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Abstract

This thesis proposes a journey into sound processing through deep learning, particularly generative
models, exploring the compositional structure of sound, which is layered in different sources that
compose the final auditory experience. The first part of the text focuses on the problem of separating
the sources from mixtures, initially using a deterministic separator trained via adversarial losses in a
permutation invariant manner and then exploring the setting of Bayesian inference through the use
of latent autoregressive models. In the second half of the thesis, we focus on the continuous musical
setting (as opposed to symbolic), where the sources that compose the sound are interdependent.
By modeling this interdependence probabilistically, we develop diffusion models that allow for the
compositional processing of the different stems present in tracks, thus not only separating them
but generating them in a conditioned manner (accompaniments). Subsequently, we generalize these
models to text-conditioned diffusion models without requiring supervised data. We conclude the
thesis by discussing possible developments in the compositional generation of audio.

Keywords: source separation, music generation, generative models, bayesian inference.





Contents

List of Figures vi

List of Tables viii

Nomenclature xi

Acronyms xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Adversarial Permutation Invariant Training for Universal Sound Separation 4
2.1 Methods for Universal Sound Separation . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Computational Auditory Scene Analysis . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Factorization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Deep Learning Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Permutation Invariant Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Adversarial Permutation Invariant Training . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Instance-Based Adversarial Loss . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 I-Replacement Context-Based Adversarial Loss . . . . . . . . . . . . . . . . . 8
2.3.3 Training with Multiple Discriminators . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Separator Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Dataset, Evaluation Metrics and Baseline . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Discriminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Training and Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Latent Autoregressive Source Separation 16
3.1 Generative Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Conditional Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Source-Joint Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Latent Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 VQ-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Autoregressive Models in the Audio Domain . . . . . . . . . . . . . . . . . . . 23

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



3.3.1 Latent Autoregressive Source Separation . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Discrete Likelihoods for Source Separation . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Image Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Music Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Multi-Source Diffusion Models for Simultaneous Music Generation and Separa-
tion 32
4.1 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Score-Based Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Score-Based Diffusion Models for Audio . . . . . . . . . . . . . . . . . . . . . 36
4.3 Multi-Source Audio Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Total Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Partial Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 The Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Architectures and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Music Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Applications to Singing Voice Separation . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Generalized Multi-Source Inference for Text Conditioned Music Diffusion Mod-
els 48
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Text Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Text-conditioned Score-based Diffusion Models . . . . . . . . . . . . . . . . . 50

5.2 Generalized Multi-Source Diffusion Inference . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Total generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Partial generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Source separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 56
6.1 Improved Guidance Techniques for Diffusion Models . . . . . . . . . . . . . . . . . . 56
6.2 Multi-Source Latent Autoregressive Inference . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Training-Side Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 60

A Adversarial Permutation Invariant Training for Universal Source Separation 78
A.1 Adversarial PIT for Speech Source Separation . . . . . . . . . . . . . . . . . . . . . . 78

A.1.1 CBLDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.2 SSGAN-PIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



A.1.3 Furcax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.4 Conv-TasSAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B Multi-Source Diffusion Models for Simultaneous Music Generation and Separa-
tion 80
B.1 Derivation of MSDM Dirac Posterior Score for Source Separation . . . . . . . . . . . 80
B.2 Derivation of Gaussian and Weakly-Supervised Posterior Scores for Source Separation 83



List of Figures

2.1 Instance-based adversarial loss (N = 4). . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 I-replacement context-based adversarial loss (I = 3, N = 4). . . . . . . . . . . . . . 9
2.3 Qualitative results of separating the mixture at the top with our adversarial PIT base-

line (using all discriminators, no regressor loss). We highlight the reduced spectral
holes in the red squares using our method. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Families of generative techniques for source separation. We show the case where y
is composed of two sources x1 and x2. Left : Conditional generative models. Middle:
Bayesian inference. Right : Source-Joint generative models. In Bayesian inference
and source-joint generative models, the mixture y is present only at inference time
(it is not used as an input to the generative models). . . . . . . . . . . . . . . . . . . 18

3.2 256x256 separations obtained with LASS using pre-trained autoregressive models.
Left: class-conditional ImageNet. Right: unconditional CelebA-HQ. . . . . . . . . . 21

3.3 Schematic of the LASS separation procedure. The picture shows the separation
procedure at s = 3 and is repeated until s = S. At the end of inference, we obtain x1

and x2 decoding ξ1 and ξ2 via the VQ-VAE decoder (not depicted in the picture).
We refer the reader to Algorithm 1 for more details. . . . . . . . . . . . . . . . . . . 22

3.4 Results on MNIST with top-k sampling (k = 32) over a random batch of examples.
Top-k sampling produces more defined digits, in agreement with the results in Table
3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 An overview of our proposed methodology. We use a forward Gaussian process (il-
lustrated from right to left) to learn the score across contextual sets of instrumental
sources (depicted as waveforms within larger rectangles) through various time steps
t. In the inference phase, this process is inverted (shown from left to right), enabling
operations like total generation, partial generation, and source separation, further
elaborated in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Inference modalities with MSDM. The presence of noise within the signal is sym-
bolized by slanted dashes, which reduce progressively from left to right, reaching
their peak level of noise at time T , the point at which the sampling process initiates.
Top-left: The process involves generating every stem within a mixture, leading to
a complete generation of all components. Bottom-left: Partial generation, or source
imputation, is carried out. Given the sources x1 (Bass) and x3 (Piano) as input,
the remaining sources, x̂2(0) (Drums) and x̂4(0) (Guitar), are synthesized. The
noisy stems derived from x1 and x3 are represented by x1(t) and x3(t), respectively,
produced through the perturbation kernel as specified in Eq. (4.1). Right: Source
separation is achieved by conditioning the prior with a mixture y, as detailed in
Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



4.3 Snippets from the subjective evaluation form. The first row is relative to total gen-
eration, there people were asked to evaluate 30 songs, of which 15 were from the
mixture model and 15 from MSDM. 45 people answered the survey. The second row
is relative to partial generation. Subjects were asked to evaluate 15 songs. For each
song, a random subset of sources is fixed and the other are generated by MSDM. The
requested sources are explicitly stated above the song (e.g., in the snippet, the model
has to generate only the bass). 25 subjects answered. . . . . . . . . . . . . . . . . . . 42

4.4 Autoregressive-sampling for source separation with score-based diffusion. . . . . . . . 45

5.1 Diagram for unconditional generation procedure with GMSDI, sampling two coherent
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 FAD (lower is better) between generated sources and Slakh100 test data (200 chunks,
∼12s each). Neg Prompt indicates the presence of negative prompting. . . . . . . . . 52

5.3 FAD (lower is better) results on total and partial generation, with respect to Slakh2100
test mixtures (200 chunks, ∼12s each). Results for MSDM in the partial setting are
slightly different to those in Tables 4.3 because we enforce non-silent results with
MSDM in this case (leading to slightly higher values of the FAD). . . . . . . . . . . . 53

6.1 An overview of different diffusion-based inference techniques. Left : Local Guidance.
Middle: Prediction Guidance. Right : Latent Optimization . . . . . . . . . . . . . . . 57

6.2 Multi-source inverence with autoregressive models. Black arrows define the graphical
model while dotted arrows define the inference procedure. The numbers index the
steps we perform during inference. Left: Total Generation. Midle: Source Separa-
tion. Right: Partial Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Tables

2.1 Summary of differences between the presented method (bottom) and previous adver-
sarial PIT works for speech source separation (top). . . . . . . . . . . . . . . . . . . . 5

2.2 Study of various Dctx,I configurations. y column: Dctx,I is y-conditioned or not.
SI-SDR column: SI-SDRI / SI-SDRS in dB. . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Comparison of adversarial PIT variants and baselines. SI-SDR column: SI-SDRI /
SI-SDRS in dB. All Dctx,I above are y-conditioned with I=3, since it outperforms
other setups (Table 2.2). All adversarial PIT ablations (rows 1-11 & Table 2.2) use
the same fθ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Statistics on likelihood functions over different datasets. K is the number of VQ-
VAE (or VQ-GAN) latent codes. Density is the percentage of nonzero elements in
the likelihood function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Comparison with other methods on MNIST and CelebA test set. Results are reported
in PSNR (higher is better) and FID (lower is better). . . . . . . . . . . . . . . . . . 28

3.3 Performance of LASS with different sampling methods. On MNIST, the reported
score is PSNR (dB) (higher is better), while on Slakh2100 is SDR (dB) (higher is
better). When stochastic samplers are used (ancestral or top-k), the selected solution
in the batch is the one whose sum minimizes the L2 distance to the input mixture. . 29

3.4 Inference speed comparisons for computing one separation. To estimate variance,
we repeat inference 10 times on MNIST and 3 times on Slakh2100. We consider
3-second-long mixtures on Slakh2100. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Comparison with other source separation methods on Slakh2100 (“Drums” and “Bass”
classes). Results are reported in SDR (dB) (higher is better). Lower part of the table
shows supervised methods. With “Avg” we refer to the mean between the results over
the two classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Inference time for a 12-second separation, and number of parameters for each model
in Table 4.5. Demucs + Gibbs (256 steps) was added because 256 is the minimum
number of steps that makes the SI-SDRI over all instruments (17.59) greater than
the one of ISDM. While ISDM and MSDM are not time-competitive to Demucs, they
are more time-efficient compared to Demucs + Gibbs (256 and 512 steps). . . . . . . 40

4.2 Comparison between total generation capabilities of MSDM (Slakh2100) and an
equivalent architecture trained on Slakh2100 mixtures. Both subjective (quality
and coherence, higher is better) and objective (FAD, lower is better) evaluations
are shown. The quality and coherence columns refer to the average scores of the
listening tests, with respective variances. . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Quantitative and qualitative results for the partial generation task on Slakh2100.
We use both subjective (quality and density, higher is better) and objective (sub-
FAD, lower is better) evaluation metrics. The sub-FAD metric is reported for all
combinations of generated sources (B: Bass, D: Drums, G: Guitar, P: Piano). The
quality and density columns refer to the average scores of the listening tests, with
respective variances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



4.4 Hyperparameter search for source separation using “MSDM Dirac” (top-left), “ISDM
Dirac” (bottom-left), “MSDM Gaussian” (top-right) and “ISDM Gaussian” (bottom-
right) posteriors. We report the SI-SDRI values in dB (higher is better) averaged
over all instruments (Bass, Drums, Piano, Guitar). . . . . . . . . . . . . . . . . . . . 43

4.5 Quantitative results for source separation on the Slakh2100 test set. We use the SI-
SDRI as our evaluation metric (dB – higher is better). We present both the supervised
(“MSDM Dirac”, “MSDM Gaussian”) and weakly-supervised (“ISDM Dirac”, “ISDM
Gaussian”) separators and specify if a correction step is used. “All” reports the
average over the four stems. The results show that: (i) Dirac likelihood improves
overall results, even outperforming the state of the art when applied to ISDM (ii)
adding a correction step is beneficial (iii) MSDM with Dirac likelihood and one step
of correction gives results comparable with the state of the art and superior to the
Demucs model trained in [1] overall. We stress again that while the baselines are
trained on the separation task alone, MSDM is able to perform also generative tasks. 44

4.6 Comparison of results of MSDM and Demucs v2 [2]. We report the SI-SDRI values
in dB (higher is better). The network is the same as the one trained on Slakh2100
but the sampling rate is 44kHz and it is trained on chunks of length 6 seconds. . . . 45

4.7 Results on duet singing voices separation evaluated on MedleyVox [3]. . . . . . . . . 46

5.1 Grid search over embedding scale w on 100 chunks (∼12s each) of Slakh2100 test
set. Results in SI-SDRI (dB – higher is better). The source in parenthesis is the
constrained source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Quantitative results for source separation on the Slakh2100 test set. Results in SI-
SDRI (dB – higher is better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



Nomenclature

x′ General notation for both individual sources and mixtures

x,X, ξ Sources in time, STFT and latent domains

y,Y,υ Mix in time, STFT and latent domains

z Conditioning vector (e.g., labels, text embeddings)

L, S Audio length in time domain and latent domain

N,N ′ Number of sources estimated by a model and present in a mix

xi



Acronyms

CASA Computational Auditory Scene Analysis

FAD Fréchet Audio Distance

FID Fréchet Inception Distance

FUSS Free Universal Sound Separation

GAN Generative Adversarial Networks

GMSDI Generalized Multi-Source Diffusion Inference

ISDM Independent Source Diffusion Model

LASS Latent Autoregressive Source Separation

MSDM Multi-Source Diffusion Model

NMF Non-negative Matrix Factorization

PIT Permutation Invariant Training

PSNR Peak Signal to Noise Ratio

SDR Signal to Distortion Ratio

SI-SDR Scale-Invariant SDR

SI-SDRI Scale-Invariant SDR Improvement

SI-SDRS Scale-Invariant SDR Single

STFT Short Time Fourier Transform

TDCN++ (improved) Time-Dilated Convolutional Network

VQ-GAN Vector-Quantized GAN Variational Autoencoder

VQ-VAE Vector-Quantized Variational Autoencoder

xii



Chapter 1

Introduction

Large-scale deep learning-based artificial intelligence has changed the way we perform everyday
tasks. For example, OpenAI’s GPT-4 [4] allows the generation of texts of any kind, being a versatile
tool for composition and processing. More recently, the use of AI has also conquered the video
domain. The Sora model [5] can generate high-resolution photorealistic videos up to a minute long
by simply providing the model with a text prompt describing the video. A fundamental aspect
of human experience is the perception of sound. Therefore, it is unsurprising that increasingly
sophisticated models can improve the analysis [6, 7] and generation [8–10] of such signals.

