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A real scalar field coupled to a fermion via a Yukawa term can evade no-go theorems preventing solitonic
solutions. For the first time, we study this model within general relativity without approximations, finding
static and spherically symmetric solutions that describe fermion soliton stars. The Yukawa coupling
provides an effective mass for the fermion, which is key to the existence of self-gravitating relativistic
solutions. We systematically study this novel family of solutions and present their mass-radius diagram and
maximum compactness, which is close to (but smaller than) that of the corresponding Schwarzschild
photon sphere. Finally, we discuss the ranges of the parameters of the fundamental theory in which the
latter might have interesting astrophysical implications, including compact (sub)solar and supermassive
fermion soliton stars for a standard gas of degenerate neutrons and electrons, respectively.
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I. INTRODUCTION

Solitonic solutions play a crucial role in many field
theories, in particular in general relativity. In the context
of the latter, starting from Wheeler’s influential idea of
geons [1], considerable attention has been devoted to find
minimal models allowing for self-gravitating solitonic
solutions [2]. The prototypical example is that of boson stars
[3–5] (and of their Newtonian analog, Q-balls [6]), which
are self-gravitating solutions to the Einstein-Klein-Gordon
theory with a complex and massive scalar field (see [7–9] for
some reviews). If the scalar field is real, no-go theorems
prevent the existence of solitonic solutions for very generic
classes of scalar potential [10,11]. Indeed, the Einstein-Klein-
Gordon theory contains time-dependent solutions known as
oscillatons which, however, decay in time [12].
Solitonic configurations were constructed also with

nonzero spin fields. A prototypical example is given by
Dirac stars [13], which are solutions of the Einstein-Dirac
equations with two neutral fermions. An example of self-
gravitating configurations supported by a complex spin-1
field is provided by Proca stars [14]. More complex
theories, in which both fermion and vector fields are
present, were also studied; see, e.g., [15].
About 40 years ago, Lee and Pang proposed a model in

which a real scalar field with a false-vacuum potential is
coupled to a massive fermion via a Yukawa term [16].
Working in a thin-wall limit in which the scalar field is a step
function, for certain parameters of the model they obtained
approximated solutions describing fermion soliton stars.
The scope of this paper is twofold. On the one hand, we

show that fermion soliton stars exist in this model also

beyond the thin-wall approximation, and we build exact
static solutions within general relativity. On the other
hand, we elucidate some key properties of the model, in
particular the role of the effective fermion mass provided
by the Yukawa coupling. Then, we explore the model
systematically, presenting mass-radius diagrams and the
maximum compactness of fermion soliton stars for vari-
ous choices of the parameters, showing that in this model
a standard gas of degenerate neutrons (respectively,
electrons) can support stable (sub)solar (respectively,
supermassive) fermion soliton stars with compactness
comparable to that of ordinary neutron stars. This is
particularly intriguing in light of the fact that some of the
detected LIGO-Virgo events (e.g., GW190814 [17] and
GW190521 [18], in the lower and upper mass gaps,
respectively) might not fit naturally within the standard
astrophysical formation scenarios for black holes and
neutron stars and are compatible with more exotic origins
(e.g., [19]). Our analysis paves the way for a detailed
study of the phenomenology of fermion soliton stars as a
motivated model of exotic compact objects [20]. Finally,
in Appendix, we explore the connection of the model to a
very peculiar scalar-tensor theory.
We use the signature ð−;þ;þ;þÞ for the metric, adopt

natural units (ℏ ¼ c ¼ 1), and define the Planck mass
through G ¼ m−2

p .

II. SETUP

We consider a theory in which Einstein gravity is
minimally coupled to a real scalar field ϕ and a fermion
field ψ . The action can be written as [16]
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂
μϕ∂μϕ − UðϕÞ

þ ψ̄ðiγμDμ −mfÞψ þ fϕψ̄ψ

�
; ð1Þ

where the scalar potential is

UðϕÞ ¼ 1

2
μ2ϕ2

�
1 −

ϕ

ϕ0

�
2

; ð2Þ

and features two degenerate minima at ϕ ¼ 0 and ϕ ¼ ϕ0.
The constant μ (respectively, mf) is the mass of the scalar
(respectively, fermion). The Yukawa interaction1 is con-
trolled by the coupling f. The fermionic field has a Uð1Þ
global symmetry which ensures the conservation of the
fermion number N. It should be noted that Eq. (1) describes
the action of a local field theory and, therefore, we expect
that all physics derived from it will naturally respect
causality conditions (that, on the contrary, could be violated
in the absence of such underlying formulation). Also, we
point out that the matter Lagrangian in Eq. (1) describes a
renormalizable field theory; this is in contrast to the widely
used model describing solitonic boson stars [22–25] in
which the scalar potential is nonrenormalizable and field
values should not exceed the limit of validity of the
corresponding effective field theory. The covariant deriva-
tive Dμ in Eq. (1) takes into account the spin connection of
the fermionic field.
From the quadratic terms in the fermion Lagrangian, it is

useful to define an effective mass,

meff ¼ mf − fϕ: ð3Þ
We will focus on scenarios in which the fermion becomes
effectively massless (i.e., meff ¼ 0) when the scalar field
sits on the second degenerate vacuum, ϕ ¼ ϕ0. This
condition implies fixing:

f ¼ mf

ϕ0

: ð4Þ

As we shall discuss, we are mostly interested in configu-
rations where the scalar field makes a transition between the
false2 vacuum (ϕ ≈ ϕ0) to the true vacuum (ϕ ≈ 0).3

A. Thomas-Fermi approximation

The description of a fermionic field in Eq. (1) requires
treating the quantization of spin-1=2 particles in curved
spacetime. In particular, one should deal with the problem
of finding the ground state of an ensemble of N fermions
in curved spacetime (see, e.g., [13,28]). However, in the
macroscopic limit N ≫ 1, it is convenient to adopt a mean-
field approach, which in this context is called the Thomas-
Fermi approximation.4 The latter relies on the assumption
that the gravitational and scalar fields are slowly varying
functions with respect to the fermion dynamics.
Consequently, they do not interact directly with the (micro-
scopic) fermionic field ψ , but with average macroscopic
quantities. In practice, one can divide the entire three-space
into small domains which are much larger than the de
Broglie wavelength of the typical fermion, but sufficiently
small that the gravitational and scalar fields are approx-
imately constant inside each domain. Then, every domain
is filled with a degenerate (i.e., the temperature is much
smaller than the chemical potential) Fermi gas, in such a
way that the Fermi distribution is approximated by a step
function, nk ¼ θðkF − kÞ, where kFðxμÞ is the Fermi
momentum observed in the appropriate local frame.
The energy density of the fermion gas reads

W ¼ 2

ð2πÞ3
Z

kF

0

d3kϵk; ð5Þ

where ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
. Notice that W ¼ WðxμÞ through

the spacetime dependence of kF and meff . In an analogous
way, we obtain the fermion gas pressure P and the scalar
density S ¼ hψ̄ψi as

P ¼ 2

ð2πÞ3
Z

kF

0

d3k
k2

3ϵk
; ð6Þ

S ¼ 2

ð2πÞ3
Z

kF

0

d3k
meff

ϵk
: ð7Þ

It it easy to show that these quantities satisfy the identity

W − 3P ¼ meffS: ð8Þ

In the Thomas-Fermi approximation, the fermions enter
Einstein’s equations as a perfect fluid characterized by an
energy-momentum tensor of the form

T ½f�
μν ¼ ðW þ PÞuμuν þ Pgμν; ð9Þ

while they also enter the scalar field equation through the
scalar density S. Indeed, by varying the action in Eq. (1)

1See also Ref. [21] for a recent work on a condensed dark
matter in a model with a Yukawa coupling between a fermion and
a scalar particle.

