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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Combining traditional and advanced 
atmospheric aerosol data from different 
sampler types in receptor models is 
challenging. 

• An expansion of the positive matrix 
factorization is proposed to take advan
tage of data measured at different time 
and size resolutions. 

• This model applies to many datasets, 
providing enhanced source identifica
tion and key information for mitigation 
strategies.  
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A B S T R A C T   

In the recent decades, advanced instrumentation has been developed to measure the atmospheric aerosol’s 
physical-chemical properties with increased temporal detail and size resolution. The characterization of the 
atmospheric aerosol is now provided at a more detailed level. Nevertheless, it is still challenging to maximize the 
exploitation of such detailed information in receptor models to perform more reliable source apportionment 
studies. Indeed, detailed time- and size-resolved sampling can, in principle, provide additional information to 
better identify specific emission sources and/or atmospheric processes, but an associated complete chemical 
characterization is often lacking, or is provided at low time resolution by PMX samples. To this aim, a completely 
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novel, multi-time, multi-size resolution positive matrix factorization (MTMS-PMF) is presented. This cutting-edge 
receptor model is an expansion of the widely used PMF and allows the analysis of data measured at different time 
resolutions in multiple size classes. As output, it provides size-segregated chemical profiles and factor temporal 
contributions retrieved at the highest temporal resolution available in the dataset. The MTMS-PMF was imple
mented in a script for the Multilinear Engine ME-2 program and successfully tested on a large dataset collected in 
the Po Valley (Ferrara, Italy) during years 2008–2018. The dataset included aerosol chemical species measured 
on multistage impactor samples (8 size classes) at a low time resolution of about 1–3 weeks and daily PM10 
samples covering almost the same sampling periods. The outputs retrieved at the higher time and size resolutions 
greatly strengthened the source-to-factor assignment. Moreover, the possibility to acquire information about the 
size distributions of atmospheric aerosol emitted by a variety of sources is highly valuable for impact assessment 
and for developing focused mitigation strategies aimed at addressing specific negative aerosol effects.   

1. Introduction 

Atmospheric aerosol particles, also referred to as particulate matter 
(PM), are very complex systems. Their chemical composition and size 
are strongly dependent on their formation mechanisms and can be 
altered in the atmosphere by several transformation processes. Such 
complexity makes the study of atmospheric PM challenging and many 
gaps concerning their characterization still need to be filled. However, 
gaining more knowledge on atmospheric PM is essential because of its 
effects at global scale, e.g., on cloud formation and Earth’s radiative 
budget (e.g., IPCC, 2023), and at local scale, especially on human health 
(e.g., WHO global air quality guidelines, 2021). Source apportionment 
(SA) is a key tool to understand the atmospheric aerosol, its impacts of 
source-specific PM, and the development of targeted and effective 
mitigation strategies to improve air quality. In recent years, receptor 
models (RMs), and especially the positive matrix factorization (PMF) 
developed by Paatero and Tapper (1994), are the most commonly used 
models to perform SA studies (Belis et al., 2019; Hopke, 2016; Hopke 
et al., 2020). RMs exploit the physical-chemical PM characterization at 
the receptor site. In routine sampling campaigns (e.g., in air quality 
monitoring stations), they are generally applied to compositional data 
from integrated (i.e., all particles smaller than a certain size) PMX size 
fraction (PM10, PM2.5, etc.) samples collected on filters, typically with a 
time resolution of 24 h. Filter-based measurements usually allow the 
collection of sufficient PM mass to achieve a complete chemical char
acterization of the main chemical compounds and trace species. Alter
natively, advanced instrumentation has been implemented in the last 
decades to achieve PM data at high-time resolution, in different size 
classes, or both (e.g., D’Alessandro et al., 2003; Furger et al., 2020; 
Jayne et al., 2000; Järvinen et al., 2014; Maenhaut et al., 1996; Marple 
et al., 1991; Ng et al., 2011). The high temporal detail allows to capture 
the fast processes that aerosol particles are subjected to in the atmo
sphere and to distinguish sources active in specific hours of the day or 
episodic (e.g., Bernardoni et al., 2011; Dai et al., 2020, 2021; Kim et al., 
2022; Sofowote et al., 2021; Wexler and Johnston, 2008). 
Size-segregated PM samples allow to study how PM properties are 
distributed over the size and to identify the formation processes by 
which the collected particles originated (e.g., Bernardoni et al., 2017; 
Canepari et al., 2019; Maenhaut et al., 2005; Navarro-Selma et al., 2022; 
Salma et al., 2005). 