The most spectacular application of these new models is music generation based on a prompt.
For example, on the app suno.ai, we can enter any lyric, along with a semantic description of
the track (e.g., experimental edm pop), to obtain a realistic song faithful to our requests. Models
underlying apps like these can be trained on a large scale since they take as inputs full songs, along
with some textual description and the lyrics information. However, despite having excellent quality,
the result turns out to be quite generic. After all, the generative model has learned the probability
distribution quite well and can provide samples similar to those in the training set. If, instead of
generating a track outright, we want to allow artists to use the model to interactively manipulate
their creations, propose suggestions for the different instruments, and be intelligent assistants rather
than generic composers, things get complicated. This is because it is difficult for a model to extract
or manipulate the components (called sources) of a song when its training signal is, in most cases,
an opaque mixture of sounds.

As such, the problem underlying any attempt at structural processing of a general audio track
is the problem of separating the sources that compose it [6, 11]. No matter how skilled a model
is at generating a track, if it is incapable of decomposing the underlying sources, we cannot have
total control over what we are generating, and, as such, we cannot guide generation to act on the
sub-components of the track. In this thesis, titled “From Source Separation to Compositional Music
Generation,” we start precisely from the source separation problem and aim to exploit it from a
generative perspective to obtain models for compositional audio processing.

As we will explore in greater detail, the principal challenge in facilitating source separation arises
primarily from the disparity between the limited data available in a decomposed format, which could
serve as a learning resource, and the abundant data available in a mixed form. Our objective is to
identify the most effective methods for utilizing this data and to comprehend how it can optimally
inform a generative assistant for composition.

1
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1.1. Motivation

1.1 Motivation

The main motivation behind this research is applied in nature. We envision a computer system
where the users can upload complex sound, especially music, and the system can seamlessly identify
and decompose its constituent sources. At the same time, the system should be able to iteratively
generate new material based on the decomposed tracks, potentially via rich textual descriptions
provided as input. Ideally, the system should provide granular control over such generations, like
envelopes or notes, for a human in the loop experience. Such a system has been described in
the literature [12] as a generative digital workstation (GAW), an evolved form of a classic digital
workstation (DAW). While there already exist commercial GAWs such as WavTool1, they focus
more on the symbolic representations, which must be synthesized aposteriori. For example, it is
difficult to synthesize guitar from MIDI [13], especially when the dynamical content of the sound
depends on information present in the other instruments (how should I play a guitar given a drum
track?). Aditionally, the system can separate only the classes present in the MUSDB [14] dataset
(Bass, Drums, Vocals and Other). While symbolic interfaces are useful for granular control [15], we
would like to obtain general waveform separation and compositional generation capabilities.

The difficulties in creating such a system stems from the inherent challenges in decomposing
complex audio signals into their constituent sources and the subsequent task of creatively generating
music that is not only coherent but also compositionally rich.

The advent of deep learning [16] and generative models [17], however, has opened new avenues
for addressing these challenges, providing the tools necessary to model the intricate structures
and patterns inherent in music. This thesis aims to: (i) improve performance on general source
separation, (ii) find new ways in which we can perform source separation and (iii) develop new
ways in which we can perform waveform music generation at the stem level. We do so through a
series of studies that apply, in the audio domain, techniques from the principal classes of generative
models, such as adversarial training [18], latent discrete variable models [9, 19, 20] and diffusion
models [21–26].

1.2 Contributions

The research presented herein is structured around five papers published by the author. We present
such papers in the following list, together with the contributions of the author when the author has
equally contributed to a paper or is second author.

• Adversarial Permutation Invariant Training for Universal Sound Separation [27]
(Conference Paper, ICASSP 2023): The author of the thesis is first author of the paper.

• Latent Autoregressive Source Separation [28] (Conference Paper, AAAI 2023):
The author of the thesis is first author and equal contributor to the paper, having proposed
and implemented the idea of the discrete Bayesian sampler, proposed the idea of discrete
likelihoods, implemented them in their first version and written the most of the paper.

• Multi-Source Diffusion Models for Simultaneous Music [29] (Conference Paper,
ICLR 2024, Oral): The author of the thesis is equal contributor to the paper, having

1https://wavtool.com/

From Source Separation to Compositional Music Generation 2

https://wavtool.com/


1.3. Structure of the Thesis

proposed the idea of a source-joint separator, formalized the proof of the Dirac separator,
proposed the sub-FAD metric, performed the first experiments for source imputation and
written substantial parts of the paper.

• Zero-Shot Duet Singing Voices Separation with Diffusion Models [30] (Workshop
Paper, ISMIR 2023, Music Demixing Workshop): The author of the thesis is second
author of the paper, having proposed the architecture and the sampler and having performed
initial experiments.

• Generalized Multi-Source Inference for Text Conditioned Music Diffusion Models
[31] (Conference Paper, ICASSP 2024): The author of the thesis is first author of the
paper.

1.3 Structure of the Thesis

Following this introduction, the thesis is organized into chapters that correspond to the aforemen-
tioned studies, each chapter dedicated to a different aspect of the research:

• Chapter 2: Introduces a new approach to universal sound separation that leverages adver-
sarial training to improve separation quality. The chapter is based on the paper [27].

• Chapter 3: Delves into a novel Bayesian inference methodology for performing source sepa-
ration based on latent autoregressive models. The chapter is based on the paper [28].

• Chapter 4: Defines the Multi-Source Diffusion Model (MSDM) for simultaneous music gen-
eration and separation together with a novel separator based on Dirac delta functions. We
also apply the independent variant of the model on the task of singing voice separation. The
chapter is based on the papers [29] and [30].

• Chapter 5: Examines the generalized approach of MSDM via text-conditioned diffusion
models. The chapter is based on the paper [31].

• Chapter 6: Concludes the thesis with a summary of the contributions and proposes inter-
esting research directions, together with possible solutions.

In the body of the thesis, we have maintained an essential and compact style, which nevertheless
should be fully comprehensible for researchers in the field of deep learning applied to audio with
a background in generative modeling. Where definitions might seem dry, we nonetheless refer
the reader to the relevant articles through the thesis’s rich bibliography. Definitions are inserted
when needed, and we make many references between the different chapters of the thesis, given the
substantial coherence of the themes presented. While the chapters closely follow their respective
papers, we have also included new material, for example, Section 3.1 and the final discussion, with
a unifying character, in order to connect the different topics better and have a more global vision
than reading the individual papers separately.
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Chapter 2

Adversarial Permutation Invariant
Training for Universal Sound Separation

Audio source separation is the task of decomposing an audio mixture y of length L, into its con-
stituent sources, x1,. . . ,xN ′ , where N ′ is the total (often variable) number of sources. Formally, we
can express the observed mixed signal1 as:

y =

N ′∑
n=1

xn . (2.1)

Each source xn represents an individual audio stream within the mix, and the goal of source sepa-
ration is to estimate each xn from y as accurately as possible.

In the broadest setting, audio source separation does not restrict the type or nature of the
sources xn. This setting is called universal source separation, and unlike domain-specific separation
tasks such as music source separation (separating vocals, bass, and drums from a music mix [35–
37]) or speech source separation (separating various speakers talking simultaneously [38–40]), it
encompasses any kind of audio, not limiting the type or nature of the sources xn. This general
approach is well-suited for real-world applications where the audio scene can contain diverse sounds,
from human voices to natural and mechanical noises.

While universal source separation encompasses a wide range of scenarios, possibly including
those typical of music source separation, it’s important to note the distinct characteristics of the
latter. Music source separation often deals with sources that exhibit a high degree of dependency,
such as harmonically related instruments playing in sync. This level of inter-source dependency
necessitates specialized approaches, as discussed in Chapters 4 and 5.

A common approach to universal sound separation with deep learning [16, 41] models consists
in using Permutation Invariant Training (PIT) [42–45] or variants of it (like mixture invariant
training [46]). In this setting, with predefined labels for the sources missing, the model’s estimations
of these sources may occur in any sequence. Consequently, it becomes essential to permute these
estimations to correctly align them with their corresponding ground truth sources, ensuring the
process remains agnostic to the order of output.

In this chapter we argue that an adversarial framework [18] for permutation invariant training

1When more than one mixture channel is available (e.g., 4 channels [32, 33] or 5.1 audio [34]) spatial cues can be
leveraged to perform sound separation. This thesis focuses on mono signals and does not treat spatial methods.
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2.1. Methods for Universal Sound Separation

Table 2.1: Summary of differences between the presented method (bottom) and previous adversarial PIT
works for speech source separation (top).
Previous works on (two speaker) Discriminator type and input Multiple D? Input to D With LPIT? Adversarial
speech source separation (Type → Input: real / fake) (domain) (+LPIT domain) loss

CBLDNN [48] DSTFT
ctx,I=0 → [y,x1,x2] / [y, x̂1, x̂2] (y-conditioned) No |STFT| Yes, |STFT| LSGAN

SSGAN-PIT [49]: variant (i) DSTFT
ctx,I=0 → [y,x1,x2] / [y, x̂1, x̂2] (y-conditioned) No |STFT| Yes, |STFT| LSGAN

SSGAN-PIT [49]: variant (ii) DSTFT
ctx,I=0 → [x1,x2] / [x̂1, x̂2] No |STFT| Yes, |STFT| LSGAN

SSGAN-PIT [49]: variant (iii) DSTFT
inst → [x1] / [x̂1] and [x2] / [x̂2] No |STFT| Yes, |STFT| LSGAN

Furcax [50] Dwave
ctx,I=0 → [x1,x2] / [x̂1, x̂2] No Waveform Yes, waveform LSGAN

Conv-TasSAN [51] Metric predictor → [x1,x2,x1,x2] / [x̂1, x̂2,x1,x2] No Waveform Yes, waveform MetricGAN

Presented source agnostic method
for universal sound separation

Any above except “metric predictor”; with more than Yes, for
better quality

Any above,
plus maskstwo input sources; using Dctx,I>0 with I-replacement; Optional Hinge loss

and with source agnostic discriminators

can outperform regression-based [47] training in the universal source separation task. A number
of speech source separation works also complemented PIT with adversarial losses [48–51]. Yet, as
shown in Sections 2.4 and 2.5, adversarial PIT formulations used in speech separation do not perform
well for universal source separation. To improve upon that, in Section 2.3 we extend speech source
separation works with a novel I-replacement context-based adversarial loss, by combining multiple
discriminators, and generalize adversarial PIT such that it works for universal sound separation
(with source agnostic discriminators dealing with more than two sources). Table 2.1 outlines how
this approach compares with speech separation works, which, for completeness are described in
detail in Appendix A.1.

2.1 Methods for Universal Sound Separation

Various techniques have been previously used for universal sound separation: computational audi-
tory scene analysis during the 1990’s; factorization methods during the early 2000’s; and, currently,
deep learning techniques are being developed.