2Although the minima at ϕ ¼ 0 and ϕ ¼ ϕ0 are degenerate, we
shall call them true and false vacuum, respectively, having in
mind the generalization in which the potential UðϕÞ can be
nondegenerate, i.e., Uðϕ0Þ ≠ Uð0Þ; see Fig. 1.

3Recently, Ref. [26] studied a related model in which dark
fermions are trapped inside the false vacuum during a first-order
cosmological phase transition, subsequently forming compact
macroscopic “Fermi-balls,” which are dark matter candidates and
can collapse to primordial black holes [27].

4We point the interested reader to Appendix of Ref. [16] for a
complete derivation of the Thomas-Fermi approximation in
curved spacetime, while here we summarize the main properties.
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with respect to ϕ, we obtain a source term of the form
≈fψ̄ψ . Within the Thomas-Fermi approximation, this
becomes

fψ̄ψ → fhψ̄ψi≡ fS; ð10Þ

which is consistent with the fact that, in the fluid descrip-
tion, the scalar field equation couples to fermions through a
term proportional to the trace ðT ½f�Þμμ ¼ −W þ 3P.

1. Equations of motion

It is now possible to write down the equations of motion
for our theory in covariant form:

Gμν ¼ 8πGTμν;

□ϕ −
∂U
∂ϕ

þ fS ¼ 0; ð11Þ

where

Tμν ¼ −2
�
∂Lϕ

∂gμν
−
1

2
gμνLϕ

�
þ T ½f�

μν ; ð12Þ

in which Lϕ is the Lagrangian density of the scalar field. In
order to close the system, we need an equation describing the
behavior of kF. This is obtained by minimizing the energy of
the fermion gas at a fixed number of fermions [16].
From now on, for simplicity, we will consider spherically

symmetric equilibrium configurations, whose background
metric can be expressed as

ds2¼−e2uðρÞdt2þe2vðρÞdρ2þρ2ðdθ2þsin2θdφ2Þ; ð13Þ

in terms of two real metric functions uðρÞ and vðρÞ.
Furthermore, we will assume that the scalar field in its
equilibrium configuration is also static and spherically
symmetric, ϕðt; ρ; θ;φÞ ¼ ϕðρÞ. Being the spacetime static
and spherically symmetric, kF ¼ kFðρÞ can only be a
function of the radial coordinate.

2. Fermi momentum equation

In the Thomas-Fermi approximation the fermion gas
energy can be written as [16]

Ef ¼ 4π

Z
dρρ2euðρÞþvðρÞW; ð14Þ

while the number of fermions is

N ¼ 4

3π

Z
dρρ2evðρÞk3FðρÞ: ð15Þ

To enforce a constant number of fermions, we introduce the
Lagrangian multiplier ωF and define the functional

E0
f½kF� ¼ Ef½kF� − ωFðN½kF� − NfixedÞ; ð16Þ

which is minimized by imposing

δE0
f½kF�

δkFðρÞ
¼ 0: ð17Þ

This directly brings us to the condition

ϵF ¼ e−uωF; ð18Þ

where ϵF ¼ ϵkF is the Fermi energy. Thus, ωF coincides
with the Fermi energy in flat spacetime while it acquires a
redshift factor otherwise. Since ϵF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

eff

p
, Eq. (18)

in turn gives

k2FðρÞ ¼ ω2
Fe

−2uðρÞ − ðmf − fϕðρÞÞ2: ð19Þ

B. Dimensionless equations of motion
and boundary conditions

In order to simplify the numerical integrations, as well as
physical intuition, it is convenient writing the field equa-
tions in terms of dimensionless quantities. To this end,
we define

x ¼ kF
mf

; y ¼ ϕ

ϕ0

; r ¼ ρμ: ð20Þ

Therefore, the potential and kinetic terms become

U ¼ μ2ϕ2
0

�
1

2
y2ð1 − yÞ2

�
≡ μ2ϕ2

0ŨðyÞ;

V ¼ μ2ϕ2
0

�
1

2
e−2vðrÞð∂ryÞ2

�
≡ μ2ϕ2

0ṼðyÞ; ð21Þ

while Eqs. (5)–(7) can be computed analytically as

W ¼ 2

ð2πÞ3
Z

kFðρÞ

0

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmf − fϕðρÞÞ2

q

¼ m4
eff

8π2

h
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
ð1þ 2s2Þ − log

�
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p �i
≡m4

fW̃ðx; yÞ; ð22aÞ

P ¼ 2

ð2πÞ3
Z

kFðρÞ

0

d3kk2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmf − fϕðρÞÞ2

q
¼ m4

eff

8π2

�
s

�
2

3
s2 − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
þ log

�
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p ��
≡m4

fP̃ðx; yÞ; ð22bÞ
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S ¼ 2

ð2πÞ3
Z

kFðρÞ

0

d3k
mf − fϕðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðmf − fϕðρÞÞ2
q

¼ m3
eff

2π2

h
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
− log

�
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p �i
≡m3

fS̃ðx; yÞ; ð22cÞ

where W̃; P̃; S̃ are dimensionless quantities and we intro-
duced s≡ x=ð1 − yÞ for convenience. Remarkably, these
expressions are the same as in the standard case of a
minimally coupled degenerate gas with the substitution
mf → meff .
As we shall discuss in Appendix, this property will be

important when comparing this model to a scalar-tensor
theory. Note that the massless limit, meff → 0, should be
taken carefully so as not all the dependence on meff is
expressed in the dimensional prefactor. By performing the
first integrals in Eqs. (22a)–(22c) in the meff → 0 limit,
we obtain W ¼ P=3, as expected for an ultrarelativistic
degenerate gas.
It is convenient to further introduce the dimensionless

combination of parameters

Λ ¼
ffiffiffiffiffiffi
8π

p
ϕ0

mp
; η ¼ mf

μ1=2ϕ1=2
0

: ð23Þ

Finally, the field equations (i.e., the Einstein-Klein-Gordon
equations with the addition of the Fermi momentum
equation) take the compact form

e−2v − 1− 2e−2vr∂rv¼ −Λ2r2½η4W̃þ Ũþ Ṽ�;
e−2v − 1þ 2e−2vr∂ru¼Λ2r2½η4P̃− Ũþ Ṽ�;

e−2v
�
∂
2
ryþ

�
∂ru− ∂rvþ

2

r

�
∂ry

�
¼ ∂Ũ

∂y
− η4S̃;

x2 ¼ ω̃2
Fe

−2uðrÞ − ð1− yÞ2;
ð24Þ

where Ũ, Ṽ, P̃, W̃, and S̃ depend on x, y, and r, and we also
introduced ω̃F ¼ ωF=mf. Static and spherically symmetric
configurations in the model (1) are solutions to the above
system of ordinary differential equations. For clarity, we
summarize the relevant parameters in Table I.

1. Absence of ϕ= const solutions

Note that, because U ¼ 0 ¼ dU=dϕ in both degenerate
vacua, it is natural to first check what happens when
ϕ ¼ ϕ0 ¼ const or if ϕ ¼ 0. The former case [i.e.,
yðρÞ ¼ 1] is an exact solution of the scalar equation and
reduces Einstein’s equations to those of gravity coupled to a
degenerate gas of massless [since meffðϕ0Þ ¼ 0] fermions.

In this case, self-gravitating solutions do not have a finite
radius [29]. On the other hand, due to the Yukawa coupling,
in the presence of a fermion gas ϕ ¼ 0 is not a solution to
the scalar field equation.
Thus, self-gravitating solutions to this model must have

a nonvanishing scalar-field profile. In particular, we will
search for solutions that (approximately) interpolate
between these two vacuum states.