Although in field campaigns it is more and more common to have in 
parallel filter-based samplers and more advanced instrumentation, it is 
still challenging to combine data obtained from different types of sam
pling systems in traditional RMs. To address this issue, advanced RM 
approaches have been developed in recent years to deal with different 
types of data. The advanced multi-time resolution PMF was imple
mented by Zhou et al. (2004) in the Multilinear Engine ME-2 program 
(Paatero, 1999) as an expansion of the traditional PMF approach. This 
approach was developed to input data measured at different time res
olution in the model, so that the more complete chemical character
ization provided by the low-time resolution samples could be exploited 
together with high temporal resolution information available on specific 
species. This model allows obtaining as output the temporal pattern of 

aerosol emission source at the highest temporal resolution available in 
the dataset (see e.g., Crespi et al., 2016; Crova et al., 2024; Forello et al., 
2019, 2020; Kuo et al., 2014; Liao et al., 2015; Mooibroek et al., 2022; 
Ogulei et al., 2005; Sofowote et al., 2018, 2021, 2023; Srivastava et al., 
2019). 

However, size-segregated data cannot be exploited in this model as 
formulated. Concerning size-segregated data, advanced three-way 
(sometimes also referred to as “3-D”) PMF was proposed by Peré-
Trepat et al. (2007) to use as input data measured in different size classes 
(e.g., collected by multistage impactors). This model was also imple
mented in the ME-2 program. Through this approach, emission sources 
are better resolved, and size-segregated chemical profiles of the sources 
can be retrieved (see e.g., Bernardoni et al., 2017; Karanasiou et al., 
2009; Li et al., 2013; Liu et al., 2018; Shi et al., 2015; Tian et al., 2016, 
2021; Ulbrich et al., 2012). However, if data in integrated PMX size 
classes are available, they cannot be exploited at the same time in the 
three-way PMF even if they are usually much better chemically char
acterized than the size-segregated ones. In addition, size-segregated 
samples are often collected in large time intervals (even greater than 
24 h) since the particulate mass amount on each impaction stage can be 
not enough to guarantee a robust retrieval of concentration values (see 
e.g., Canepari et al., 2019). Critically, the information about the tem
poral detail is lost. 

To overcome these limitations, we developed a script for the ME-2 
solver to implement the completely novel multi-time and multi-size 
resolution PMF (referred in the following to as MTMS-PMF), which is 
a combination of the multi-time resolution PMF and three-way PMF. It 
allows the input of data measured with different time resolutions and in 
different size classes. Moreover, both size-segregated data and PMX data 
can be inserted at the same time in the model. In this way, the amount of 
information exploited is maximized. As an original output, in addition to 
size-segregated chemical profiles, the MTMS-PMF provides high time 
resolution temporal contributions of the detected emission sources. The 
size distributions of the PM emissions retrieved at a receptor site 
constitute highly valuable knowledge for developing focused mitigation 
plans to address specific negative impacts (e.g., controlling sources that 
emit ultra-fine particles containing specific harmful compounds for 
human health). Additionally, the detailed data obtained at both high 
time and size resolutions can significantly support the source-to-factor 
assignment process. 

This paper presents the MTMS-PMF method through an application 
on a large dataset collected in the Po Valley (Italy), one of the most 
polluted sites in Europe due to intense anthropogenic emission sources 
and weak atmospheric dilution. This dataset included size-segregated 
samples with time resolutions ranging from about 1 to 3 weeks and 
daily PM10 samples and allowed to test the MTMS-PMF for the first time. 

2. Materials and methods 

2.1. The multi-time and multi-size resolution PMF 

The MTMS-PMF was developed by expanding the multi-time reso
lution PMF (Zhou et al., 2004) with the three-way PMF (Peré-Trepat 
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et al., 2007). Details on these two modelling approaches can be found in 
Sections S1 and S2 of the Supplementary Material file. In the 
MTMS-PMF, the main equation of the multi-time resolution model 
(Equation S1) is modified by considering that samples can be measured 
in different size classes. To account for the time and size of a sample, 
each sample s in the input data matrix X (matrix element xsj representing 
the input concentration of the chemical species j measured in the sample 
s) is associated with a start size class ds1 and an end size class ds2. Similar 
to the concept of time units (i.e., the shortest time interval in the dataset) 
used in the multi-time resolution PMF (see Section S1), ds1 and ds2 are 
expressed in terms of size units. The size unit indicates one of the bins of 
the finer size fragmentation available in the dataset. To illustrate this 
concept, let us suppose having a dataset composed by PM10 daily sam
ples and size-segregated samples collected with a time resolution of 1 
week by a 3-stage cascade impactor in the following three size classes: 
below 1 μm, 1–2.5 μm, and 2.5–10 μm. It is easy to understand that the 
time unit characterizing this dataset is 1 day. Concerning the size unit, 
the integrated size fraction PM10 can be seen as fragmentated into the 
three size classes in which the size-segregated samples were collected. 
Then, each size class corresponds to one size unit. Consequently, 
size-segregated samples collected in the first stage (size below 1 μm) will 
be characterized by ds1 = ds2 = 1; the ones collected in the second stage 
(1–2.5 μm) will be associated with ds1 = ds2 = 2; finally, the ones 
collected in the last stage (2.5–10 μm) will have ds1 = ds2 = 3. All the 
PM10 samples will be associated with ds1 = 1 and ds2 = 3 since their size 
class can be interpreted as the union of the three smaller size intervals. 

