RSRP
between −130 and −105 dBm and −90 and −75 dBm are more likely
to be classified as 5G-NotConnected, while for 𝑂𝑝 , the respective RSRP
14
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Fig. 19. Feature contributions for two example features (RSRP and SS-RSRP), class (5G-
Connected, 5G-NotConnected) and the training data of 𝑂𝑝1. The y-axis shows the additive
change of predicted probability for each data sample and for each of the two classes,
while the x-axis shows the value range for each feature. A seventh degree polynomial
curve is fit for data shown in each subplot, in order to improve the readability of the
results. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

range values are between −90 and −65 dBm. Likewise, other features
tend to have different impact across the two MNOs. Overall, we observe
that the change of the predicted probability (y-axis) for each class for
the SS-RSRP is in average smaller than RSRP, a result that is expected
considering that 4G indicators, when used as single predictors in RF
models (and XGB), yield the superior performance (see Table 5). How-
ever, recall that both figures are visualized using extreme smoothing
of degree seven. Therefore, the depicted results should only be used
to provide a high-level view of the importance of each feature as the
underlying data (blurred in all figures) presents much more complex
patterns.

Takeaway Remarks: The above analysis indicates that ML can be
efficiently used for predicting the DC mode with an accuracy of up to
99%. Our analyses demonstrate that the combination of five (out of
six) radio coverage indicators is instrumental for achieving such a high
accuracy. In terms of model explainability, on the one hand, we observe
that the analysis of the RF decision boundaries shows that the decision
making of the algorithm is extremely complex, thus not allowing to
clearly characterize the operating points of each DC Mode class. On
the other hand, the results of the Forest Floor analysis shows that it is
possible to determine the likelihood of predicting a particular class by
looking at specific ranges of values for the input parameters. This can
be helpful towards better understanding to what extent each parameter
contributes to the decision output of each ML algorithm.
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Fig. 20. Feature contributions for two example features (RSRP and SS-RSRP), class (5G-
Connected, 5G-NotConnected) and the training data of 𝑂𝑝2. The y-axis shows the additive
change of predicted probability for each data sample and for each of the two classes,
while the x-axis shows the value range for each feature. A seventh degree polynomial
curve is fit for data shown in each subplot, in order to improve the readability of the
results. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

7. Conclusion

This paper presents the first empirical study on network coverage,
deployment, and performance of 5G NSA deployments in a European
country. We used the collected dataset to study the above aspects
for two MNOs in Italy, and make the dataset open-source for further
investigation. In addition, we present a ML-based methodology for
modeling DC mode using as input the radio coverage characteristics
of both 4G and 5G access networks.

Results show that disparate 5G NSA deployment strategies by MNOs
lead to different radio coverage performance; among others, we ob-
serve that SSB beamforming is effective for improving radio coverage.
In terms of QoS/QoE performance, 5G provides significant downlink
throughput gains compared to 4G, which is a key requirement for
eMBB services. From a URLLC latency/reliability perspective, users
may also benefit from using 5G NSA, but coverage holes lead to high
performance variability and degradation. Overall, 5G gains over 4G are
still unstable particularly in scenarios involving mobility, thus requiring
further enhancements and optimization of the NSA architecture and
corresponding configurations and procedures. Last, we show that RF
can identify the DC mode by achieving an accuracy of up to 99% for
𝑂𝑝2 using as input the radio coverage parameters dictated by RFE,
a result that can be used towards building DC connectivity maps on
top of existing coverage maps but also to assist MNOs to pinpoint
15
potential configuration and deployment issues in their 5G NSA network
infrastructures.

As a future work, we intend to include more application scenarios,
such as video streaming in our active measurements analysis. We also
plan to conduct more extensive studies on handovers and DC mode, as
well as novel empirical analyses of 5G SA performance.
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