2. Boundary conditions at ρ = 0

Regularity at the center of the star (ρ ¼ 0) imposes the
following boundary conditions:

vðr ¼ 0Þ ¼ 0; uðr ¼ 0Þ ¼ 0;

yðr ¼ 0Þ ¼ 1 − ϵ; ∂ryð0Þ ¼ 0;

P̃ðr ¼ 0Þ ¼ P̃c; ð25Þ

where ϵ > 0 will be fixed numerically through a shooting
procedure in order to obtain asymptotic flatness.
The central value of the pressure P̃c is fixed in terms of

ω̃F and ϵ through the relation

P̃c ¼
1

24π2

 
ω̃F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃2
F − ϵ2

q
ð2ω̃2

F − 5ϵ2Þ

þ 3ϵ4arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ϵ2

ω̃2
F

s !
; ð26Þ

TABLE I. List of the model parameters, the fermion soliton
star parameters, and the dimensionless quantities adopted to
express the system of equations in compact form. Due to the
condition in Eq. (4), in our case only three model parameters
are independent.

Model parameters

μ Scalar field mass
ϕ0 Vacuum expectation value of the false vacuum
mf Fermion mass
f Yukawa coupling

Solution parameters (boundary conditions)

Pc Fermion central pressure
ϵ ¼ 1 − ϕ=ϕ0 Central scalar field displacement

Dimensionless parameters/variables

Λ ¼ ffiffiffiffiffi
8π

p
ϕ0=mp Dimensionless vacuum expectation value

of the false vacuum
η ¼ mf=

ffiffiffiffiffiffiffiffi
μϕ0

p
Scale ratio

x ¼ kF=mf Fermi momentum
y ¼ ϕ=ϕ0 Scalar field
r ¼ ρμ Rescaled radius
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obtained computing Eq. (22b) in ρ ¼ 0. In practice, in a
large region of the parameter space one obtains ϵ ≪ 1.
In this limit, Eq. (26) reduces to P̃c ≈ ω̃4

F=12π
2.

Finally, since a shift uðρÞ → uðρÞ þ const in Eq. (24)
merely corresponds to a shift of the fermionic central
pressure, we have imposed uðρ ¼ 0Þ ¼ 0 without loss of
generality.

3. Definitions of mass, radius, and compactness

We define the mass of the object as

M ¼ mðρ → þ∞Þ
G

; ð27Þ

where the function mðρÞ is related to the metric coefficient
vðρÞ by e2vðρÞ ¼ 1–2mðρÞ=ρ and can be interpreted as the
mass energy enclosed within the radius ρ. In terms of
the dimensionless variables introduced in Eq. (20), it is
convenient to define m̃ðrÞ ¼ μmðρÞ. Thus, one obtains

μM
m2

p
¼ m̃ðrÞ: ð28Þ

Notice that, in the asymptotic limit r → ∞, Eq. (28)
becomes independent of the radius.
Typically, the radius of a star is defined as the value of

the radial coordinate at the point where pressure drops to
zero. As we shall discuss, in our case the fermion soliton
stars will be characterized by a lack of a sharp boundary.
Analogously to the case of boson stars [9], one can define
an effective radius R within which 99% of the total mass
is contained. (As later discussed, we shall also define the
location Rf where only the pressure of the fermion gas
vanishes.) Finally, we can define the compactness of the
star as GM=R.

III. SOME PRELIMINARY THEORETICAL
CONSIDERATIONS

Before solving the full set of field equations numerically,
in this section we provide some theoretical considerations
that might be useful to get a physical intuition of the model.

A. On the crucial role of fermions
for the existence of solitonic stars

1. Classical mechanics analogy

In order to understand why the presence of fermions in
this theory plays a crucial role for the existence of stationary
solutions, it is useful to study a classical mechanics analogy
for the dynamics of the scalar field [6].
For the moment we consider flat spacetime.

Furthermore, we start by ignoring the fermions (we will
relax this assumption later on). The set of Eqs. (24)
drastically simplifies to a single field equation

∂
2
ρϕþ 2

ρ
∂ρϕ −

∂U
∂ϕ

¼ 0: ð29Þ

To make the notation more evocative of a one-dimensional
mechanical system, we rename

ρ → t; ϕðρÞ → ϕðtÞ; Û ≔ −U; ð30Þ

in such a way that the equation of motion becomes

ϕ00ðtÞ ¼ −
∂Û
∂ϕ

−
2

t
ϕ0ðtÞ; ð31Þ

which describes the one-dimensional motion of a particle
with coordinate ϕðtÞ in the presence of an inverted
potential, Û, and a velocity-dependent dissipative force,
−ð2=tÞϕ0ðtÞ. Within this analogy, the boundary (or initial)
conditions (25) simply become

ϕðt ¼ 0Þ ¼ ϕ0 − δϕ; ϕ0ðt ¼ 0Þ ¼ 0; ð32Þ

where ϕ0 is the position of the false vacuum and δϕ ¼ ϵϕ0.
As we impose zero velocity at t ¼ 0, the initial energy
is Eð0Þ ¼ Ûðϕ0 − δϕÞ. The energy EðtÞ of the particle
at a time t is obtained by subtracting the work done by
the friction:

EðtÞ − Eð0Þ ¼ LðtÞ; ð33Þ

where

LðtÞ ¼ −2
Z

t

0

dt0
ϕ̇2ðt0Þ
t0

: ð34Þ

Note that, owing to the initial conditions, this integral is
regular at t ¼ 0. On the other hand, the existence of a
solution with asymptotically zero energy requires the
particle to arrive with zero velocity at ϕ ¼ 0 for
t → þ∞. Therefore, we impose Eðt → ∞Þ ¼ 0. As the
total energy loss due to friction is Lðt → ∞Þ, the latter
condition means

Eð0Þ ¼ −Lðt → ∞Þ; ð35Þ

that is,

Ûðϕ0 − δϕÞ ¼ 2

Z
∞

0

dt0
ϕ̇2ðt0Þ
t0

: ð36Þ

This equation can be interpreted as an equation for δϕ
in order to allow for the existence of a “bounce” solution.5

5A bounce solution is the one reaching asymptotically the true
vacuum with zero energy, after having “bounced” at the mini-
mum of the inverted potential.
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One can demonstrate the existence of such a solution
heuristically. Let us first consider a slightly modified
version of the inverted potential without degeneracy
(orange plot in Fig. 1). Obviously, if the motion starts
exactly at ϕ0 with zero velocity, the particle would remain
at rest. However, if we start on the left of the maximum the
particle will roll down, bounce, and eventually climb the
leftmost hill shown in Fig. 1. Now, if the dynamics starts
too far from ϕ0 (still on the left of the maximum), with zero
initial velocity it might not have enough energy to reach the
zero-energy point at ϕ ¼ 0. Similarly, if the dynamics starts
too close to ϕ0, the particle might reach ϕ ¼ 0with positive
energy and overcome the hill rolling up to ϕ → −∞. By
continuity, there must exist a unique point such that the
total energy loss due to friction compensates the initial gap
of energy with respect to the energy of ϕ ¼ 0.
However, by applying the same argument to our degen-

erate case (blue curve in Fig. 1), it is easy to see that there is
no solution to Eq. (36).6 This is because the energy loss due
to friction is nonzero, so the particle will never reach ϕ ¼ 0
and is doomed to roll back in the potential eventually
oscillating around the minimum of Û. This shows that,
in the degenerate case considered in this work, a simple
scalar model does not allow for bounce solutions in flat
spacetime.
If we now reintroduce fermions in the theory, the scalar

field equation reads (still in flat spacetime)

ϕ00ðtÞ ¼ −
∂Û
∂ϕ

−
2

t
ϕ0ðtÞ − fS: ð37Þ

Since S ≥ 0, the fermions act with a force pushing
our particle toward the origin, potentially giving the right
kick to allow the particle reaching ϕ ¼ 0 asymptotically.
As we shall see, this also requires S ¼ 0 (i.e., no fermions)

around the origin, in order for the particle to reach a
stationary configuration at ϕ ¼ 0.
This simple analogy shows how the presence of the

fermions is fundamental as it allows the solution to exist.
In the following section we will show how this is realized
in the full theory which includes gravitational effects.
Furthermore, we will show that, in certain regions of the
parameter space, relativistic effects are in fact crucial for
the existence of the solution, since the latter requires a
minimum fermionic pressure to exist.