Hence, the main equation of the MTMS-PMF can be written as: 

xsj =
∑np

k=1

(
1

ts2 − ts1 + 1
∑ts2

i=ts1

gik

)(
∑ds2

d=ds1

fdjk

)

ηj + esj (1) 

The matrix X has the same dimensions ns × n2 as in the multi-time 
resolution PMF (s = 1, …, ns; j = 1, …, n2) and the index s runs over 
all the samples in the dataset that can be measured at different time 
resolutions and/or in different size classes. The matrix X is decomposed 
into the matrices F (chemical profiles) and G (temporal contributions) of 
the np unknown independent factors, plus the modelling residual matrix 
E. ts1 and ts2 are the start and end time of each sample s expressed in 
terms of time units. ηj is the adjustment factor to account for the species j 
measured at different time resolutions by different analytical techniques 
or samplings. The main difference between Equation (1) and Equation 
(S1) is matrix F, which in this model is a size-segregated (3D) matrix 
with a similar structure as that introduced in the three-way PMF (see 
Section S2). Here, the matrix F has dimensions n3 × n2 × np, where n3 is 
the total number of size units (in the previous example, n3 = 3), and fdjk 

represents the concentration of the species j in the size class d of the k 
factor. The matrix F can be seen as a sequence of np layers, where each 
layer with dimensions n3 × n2 represents the size-segregated chemical 
profile of each factor k. For samples with a size length larger than one 
size unit, the concentration of the species j is given by the sum of the 
size-segregated concentrations in the size units included in the size in
terval [ds1,ds2]. In this way, it is possible to insert in this model integrated 
PMX data and size-segregated data measured in size classes whose union 
matches the PMX size interval. Equation (1) is then solved for all xsj by 
the ME-2 program by minimizing the object function Q given by the 
squared sum of the residuals scaled by the uncertainties provided in the 
input data. As in the traditional PMF approach, the factor profiles are 
assumed to be the same from the source to the receptor and in the 
MTMS-PMF model this is true for each size bin separately. 

The MTMS-PMF was implemented by starting from the multi-time 
resolution PMF script implemented by Crespi et al. (2016) and the 
three-way PMF script implemented by Bernardoni et al. (2017). The 
possibility to implement auxiliary equations for constraints (see e.g., 
Paatero et al., 2014) and the bootstrap analysis to evaluate the robust
ness of the solution (see e.g., Norris et al., 2014) available in the 
above-mentioned multi-time resolution PMF script were extended to the 

MTMS-PMF. 
The factor-to-source assignment can be performed by evaluating 

both size-segregated and integrated percent of species in each factor k, 
calculated as fdjk/

∑
kfdjk (for each size class d and each species j) and 

∑
dfdjk/

∑
k
∑

dfdjk (for each species j), respectively. The size-segregated 
percent of species are of great interest since they allow to increase the 
selectivity of source tracers, especially when size-segregated data are 
available. 

2.2. Description of the input dataset 

2.2.1. Sampling 
The dataset used to test the MTMS-PMF was composed of aerosol 

chemical components obtained on size-segregated samples collected 
with a time resolution of 1–3 weeks and parallel PM10 daily samples. 
Thorough descriptions of the datasets are given in Canepari et al. (2019, 
2014), Farao et al. (2014), and Perrino et al. (2014). Briefly, sampling 
was conducted close to the city of Ferrara (about 130,000 inhabitants) in 
the eastern Po Valley, northern Italy. The sampling site was in a resi
dential area of a western suburb of Ferrara (44◦50′54.95″N, 
11◦33′40.36″E), which is about 50 km from the coast of the Adriatic Sea 
to the east, and about 150 km from the coast of the Tyrrhenian Sea to the 
south-west. The site is close to a major highway, to an industrial area, 
and is affected by many anthropogenic activities. It is well known that 
weak atmospheric dispersion is frequently observed in this area result
ing in high levels of air pollution, enhanced formation of secondary 
aerosol species, and reprocessing of air masses (Crova et al., 2021(a), 
2024; Vecchi et al., 2018, 2019). In the following, only the information 
relevant to the dataset exploited in this work will be reported. 

Size-segregated samples were collected by a multistage impactor, the 
Micro-Orifice Uniform-Deposit Impactor (MOUDI), collecting particles 
in 10 size classes (<0.18 μm, 0.18–0.32 μm, 0.32–0.56 μm, 0.56–1.0 μm, 
1.0–1.8 μm, 1.8–3.2 μm, 3.2–5.6 μm, 5.6–10 μm, 10–18 μm, and >18 
μm). A back-up filter was employed to collect the particles <0.18 μm. In 
this work, a total of 20 size-segregated sample sets were used. They were 
collected from 2008 to 2018 in winter (January and February) and in 
summer (May and June), with a sampling time duration ranging from 6 
to 22 days (Table 1). These samples were analyzed for their PM mass 
concentration by gravimetry, major ions by ion chromatography, and 
soluble and insoluble fractions of elements by inductively coupled 
plasma mass spectrometry (Canepari et al., 2006, 2010); for technical 
details about samplings and analytical techniques, please refer to Can
epari et al. (2019). The chemical fractionation into the soluble and 
insoluble fractions has proven to be a very effective method to enhance 

Table 1 
Sampling periods of size-segregated and PM10 data exploited in this work.  