2.1.1 Computational Auditory Scene Analysis

Computational Auditory Scene Analysis (CASA) was inspired by the cognitive ability of humans
to perceive individual sound sources in an audio mix [52–55]. CASA relies on our understanding of
human perception and is based on following association cues related to the perceptual organization
of sound sources [53]: (i) spectral proximity as closeness in time or frequency; (ii) harmonic concor-
dance; (iii) synchronous changes expressed as common onsets, common offsets, common amplitude
modulations, common frequency modulations, or equidirectional movement in the spectrum; and
(iv) spatial proximity. A common approach to CASA consists in analyzing the spectrogram of a
sound, where association cues are picked out, and representations of the selected cues are organized
into an abstract description of the initial input to extract the sources [52, 55]. Accordingly, CASA
methods are based on human perception and do not necessarily rely on source-specific cues. As a re-
sult, CASA methods allow building source agnostic models suitable for universal sound separation.
The main drawback of CASA methods is the limited understanding of human perception.

2.1.2 Factorization Methods

Factorization methods aim at decomposing the mix y linearly into bases W and activations x, as
follows: y ≈Wx. Factorization methods can decompose the mix in an unsupervised fashion with-
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out using prior information about the sources (i.e., blind source separation). Hence, factorization
methods can be source-agnostic and suitable for universal sound separation. Common factoriza-
tion methods are independent component analysis [56–59] and Non-negative Matrix Factorization
(NMF) [60]. When more sources are available than mixture channels, as in our case, overcomplete
methods are used [61, 62] (i.e., W is a fat matrix). Such a setting is more challenging than the
more studied complete case (square W) and requires further assumptions such as sparsity [63].

Factorization methods have been used for speech source separation [64], music source separation
[65, 66], and to separate and detect (non-music and non-speech) sound events [67–70]. The main
drawback of linear factorization methods is their limited representation power.

2.1.3 Deep Learning Regressors

Deep learning methods are currently considered the best-performing ones because they overcome
the main drawbacks of the methods above. Deep learning is based on (deep) non-linear neural
networks capable of learning from data, with minimal human supervision [16, 41].

In this setting, a mixture is fed to a neural network that outputs the separated sources. Training
is typically performed in a supervised manner by matching the estimated separations with the
ground truth sources with a regression loss (e.g., L1 or L2) [47]. Two approaches are prevalent: the
mask-based approach and the waveform approach. In the mask-based approach, the model performs
separation by applying estimated masks on mixtures, typically in the Short Time Fourier Transform
(STFT) domain [71–77]. In the waveform approach, the model outputs the estimated sources
directly in the time domain to overcome phase estimation, which is required when transforming
the signal from the STFT domain to the waveform domain [2, 36, 78]. Further research explores
combining the two representation in hybrid models [11].

Deep learning models are more expressive than (linear) factorization models, and are not con-
strained by our understanding of human perception (like CASA) since deep learning automatically
learns from data. Provided that deep learning methods can be trained to fit any arbitrary function
or dataset, these can be trained to be source agnostic. Hence, deep learning methods are suitable
for universal sound separation [34, 42–45]. The main drawback of such methods is that they require
large datasets to learn a model that generalizes well with real-world examples [38, 79], and deep
learning models tend to be computationally demanding because large models are required to fit the
complex datasets at hand [2].

2.2 Permutation Invariant Training

Source separation methods based on deep learning employ neural networks fθ to predict N sources
x̂ = fθ(y), given an observable mixture y (Eq. (2.1)). Permutation Invariant Training optimizes
the learnable parameters θ of fθ by minimizing the following permutation invariant loss:

LPIT = min
P

N∑
n=1

L (xn, [Px̂]n) , (2.2)

where we consider all permutation matrices P, P∗ is the optimal permutation matrix minimizing
Eq. (2.2), and L can be any regression loss [47]. Since fθ outputs N sources, in case a mix contains
N ′ < N sources, we set the target xn = 0 for n > N ′. Note that a permutation invariant loss
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is required to build source agnostic models, because the outputs of fθ can be any source and in
any order. As such, the model must not focus on predicting one source type per output, and any
possible permutation of output sources must be equally correct [42, 80]. A common loss L for
universal sound separation is the τ -thresholded logarithmic mean squared error [42, 81], which is
unbounded when xn = 0. In that case, since y ̸= 0, one can use a different L based on thresholding
with respect to the mixture [81]:

L(xn, x̂n) =

10 log10
(
∥x̂n∥2 + τ∥y∥2

)
if xn = 0

10 log10
(
∥xn − x̂n∥2 + τ∥xn∥2

)
otherwise.

(2.3)

2.3 Adversarial Permutation Invariant Training

Generative Adversarial Networks (GAN) [18, 82] introduced the idea of adversarial training, enabling
high-dimensional generative modeling for the first time. In the context of source separation, it
consists of simultaneously training two models: fθ producing plausible separations x̂, and one (or
multiple) discriminator(s) D assessing if separations x̂ are produced by fθ (fake) or are ground-truth
separations x (real). Under this setup, the goal of fθ is to estimate (fake) separations that are as
close as possible to the (real) ones from the dataset, such that D misclassifies x̂ as x [18, 83]. We
propose combining variations of an instance-based discriminator Dinst with a novel I-replacement
context-based discriminator Dctx,I . Each D has a different role and is applicable to various domains:
waveforms, magnitude STFTs, or masks. Without loss of generality, we present Dinst and Dctx,I in
the waveform domain and then show how to combine multiple discriminators operating at various
domains to train fθ.

2.3.1 Instance-Based Adversarial Loss

The role of Dinst is to provide adversarial cues on the realness of the separated sources without
context. That is, Dinst assesses the realness of each source individually:

[x1] / [x̂1] . . . [xN ] / [x̂N ].

Throughout the chapter, we use brackets [ ] to denote the D’s input and left / right for real / fake
separations (not division). Hence, individual real / fake separations (instances) are input to Dinst,
which learns to classify them as real / fake (Fig. 2.1). Dinst is trained to maximize

Linst =
1

N

N∑
n=1

(Lreal,n
inst + Lfake,n

inst ),

where Lreal,n
inst and Lfake,n

inst correspond to the hinge loss [84]:

Lreal,n
inst = min (0,−1 +Dinst(xn)) ,

Lfake,n
inst = min (0,−1−Dinst(x̂n)) .

We use the hinge loss since it has proven to be more stable during training in practice [85] with
respect to the vanilla GAN loss [18] and the Wesserstein GAN (WGAN) loss [86], the latter requiring
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separator

ground-truth sources

shared
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shared
weights

shared
weights

shared
weights

estimated sources

Figure 2.1: Instance-based adversarial loss (N = 4).

techniques such as spectral normalization [87] and weight clipping for stable training.
Previous works also explored using Dinst. However, such works used source-specific setups

where each Dinst was specialized in a source type, e.g., for music source separation each Dinst was
specialized in bass, drums, and vocals [35, 47], or for speech source separation Dinst was specialized
in speech [49, 88]. Yet, each Dinst for universal sound separation is not specialized in any source
type (are source agnostic) and assesses the realness of any audio, regardless of its source type.

2.3.2 I-Replacement Context-Based Adversarial Loss

The role of Dctx,I is to provide adversarial cues on the realness of the separated sources considering
all the sources in the mix (the context):

[x1, . . . ,xN ] / [x̄1, . . . , x̄N ].

Here, all the separations are input jointly to provide context to Dctx,I , which learns to classify them
as real/fake. Dctx,I can also be conditioned on the input mix y:

[y,x1, . . . ,xN ] / [y, x̄1, . . . , x̄N ].

Fake inputs contain entries x̄n, obtained by randomly getting I < N source indices without replace-
ment ΛI ⊂ {1, . . . , N}, and substituting the selected estimated sources x̂∗

n with their ground-truth
xn:

x̄n =

xn if n ∈ ΛI ,

x̂∗
n otherwise,

(2.4)

where x̂∗
n = [P∗x̂]n and P∗ is the optimal permutation matrix minimizing Eq. (2.2) with L as in

Eq. (2.3). Note that finding the right permutation P∗ is important to replace the selected source x̂∗
n

with its corresponding ground-truth xn, because the (source agnostic) estimations do not necessarily
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Figure 2.2: I-replacement context-based adversarial loss (I = 3, N = 4).

match the order of the ground-truth (see Fig. 2.2). Also, note that the I = 0 case corresponds to the
standard context-based adversarial loss used for speech source separation (without I-replacement,
see Table 2.1). Thus, we generalize adversarial PIT for universal sound separation by proposing a
novel I-replacing schema that explicitly uses the ground-truth to guide the adversarial loss. Dctx,I

is trained to maximize

Lctx,I = Lreal
ctx,I + Lfake

ctx,I ,

where we again use the hinge loss [84]:

Lreal
ctx,I = min(0,−1 +Dctx,I(x1, . . . ,xN )),

Lfake
ctx,I = min(0,−1−Dctx,I(x̄1, . . . , x̄N )).

2.3.3 Training with Multiple Discriminators

We have just presented Dinst and Dctx,I in the waveform domain: Dwave
inst and Dwave

ctx,I . Next, we
introduce them in the magnitude STFT (DSTFT

inst , DSTFT
ctx,I ) and mask (Dmask

inst , Dmask
ctx,I ) domains, and

explain how to combine them. The STFT of a mix y is defined as Y = STFT(y). The magnitude
STFT is then obtained by taking the absolute value of Y in the complex domain, namely |Y|.
Similarly, we denote as |Xn| and |X̂n| the magnitude STFT of the target and the estimated sources,
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respectively. Ratio masks

Rn =
|Xn|∑N
n=1 |Xn|

are used to filter sources out from the mix by computing Xn = Y ⊙ Rn, where ⊙ denotes the
element-wise product. Following the same notation as above, the input to the instance-based
DSTFT

inst and Dmask
inst is

DSTFT
inst : [|X1|] / [|X̂1|] . . . [|XN |] / [|X̂N |],

Dmask
inst : [R1] / [R̂1] . . . [RN ] / [R̂N ],

and for the context-based DSTFT
ctx,I and Dmask

ctx,I (conditioned on y) is

DSTFT
ctx,I : [|Y|, |X1|, . . . , |XN |] / [|M|, |X̄1|, . . . , |X̄N |],

Dmask
ctx,I : [|Y|,R1, . . . ,RN ] / [|M|, R̄1, . . . , R̄N ],

where |X̄n| and R̄n entries follow the same I-replacement procedure as in Eq. (2.4). Here, for
DSTFT

ctx,I and Dmask
ctx,I , the optimal permutation matrix P∗ required for re-sorting the fake examples

is computed considering the L1-loss between magnitude STFTs or masks. The motivation behind
combining multiple discriminators is to facilitate a richer set of adversarial loss cues to train fθ [47,
89, 90], such that both Dinst and Dctx,I can provide different perspectives with respect to the
same signal in various domains: waveform, magnitude STFT, and mask. Hence, in addition to
train each D alone, one can train multiple combinations, e.g., Dwave

inst + Dwave
ctx,I , D

wave
ctx,I + DSTFT

ctx,I +

Dmask
ctx,I , or any combination of the discriminators above. However, the more discriminators used,

the more computationally expensive it is to run the loss, and the longer it takes to train fθ (but
does not affect inference time). To the best of our knowledge, training with multiple discriminators
has never been considered for source separation before.

2.3.4 Separator Loss

In adversarial training, fθ is trained such that its (fake) separations x̂ are misclassified by the
discriminator(s) as ground-truth ones x (real). To do so, during every adversarial training step, we
first update the discriminator(s) (without updating fθ) based on Linst, Lctx,I , or any combination
of the losses above. Then, Lsep is minimized to train fθ without updating the discriminator(s). For
example, when using Dwave

inst (with Dwave
inst frozen) we minimize

Lsep = − 1

N

N∑
n=1

Dwave
inst (x̂n),

when using DSTFT
ctx,I (with DSTFT

ctx,I frozen) we minimize

Lsep = −DSTFT
ctx,I (|X̄1|, . . . , |X̄N |),

or when using DSTFT
inst and DSTFT

ctx,I conditioned on y (with DSTFT
inst and DSTFT

ctx,I frozen) we minimize

Lsep = − 1

N

N∑
n=1

DSTFT
inst (|X̂n|)−DSTFT

ctx,I (|Y|, |X̄1|, . . . , |X̄N |).
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Again, note that we use the hinge loss [84]. While we are not presenting all possible loss combinations
for brevity, from the above examples, one can infer all the combinations we experiment with in
Section 2.5. Finally, we can also add an LPIT term (as in Eqs. (2.2) and (2.3)) to adversarial
PIT: Lsep + λLPIT, where λ scales LPIT such that it is of the same magnitude as Lsep [85]. All
previous adversarial PIT works for speech source separation used Lsep + λLPIT (Table 2.1). Yet,
in Section 2.5 we show that the proposed adversarial training setup allows dropping LPIT while
still obtaining competitive results, possibly because of the strong cues provided by Dctx,I (with
I-replacement) and the multiple discriminators. To the best of our knowledge, we are the first to
report results similar to LPIT with a purely adversarial setup (cf. [49]).