2. Evading the no-go theorem for solitons

The above conclusions, deduced from our simple heu-
ristic picture, holds also in the context of general relativity.
Indeed, without fermions in the system of Eqs. (24), and
since our potential (2) is non-negative, a general theorem
proves that no axially symmetric and stationary solitons
(that is asymptotically flat, localized, and everywhere
regular solutions) can exist [10,11].
However, the presence of fermions evades one of the

hypotheses of the theorem. As we will show, in this case
stationary solitons generically exist also for a real scalar
field (at variance with the case of boson stars that require
complex scalars) and for a wide choice of the parameters.

B. Scaling of the physical quantities
in the μR ≫ 1 regime

Assuming μR ≫ 1, it is possible to derive an analytical
scaling for various physical quantities, as originally derived
in Ref. [30] and similar in spirit to Landau’s original
computation for ordinary neutron stars (see, e.g., [29]).
It is instructive to consider (1) in the absence of gravity.

As already pointed out, the theory has a conserved
(additive) quantum number N, brought by the fermion
field ψ . Being μR ≫ 1, the real scalar field solution is well
approximated by a stiff Fermi function [16,30]

ϕðρÞ ≈ ϕ0

1þ eμðρ−RÞ
: ð38Þ

The definition of kF is nothing but Eq. (19) with u ¼ 0
(since we work in the absence of gravity),

k2FðρÞ ¼ ω2
F − ðmf − fϕðρÞÞ2: ð39Þ

Because of Eq. (38), the Fermi momentum is nearly fixed to
the constant value ωF for ρ≲ R, and for ρ ≈ R it goes to
zero stiffly. Therefore, the field ψ is approximately con-
fined within the sphere of radius R. We assume that the
quanta of ψ are noninteracting, massless, and described by
Fermi statistics at zero temperature. Thus, we obtain the
standard relation for the particle density

n ¼ #particles
unit:volume

¼ 2

8π3

Z
kF

0

4πk2dk ¼ ω3
F

3π2
: ð40Þ

FIG. 1. Inverted potential with degeneracy (blue line, our case)
and without degeneracy between vacua (orange line).

6At least if we look for a solution in which the scalar field does
the transition at a finite time.
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Since kF ≃ ωF ¼ const, the total number of particles is

N ¼ n
Z

R

0

4πρ2dρ ¼ 4

9π
ðRωFÞ3: ð41Þ

The fermion energy is

Ef ¼
Z

R

0

4πρ2dρW ¼ ð3πÞ1=3
�
3

4
N

�
4=3 1

R
; ð42Þ

where

W ¼ energy
unit:volume

¼ 2

8π3

Z
kF

0

4πk2dk · k ¼ ω4
F

4π2
: ð43Þ

The energy associated with the scalar field ϕ is instead

Es ¼
Z

R

0

4πρ2dρðU þ VÞ ≃
�
1

6
μϕ2

0

�
4πR2; ð44Þ

where we have used the fact that

12

μϕ2
0

U ≃
12

μϕ2
0

V ≃ δðρ − RÞ; ð45Þ

which can be shown using Eq. (38) and μR ≫ 1.
The total energy of our configuration is

E ¼ Ef þ Es; ð46Þ

while the radius can be found by imposing ∂E=∂R ¼ 0,
yielding

R ¼
�
3

4π
ð3πÞ1=3

�
3

4
N

�
4=3
�
1=3
�

1

μϕ2
0

�
1=3

ð47Þ

and the mass

M ¼ EðRÞ ¼ 12πR2

�
1

6
μϕ2

0

�
: ð48Þ

From Eqs. (47) and (48), we get

R ∼ N4=9; M ∼ N8=9: ð49Þ

Thus, at least for large N, the mass of the soliton is lower
than the energy of the sum of N free particles, ensuring
stability.7

In the absence of gravity, M can be arbitrarily large.
However, due to relativistic effects we expect the existence
of a maximum mass beyond which the object is unstable
against radial perturbations. We expect that gravity

becomes important when 2GM=R ∼ 1. Therefore, the
critical mass Mc can be estimated by simply imposing
R ∼ 2GMc in Eq. (48), yielding G2Mc ∼ 1=μϕ2

0 and thus

μMc

m2
p
∼

1

Λ2
: ð50Þ

Likewise, one can obtain the scaling of all other relevant
quantities, which we collect in Table II.

1. Self-consistency criteria

When deducing the scaling reported in Table II, we made
the following assumptions:

(i) μR ≫ 1;
(ii) a gas of massless fermions in the interior of the star.

In practice, the first assumption is not restrictive (see,
e.g., [31]). Indeed, since μ−1 is the Compton wavelength of
the scalar boson, in the context of a classical field theory
we should always impose μR ≫ 1. In other words, if
μR ≃ 1, the quantum effects of the scalar field become
important on the scale of the star and one cannot trust the
classical theory anymore. The hypothesis μR ≫ 1 is an
essential ingredient in order to approximate the scalar
field profile with Eq. (38), and to assume, as a conse-
quence, that kF is a step function. Besides, it guarantees
that the energy density of the scalar field is near a
delta function. Using the scaling reported in Table II,
condition (i) implies Λ ≪ 1.
One may worry that the second assumption can be

violated, since the scalar field is not located exactly at ϕ0 in
the origin ρ ¼ 0, and therefore fermions are never exactly
massless. It is enough checking that the fermion gas is very
close to be a massless gas. Let us recall that the effective
mass of the fermion is defined as

meffðρÞ ¼ mf

�
1 −

ϕðρÞ
ϕ0

�
; ð51Þ

and therefore meffðρ ¼ 0Þ ¼ mfϵ. We can say that the
fermion gas is effectively massless when W=P ¼ 3. From
Eqs. (5) and (6), at the lowest order in ϵ one obtains

W
P

¼ 3

�
1þ 2m2

fϵ
2

k2F

�
þOðϵ3Þ; ð52Þ

TABLE II. Analytical scalings of some physical quantities at
the maximum mass Mc in the μR ≫ 1 limit.