Season and year Size segregated sampling periods PM10 sampling periods 

Winter 2008 22 January – 31 January 10 January – 7 February 
Summer 2008 29 May – 7 June 30 May – 27 June 
Winter 2009 13 January – 19 January 14 January – 11 February 
Summer 2009 27 May – 5 June 27 May – 25 June 
Winter 2010 12 January – 19 January 13 January – 11 February 

26 January – 2 February 
Summer 2010 2 June – 10 June 26 May – 24 June 
Winter 2011 13 January – 26 January 13 January – 11 February 

26 January – 7 February 
Summer 2011 31 May – 14 June 1 June – 30 June 

14 June – 28 June 
Winter 2012 12 January – 25 January 11 January – 12 February 
Summer 2012 30 May – 11 June 30 May – 30 June 

15 June – 28 June 
Summer 2013 30 May – 19 June 30 May – 19 June 
Winter 2014 9 January – 26 January 9 January – 29 January 
Summer 2014 5 June – 21 June 5 June – 25 June 
Winter 2015 9 January – 22 January 9 January – 31 January 
Winter 2017 16 February – 9 March 17 February – 17 March 
Winter 2018 11 January – 30 January 11 January – 1 February  
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the source traceability of elements (Canepari et al., 2009). Indeed, ele
ments in the soluble fraction are generally more abundant in fine PM 
typically generated by combustion and by gas-to-particle transformation 
processes, while elements in the insoluble fraction contribute mostly to 
coarse PM generated by mechanical processes (such as abrasion, 
erosion, and resuspension). 

In almost contemporaneous periods (Table 1), daily PM10 samples 
were collected on PTFE and quartz-fiber filters and characterized for 
their PM mass concentration by gravimetry, macro-elements by X-ray 
fluorescence, major ions by ion chromatography, soluble and insoluble 
fractions of elements by inductively coupled plasma mass spectrometry 
as for size-segregated samples, and elemental and organic carbon (EC 
and OC) by thermo-optical analysis; for technical details about sam
plings and analytical techniques, please refer to Canepari et al. (2014) 
and Perrino et al. (2014). 

2.2.2. Input dataset preparation 
To combine size-segregated information with PM10 daily samples, 

only the size-segregated samples corresponding to size classes 1–8 were 
considered since stages 9 and 10 collected particles larger than 10 μm. 

A selection of the available chemical species to insert into the model 
was performed by considering the data quality, i.e., the signal-to-noise 
ratio criterion (Norris et al., 2014), the presence of outliers, and the 
specificity of the species as effective tracers for sources that may have 
affected the site during the field campaigns. The selected species in 
common were: PM mass concentration, 7 ions (Cl− , NO3

− , SO4
2− , Na+, 

NH4
+, Mg2+, Ca2+), 5 elements in the soluble fraction (Cs_s, Li_s, Ni_s, 

Rb_s, V_s; the notation “_s” indicates the soluble fraction), and 7 ele
ments in the insoluble fraction (Cu_i, Fe_i, Li_i, Mn_i, Pb_i, Sb_i, Ti_i; the 
notation “_i” indicates the insoluble fraction). All species were checked 
for the agreement between the two datasets by comparing the sum of the 
size-segregated data over the 8 size classes and the average of PM10 data 
over the corresponding sampling periods of size-segregated samplings. 
Overall, the compared data followed similar patterns, with PM10 data 
systematically larger than size-segregated data of an average factor 
ranging from 1.3 to 2.6, depending on the species; this might be ascribed 
to small differences in the cut-off efficiency curves of two samplers 
operated in parallel. For all these species, it was decided to correct for 
the differences by implementing the adjustment factors in the model 
(see Section S1), considering daily PM10 data as the benchmark. K 
inserted in the model came from K (PM10 samples) and K+ (size-se
gregated samples). Lastly, Al, Si, EC, and OC were available only in the 
PM10 dataset, but thanks to the flexibility of the MTMS-PMF, it was 
possible to insert them in the input dataset together with the other data, 
thus providing a more comprehensive compositional dataset. This flex
ibility was a great advantage since these species are very specific tracers 
for some emission sources, e.g., Al and Si are excellent tracers of mineral 
dust (see e.g., Mason, 1966) and EC is a key tracer of combustions (see e. 
g., Querol et al., 2013; Reid et al., 2005). Moreover, OC constitutes a 
large fraction of PM mass concentrations (about on average 22% in this 
dataset). 

All the selected species were pre-treated before inputting them in the 
model by following the widely used approach proposed by Polissar et al. 
(1998). For size-segregated data, missing data were replaced with the 
geometric mean calculated over the related size class and season. PM 
mass concentrations in both datasets were downweighed by assigning 
them an uncertainty of 400% (Kim et al., 2003). 