2.4 Experimental Setup

2.4.1 Dataset, Evaluation Metrics and Baseline

We use the reverberant Free Universal Sound Separation (FUSS) dataset, a common benchmark for
universal sound separation with 20 k / 1 k / 1 k (train / val / test) mixes of 10 s with one to four
sources [81, 91, 92]. Metrics rely on the Scale-Invariant SDR (Signal to Distortion Ratio) [81]:

SI-SDR(xn, x̂
∗
n) = 10 log10

∥αxn∥2 + ϵ

∥αxn − x̂∗
n∥2 + ϵ

,

where α = xn
T x̂∗

n+ϵ
∥xn∥2+ϵ , ϵ = 10−5, and x̂∗

n = [P∗x̂]n with P∗ being the optimal source-permutation
matrix maximizing SI-SDR. Further, to account for inactive sources, estimate-target pairs that
have silent target sources are discarded [46]. For mixes with one source, we compute SI-SDRS =

SI-SDR(xn, x̂
∗
n), which is equivalent to SI-SDR(y, x̂∗

n) since with one-source mixes the goal is to
bypass the mix (the S sub-index stands for single-source1). For mixes with two to four sources,
we report the average across sources of the SI-SDRI = SI-SDR(xn, x̂

∗
n) − SI-SDR(xn,y) (the I

sub-index stands for improvement2). Note that we are using the standard SI-SDR formulation as
in [46] instead of the alternative (less common) SI-SDR in [44, 81], and that we use the reverberant
FUSS dataset as in [81, 93] instead of its dry counterpart [44, 46] because it is more realistic. As
such, the results in [44, 46, 81] are not comparable with ours because they either use a different
SI-SDR formulation or a different dataset. To compare this work against a meaningful state-of-
the-art baseline we use the DCASE model, an (improved) Time-Dilated Convolutional Network
(TDCN++) [42, 78] predicting STFT masks [93]. It is trained on the reverberant FUSS dataset,
and we evaluate it with the metrics based on the standard SI-SDR. Finally, we report SI-SDRS for
consistency [46, 81], but SI-SDRI scores are more relevant for comparing models since most SI-SDRS

scores are already very close to the upper-bound of 39.9 dB (see Table 2.3).

2.4.2 Separator

The mix y of length L = 160000 (10 s at 16 kHz) is mapped to the STFT domain Y, with windows
of 32ms and 25% overlap (256 frequency bins and 1250 frames). From Y we obtain its magnitude
STFT |Y|, that is input to a U-Net [94, 94] gθ that predicts a ratio mask R̂n. The mask is obtained
using a softmax layer σ across the source dimension n: R̂ = σ(gθ(|Y|)), such that

∑
n |X̂n| = |Y|.

2SI-SDRS is named as 1S or SS in [46, 81] andSI-SDRI as MSi in [46, 81].
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Then, we filter the estimated STFTs out of the mix with X̂n = Y ⊙ R̂n, and use the inverse STFT
to get the waveform estimates: x̂ = fθ(y) = iSTFT(X̂). Hence, our separator can be trained in
the waveform domain (with LPIT, Dwave

ctx,I , D
wave
inst ), in the magnitude STFT domain (with DSTFT

ctx,I ,
DSTFT

inst ), and/or in the mask domain (with Dmask
ctx,I , Dmask

inst ). Our U-Net gθ (of 46.9M parameters)
consists of an encoder, a bottleneck, and a decoder whose inputs include the corresponding encoder’s
block outputs. The encoder is built of 4 ResNet blocks [95], each followed by a downsampler that
is a 1D-CNN [96] (kernel size=3, stride=2). The number of channels across encoder blocks is [256,
512, 512, 512]. The bottleneck consists of a ResNet block, self-attention, and another ResNet block
(with all layers having 512 channels). The decoder block is built of 4 ResNet blocks, reversing
the structure of the encoder, with upsamplers in place of downsamplers, reversing the number of
channels of the encoder. The upsamplers perform linear interpolation followed by a 1D-CNN (kernel
size=3, stride=1). A final linear layer adapts the output to predict the expected number of sources
(N = 4).

2.4.3 Discriminators

Each D is of around 900 k parameters, are fully convolutional, and output one scalar. Dwave
inst

and Dwave
ctx,I rely on a similar model: 4 1D-CNN layers (kernel size=4, stride=3), interleaved by

LeakyReLUs [97], with the following number of channels: [C, 128, 256, 256, 512], where C = 1

for Dwave
inst , and C = 5 or 4 for Dwave

ctx,I , depending if it is y-conditioned or not. Then, the 512
channels are projected to 1 with a 1D-CNN (kernel size=4, stride=1), and the final linear layer maps
the remaining temporal dimension into a scalar. DSTFT

inst , DSTFT
ctx,I , Dmask

inst , and Dmask
ctx,I are similar to

Dwave
inst and Dwave

ctx,I , with the difference that 1D-CNNs are 2D (kernel size=4×4, stride=3×3) and the
number of channels is [C, 64, 128, 128, 256].

2.4.4 Training and Evaluation Setup

Models are trained until convergence (around 500 k iterations) using the Adam optimizer [98], and
the best model on the validation set is selected for evaluation. For training, we adjust the learning
rate {10−5, 10−4, 10−3} and batch size {16, 32, 64, 96, 128} such that all experiments, including abla-
tions and baselines, get the best possible (validation) results. Finally, we use a mixture-consistency
projection [99] at inference time (not during training) because it systematically improves SI-SDRS

without degrading SI-SDRI. The best model was trained for a month with 4 V100 GPUs with a
learning rate of 10−4 and a batch size of 128.

2.5 Experiments and Discussion

First, in Table 2.2, we study various Dctx,I configurations. We observe that the standard adversar-
ial PIT (I = 0, as in speech source separation) consistently obtains the worst results for universal
sound separation. In contrast, the models trained with I-replacement (I > 0) consistently obtain
the best results. We hypothesize that with I = 0, fθ does not separate much. Instead, it tends
to approximate the naive solution of bypassing the mix. We can see this with the SI-SDRS scores,
which tend to be closer (if not the same) to the SI-SDRS of the lower and upper bounds in Table 2.3.
Overall, we note that the I-replacement context-based adversarial loss seems key to generalize ad-
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Table 2.2: Study of various Dctx,I configurations. y column: Dctx,I is y-conditioned or not. SI-SDR
column: SI-SDRI / SI-SDRS in dB.

y DSTFT
ctx,I SI-SDR Dmask

ctx,I SI-SDR Dwave
ctx,I SI-SDR

Yes I=0 4.9 / 35.7 I=0 5.9 / 35.8 I=0 8.5 / 39.9
Yes I=1 11.0 / 33.2 I=1 9.3 / 33.6 I=1 11.3 / 35.5
Yes I=2 10.7 / 33.1 I=2 9.6 / 34.3 I=2 11.9 / 36.3
Yes I=3 11.7 / 33.4 I=3 8.6 / 32.6 I=3 12.1 / 35.9

No I=0 5.7 / 35.0 I=0 3.8 / 36.8 I=0 8.5 / 39.9
No I=1 9.9 / 32.8 I=1 6.7 / 34.1 I=1 10.3 / 37.6
No I=2 10.4 / 32.0 I=2 9.0 / 33.6 I=2 11.0 / 36.0
No I=3 10.2 / 31.0 I=3 9.7 / 33.5 I=3 11.4 / 35.3

Table 2.3: Comparison of adversarial PIT variants and baselines. SI-SDR column: SI-SDRI / SI-SDRS
in dB. All Dctx,I above are y-conditioned with I=3, since it outperforms other setups (Table 2.2). All
adversarial PIT ablations (rows 1-11 & Table 2.2) use the same fθ.

LSTFT
ctx,I Lwave

ctx,I Lmask
ctx,I LSTFT

inst Lwave
inst Lmask

inst LPIT SI-SDR (↑)

✓ ✓ ✓ ✓ ✓ ✓ ✓ 13.5 / 37.2
✓ ✓ ✓ ✓ ✓ ✓ - 12.9 / 36.7
✓ ✓ ✓ - - - - 12.5 / 37.3
✓ ✓ - ✓ ✓ - ✓ 13.8 / 35.3
✓ ✓ - ✓ ✓ - - 12.0 / 38.3
✓ ✓ - - - - - 11.6 / 35.3
✓ - - - - - - 11.7 / 33.4
- ✓ - - - - - 12.1 / 35.9
- - ✓ - - - - 8.6 / 32.6
- - - ✓ - - - 8.2 / 27.0
- - - - ✓ - - 4.7 / 27.7
- - - - - ✓ - 4.5 / 36.8
- - - - - - ✓ 12.4 / 37.4

DCASE PIT baseline [93] 12.8 / 37.5
Lower-bound: return the input mix y 0.0 / 39.9
Upper-bound: ideal ratio STFT masks [78] 25.3 / 39.9

versarial PIT for universal sound separation, where multiple heterogeneous sources are separated.
This contrasts with adversarial PIT works for speech source separation, where two similar sources
are separated. We argue that the universal sound separation case is more challenging, as speech
separation discriminators can judge the realness of separations based on speech cues, but discrim-
inators for universal sound separation cannot as sources can be of any kind. We hypothesize that
the effectiveness of Dctx,I>0 can be attributed to:

• Replacing x̂∗
n with xn explicitly guides the adversarial loss to perform source separation. Note

that Dctx,I=0 (and Dinst) focuses on assessing the realness of its input. Under this setup, a
naive solution is always to bypass the mix, which looks as real as one-source mixes where the
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Figure 2.3: Qualitative results of separating the mixture at the top with our adversarial PIT baseline
(using all discriminators, no regressor loss). We highlight the reduced spectral holes in the red squares using
our method.

goal is to bypass the mix. To avoid this naive solution, some guidance like the I-replacement
is required.

• It is more difficult for Dctx,I>0 to distinguish between real and fake separations, because fake
ones contain replacements. Consequently, such replacements help defining a non-trivial task
for the discriminator that results in a better adversarial loss to train fθ.

Next, we study the discriminators introduced in Section 2.3 and their combination. In Table 2.2,
we note that the y-conditioned Dctx,I=3 generally outperform the rest. Hence, and for simplicity,
in Table 2.3 we only experiment with this setup. We note the following trends:

• Our best result using adversarial PIT improves the state-of-the-art by 1 dB (from 12.8 to
13.8 dB) and improves the LPIT baseline by 1.4 dB (from 12.4 to 13.8 dB). Informal listening
also reveals that our best model separations more closely match the ground-truth sources
and contain less spectral holes than the DCASE baseline (audio examples are available on-
line2). Spectral holes are ubiquitous across mask-based source separation models, and are
the unpleasant result of over-suppressing a source in a band where other sources are present.
Adversarial training seems appropriate to tackle this issue since it improves the realness of
the separations by avoiding spectral holes (which are not present in the training dataset). We
showcase an example in Figure 2.3. We also compare our best model score (13.8 dB) against
the lower and upper bounds (25.3 and 0 dB) to see that there is still room for improvement
(also note this in our examples online2 and follow the discussion in Appendix A.1).

• Our best results are obtained when combining multiple discriminators with LPIT (over 13 dB).
This shows that complementing the adversarial loss with LPIT is beneficial, and confirms
that using multiple discriminators in various domains can help to improve the separations’
quality. We also note that LPIT alone and the best adversarially trained models (without
LPIT) obtain similar results (around 12.5 dB). Hence, purely adversarial models can obtain
comparable results to LPIT alone even without explicitly optimizing for LPIT, in Eq. (2.3),
which is closely related to SI-SDR.