Mass μMc=m2
p ∼ 1=Λ2

Radius μRc ∼ μMc=m2
p ∼ 1=Λ2

ω̃F ω̃c
F ∼ ðμ=mpÞ1=2=ðϕ0=mfÞ ∼ Λ1=2=η

Central pressure P̃c ∼ ω̃4
F ∼ Λ2=η4

7This conclusion remains true also in the fully relativistic
theory.
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which indicates we should require

2m2
fϵ

2

k2F
≪ 1 ð53Þ

in the vicinity of the origin at ρ ≃ 0. At larger radii, the
scalar field gradually moves away from the central con-
figurations and fermions start retaining a bare mass.
Inserting Eq. (39) in the previous condition and expanding
Eq. (26) provide the condition we need to enforce to obey
assumption (ii), i.e.,

2m2
fϵ

2

ð12π2PcÞ1=2
≪ 1: ð54Þ

We express ϵ using the scalar field profile approximation in
Eq. (38). Indeed, with simple manipulations, one finds

− log ϵ ¼ μR ≫ 1: ð55Þ

Substituting (55) in (54), and neglecting, at this stage, the
numerical factors one obtains

log

�
mf

P1=4
c

�
≪ μR: ð56Þ

Using the scaling relations in Table II, we obtain

log

�
η

Λ1=2

�
≪

1

Λ2
: ð57Þ

Summing up, the following conditions on the parameters:

Λ ≪ 1; ð58Þ

log

�
η

Λ1=2

�
≪

1

Λ2
ð59Þ

are our self-consistency criteria to check if we are in a regime
in which the scaling reported in Table II is expected to be
valid. While it can be shown that the second condition
implies the first, we prefer writing both for the sake of clarity.
Notice that, for fixed Λ ≪ 1, one can violate (59) for
increasing values of η, but only logarithmically.

2. Confining and deconfining regimes

An important consequence of the scalings collected in
Table II is that the critical mass and radius are independent
of η at fixed Λ. We shall call the region of the parameters
space where this happens the confining regime of the
solutions. Indeed, in this regime the size of the soliton is
dictated by the parameters of the scalar field, i.e., μ and ϕ0,

regardless of the value of the fermion mass mf. Physically,
we expect that this would be the case when there exists a
hierarchy between the scalar and fermion parameters.
Since this hierarchy is measured by η, we expect that
the confining regime exists only when η is larger than a
critical value, ηc.
To better clarify this point, we consider again Eq. (19) for

the Fermi momentum,

k2FðρÞ ¼ ω2
Fe

−2uðρÞ −mf

�
1 −

ϕðρÞ
ϕ0

�
2

: ð60Þ

In the mf → 0 limit this quantity becomes positive definite
and so the fermionic pressure cannot vanish at any finite
radius. In other words, the radius of the star can be
arbitrarily large, provided that mf is sufficiently small.
This is nothing but the well-known fact that a star made of
purely relativistic gas does not exist.
Hence, if we enter a regime where the fermion bare mass

mf is so small that, even after the scalar field has moved
away from the false vacuum (where the effective fermion
mass is small by construction), the Fermi gas is still
relativistic, then the radius of the star grows fast and a
small variation in mf produces a big variation in the radius.
We call this regime the deconfining regime of the solution.
In terms of the dimensionless variables defined above,

the mf → 0 limit becomes

ω̃F → ∞: ð61Þ

Therefore, we expect that, for a given choice of ðΛ; ηÞ, the
confining regime exists only if ω̃c

F is smaller than a certain
value. Using the scaling for ω̃c

F in Table II, this can be
translated into the condition

Λ1=2

η
< C; ð62Þ

whereC is a constant that has to be determined numerically.
At this point, it is natural to define ηc as the value of η in

which Eq. (62) is saturated. In this way, Eq. (62) becomes

η > ηc ¼ CΛ1=2: ð63Þ

To summarize, when η≳ ηc (confining regime) the size
of the soliton near the maximummass is mostly determined
by the properties of the scalar field, whereas it strongly
depends on the fermion mass when η≲ ηc (deconfining
regime8).

8Note that, deep in the deconfining regime (when η → 0), the
Compton wavelength of the fermion, 1=mf , might become
comparable to or higher than the radius of the star. In this case
we expect the Thomas-Fermi approximation to break down.
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C. Energy conditions

For an energy-momentum tensor of the form

Tμ
ν ¼ diagf−ρ; P1; P2; P3g; ð64Þ

the energy conditions take the following form:
(i) Weak energy condition: ρ ≥ 0 and ρþ Pi ≥ 0.
(ii) Strong energy condition: ρþPi Pi ≥ 0 and

ρþ Pi ≥ 0.
(iii) Dominant energy condition: ρ ≥ jPij.

For a spherically symmetric configuration, P1 ¼ Pr is the
radial pressure, while P2 ¼ P3 ¼ Pt is the tangential
pressure. For our model,

ρ ¼ U þ V þW; ð65Þ

Pr ¼ V −U þ P; ð66Þ

Pt ¼ −U − V þ P: ð67Þ

Since V, W, P are non-negative quantities, we obtain
ρþ Pr ≥ 0 and ρþ Pt ≥ 0. Thus, the weak and strong
energy conditions are satisfied if

U þ V þW ≥ 0; ð68Þ

3P − 2U þW ≥ 0; ð69Þ

respectively. Since U is also a non-negative quantity, the
weak energy condition is always satisfied, while the strong
energy condition can be violated. In particular, it is violated
even in the absence of fermions (P ¼ W ¼ 0).
The dominant energy condition, instead, gives two

inequalities:

U þ V þW ≥ jPþ V − Uj; ð70Þ

U þ V þW ≥ jP − V −Uj: ð71Þ

One can show that the dominant energy condition is
satisfied whenever

W þ 2ðU þ VÞ ≥ P: ð72Þ

This inequality is satisfied if

W − P ≥ 0; ð73Þ

which can be shown to be true using the analytic expres-
sions of W and P.
To sum up, the weak and dominant energy conditions are

always satisfied, while the strong energy condition can be
violated (e.g., in the absence of fermions) as generically is
the case for a scalar field with a positive potential [11].

IV. NUMERICAL RESULTS

In this section, we present the fermion soliton solutions
in spherical symmetry obtained by integrating the field
equations (24). We will confirm the existence of a solution
beyond the thin-wall approximation used in Ref. [16]. Also,
based on the numerical solutions, we are able to confirm the
scalings derived in the previous sections in a certain region
of the parameter space and fix their prefactors.

A. Numerical strategy

In this section, we summarize the numerical strategy we
adopt to find soliton fermion solutions. Given the boundary
condition (25), the set of equations (24) are solved numeri-
cally by adopting the following strategy:
(1) We fix a certain value of ω̃F;
(2) for a given value of ω̃F and of the central scalar field

(i.e., a value of ϵ), we obtain P̃c through Eq. (26),
and therefore x through the last equation in (24)9;

(3) we integrate the first three equations in (24) for the
variables ðu; v; yÞ, starting from r ≈ 0 to the point
r ¼ Rf where the fermion pressure drops to negli-
gible values, P̃ðRfÞ ¼ 0;

(4) we eliminate the fermionic quantities from the
system of equations (24) and start a new integration
with initial conditions given at r ¼ Rf imposing
continuity of the physical quantities. That is, the
initial conditions on the metric and scalar fields
at r ¼ Rf are obtained from the last point of the
previous integration up to r ¼ Rf;

(5) we use a shooting method to find the value of ϵ that
allows an asymptotically flat solution to exist, which
means imposing yðr → ∞Þ → 0;

(6) as previously discussed, because the scalar field does
not have a compact support, we define the radius of
the star (R > Rf) as that containing 99% of the total
mass, i.e., m̃ðRÞ ¼ 0.99 μM=m2

p [Eq. (28)], and the
compactness is GM=R;

(7) Finally, we repeat the procedure for a range of
values of ω̃F, finding a one-parameter family of
solutions. As we shall discuss, in certain regimes
(including the deconfining one) this family exists
only if P̃c is above a certain threshold, therefore
lacking a Newtonian limit.