In conclusion, the input matrix X used for this application consisted 
of ns = 599 samples, n1 = 444 time units, n2 = 25 species, and n3 = 8 size 
units (an example is reported in Fig. S2). 50 model runs were performed 
for each analysis to find the solution corresponding to the global mini
mum of the object function Q. A regularization equation (Equation S3) 
was implemented to smooth the time series and avoid artificial peaks as 
suggested by Zhou et al. (2004). An extra-modeling error of 10% was 
assigned (see Section S3 for further details). The analyses were per
formed in the robust mode to reduce the weights of extreme values 

(Brown et al., 2015). 

3. Results and discussion 

Solutions characterized by varying number of factors, 3 ≤ np ≤ 9, 
were explored. The factor-to-source assignment was performed mainly 
by evaluating both size-segregated and integrated percent of species and 
chemical profile in each factor. Also, the factor temporal pattern 
resolved at the resolution of 1 day were carefully analyzed to support the 
factor-to-source assignment. 

After 50 convergent runs, the 8-factor base-case solution corre
sponding to the lowest Q value (12,792) was chosen as the most phys
ically meaningful, and the factors were assigned to biomass burning 
(BB), traffic (TR), nitrate (NI), sulfate and heavy oil combustion (SHO), 
processing of building materials (BM), soil and road dust (SR), fresh sea 
salt (FS), and aged sea salt (AS). A lower number of factors resulted in 
ambiguous chemical profiles and mixing of sources, while in the 9-factor 
solution the BB factor divided into two factors without a clear physical 
meaning. Further details about the physical robustness of the solution 
are reported in Section S4. 

The 8-factor base-case solution represented a physically consistent 
representation of the major aerosol emission sources affecting the 
considered site. Nevertheless, the possibility to apply constraints was 
implemented in the MTMS-PMF to explore rotated solutions and to 
possibly improve the chemical profiles of some factors. The constraints 
were applied to the BB, TR, and SHO factors (for a total of 19 additional 
auxiliary equations). Their application enhanced the physical meaning 
of the chemical profiles without significantly affecting the source ap
portionments and increased the Q value by about 8%, which is consid
ered still acceptable according to the literature (Paatero et al., 2002; 
Paatero and Hopke, 2008). Therefore, the constrained solution was 
chosen as the most reliable. In the following discussion, the full 
description of the factors is reported as well as the motivation of the 
applied constraints. 

The BB factor showed high percent values of Cs_s, Rb_s, Pb_i, and K 
especially in the size classes below 1.8 μm. Such species are reported in 
the literature as tracers of biomass burning emissions (Belis et al., 2011; 
Canepari et al., 2019; Massimi et al., 2020; Pio et al., 2022). For the 
species inputted to the model available only in the integrated PM10 
fraction (Al, Si, EC, and OC in this dataset; see also Fig. S2), 
size-distributions are provided also for these variables as output by the 
model (see Tables S2–S9). Nevertheless, due to the lack of real infor
mation about size distributions in input, the result is a uniform spread of 
concentrations into the different size-classes that is not physically 
meaningful and will not be included in the discussion of the results. 
Hence, only the integrated percent of species and chemical profile will 
be shown in the Fig. 1a and b for these species. 

Among all the factors, the BB factor showed the highest percent 
values for Cs_s, which can be considered as tracer for these emissions 
(Canepari et al., 2019; Massimi et al., 2020). However, a certain amount 
of Cs_s was spread also in the profiles of the NI and TR factors. Thus, a 
pulling-up constraint was applied to Cs_s in all the size classes of the BB 
factor chemical profile. The constrained solution presented much higher 
values of Cs_s in the BB profile (integrated percent of species from 42% 
in the base-case to 86% in the constrained solution). This constraint also 
produced a significant increase of the concentrations and percent values 
of other typical tracers of biomass burning emissions (such as Rb_s, Pb_i, 
and K) and the NI and TR chemical profiles were more representative for 
those factors. In the final constrained solution, the BB factor is overall 
the largest contributor to OC (35%) and the second largest contributor to 
EC (28%). The PM mass distribution is concentrated in the finer size 
classes, with the maximum value apportioned to the 0.32–0.56 μm 
fraction. This result is consistent with biomass burning particles being 
emitted in combustion processes and emissions which are typically in 
the accumulation mode (Bernardoni et al., 2017). The temporal con
tributions are substantially higher during winter months (Fig. 2). This 
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factor is the largest contributor to PM concentrations in winter in the 
size classes <0.18 μm and 0.32–0.56 μm (Fig. 3), and overall is the 
second largest contributor to PM10 integrated mass concentrations 
(about 22%). Its contribution drops in the summer. This difference 
agrees with biomass burning being mainly associated to residential 
heating in the Po Valley (Marigo et al., 2022; Scotto et al., 2021). 