2http://jordipons.me/apps/adversarialPIT/
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• When studying models trained with one D, we note that Dctx,I alone tends to obtain better
results than Dinst alone. We argue that the replacements in Dctx,I explicitly guide the separa-
tor to perform source separation, while for Dinst this is not the case. In addition, Dwave

ctx,I alone
obtains a competitive score of 12.1 dB, which can be improved up to 12.9 dB if combined with
5 additional discriminators. Hence, results can be improved by using multiple discriminators,
but one can save computational resources by choosing the right D without dramatically com-
promising the results. Finally, even though Dinst alone under-performs the rest, we note that
it can help improve the results when combined with Dctx,I .

2.6 Summary and Prospects

We adapted adversarial PIT for universal sound separation with a novel I-replacement context-based
adversarial loss and by training with multiple discriminators. With that, we improve the separations
by 1.4 dB SI-SDRI and reduce the unpleasant presence of spectral holes just by changing the loss
without changing the model or dataset. Even with the improved results, the obtained separations
can still be improved by an important margin.

Indeed, subsequent research [6] generalizing the presented work, leverages the enhanced archi-
tectures TDANet [100] (the original version with an increased number of parameters, which they
call TDANet-Wav and a masked-based version operating on STFT magnitude spectrograms, similar
to our separator, TDANet-STFT) and BSRNN [101], reaching 13.7 dB (TDANet-Wav) and 14.4 dB
(TDANet-STFT, BSRNN) SI-SDRI on FUSS reverberant. Also, pre-trained versions of these archi-
tectures on an upstream large-scale dataset (15,499 hours, 3 orders of magnitude more data than
FUSS) reach 16.4 dB (TDANet-STFT) and 16.0 dB (BSRNN) SI-SDRI. Finally, by fine-tuning these
pre-trained models on FUSS, they reach 18.6 dB (BSRNN) and 18.1 dB (TDANet-STFT) SI-SDRI.
We highlight that these improved results are obtained by training with a regressor loss alone. We
hypothesize that the metrics could be scaled further by employing the adversarial method presented
here with large-scale pre-training and improved architectures.
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Chapter 3

Latent Autoregressive Source Separation

In the previous chapter, we introduced the general problem of source separation. Additionally,
we used adversarial losses, characteristic of generative adversarial networks, remaining in a deter-
ministic setting: given a mixture as input to the separator, the latter provides a single, best-fit
explanation. The proposed method showcased superior performance compared to regression, keep-
ing the neural architecture constant.

In this chapter, we fully embrace the generative setting [18, 23, 24, 102] in the context of
source separation, where we can obtain multiple predictions given a mixture as input. As we will
explore further, this paradigm shift proves beneficial for model reuse and allows us to make fewer
assumptions about the data. At the same time, looking at the problem of source separation from
a generative perspective, leads to a natural development of compositional music generation in the
continuous domain (Chapters 4 and 5).

Autoregressive models have achieved impressive results in a plethora of domains ranging from
natural language [4, 103] to densely-valued domains such as audio [8, 9, 104] and vision [85, 105, 106],
including multimodal joint spaces [107–109]. In the dense setting, it is typical to train autoregressive
models over discrete latent representations obtained through the quantization of continuous data,
possibly using VQ-VAE autoencoders [19]. This way, generating higher-resolution samples while
simultaneously reducing inference time is possible. The learned latent representations are also
useful for downstream tasks [110]. However, in order to perform new non-trivial tasks, the standard
practice is to fine-tune the model or, in the alternative, elicit prompting by scaling training [111,
112]. The former is usually the default option, but it requires additional optimization steps or
modifications to the model. The latter is challenging on non-trivial tasks, especially in domains
different from natural language [113, 114].

In this Chapter, we leverage existing vector-quantized autoregressive models without requir-
ing any gradient-based optimization or architectural modifications to address the task of source
separation for two source mixes.

We propose a generative approach to perform source separation via autoregressive prior dis-
tributions trained on a latent VQ-VAE domain (when class information is used, the approach is
weakly supervised; otherwise, it is unsupervised). Performing separation in a latent domain has
been explored in the context of discriminative models [115, 116], but here we explore it from a
generative perspective, in order to re-use pre-trained components, as argued previously.

For our task, a non-parametric sparse likelihood function is learned by counting the occurrences
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of latent mixed tokens with respect to the sources’ tokens, obtained by mapping the data-domain
sum signals and the relative addends via the VQ-VAE. This module is not invasive, neither for the
VQ-VAE nor for the autoregressive priors, given that the representation space of the VQ-VAE does
not change while learning the likelihood function. Finally, the likelihood function is combined with
the estimations of the autoregressive priors at inference time via the Bayes formula, resulting in a
posterior distribution. The separations are obtained from the posterior distributions via standard
discrete samplers (e.g., ancestral, beam search). We call our method Latent Autoregressive Source
Separation (LASS).

Our contributions are summarized as follows:

• We introduce LASS as a Bayesian inference method for source separation that can leverage
existing pre-trained autoregressive models in quantized latent domains.

• We experiment with LASS in the image domain and showcase competitive results at a signif-
icantly smaller cost in inference time with respect to competitors on MNIST and CelebA
(32×32). We also showcase qualitative results on ImageNet (256×256) and CelebA-HQ
(256×256), thanks to the scalability of LASS to pre-trained models. To the best of our
knowledge, this is the first method to scale generative source separation to higher-resolution
images.1

• We experiment with LASS in the music source separation task on the Slakh2100 dataset
[119]. LASS obtains performance comparable to state-of-the-art supervised models, with a
significantly smaller cost in inference and training time with respect to generative competitors.

3.1 Generative Source Separation

Before delving into the description of LASS, we want to outline a more abstract perspective on the
possible generative source separation techniques, which will be useful in categorizing the method,
along with the methods proposed in the following chapters.

Our treatment excludes (linear) unsupervised generative models that do not make assumptions
on the sources via data (e.g., independent component analysis, see Subsection 2.1.2), given their
limited representation power. Note that linearity is not the only limiting factor: recent research
[120] proves that, more generally, disentanglement – in our case interpreted as source separation –
is impossible without additional assumptions on the sources, even when working with more general
deep (non-linear) models.

3.1.1 Conditional Generative Models

The most straightforward approach to developing a (deep) generative model for source separation
involves configuring a neural separator (like the one described in Chapter 2) to rely on a random
variable η (usually Gaussian or uniform in distribution). Since the model takes the mixture y as
input, we talk about a conditional generative model (Figure 3.1, left), where we model the process
of sampling from a conditional distribution p(x | y). The specific process in which we consume the

1Although not as prominent as its audio counterpart, image source separation has been addressed in literature
[117, 118].
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Conditional Generative Model 
- supervised

 - training-time conditioning

Bayesian Inference
- weakly-supervised / unsupervised

- inference-time conditioning

Source-Joint Generative Model
- supervised

- inference-time conditioning

Figure 3.1: Families of generative techniques for source separation. We show the case where y is composed
of two sources x1 and x2. Left : Conditional generative models. Middle: Bayesian inference. Right : Source-
Joint generative models. In Bayesian inference and source-joint generative models, the mixture y is present
only at inference time (it is not used as an input to the generative models).

variable η depends on the family of generative models we use. For example, a conditional GAN
(cGAN) [121, 122] feds η to the generator together with the conditioning data (y in our case).
Recently, several works have explored conditional generative modeling for speech source separation
especially in the context of diffusion models [123–125].

The reader may already surmise that, at least in the case of the adversarial separator, obtaining
a stochastic version is not difficult; it suffices to modify the input of the generator to accommodate
a stochastic variable. The model, as in the previous situation relies on a supervised dataset and
conditioning is performed during training. We can question what is the advantage of using a
conditional generative separator over a regressor?

The main idea is that generative models can be pre-trained in an unsupervised fashion over large
bodies of data [4, 7], learning representations that can be useful for downstream tasks such as source
separation. The largest body of data related to audio signals is mixture data: [126] estimate that
on YouTube alone there are more than 9 billion videos2, each with an associated waveform, while
supervised datasets containing clean sources are fairly scarce (or datasets containing single sources
that can be combined independently), with [6], to the best of our knowledge, using the largest
supervised audio source separation dataset in literature (15,499 hours; see Section 2.6). Modern
fine-tuning techniques such as LoRA [127] or ControlNet [128] can turn a pre-trained generative
model p(x′) over generic waveform data x′ (which can be both mixture or source data) into a
conditional generative separator p(x | y), given an appropriate fine-tuning dataset. While we do
not investigate this direction further in the body of the thesis, in Chapter 6 we see how such a
direction is a convenient avenue for future research.

3.1.2 Bayesian Inference

A different technique that we can follow, and that we adopt in this chapter, is that of Bayesian
inference (Figure 3.1, middle). In source separation, the peculiarity of Bayesian inference is the
absence of mixtures y at training time, being the later present only at inference time. At training

2Here, of course, we skim over the relevant copyright issues that such a usage of data can entail and provide a
maximum upper bound.

From Source Separation to Compositional Music Generation 18



3.1. Generative Source Separation

time we learn for each source xn, a generative model pn(xn), not conditioned on y, that captures the
probability distribution of the source alone. In this way, we only need information about individual
sources as opposed to a set of contextual sources, so we do not have to rely on supervised datasets.

There are two types of training approaches. The first is an unsupervised approach, where we
have no further information beyond the sources xn (as in the case of universal source separation in
the previous chapter). In such a case, we can use a single model p(xn) to capture the distribution
on the sources xn: by sampling from the generative model, we obtain a source, regardless of its
type. The reader should not confuse this unsupervised approach with unsupervised blind source
separation, i.e., in our case we have access to source data but we do not have class labels. A second
approach is weakly supervised, where we have additional information zn on the nature of the source
xn, often in the form of class labels or text. The information zn can condition the generative model
explicitly as p(xn | zn) or can be used implicitly, partitioning the data classes before training the
model (i.e., train a model for bass pbass(xbass) with bass sources, one for drums pdrums(xdrums)

with drums sources, etc.). The first approach is more convenient, given that we can train a single
parametric model, and is made possible by the use of flexible conditioning mechanisms such as
cross-attention [20], and will be employed in Chapter 5, while in this chapter we will use the class
information implicitly.

At this point, however, we cannot do much if we do not know how to link the sources to the
mixture y we want to separate at inference time. The missing ingredient is a likelihood function, or
observational model p(y | x) which tell us if the sources x combine to the mixture. In a deterministic
setting such distribution is the simple sum operation, but given that we work with probabilities, it
can take different forms. In this and the following chapters we will model the likelihood function
in various ways (categorical, Gaussian, Dirac delta), both to adapt to the choice of the generative
model for the sources and to improve performance during inference.

Having all the required quantities, Bayesian inference estimates the sources using the well know
Bayes formula. If x = (x1,x2) are two sources distributed according to the prior distribution
pdata = (pdata1 , pdata2), and y = (x1 + x2)/2 is the observable mixture3, we generate from the
posterior:

p(x1,x2|y) ∝ pdata(x)p(y|x) (3.1)

= pdata1(x1)pdata2(x2)p(y|x) (3.2)

Bayesian inference, in source separation, takes an independence assumption on the sources, similar
to Naive Bayes in classification [129, Section 8.2.2]: the joint distribution over the sources pdata(x)

factorizes in the product of the individual priors pdata(xn). To be nitpicky, we should call the tech-
nique independent Bayesian inference, because one could also perform Bayesian inference without
factorizing the prior (see the next section). Additionally, notice that the technique is automatically
invariant to permutations, bypassing the need for permutation invariant training (Chapter 2). This
renders the method applicable to the task of universal sound separation, when the prior is trained
in an unsupervised manner.