As already noted, a vanishing scalar field (y ¼ 0,
∂ry ¼ 0) is a solution to the scalar equation in Eq. (24)
only if S ¼ 0, that is, in the absence of fermions. This
ensures that in any solution with y → 0 at infinity the
fermion pressure must vanish at some finite radius.
Therefore, the fermion soliton solution is described by a
fermion fluid confined at r ≤ Rf and endowed with a real

9Equivalently, one can give initially P̃c, ϵ and determine ω̃F
inverting Eq. (26).
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scalar field that is exponentially suppressed outside the star,
as expected from the discussion in Sec. III.
As described in the previous section, important param-

eters are the mass and radius of the critical solutions, Mc
and Rc. In practice, we compute these quantities by
identifying in the M-R diagram the point of maximum
mass.

B. Fermion soliton stars

First of all, we confirm that fermion soliton stars exist
also beyond the thin-wall approximation used in Ref. [16].
An example is shown in Fig. 2 which presents the radial
profiles for the metric, scalar field, and fermion pressure.
Inspecting the panels of Fig. 2 can help us understand the

qualitative difference between solutions in the confining
regime (top) and the deconfining one (bottom). In the first
case, as soon as the scalar field moves away from its central
value at ρ → 0, and the effective mass of the fermion field
grows, the pressure quickly drops to zero. This reflects in
the fact that the macroscopic size of the star R is found to be

very close to where the scalar field starts moving away from
the false vacuum. This is the reason why the macroscopic
properties of the star are mainly dictated by the scalar field
potential. In the latter case, the small bare mass of fermions
makes them remain ultrarelativistic even when the scalar
field moves away from the false vacuum, generating a layer
where fermionic pressure drops exponentially but remains
finite. After the energy of fermions has fallen within the
nonrelativistic regime, fermionic pressure rapidly vanishes.
The existence of such a layer makes the final mass and
radius of the star dependent on the fermion mass; see more
details below. Also, as the numerical shooting procedure
requires matching the asymptotic behavior of the scalar
field outside the region where the energy density of the
fermions remains sizable, deconfining solutions are char-
acterized by a larger tuning of the parameter controlling the
central displacement ϵ.
In Fig. 3 we present the mass-radius and compactness-

mass diagrams for various values of Λ and η, in the
confining regime. In the top panels, we observe that Λ

FIG. 2. Radial profiles of the adimensional pressure P̃, scalar profile y, and metric functions u (shifted) and v for two example
configurations. Continuous lines represent numerical data, whereas dashed lines reconstruct the asymptotic behavior of the solutions by
fitting with the Schwarzschild solution. Top panels: Λ ¼ 0.141, η ¼ 1.26, P̃c ¼ 0.00903, and log10 ϵ ¼ −13.9. The mass and radius of
the soliton fermion star are μM=m2

p ¼ 6.14 and μR ¼ 33.8, respectively. This solution falls within the confining regime. Bottom panels:
Λ ¼ 0.141, η ¼ 0.996, P̃c ¼ 0.0222, and log10 ϵ ¼ −12.9. The mass and radius of the soliton fermion star are μM=m2

p ¼ 5.71 and
μR ¼ 39.3, respectively. This solution falls within the deconfining regime.
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strongly affects the mass-radius scale and the maximum
mass, while from the bottom panels we observe that η has a
weaker impact on the maximummass, as expected from the
discussion in Sec. III.
The dependence ofMc and Rc on Λ and η is presented in

Fig. 4. As expected, we observe that, for a fixedΛ, there is a
critical value of η, below which the radius begins to grow
rapidly. For η > ηc and Λ≲ 0.5, we observe that the
predictions given in Sec. III are valid, confirming the
existence of a confining regime. Indeed, in that region of
the parameter space, both the mass and the radius have a
little dependence on η. This dependence grows very
slowly for an increasing value of η, in agreement with
Eq. (59). Moreover, the value of ηc scales, for Λ≲ 0.3, in
agreement with Eq. (63), while for larger values of Λ it
exceeds the analytical scaling. At variance with the critical
radius, the critical mass does not exhibit a change of
behavior for η < ηc. As a consequence, the compactness
decreases quickly.

In general, taking into account all the configurations
numerically found, log10 ϵ lies in the interval ð−150;−0.01Þ.
Finally, in Table III we report the scaling coefficients

computed numerically, which are valid in the confining
regime (η≳ ηc, Λ≲ 0.5).

C. On the existence of a Newtonian regime

From the bottom panels of Fig. 3, we observe that, even
though η has a weak impact on the maximum mass, it can
qualitatively change the M-R diagram, especially at low
masses. Overall, the mass-radius diagram reassembles that
of solitonic boson stars [22–25] with several turning points
in both the mass and the radius, giving rise to multiple
branches (see also [33]). The main branch is the one with
M0ðRÞ > 0 before the maximum mass, which is qualita-
tively similar to that of strange (quark) stars [34,35].
However, the low-mass behavior (and the existence of a
Newtonian regime) depends strongly on η.

FIG. 3. Mass-radius (left panels) and compactness-mass (right panels) diagrams for fermion soliton stars. The top panels refer to
various values of ðΛ; ηÞ in the confining regime (η > ηc; see Sec. III B 2). As a reference, in the top-left panel we also draw the lines
R ¼ 2GM, R ¼ 9=4GM, R ¼ 3GM, corresponding to the Schwarzschild radius, Buchdhal’s limit [32], and the photon-sphere radius.
The bottom panels refer to various values of η for fixed Λ ¼ 0.141. The smallest value of η considered is near but greater than the critical
value. The inset shows the curves in logarithmic scale, to highlight that in this case there exists a turning point in theM-R diagram at low
masses that proceeds toward the Newtonian limit of small M and large R.
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For sufficiently large values of η (always in the
confining regime) there exists a low-compactness branch
in which M0ðRÞ < 0 and where the fermionic pressure is
small compared to the energy density, giving rise to a
Newtonian regime. However, an interesting effect starts
occurring for values of η near, but greater than, the critical
one (e.g., the blue curve for η ¼ 1.26 in the bottom panels
of Fig. 310) all the way down to the deconfining regime. In
this case, there is still a lower turning point in the M-R
diagram, but the compactness eventually starts growing
(see right bottom panel). In this case there is no Newtonian
regime, since the compactness is never arbitrarily small.
This peculiar behavior is also related to another impor-

tant feature of the model, namely the fact that, for η
sufficiently small, fermion soliton stars exist only above a
minimum threshold for the central fermionic pressure. We
clarify this point in Fig. 5. In the left panels we show the
mass of the star as a function of the central fermionic
pressure forΛ ¼ 0.141 and three values of η. For η ¼ 0.966
and η ¼ 1.26 (top and center panels), the pressure has a
lower bound, corresponding to the absence of a Newtonian
limit. For η ¼ 2.92 (bottom panels) the behavior is quali-
tatively different and in this case the Newtonian regime is
approached as Pc → 0.
To clarify where the minimum pressure and these

multiple branches are in the mass-radius diagram, in the
right panels of Fig. 5, we show data points for M–R using
the same color scheme as in the corresponding left panels.
Interestingly, the minimum pressure does not correspond to
the minimum mass in Fig. 5, but it is an intermediate point
in the M–R diagram. In the center right panel we show an

extended version of the Λ ¼ 0.141, η ¼ 1.26 curve
shown in Fig. 3. This highlights the peculiar behavior of
the new branch, which has a further turning point at large
radii. Studying the stability of these different peculiar
branches [33] is left for future work.11

Finally, note that in both cases there are values of the
central fermionic pressure corresponding to multiple sol-
utions, each one identified by a different central value of
the scalar field.