The TR factor accounted for the largest source of many elements in 
the insoluble fraction, i.e., Cu_i, Sb_i, Mn_i, Fe_i, and Pb_i, with contri
butions in the profile generally higher in the largest size classes. These 
species are typically associated with non-exhaust traffic emissions, 
where the emitted particles are formed by the wear of the mechanical 
components of the vehicles (Grigoratos and Martini, 2014; Pant and 
Harrison, 2013; Pio et al., 2022; Thorpe and Harrison, 2008). Quite large 
contributions in the profile are provided by Ca2+ and Ti_i especially in 
the coarser fractions, which can be associated with road dust resus
pended by the moving vehicles or by asphalt wear (Amato et al., 2009; 
Casotti Rienda and Alves, 2021 and references therein cited). Since a 
non-negligible fraction of Cu_i affected the SHO profile, to explore 
further the solution Cu_i was pulled up maximally in all size classes in 
the TR factor. The constrained solution showed increased concentrations 
and percent values of Cu_i in the TR factor and its removal from the SHO 
factor. Additionally, other species considered tracers for traffic emis
sions, e.g., Sb_i (Varrica et al., 2013), increased in the TR profile. In the 
final constrained solution, the TR factor is the highest contributor to EC 
(34%) and the second highest contributor to OC (24%), which likely 
originated by tailpipe emissions (Querol et al., 2013; Viana et al., 2008). 
The PM mass size distribution has the largest peak in the size fraction 

0.32–0.56 μm like the BB factor, suggesting that this part of mass derives 
from combustion processes ascribable to exhaust emissions. However, 
the contribution in the coarser fractions (especially in the size range 
3.2–5.6 μm) was not negligible, likely associated with non-exhaust 
emissions. The contributions of this factor were lower in summer 
(Figs. 2 and 3). The seasonal difference can be explained by considering 
the enhanced mixing layer heights and the closure of schools and other 
commercial activities during summer. 

The NI factor has percent values of NO3
− close to unity in the size 

classes from 0.18 to 1.8 μm and very large values also for NH4
+; these two 

species have very similar size distributions and are the main contributors 
to the profile (Fig. 1a). These observations suggest the presence of 
ammonium nitrate. Indeed, the highest percent values of NO3

− and NH4
+

are related to particles in the accumulation mode in the size classes 
0.56–1 μm and 1–1.8 μm and the mean ratio NO3

− /NH4
+ in these bins is 

3.4, which is consistent with the stoichiometric expected value. The 
mass contribution of this factor dominates PM10 integrated concentra
tions during winter (32%, Fig. 3), especially in size fractions between 
0.56 and 3.2 μm and drastically decreases in summer (3%, see also 
Fig. 2), consistently with the well-known shift of the atmospheric 
equilibrium of ammonium nitrate to its gaseous precursors with 
enhanced temperatures (Seinfeld and Pandis, 2006). The PM mass size 
distribution reaches the maximum around 1 μm that is typical of 
cloud/fog processing of secondary inorganic aerosols (Bernardoni et al., 
2017; Hinds, 1999; Maenhaut et al., 2005; Salma et al., 2005; Seinfeld 
and Pandis, 2006). 

The SHO factor is characterized by high percents of V_s and Ni_s 

Fig. 1a. Factor chemical profiles and percent of species retrieved in the final constrained solution (first 4 factors). For PM mass concentration, ions, soluble and 
insoluble elements, size-segregated data are reported (chemical profile concentrations represented as discrete size distributions); for Al, Si, OC, and EC (i.e., the 
species available only in the PM10 dataset), integrated data are reported. 
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especially in the size classes below 1 μm. SO4
2− and NH4

+ also have quite 
high percent values in the finer classes and are the major contributors in 
the profile (Fig. 1a). V_s and Ni_s are typical tracers of heavy oil com
bustion associated mainly to ship and industrial emissions (Becagli et al., 
2012; Bove et al., 2014; Viana et al., 2014). The large amount of SO4

2−

and NH4
+ is partially ascribable to secondary ammonium sulfate. How

ever, marine diesel emissions also contain primary sulfate given the 
cooling during the power stroke and the high sulfur content of marine 
diesel fuel (Agrawal et al., 2008a, 2008b, 2009, 2010). This factor had 
zero contribution to NO3

− except for the coarser size classes 1.8–3.2 μm, 
3.2–5.6 μm, and 5.6–10 μm, but no other cation was detected in this size 
range; thus, NO3

− was pulled down maximally in these size classes. The 
constrained solution showed zero concentration of NO3

− in all the size 
classes, while an increased amount of NO3

− was found in the coarser size 
classes of the AS factor chemical profile, which is the only factor having 
non negligible contribution of NO3

− in the coarse fraction also in the 
base-case solution. Finding ammonium sulfate and tracers of heavy oils 
together in a chemical profile is very common especially in port sites 
(see e.g., Pietrodangelo et al., 2024; Via et al., 2023), since heavy oils are 
extensively used in marine diesel engines and are an important source of 
sulfur (Hopke et al., 2020). However, the site here investigated is not on 
the coast. Therefore, these observations suggest that this factor may be 
associated with the transport of air masses which passed over port/
marine sites. To further support this assumption, the back-trajectories of 
the air masses related to the most relevant peaks in the time contribution 
(Fig. 2) occurring on the days 24 June 2008, 23 June 2011, and 2 June 
2012 (Fig. S6) were calculated using the Hybrid Single-Particle 