Following early work on (deep) generative source separation using Bayesian inference based

3We write y as a sum with convex source gains 1/2 to be consistent with the material presented in the chapter
(following the associated paper [28]); in following chapters we assume y is the direct sum, like in Eq. (2.1), where
gains are embedded in the sources.
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on GANs [40, 88, 130], Jayaram and Thickstun [118] propose the BASIS separation method in the
image setting using score-based (diffusion) models [22] (BASIS-NCSN) and a noise-annealed version
of flow-based models (BASIS-Glow). The inference procedure is performed in the image domain
through Langevin dynamics [131], obtaining good quantitative and qualitative results. [132] explores
Bayesian inference with normalizing flows. The authors in [133] extend the Langevin dynamics
inference procedure to autoregressive models by re-training them with a noise schedule, introducing
the Parallel and Flexible (PnF) method. Although innovative, mainly when used for tasks such
as inpainting, this method cannot use pre-trained autoregressive models directly, requiring fine-
tuning under different noise levels. Further, working directly on the data domain, it exhibits a
high inference time and scales with difficulty to higher resolutions. In this chapter, we extend this
line of research by proposing a separation procedure for latent autoregressive models that does not
involve re-training, is scalable to arbitrary pre-trained checkpoints, and is compatible with standard
discrete samplers.

We conclude the discussion around Bayesian inference by reasoning about its purpose. By
not requiring supervised datasets, where often-case sources are inter-dependent (for example, in
an environmental setting, it’s more likely to find sounds of the same type in an office, or in music
source separation datasets [119, 134], different tracks synchronize in time and harmonically) and are
difficult to acquire, one might think that there are advantages in terms of the quantity of available
data usable in this setting (after all, it’s easier to obtain individual stems than to obtain sets of
coherent stems). Yet a criticisms can be raised: One can randomly combine individual stems (as in
the case of [6]) to obtain artificial mixtures and employ regressors, which can be trained easily and
generally have much lower inference times (e.g., see Table 4.1). The main motivation for studying
Bayesian techniques in a multi-source audio context, which will be partially justified in Chapter 5,
is that pre-trained generative models on large amounts of data are able to parameterize individual
sources in a few-shot manner, not having been trained to do so explicitly. Given this capability, only
a likelihood model is needed to allow the use of such techniques at inference time, which can act as
an additional regularizer for the problem. In this sense, Bayesian inference is a guidance technique
(as it is called in recent literature, [135–137]) that further improves a base model (for example, see
[138], where classifier guidance improves on a base conditional generative model).

3.1.3 Source-Joint Generative Models

Since independent Bayesian inference assumes independence between sources, it does not seem a
satisfactory solution when sources are highly inter-dependent, especially in music source separation.

Typically, regressors [2] and conditional generative models for source separation like [123] es-
timate K > 1 number of sources from a mix, being required to capture inter-source dependencies
during training. Also, recall from Table 2.3 the importance of the context in adversarial permuta-
tion invariant training. One question we can ask, is the following: given that sources have a high
inter-dependency in music, maybe modeling the joint prior p(x1, . . . ,xN ) in Eq. (3.1) can improve
metrics in the setting of music source separation.

This third way, which uses a source-joint generative model (Figure 3.1, right), is a hybrid be-
tween the conditional generative model, given that it requires supervised coherent sources to be
trained, and independent Bayesian inference, because separation is performed at inference-time.
Chapter 4 is devoted at exploring this setting, in the context of diffusion models. Surprisingly,
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Figure 3.2: 256x256 separations obtained with LASS using pre-trained autoregressive models. Left: class-
conditional ImageNet. Right: unconditional CelebA-HQ.

experimental evidence (Table 4.5) shows us that for source separation, modeling inter-dependecies
does not improve over classic Bayesian inference in terms of separation quality! Nevertheless, such
a model can be used both for separation and for novel music generation tasks, being a departure
point for high-dimensional compositional music generation.

After this panoramic tour of generative source separation, we can return to the objective of this
chapter, namely developing a Bayesian inference method for latent autoregressive separation.

3.2 Latent Autoregressive Models

This section briefly introduces the Vector-Quantized Variational Autoencoder (VQ-VAE) and au-
toregressive models, since they are core components of the separation procedure used in LASS.

3.2.1 VQ-VAE

A data point x ∈ RL (L is the total length of the data point, e.g., the length of the audio sequence
or the number of pixel channels in an image) can be mapped to a discrete latent domain via a
VQ-VAE [19]. First an encoder Eθ : RL → RS×C maps x to Eθ(x) = (h1, . . . ,hS), where C

denotes the number of latent channels and S the length of the latent sequence. A bottleneck block
Q : RS×C → [K]S casts the encoding into a discrete sequence ξ = (ξ1, . . . , ξS) by mapping each hs

into the index (also called token) ξs = B(hs) of the nearest neighbor eξs contained in an (ordered)
set C = {ek}Kk=1 of learned vectors in RC (called codes). A decoder Dψ : [K]S → RL maps the
latent sequence back into the data domain, obtaining a reconstruction x̂ = Dψ(ξ). VQ-GAN [85] is
an enhanced version of the VQ-VAE, where the training loss is augmented with a discriminator and
a perceptual loss, that improve reconstruction quality while increasing the compression rate of the
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Figure 3.3: Schematic of the LASS separation procedure. The picture shows the separation procedure at
s = 3 and is repeated until s = S. At the end of inference, we obtain x1 and x2 decoding ξ1 and ξ2 via the
VQ-VAE decoder (not depicted in the picture). We refer the reader to Algorithm 1 for more details.

autoencoder. We refer the reader to [19] and [85] for more details on VQ-VAE and VQ-GAN. In
the remainder of the article, we will refer to both models as VQ-VAE and make distinctions when
necessary.

3.2.2 Autoregressive Models

An autoregressive model learns a probability distribution over a discrete domain [K]S (in our case,
the latent domain of the VQ-VAE). The joint probability of a sequence ξ = (ξ1, . . . , ξS) is decom-
posed via the chain rule:

pϕ(ξ) =
S∏
s=1

pϕ(ξ
s|ξ<s),

where pϕ(·) is a learned parametric model, generally a neural network such as CNNs [139, 140]
or transformers [20]. At inference time, samples can be obtained depending on the choice of a
sampling procedure. Generally, ancestral sampling is used, where at each step, the token ξs is drawn
stochastically from the conditional pϕ(ξs|ξ<s), possibly employing top-k [141] filtering to increase
the diversity of the generated data [142]. When the goal is instead to maximize the probability
of the whole sequence (w.r.t. all the sequences), heuristics like beam search are used [143]. Beam
search maintains B possible hypotheses (beams) ξ1, . . . , ξB in parallel during inference. At each
step s, it computes the conditional distributions pϕ(ξ

s
b |ξ

<s
b ) for each beam b and selects the B new

hypotheses that maximize the joint distributions pϕ(ξ
<s
b )pϕ(z

s|ξ<sb ).
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3.2.3 Autoregressive Models in the Audio Domain

Autoregressive models are firmly established in audio modeling [144]. The Jukebox model [104]
leverages Scalable Transformers [20] to generate music tracks by utilizing hierarchical discrete rep-
resentations. The hierarchy is composed of three code levels: top, middle and bottom, ranging from
the most compressed (top) to the more detailed (bottom). The encoding at each level is learned
via an independent VQ-VAE and the corresponding distribution is captured with a different au-
toregressive model. The top AR model is unconditional while the middle and bottom models are
conditioned with codes at the “previous” level, e.g., middle is conditioned on top. Additionally, by
incorporating a lyrics conditioner, Jukebox produces tracks with vocals that adhere to the specified
text. Although Jukebox can model extended sequences in latent space, the resulting audio output
exhibits quantization artifacts, especially at the top-most level. Recent latent autoregressive mod-
els for audio [9, 145, 146] are able to process longer contexts, their outputs are more cohesive and
exhibit higher sound quality. They achieve improved sound quality by employing residual quan-
tization [147, 148]. Residual quantization, differently from plain quantization, quantizes residuals
hsr − eξsr in an iterative way using a set of codebooks {Cr}r=1,...,R, with hs1 = Eθ(x)

s, eξsr ∈ Cr and
R the total number of residuals. As such, if a plain VQ-VAE keeps only a single token for each
step s, residual quantization keeps track of R increasingly finer codes. With residual quantization
we can train a single autoregressive model (not requiring a cumbersome conditional hierarchy, as in
Jukebox) and the decoded output does not suffer from quantization artifacts.

Cutting-edge latent autoregressive models in music, exemplified by MusicLM [8], facilitate gen-
eration by leveraging textual embeddings obtained via contrastive embedders [149, 150]. MusicLM
can perform style transfer by taking a melody as input and modifying it using text prompting.
In contrast, SingSong [151] pioneers vocal to accompaniment generation. The model we introduce
in Chapter 4 also enables accompaniment creation but differentiates from the latter by enabling
composition at the stem level, unlike the single accompaniment mixture produced by SingSong.

In this chapter we use Jukebox when working in the audio domain in Section 3.4.2, mainly
because of its simplicity. A residual quantization version of the algorithm is left as future research.

3.3 Method

Working directly with Eq. (3.2) in the continuous data domain is inefficient. To overcome this
problem, we first model pdata with autoregressive models in the latent space of a VQ-VAE. By
changing the domain, we subsequentially redefine the likelihood function p(y|x1,x2) such that no
gradient-based optimization or model re-training is required. We address the first issue in the
following subsection and the second in the subsequent one. We then describe how to perform
inference using LASS to separate data and propose a post-inference refinement procedure.

3.3.1 Latent Autoregressive Source Separation

This chapter explores the case in which pdata is estimated by a unique autoregressive model pϕ for all
the sources (unsupervised) and the case in which we have two independent ones, pϕ = (pϕ1 , pϕ2), for
each of the two sources (weakly supervised), either in terms of class-conditioned or independently
trained models. We will focus on this latter case in the following, since the former can be generalized
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setting pϕ1 = pϕ2 .
We denote the latent sources and mixtures, respectively, with ξ = (ξ1, ξ2) = Q(Eθ(ξ)) and

υ = Q(Eθ(y)). The posterior distribution in Eq. (3.2) can be locally expressed in the latent
domain as:

p(ξs|ξ<s,υ≤s) ∝ pϕ(ξ
s|ξ<s)p(υ≤s|ξ≤s), (3.3)

for all s = 1, . . . , S. The first factor is the (joint) Bayesian prior, modeled with independent
autoregressive models. The second factor is the likelihood function, which quantifies the likelihood
of the sequences ξ≤s1 , ξ≤s2 to combine into υ≤s.

Since each code in the convolutional VQ-VAE describes a local portion of the data, and given
that the mixing operation is point-wise in the data domain, the mixing relation between latent codes
is local also in the latent domain. As such, we can drop the dependency on the previous context
inside the likelihood function in Eq. (3.3), approximating it as:

p(υ≤s|ξ≤s) ≈ p(υs|ξs). (3.4)

Notice that not depending on the global context and thus on the specific position in the sequence,
we can drop the position index s:

p(ξs|ξs) = p(υs|ξs1, ξs2) = p(υ|ξ1, ξ2). (3.5)

The following subsection describes how LASS models the likelihood function.

3.3.2 Discrete Likelihoods for Source Separation

Previous works [118, 133] model likelihood functions directly in the data domain, typically employing
a σ-isotropic Gaussian term:

p(y|x) = N (y|(x1 + x2)/2, σ
2I).

In our setting, we cannot combine ξs1 and ξs2 (or the associate dense codes eξs1 and eξs2) with the
canonical sum operation, given that the VQ-VAE does not impose an explicit arithmetic structure
on the latent space.

To cope with this, we model the likelihood function in Eq. (3.5) using discrete conditionals,
represented with rank-3 tensors4 P ∈ RK×K×K :

p(· |ξ1, ξ2) = Pξ1,ξ2,:

In order to learn P, we perform frequency counts on latent mixed tokens given the latent sources’
tokens, by iterating over a dataset X. We first initialize a null integer tensor F0 ∈ NK×K×K .
Iterating over x1,x2 ∈ X, we compute y = (x1 + x2)/2, then obtain the latent sequences ξ1 =

Q(Eθ(x1)), ξ2 = Q(Eθ(x
2)) and υ = Q(Eθ(y)). For each entry (ξs1, ξ

s
2, υ

s) ∈ (ξ1, ξ2,υ), at step i,

4We follow the notation for tensors as in Goodfellow et al. [41].