V. PARAMETER SPACE AND ASTROPHYSICAL
IMPLICATIONS

Given the number of parameters of our model, it is
interesting to study the characteristic mass and radius of
fermion soliton stars in this theory. By defining

q≡ ðμϕ2
0Þ1=3; ð74Þ

as long as we are in the confining regime, one finds

Mc ∼
0.19
8π

m4
p

q3
∼ 1.27M⊙

�
q

5 × 105 GeV

�
−3
; ð75Þ

Rc ∼
0.71
8π

m2
p

q3
∼ 6.5 km

�
q

5 × 105 GeV

�
−3
; ð76Þ

where we included the prefactors obtained using the
numerical results. Given the cubic dependence on q,
the model can accommodate compact objects of vastly

FIG. 4. Left: Behavior of the critical radius Rc with Λ and η. The scaling (63) is highlighted by the diagonal black dashed line. We
observe an agreement until Λ≲ 0.3, whereas, for larger Λ, ηc increasingly exceeds the predicted value. The horizontal grid line
highlights when the μR > 1 regime ends. The shaded region above the two dashed lines is the confining regime. Right: Behavior of the
critical radius Mc with Λ and η. We observe that the critical mass does not exhibit a significant change of behavior for η < ηc.

10Notice that, in the bottom left panel, it is not possible to see
the complete tail of the M-R diagram. As underlined in the text,
in the center right panel of Fig. 5 we plot the complete M-R
diagram.

11We point to Ref. [36], where a broad class of related theories
is analyzed in terms of energy stability (though without taking
gravity into account), and to Ref. [37], in which stability of
neutron and boson stars is studied through catastrophe theory.
However, the issue of stability in the present work remains open
and needs a full radial perturbation analysis.
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different mass scales, while the compactness at the maxi-
mum mass is independent of q, GMc=Rc ∼ 0.27, which is
slightly larger than that of a typical neutron star, but still
smaller than the compactness of the photon sphere. As a
consequence, one expects fermion soliton stars to display a
phenomenology more akin to ordinary neutron stars than to
black holes [20]. The authors of Ref. [16] considered the

FIG. 5. Left panels: The mass of fermion soliton stars as a function of the central fermionic pressure. Right panels: The corresponding
mass-radius diagram using the same color scheme as in the left panels, in order to associate with each point the corresponding central
pressure. Top: Λ ¼ 0.141 and η ¼ 0.996. This solution is in the deconfining regime, and there is a lower bound on P̃c below which no
solution exists. Center: Λ ¼ 0.141 and η ¼ 1.26. This solution is in the confining regime but, also in this case, there exists a lower bound
on P̃c. Bottom: Λ ¼ 0.141 and η ¼ 2.92. This solution is in the confining regime but, given the larger value of η, there is no lower bound
on P̃c and a Newtonian regime exists. In all three cases, for a certain range of P̃c there are multiple solutions with the same central
fermionic pressure and different central value of the scalar field.

TABLE III. Various scaling of the critical parameters with
coefficients derived numerically in the Λ≲ 0.5 range.

Critical mass μMc=m2
p ≈ 0.19=Λ2

Critical radius μRc ≈ 0.71=Λ2

Compactness of the critical solution Cc ≈ 0.27
Critical value of the scale ratio ηc ≈ 2.7Λ1=2
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value q ¼ 30 GeV, yielding supermassive objects with
Mc ∼ 1012M⊙ and Rc ∼ 1013 km ∼ 0.3 pc. Instead, the
choice

q ¼ qastro ∼ 5 × 105 GeV ð77Þ

leads to the existence of soliton solutions of mass and
radius comparable to ordinary neutron stars.
Furthermore, the fact that the model is in the confining

regime only above a critical value of η, Eq. (63), implies
[using Eq. (23) and our numerical results]

mf > 2.7

� ffiffiffiffiffiffi
8π

p
q3

mp

�
1=2

∼ 0.6 GeV

�
q

qastro

�
3=2

; ð78Þ

a range including the neutron mass. Therefore, the fermion
gas can be a standard degenerate gas of neutrons. It is also
interesting to combine the above inequality (saturated when
mf ¼ mc

f) with Eq. (75), finding a relation between the
maximum mass of the soliton in the confining regime and
the critical fermion mass,

Mc ∼ 0.46

�
GeV
mc

f

�
2

M⊙; ð79Þ

independently of q. Interestingly, this model allows for
subsolar compact objects for fermions at (or slightly
heavier than) the GeV scale, whereas it allows for super-
massive (Mc ∼ 106M⊙) compact stars for a degenerate gas
of electrons (mc

f ∼ 0.5 MeV).
Clearly, the same value of q can be obtained with

different combinations of μ and ϕ0. In general,

μ ¼ 500

�
q

qastro

�
3
�
500 TeV

ϕ0

�
2

TeV ð80Þ

¼ 500

�
mc

f

0.6 GeV

�
2
�
500 TeV

ϕ0

�
2

TeV; ð81Þ

so μ ∼ GeV for q ¼ qastro (or, equivalently, for mc
f ¼

0.6 GeV) and ϕ0 ∼ 3 × 105 TeV. Note that the latter value
is still much smaller than the Planck scale, so the condition
Λ ≪ 1 is satisfied. From our numerical results, Eqs. (75)
and (76) are valid as long as Λ≲ 0.5, whereas, for larger
values of Λ, Mc, Rc, and Cc decrease rapidly and the
condition μR ≫ 1might not hold (see Fig. 4). This gives an
upper bound on ϕ0,

ϕ0 ≲ 0.5ffiffiffiffiffiffi
8π

p mp ∼ 1018 GeV; ð82Þ

which, using Eq. (80), can be translated into a lower bound
on μ,

μ≳ 8.4 × 10−11
�

q
qastro

�
3

eV: ð83Þ

Thus, also the scalar-field mass can vastly change depend-
ing on the value of q, reaching a lower limit that can
naturally be in the ultralight regime.
Finally, in the deconfining regime there is no minimum

fermion mass so solutions can exist also beyond the range
dictated by Eq. (78), but soliton fermion stars in such a
regime would be characterized by smaller values of the
compactness (see discussion in Sec. IV).

VI. CONCLUSIONS

We have found that fermion soliton stars exist as static
solutions to Einstein-Klein-Gordon theory with a scalar
potential and a Yukawa coupling to a fermion field. This
confirms the results of Ref. [16] obtained in the thin-wall
approximation and provides a way to circumvent the no-go
theorems [10,11] for solitons obtained with a single real
scalar field.
Focusing on spherical symmetry, we have explored the

full parameter space of the model and derived both
analytical and numerical scalings for some of the relevant
quantities such as the critical mass and radius of a fermion
soliton star. Interestingly, the model predicts the existence
of compact objects in the subsolar/solar (respectively,
supermassive) range for a standard gas of degenerate
neutrons (respectively, electrons), which might be con-
nected to an exotic explanation for the LIGO-Virgo mass-
gap events that do not fit naturally within standard
astrophysical scenarios.
We also unveiled the existence of a confining and

deconfining regime—where the macroscopic properties
of the soliton are mostly governed by the scalar field
parameters or by the fermion mass, respectively—and the
fact that no Newtonian analog exists for these solutions for
fermion masses below a certain threshold.
Extensions of our work are manifold. First of all, for

simplicity, we have focused on a scalar-fermion coupling
tuned to provide an almost vanishing effective fermion
mass in the stellar core. This assumption imposes
f ¼ mf=ϕ0, a condition that can be relaxed, thus increasing
the dimensionality of the parameter space. We have also
considered a scalar potential with two degenerate minima.
A straightforward generalization is to break this degeneracy
and allow for a true false-vacuum potential in which the
scalar field transits from the false-vacuum state inside the
star to the true-vacuum state at infinity.
From the point of view of the fundamental theory, it

would be interesting to investigate an embedding within the
Standard Model and beyond, also including gauge fields
(e.g., see Ref. [38] for a recent attempt along this direction).
Finally, although we focused on static and spherically

symmetric solutions, there is no fundamental obstacle in
considering spinning configurations and the dynamical
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regime, both of which would be relevant to study the
phenomenology of fermion soliton stars, along the lines of
what has been widely studied for boson stars [9] and for
mixed fermion-boson stars [39]. In particular, due to the
existence of multiple branches [33] and the absence of a
Newtonian limit in certain cases, an interesting study
concerns the radial linear stability of these solutions.
We hope to address these points in future work.
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APPENDIX: CONNECTION WITH
SCALAR-TENSOR THEORIES