Lagrangian Integrated Trajectory HYSPLIT model (Stein et al., 2015). 
It can be observed that the air masses are coming from the south-west 
direction and passed over the northern part of the Tyrrhenian Sea, 
which is highly affected by marine traffic (Bigi et al., 2017). The PM 
mass size distribution of this factor has its larger contribution in the finer 
classes with an evident double mode due to secondary ammonium sul
fate (Hinds, 1999; Seinfeld and Pandis, 2006) and a non-negligible 
contribution in the coarse fraction. The mass contribution apportioned 
by this factor was higher in summer (Fig. 2) and dominated in the size 
classes <0.18 μm, 0.18–0.32 μm, 0.56–1 μm, and 1.8–3.2 μm. This 
behavior can be attributed either to more intense photochemical activity 
producing sulfate in summer (Seinfeld and Pandis, 2006) or to an 
enhanced marine traffic caused by a higher number of cruise ships. 

The BM factor was not straightforward to interpret. The highest 
percents (Fig. 1b) were retrieved for Ca2+ especially in the size classes 
between 0.18 and 1 μm; this factor accounted for the largest integrated 
amount of Ca2+ (Table S5). Calcium has been reported in the literature 
as marker of soil dust in coarser size fractions (Amato et al., 2016; Viana 
et al., 2008), industrial activities (e.g., cement, steel, and iron 
manufacturing production) (Lee and Pacyna, 1999; Yubero et al., 2011), 
and very local sources such as construction works and coal combustion 
(Bernardoni et al., 2011; Samara and Tsitouridou, 2000). Among these 
sources, the anthropogenic activities that may be related to Ca2+ emis
sions in the investigated area could be the production of building ma
terials as well as their manufacturing and transport by industrial 
vehicles. The HYSPLIT back-trajectories related to the most relevant 
peaks in the time contribution (Fig. 2) occurring on the days 27 June 

Fig. 1b. Factor chemical profiles and percent of species retrieved in the final constrained solution (last 4 factors). For PM mass concentration, ions, soluble and 
insoluble elements, size-segregated data are reported (chemical profile concentrations represented as discrete size distributions); for Al, Si, OC, and EC (i.e., the 
species available only in the PM10 dataset), integrated data are reported. 
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2008 and 5 February 2011 (Fig. S7) show very limited transport largely 
staying in the Po Valley basin, suggesting very local emission origins. 
Quite high percent values were also found for Mg2+, Na+, Fe_i, and Ti_i 
in the finer size classes, and for Rb_s mainly in the coarser size classes. 
This factor was the third largest contributor to OC (17%) and EC (23%). 
The high amount of EC and the PM mass size distribution of this factor 
mainly contributing to the finer size classes below 1 μm suggest that the 
particles emitted by this source originated from combustion processes, e. 
g., from exhaust emissions by industrial vehicles. The temporal contri
bution (Fig. 2) has a very peculiar decreasing pattern over the years until 
2014 followed by almost stable concentrations in the remaining years, 
and no other factor showed a similar pattern. However, the information 
available until now do not give clear indications on possible abatement 
strategies implemented in this area for such emission sources. 

The SR factor presented large percents of K, Li_i, Li_s, Ti_i, and Ca2+

in the coarse size fractions beyond 1.8 μm (Fig. 1b). Al and Si showed 
very high integrated percent values as well. These species are typically 
produced by mechanical processes such as abrasion and erosion of 
crustal material, and hence they are considered very good tracers of 
mineral dust (Mason, 1966; Viana et al., 2008); in addition, the presence 
of small contributions of heavy metals typically linked to non-exhaust 
traffic emissions (e.g., Sb_i, Fe_i) suggest a contribution from road dust 
resuspension. Consistently, the PM mass size distribution has its largest 
contributions in the coarser size fractions. The presence of fine SO4

2− and 
NH4

+ in the profile could be ascribed to an inclusion of ammonium sul
fate produced on the regional scale. The apportioned mass concentration 
is larger in summer and dominates in the size classes beyond 1 μm 
(Fig. 3), likely because the summer months are characterized generally 
by drier meteorological conditions that promote the resuspension of soil 
and road dust. Moreover, the contribution of this factor to integrated 

Fig. 2. Factor temporal contributions of the final constrained solution retrieved at 1 day resolution. Please note that the x-axis is not linear.  
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PM10 concentrations in summer is overall the highest (27%). 
The FS factor was characterized by very high percent values of Cl−

and by quite large values for Na+, Mg2+, and Li_s especially in the 
coarser size fractions over 1 μm (Fig. 1b). Such species are very common 
tracers of fresh sea salt, typically emitted by the breaking of surface 
waves (Seinfeld and Pandis, 2006). Accordingly, the PM mass size dis
tribution of this factor has the largest contribution over 1.8 μm. Since the 
sampling site is not on the coast, this factor is likely associated to 
transport of air masses coming from the sea. To further support this 
hypothesis, also in this case the back-trajectories of the air masses 
related to the highest peaks in the time pattern (Fig. 2) occurring on the 
days 29 May 2008 and 8 February 2012 were retrieved by the HYSPLIT 
model (Fig. S8). The plots show that in both cases the air masses passed 
over the Adriatic Sea before reaching the site. 