From Source Separation to Compositional Music Generation 24



3.3. Method

Algorithm 1 LASS inference
Input: y
Output: x1,x2

1: υ ← Q(Eθ(y))
2: ξ1 ← []
3: ξ2 ← []
4: for s = 1 to S do
5: prior← log(pϕ1(· |ξ1)⊗ pϕ2(· |ξ2))
6: likelihood← log(P:,:,υs)
7: posterior← prior + λ likelihood
8: (ξs1, ξ

s
2)← Sampler(posterior)

9: ξ1 ← concat(ξ1, ξ
s
1)

10: ξ2 ← concat(ξ2, ξ
s
2)

11: end for
12: x1 ← Dψ(ξ1)
13: x2 ← Dψ(ξ2)
14: return x1, x2

we simply increment the previous count by one:

Fiξs1,ξs2,υs = Fi−1
ξs1,ξ

s
2,υ

s + 1 ,

Fiξs2,ξs1,υs = Fi−1
ξs2,ξ

s
1,υ

s + 1 .

We permute the order of the addends in order to enforce the commutative property of the sum.
After performing the statistics, we can define P as:

Pξ1,ξ2,: =
1∑K

k=1 Fξ1,ξ2,υ=k
Fξ1,ξ2,:. (3.6)

At inference time, the likelihood function (parametric in ξ1 and ξ2, with υ fixed) can be obtained
by slicing the tensor along υ, namely:

p(υ|·, ·) = P:,:,υ.

At first glance, modeling the conditional distributions without parameters could seem memory
inefficient, with a complexity of O(K3). In practice, the tensor P is highly sparse. We showcase this
in Table 3.1 for all our experiments, where the density of P is defined as the percentage of nonzero
elements in P.

Employing discrete likelihood functions for source separation in the latent domain of a VQ-VAE
is a flexible approach; there is no need to change the VQ-VAE representation, the non-parametric
learning procedure does not depend on hyperparameters, and the autoregressive priors do not require
re-training.

3.3.3 Inference Procedure

Given an observable mixture y, the autoregressive priors pϕ1 , pϕ2 and the learned likelihood tensor
P, it is possible to perform inference and estimate x1,x2, as described in Algorithm 1 and depicted
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in Figure 3.3.
We start by mapping y to the latent domain obtaining υ = Q(Eθ(y)) and initializing the

estimates ξ1, ξ2 with the empty sequences. The algorithm iterates over s = 1, . . . , S.
At each step, the joint prior (a K×K matrix) is computed (Line 5) by taking the outer product

of the two distributions predicted by the autoregressive models conditioned over the past context.
We use the logarithms of the distributions for numerical stability. The log-likelihood function is
computed next (Line 6), applying the logarithm on P:,:,υs . In our experiments, we can apply different
scaling factors λ to the log-likelihood to balance it to the priors. The two matrices are then combined
to form the posterior on Line 7.

Finally (Lines 8-10), different techniques can be employed to sample the best candidate tokens
(ξs1, ξ

s
2) from the posterior. In our experiments, we used ancestral sampling (with and without top-k

filtering) and beam search. After the inference loop ends, the estimated sequences are mapped back
to the data domain with the decoder of the VQ-VAE (Lines 12-13), obtaining ξ1 and ξ2.

Post-inference Refinement

The quality of the separated images is limited by the quality of the images obtained via the VQ-
VAE decoder. To enhance the separations we can adopt an additional refinement step by iteratively
optimizing the VQ-VAE latent representations of the samples:

e1(i+ 1) = e1(i) + α∇e1(i)∥Dψ(e1(i)) +Dψ(e2(i))− 2y∥2 (3.7)

e2(i+ 1) = e2(i) + α∇e2(i)∥Dψ(e1(i)) +Dψ(e2(i))− 2y∥2 (3.8)

for i = 1, . . . , I and e1(1) = Eθ(x1), e2(1) = Eθ(x2). In simple words, we optimize for dense latent
embeddings such that their decodings better sum to the mixture, initializing them to the output of
Algorithm 1. We found this strategy particularly helpful on the MNIST datset, where we assess the
quality of the separation through a pixel-wise metric (PSNR) and the VQ-VAE tends to produce
smooth images.

3.4 Experiments

We perform quantitative and qualitative experiments on various datasets to demonstrate the efficacy
and scalability of LASS. In the image domain, we evaluate on MNIST [152] and CelebA (32×32)
[153] and present qualitative results on the higher resolution datasets CelebA-HQ (256×256) [154]
and ImageNet (256×256) [155]. In the audio domain, we test on Slakh2100 [119], a large dataset
for music source separation suitable for generative modeling. We conducted all our experiments on
a single Nvidia RTX 3090 GPU with 24 GB of VRAM. Implementation details for all the models
are provided on the companion website5.

3.4.1 Image Source Separation

We choose the transformer architecture [20] as the autoregressive backbone for all image source
separation experiments. With MNIST and CelebA, we first train a VQ-VAE, then train the au-

5github.com/gladia-research-group/latent-autoregressive-source-separation
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Table 3.1: Statistics on likelihood functions over different datasets. K is the number of VQ-VAE (or
VQ-GAN) latent codes. Density is the percentage of nonzero elements in the likelihood function.

Dataset K Density (%)

MNIST 256 1.49× 100

CelebA 512 6.06× 100

CelebA-HQ 1024 3.80× 10−1

ImageNet 16384 3.90× 10−3

Slakh2100 (Drum + Bass) 2048 7.60× 10−2

Figure 3.4: Results on MNIST with top-k sampling (k = 32) over a random batch of examples. Top-k
sampling produces more defined digits, in agreement with the results in Table 3.3.

toregressive transformer on its latent space. We use K = 256 codes on MNIST and K = 512

on CelebA, given that CelebA presents more variability, requiring more information to reconstruct
data. On CelebA-HQ and ImageNet, we leverage pre-trained VQ-GANs [85] alongside the pre-
trained tansformers published by the authors6 (celebahq_transformer checkpoint for CelebA-HQ
and cin_transformer for ImageNet). Given the flexibility of LASS, they are employed inside the
separation algorithm without modifications. On CelebA-HQ the VQ-GAN has K = 1024 codes,
while on ImageNet has K = 16384. As a first step, in all image-based experiments we learn the
P tensor using the procedure presented in the section “Method”. As shown in Table 3.1, CelebA
presents the lowest sparsity (highest density) while ImageNet has the highest. In all cases, density
is below 7%, and the inference procedure is not affected by memory issues.

Quantitative Results

To assess the quality of image separations produced by LASS, we compare our method with different
baselines on MNIST and CelebA.

On MNIST, we compare LASS with results reported for the two generative separation meth-
ods “BASIS NCSN” (score-based) and “BASIS Glow” (noise-annealed flow-based) from [118], the
GAN-based “S-D” method [130], the fully supervised version of Neural Egg “NES” and the “Average”
baseline, where separations are obtained directly from the mixture x1 = x2 = y/2. In all these
cases, the evaluation metric is the Peak Signal to Noise Ratio (PSNR) [156]. We follow the exper-

6github.com/CompVis/taming-transformers
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Table 3.2: Comparison with other methods on MNIST and CelebA test set. Results are reported in PSNR
(higher is better) and FID (lower is better).

Separation Method MNIST (PSNR) CelebA (FID)

Average 14.9 15.19
Non-negative Matrix Factorization (NMF) 9.4 -
S-D 18.5 -
BASIS Glow 22.7 -
BASIS NCSN 29.3 7.55
LASS (Ours) 24.2 8.96

imental procedure of [118] on MNIST and perform separation on a set of 6,000 mixtures obtained
by combining 12,000 test sources. In order to choose the best sampler for this dataset, we validate
the set of samplers in Table 3.3 on 1,000 mixtures constructed from the test split. We find that
stochastic samplers perform best (PSNR > 20 dB) while MAP methods do not reach a satisfactory
performance. We hypothesize that beam search tends to fall into sub-optimal solutions by perform-
ing incorrect choices in early inference over sparse images such as MNIST digits. Top-k sampling
with k = 32 performs best, so we choose it to perform the evaluation (a qualitative comparison is
shown in Figure 3.4). For each mixture in the test set we sample a candidate batch of 512 sepa-
rations, select the separation whose sum better matches the mixture (w.r.t. the L2 distance), and
finally perform the refinement procedure in Eqs. (3.7), (3.8) with I = 500 and α = 0.1. Evaluation
metrics on this experiment are shown in Table 3.2, while inference time is reported in Table 3.4. Our
method achieves higher metrics than “NMF”, “S-D” and “BASIS Glow” and is faster than “BASIS
NCSN”, thanks to the latent quantization. The higher PSNR achieved by the later method can
be attributed to the fact that, in their case, the underlying generative models perform sampling
directly in the image domain; in our case, the VQ-VAE compression can hinder the metrics.

We compare our method to “BASIS NCSN”, using the pre-trained NCSN model [22] on CelebA.
In this case, we evaluate against the FID metric [157] instead of PSNR, given that for datasets
that feature more variability than MNIST, source separation can be an underdetermined task [118]:
semantically good separations can receive a low PSNR score since the generative models may alter
features such as color and cues (an effect amplified by a GAN decoder). The FID metric better
quantifies if the separations belong to the distribution of the sources. We test on 10,000 mixtures
computed from pair of images in the validation split using a top-k sampler with k = 32. We scale
the likelihood term by multiplying it by λ = 3. It is known in the literature that score-based models
outperform autoregressive models on FID metrics [158] on different datasets, yet our method paired
with an autoregressive model shows competitive results with respect to “BASIS NCSN”.

Qualitative Results

To demonstrate the flexibility of LASS in using existing models without any modification, we
leverage pre-trained checkpoints on CelebA-HQ and ImageNet. In this case, only the likelihood
tensor P is learned. We showcase a curated results list in Figure 3.2 and a more extensive list on the
companion website. To the best of our knowledge, our method is the first to scale up to 256×256
resolutions and can be used with more powerful latent autoregressive models without re-training
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Table 3.3: Performance of LASS with different sampling methods. On MNIST, the reported score is PSNR
(dB) (higher is better), while on Slakh2100 is SDR (dB) (higher is better). When stochastic samplers are
used (ancestral or top-k), the selected solution in the batch is the one whose sum minimizes the L2 distance
to the input mixture.

Sampling Method MNIST (PSNR) Slakh2100 (SDR)

Greedy 17.36 ± 5.90 1.23 ± 2.33
Beam Search 16.96 ± 5.78 5.01 ± 2.39
Ancestral Sampl. 24.03 ± 6.37 4.23 ± 2.29
Top-k (k = 16) 23.74 ± 6.55 3.13 ± 2.53
Top-k (k = 32) 24.23 ± 6.23 2.93 ± 2.20
Top-k (k = 64) 23.85 ± 6.13 3.24 ± 3.29

Table 3.4: Inference speed comparisons for computing one separation. To estimate variance, we repeat
inference 10 times on MNIST and 3 times on Slakh2100. We consider 3-second-long mixtures on Slakh2100.

Method Time

MNIST LASS (Ours) 4.49 s ± 0.27 s
BASIS NCSN 53.34 s ± 0.51 s

Slakh2100 LASS (Ours) 1.33 min ± 0.87 s
PnF 42.29 min ± 1.08 s

(which is cumbersome for very large models). As such, end-users can perform generative separation
without having access to extensive computational resources for training these large models.

3.4.2 Music Source Separation

We perform experiments on the Slakh2100 dataset [119] for the music source separation task. This
dataset contains 2100 songs with separated sources belonging to 34 instrument categories, for a total
of 145 hours of mixtures. We focus on the “Drums” and “Bass” data classes, with tracks sampled
at 22kHz. We use the public checkpoint of Dhariwal et al. [104] for the VQ-VAE model, taking
advantage of its expressivity in modeling audio data over a quantized domain. Given that such a
model is trained at 44kHz, we upsample input data linearly, then downsample the output back at
22kHz. For the two autoregressive priors, we train two transformer models, one for “Drums” and
another for “Bass” and learn the likelihood function over the VQ-VAE (statistics are reported in
Table 3.1). We compare LASS to a set of unsupervised blind source separation methods -“rPCA”
[72], “ICA” [159], “HPSS” [160], “FT2D” [161] - and to two supervised baselines Demucs [2] and
Conv-Tasnet [78] using the SDR (dB) evaluation metric computed with the museval library [162].
To evaluate the methods, we select 900 music chunks of 3 seconds from the test splits of the “Drums”
and “Bass” classes, combining them to form 450 mixtures. The validation dataset is constructed
similarly (with different music chunks). As a sampling strategy, we use beam search since it shows
the best results on a validation of 50 mixtures (Table 3.3), using B = 100 beams. Evaluation results
are reported in Table 3.5: LASS clearly performs better than all the blind unsupervised baselines
and is comparable with the results obtained by methods that use supervision. Furthermore, we
compare the time performance of LASS against the generative source separation method “PnF”
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Table 3.5: Comparison with other source separation methods on Slakh2100 (“Drums” and “Bass” classes).
Results are reported in SDR (dB) (higher is better). Lower part of the table shows supervised methods.
With “Avg” we refer to the mean between the results over the two classes.