In this appendix we discuss whether the model for
fermion soliton stars presented in the main text can also
arise in the context of a scalar-tensor theory of gravity (see,
e.g., [40] for a review on modified theories of gravity).
In the so-called Jordan frame,12 where gravity is min-

imally coupled to matter fields, scalar-tensor theories are
described by the action (see, for example, [41])

Ŝ ¼
Z

d4x

ffiffiffiffiffiffi
−ĝ

p
16πG

½Fðϕ̂ÞR̂ − Zðϕ̂Þĝμν∂μϕ̂∂νϕ̂ − Ûðϕ̂Þ�

þ Ŝmðψ̂m; ĝμνÞ: ðA1Þ

The coupling functions F and Z single out a particular
theory within the class. For example, Brans-Dicke theory
corresponds to F ¼ ϕ̂ and Z ¼ ω0=ϕ̂, where ω0 is a
constant.
We can write the theory in an equivalent form in the

so-called Einstein frame, where gravity is minimally
coupled to the scalar field. For this purpose, we perform
a conformal transformation of the metric, ĝμν ¼ A2ðϕÞgμν

with AðϕÞ ¼ F−1=2ðϕ̂Þ, a field redefinition, ϕ ¼ ϕðϕ̂Þ, and
a conformal rescaling of the matter field, ψ̂m → ψm. The
scalar field ϕ is now minimally coupled to gμν, whereas ψm

is minimally coupled to ĝμν [41]. The energy-momentum
tensor is Tμν ¼ A2ðϕÞT̂μν, whereas the scalar potential

becomes UðϕÞ ¼ Ûðϕ̂Þ
16πGF2ðϕ̂Þ.

The scalar field equation in the Einstein frame reads

□ϕ ¼ −T
d logAðϕÞ

dϕ
þ ∂U

∂ϕ
: ðA2Þ

Since in our theory (1) the scalar field is minimally
coupled to gravity, it is natural to interpret it in the context
of the Einstein frame. Thus, we can compare Eq. (A2) to
the second equation in (11):

□ϕ ¼ −fSþ ∂U
∂ϕ

; ðA3Þ

which, using Eq. (8), can be written as

□ϕ ¼ f
ðmf − fϕÞT þ ∂U

∂ϕ
: ðA4Þ

Therefore, if we identify

d logAðϕÞ
dϕ

¼ −f
ðmf − fϕÞ ¼

1

ϕ − ϕ0

; ðA5Þ

the scalar equation of our model is the same as in a scalar-
tensor theory with coupling AðϕÞ in the Einstein frame.
Integrating this equation yields [henceforth assuming
Að0Þ ¼ 1]

AðϕÞ ¼ 1 −
ϕ

ϕ0

¼ meff

mf
: ðA6Þ

Interestingly, the matter coupling vanishes when ϕ ≈ ϕ0.
It is left to be checked if the gravitational sector of our

model is equivalent to that of a scalar-tensor theory with
AðϕÞ given by Eq. (A6). Let us consider a degenerate gas of
noninteracting fermions with mass mf in the Jordan frame,
with energy-momentum

T̂μν ¼ ðŴ þ P̂Þûμv̂ν þ ĝμνP̂; ðA7Þ

where, assuming spherical symmetry,

Ŵðρ̂Þ ¼ 2

ð2πÞ3
Z

k̂Fðρ̂Þ

0

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
;

P̂ðρ̂Þ ¼ 2

ð2πÞ3
Z

k̂Fðρ̂Þ

0

d3k
k2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q : ðA8Þ
12In this appendix we used a hat to denote quantities in the

Jordan frame, whereas quantities without the hat refer to the
Einstein frame where gravity is minimally coupled to the scalar
field.
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In spherical symmetry, since the spacetime has the same
form as in Eq. (13), it is straightforward to minimize the
energy of the fermion gas at a fixed number of fermions
[the calculation is exactly the same as the one done to
obtain Eq. (19)]:

k̂2F ¼ ω̂2
Fe

−2û −m2
f: ðA9Þ

It is important to notice that in the standard scalar-tensor
theory in the Jordan frame there is no Yukawa interaction;
therefore, the fermion particles do not acquire any effec-
tive mass.
In the Einstein frame, Eq. (A7) simply reads

Tμν ¼ ðW þ PÞuμuν þ gμνP; ðA10Þ

where W ¼ A4ðϕÞŴ and P ¼ A4ðϕÞP̂. Therefore, also
in the Einstein frame we have a perfect fluid in the form
of a zero-temperature Fermi gas. Let us now compute the
expressions of W and P explicitly. First of all, from
Eq. (A8), following the same computation presented in
the main text, we get

Ŵ ¼ m4
f

8π2

h
x̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p
ð1þ 2x̂2Þ − log

�
x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ 1

p �i
;

P̂ ¼ m4
f

8π2

�
x̂

�
2

3
x̂2 − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p
þ log

�
x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ 1

p ��
;

ðA11Þ

where x̂ ¼ k̂F=mf. Since AðϕÞ ¼ meff=mf, we obtain

W ¼ m4
eff

8π2

h
x̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p
ð1þ 2x̂2Þ − log

�
x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ 1

p �i
;

P ¼ m4
eff

8π2

�
x̂

�
2

3
x̂2 − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p
þ log

�
x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ 1

p ��
:

ðA12Þ

Note that Wðx̂Þ and Pðx̂Þ above implicitly define an
equation of state that is exactly equivalent to that obtained
from W and P in Eqs. (22a) and (22b). This shows that
our model can be interpreted as a scalar-tensor theory in

the Einstein frame with coupling to matter given
by13 AðϕÞ ¼ meff=mf.
Furthermore, note that the dimensionless quantity

x̂ ¼ k̂F=mf ¼ kF=meff ¼ x is invariant under a change
from the Jordan to the Einstein frame. Therefore, W and
P are exactly those given in Eqs. (22a) and (22b).
Finally, Ŝ in the Jordan frame reads

Ŝ ¼ 2

ð2πÞ3
Z

k̂F

0

d3k
mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
f

q ðA13Þ

¼ m3
f

2π2

h
x̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂2

p
− log

�
x̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ 1

p �i
; ðA14Þ

while in the Einstein frame14

S¼A3Ŝ¼m3
eff

2π2

h
x
ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p
− log

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p �i
; ðA15Þ

since x̂ ¼ x. Thus, also in this case we obtain the same
expression as in Eq. (22c).
Having assessed that our model can be interpreted in the

context of a scalar-tensor theory, it is interesting to study
the latter in the Jordan frame. In particular, since

AðϕÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
Fðϕ̂Þ

q ; ðA16Þ

and AðϕÞ ¼ 1 − ϕ=ϕ0, the coupling function Fðϕ̂Þ is
singular in ϕ̂ðϕ0Þ. In the language of the scalar-tensor
theory, we see that in the core of a fermion soliton star,
where ϕ ≈ ϕ0 and matter is almost decoupled in the
Einstein frame, the scalar field in the Jordan frame is
strongly coupled to gravity.
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