Finally, the AS factor showed very high percent values of various 
species (NO3

− , SO4
2− , Na+, K, Mg2+, Cs_s, Rb_s, and V_s) in the largest size 

class 5.6–10 μm. The largest contributors in the profile are NO3
− and Na+

in the size fractions over 1 μm. It is noteworthy that, apart a smaller 
contribution in the SR factor, this is the only factor where NO3

− has a 
significant contribution in the coarse fraction, and is the second largest 
contributor of integrated NO3

− after the NI factor. The presence of tracer 
species of sea salt and the negligible amount of Cl− in the profile is a 
suggestion that this factor may be associated with aged sea salt, where 
the chloride ion was replaced by a nitrate ion (Amato et al., 2016; 
Canepari et al., 2019; Forello et al., 2020; Hopke et al., 2020; Seinfeld 
and Pandis, 2006). This reaction can easily occur when air masses 

coming e.g., from the Adriatic Sea mix with Po Valley air masses, which 
are rich in ammonium nitrate and the precursor gaseous nitric acid. The 
contamination of other species in the profile may be due to the ageing 
and mixing processes occurring during the transport of the air mass over 
polluted areas before reaching the receptor site. 

Overall, the size distributions of the apportioned PM mass concen
tration and chemical components retrieved for each factor by the MTMS- 
PMF allowed strengthening the source-to-factor assignment. To maxi
mize the amount of information gained, from these outputs it is also 
possible to retrieve the continuous size distributions by inverting the 
data with a suitable algorithm (e.g., the MICRON program (Wolf
enbarger and Seinfeld, 1990)), and by fitting the inverted data with 
log-normal distributions (e.g., by following the procedure proposed by 
Crova et al. (2021)(b)). In this way, modal parameters of the size dis
tributions can be assessed (an example applied on the PM mass con
centration of the SR and SHO factors is given in Fig. S9) and a more 
detailed and comprehensive understanding of the processes and dy
namics of aerosol particles in the atmosphere can be achieved. 

4. Conclusions 

In this work, a novel advanced receptor model MTMS-PMF was tested 
and applied to a real dataset by putting the information contained in the 
data to the maximum use. Indeed, one of the greatest strengths of the 
MTMS-PMF model is the possibility to combine data from different types 
of samples measured with different time and size resolutions. This allows 

Fig. 3. Relative size-segregated and integrated (PM10) source apportionment of the 8 factors in the final constrained solution.  

F. Crova et al.                                                                                                                                                                                                                                   



Atmospheric Environment 333 (2024) 120672

9

the integration of different pieces of information, i.e., in the case here 
presented, higher temporal detail and extended chemical composition for 
PM10 samples, along with size distributions for multistage impactor 
samples. The size-segregated chemical profiles retrieved as output were 
highly useful to understand the physical and chemical emission processes 
that produced the collected particles. Moreover, thanks to the flexibility 
of the MTMS-PMF, it was possible to insert compositional data of the 
major species such as carbonaceous components and crustal elements 
obtained from the PM10 data but not measured on the size-segregated 
samples. These features provided mass closure and allowed a much bet
ter association of the factors to aerosol emission sources. The size distri
butions of PM mass concentrations and specific components retrieved for 
each factor are key information to elaborate effective air quality man
agement and regulatory decision-making to mitigate adverse effects of 
the atmospheric aerosol (e.g., to abate the sources more responsible for 
ultra-fine particles or harmful compounds dangerous for human health) 
and to enhance Earth radiation balance models. Lastly, the MTMS-PMF 
provided factor temporal contributions retrieved at the highest time 
resolution available in the dataset (i.e., 1 day). This feature allowed better 
understanding of the periods where the sources were most active, to 
obtain seasonal source apportionments, and to investigate into detail the 
origin of specific peaks through the HYSPLIT model (this would not be 
possible at all e.g., with the only size-segregated data measured at very 
low time resolution). 

The MTMS-PMF model paves the way for many applications where 
field campaign data are available with different time resolutions and 
measured in multiple size classes, not necessarily using samples ach
ieved with multistage impactors (which are demanding in terms of 
manpower and challenging for analytical quantifications). In the case- 
study proposed in this work, data measured with high time and low 
size resolutions were joined with data measured at low time and high 
size resolutions. Another interesting application could be joining high 
time and high size resolution samples with low time and low size reso
lution samples (e.g., hourly data collected through the streaker sampler 
(D’Alessandro et al., 2003) in the coarse and fine fractions with daily 
PM10 samples). 

Finally, it is also important to mention that the MTMS-PMF here 
implemented works when the integrated size fraction matches the union 
of the fragmentated size classes. However, work is in progress to expand 
it also to cases where data are measured in size fractions covering only 
partially the fragmentated size classes. 
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