Separation Method Avg Drums Bass

rPCA 0.82 0.60 1.05
ICA -1.26 -0.99 -1.53
HPSS -0.45 -0.56 -0.33
REPET 1.04 0.53 1.54
FT2D 0.95 0.59 1.31

LASS (Ours) 4.86 4.73 4.98

Demucs 5.39 5.42 5.36
Conv-Tasnet 5.47 5.51 5.43

[133] by evaluating the time required to separate a mixture of 3 seconds sampled at 22 kHz (piano
vs. voice on “PnF”). Results in Table 3.4 show that LASS is significantly faster, and as such, it can
be adopted in more realistic inference scenarios.

3.5 Limitations

In this chapter we limit our analysis to the separation of two sources. Even if this is a common
setup especially in image separation [117, 133], dealing with multiple sources is a possible line of
future work. Under our framework, this would require to increase the dimensions of the discrete
distributions (both the priors and the likelihood function). To alleviate this problem, techniques
such as recursive separation may be employed [163].

Another limitation of the proposed method is the locality assumption taken in Eq.(3.4). Different
tasks such as colorization and super-resolution would require a larger conditioning context, and
newer quantization schemes to aggregate latent codes on global contexts (using self-attention in the
encoder and the decoder of the VQ-VAE) [164]. Adopting a VQ-VAE quantized with respect to the
latent channels [165] combined with a parametric likelihood function could be a way to solve this
limitation, while still maintaining the flexible separation between VQ-VAE, priors, and likelihoods
presented in the chapter.

Lastly, state-of-the art autoregressive models [9, 145, 146] work with residual quantization [147],
where differences between embedding vectors and codebook elements are quantized progressively,
leading to higher perceptual quality. A residual version of the presented algorithm is to be sought.

3.6 Summary and Prospects

In this chapter, we proposed LASS as a source separation method for latent autoregressive models
that does not modify the structure of the priors. We have tested our method on different datasets
and have shown results comparable to state-of-the-art methods while being more scalable and faster
at inference time. Additionally, we have shown qualitative results at a higher resolution than those
proposed by the competitors. We believe our method will benefit from the improved quality of newer
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autoregressive models [9, 145, 146], improving both the quantitative metrics and the perceptive
results.
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Chapter 4

Multi-Source Diffusion Models for
Simultaneous Music Generation and
Separation

In the previous chapter, we explored how to perform source separation using independent Bayesian
inference with latent autoregressive models. We also saw that the method can be generally applied
to any audio domain, similarly to how we proceeded in Chapter 2, although we tested the latter in
the musical domain. In this chapter, we focus specifically on the musical domain, investigating its
intrinsic peculiarities.

In contrast to other areas within the audio domain, such as speech, the sources found in mu-
sical compositions (stems) are intrinsically linked, sharing a unified context due to their strong
interdependence. For example, a guitar solo in a song plays in sync with the drums and follows
the accompaniment of the bass line. As argued in Section 3.1.3, the joint distribution of musi-
cal sources p(x1, . . . ,xN ) does not factorizes into the product of individual source distributions
{pn(xn)}n=1,...,N , which is the assumption of independence in Bayesian inference (Section 3.1.2).
Also notice that we can obtain a sample from the distribution of the mixture p(y) if we have knowl-
edge of a sample from the joint p(x1, . . . ,xN ), by simply applying the sum operation. Obtaining
the inverse, namely a sample from the joint p(x1, . . . ,xN ) given p(y) is difficult, being equivalent
to source-separation.

Humans possess the remarkable ability to simultaneously manage multiple sound sources, both
in synthesis (for instance, in creating music or generating sounds) and in analysis (such as in
separating distinct sound sources). Specifically, composers have the skill to craft several sources, by
first composing the musical structure then playing, singing or synthesizing the sounds x1, . . . ,xN

that blend into a coherent mix y and can discern and extract details about each individual source
x1, . . . ,xN trough listening the combined sound y. The capacity to both construct and deconstruct
sound plays a pivotal role in generative music modeling. A model that aims to facilitate music
composition needs to have the ability to identify and separate individual sources within a mix,
enabling targeted manipulations on each isolated source. This functionality grants composers the
utmost flexibility to determine what elements to alter and what to preserve within a piece. Thus,
we posit that the endeavor of generating compositional music in the continuous domain (i.e., as
opposed to generating music in symbolic domains like MIDI) is deeply intertwined with the process
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Figure 4.1: An overview of our proposed methodology. We use a forward Gaussian process (illustrated from
right to left) to learn the score across contextual sets of instrumental sources (depicted as waveforms within
larger rectangles) through various time steps t. In the inference phase, this process is inverted (shown from
left to right), enabling operations like total generation, partial generation, and source separation, further
elaborated in Figure 4.2.

of separating music sources.
Models aimed at the task of generation are trained to approximate the distribution p(y) across

mixtures (or to be more precise, on general audio x′ that can represent both individual sources or
mixtures of sources, see Section 3.1.1), and are not able to perform the separation task directly.
In this case, we achieve precise modeling of mixtures but we do not have information about the
individual sources. Note that methods which model the distribution of mixtures based on textual
descriptions [8, 26], face the same challenges without additional analysis1. In this chapter we focus on
models which are not conditioned by additional information z. Contrarily, source separation models
for music [2] focus on either modeling the deterministic counterpart of a conditional distribution
p(x1, . . . ,xN |y) (Chapter 2), which is conditioned on the mix, or on developing a distinct model
pn(xn) for the distribution of each source (utilizing a weakly-supervised approach, given that in
music we have labels for the different stems), with the mixture serving as the condition during the
inference phase, as we discussed thoroughly in the previous chapter. For both scenarios, the creation
of mixtures is unfeasible. In the initial scenario, since the model inputs a mixture architecturally,
it obstructs the capability for unconditional modeling due to the lack of access to p(x1, . . . ,xN ) (or
equivalently, to p(y)). In the latter scenario, although we can model each source independently with

1We will see in Chapter 5 that by leveraging textual parametrization, it is possible to adapt such models for the
tasks outlined in this chapter in a zero-shot fashion.
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high precision, the information regarding their inter-dependence is lost, rendering the generation of
cohesive mixtures unattainable.

In this chapter, we present the following advancements:

• Initially, we establish a connection between source separation and music generation by training
a source-joint generative model (see Section 3.1.3) p(x1, . . . ,xN ), over sources that are con-
textually related (namely, those that are part of the same musical composition). To achieve
this objective, we employ the denoising score-matching framework [22–24] to train a Multi-
Source Diffusion Model (MSDM). By training this unified model, we can execute both source
separation and music generation tasks during the inference stage. Generation is accomplished
by drawing samples from the prior distribution. In contrast, separation is conducted by first
conditioning the prior on the given mixture and sampling from the ensuing posterior distri-
bution.

• This novel framework enables a new task in the music generation domain, namely source
imputation. This approach allows us to create musical accompaniments by generating specific
subsets of sources that complement the ones given as input. For example, we can generate a
piano piece that harmonizes with a given drum track.

• To achieve results on par with regressor models in source separation [1] on the Slakh2100
dataset [119], we introduce a novel methodology for estimating the posterior score utilizing
Dirac delta functions. This method leverages the inherent functional dependency between the
sources and the mixture.

4.1 Related Methods

As outlined in Section 3.1.2, the approach to source separation through (independent) Bayesian
inference involves training a distinct prior model for each source, approximating the distributions
pn(xn)n=1,...,N . The mixture is observed only at inference time, with a likelihood function estab-
lishing the relationship between it and its source components.

The method most closely aligned with MSDM is the NCSN-BASIS algorithm [118], as discussed
in the preceding chapter. The reader should recall that it utilizes Langevin Dynamics with an NCSN
score-based model to separate the mixtures at inference time and is based on Gaussian likelihood
functions. As our experimental results will demonstrate (see Table 4.5), Gaussian likelihoods do
not perform as well as the proposed Dirac-based likelihood functions with score-based models. Our
approach distinguishes itself from other source separation techniques grounded in (independent)
Bayesian inference, including NCSN-BASIS, by its ability to model the entire joint distribution.
This capability enables our single model to not only separate sources but also to generate mixtures
or subsets of stems.

Contextual relationships among sources are explicitly taken into account in the work by Manilow
et al. [1] and in the adversarial permutation invariant training approach we introduced in Chapter 2.
The first work explicitly models the source interdependencies via a orderless NADE estimator [166]
conditioned on the mixture. The model is trained to predict a subset of sources given the comple-
mentary batch. We recall that in our adversarial permutation invariant training method, utilizing a
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Total
Generation

Source
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Figure 4.2: Inference modalities with MSDM. The presence of noise within the signal is symbolized by
slanted dashes, which reduce progressively from left to right, reaching their peak level of noise at time T , the
point at which the sampling process initiates. Top-left: The process involves generating every stem within
a mixture, leading to a complete generation of all components. Bottom-left: Partial generation, or source
imputation, is carried out. Given the sources x1 (Bass) and x3 (Piano) as input, the remaining sources,
x̂2(0) (Drums) and x̂4(0) (Guitar), are synthesized. The noisy stems derived from x1 and x3 are represented
by x1(t) and x3(t), respectively, produced through the perturbation kernel as specified in Eq. (4.1). Right:
Source separation is achieved by conditioning the prior with a mixture y, as detailed in Algorithm 2.

context-based discriminator we can model the relationship between sources, while instance discrim-
ination alone does not lead to acceptable results. The two techniques operate deterministically and
are architecturally designed to depend on the mixtures. A similar architectural restriction is en-
countered in source separation methods that utilize diffusion-based conditional generation [123, 167]
(see Subsection 3.1.1) or deterministic approaches influenced by denoising diffusion [168]. The pre-
sented approach uniquely introduces a model not architecturally limited by a mixture conditioner,
allowing us to achieve unconditional generation.

4.2 Score-Based Diffusion Models

The foundation of our model lies in estimating the joint distribution of the sources p(x1, . . . ,xN ).
Our approach is generative because we model an unconditional distribution (the prior). The different
tasks are then solved at inference time, exploiting the prior.

We employ a diffusion-based [21, 24] generative model trained via denoising score-matching [22]
to learn the prior. Specifically, we present our formalism by utilizing the notation and assumptions
established in [169]. The central idea of score-matching [56, 170, 171] is to approximate the “score”
function of the target distribution p(x), namely ∇x log p(x), rather than the distribution itself.
To effectively approximate the score in sparse data regions, denoising diffusion methods introduce
controlled noise to the data and learn to remove it. Formally, the data distribution is perturbed
with a Gaussian perturbation kernel:

p(x(t) | x(0)) = N (x(t);x(0), σ2(t)I) , (4.1)

where the parameter σ(t) regulates the degree of noise added to the data. Following the authors
in [169], we consider an optimal schedule given by σ(t) = t. With that choice of σ(t), the forward
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evolution of a data point x(t) in time is described by a probability flow ODE [23]:

dx(t) = −σ(t)∇x(t) log p(x(t)) dt . (4.2)

For t = T >> 0, a data point x(T ) is approximately distributed according to a Gaussian distribution
N (x(t);0, σ2(T )I), from which sampling is straightforward. Eq. (4.2) can be inverted in time,
resulting in the following backward ODE that describes the denoising process:

dx(t) = σ(t)∇x(t) log p(x(t)) dt . (4.3)

Sampling can be performed from the data distribution integrating Eq. (4.3) with a standard ODE
solver, starting from an initial (noisy) sample drawn from N (x(t);0, σ2(T )I). The score function,
represented by a neural network Sθ(x(t), σ(t)), is approximated by minimizing the following score-
matching loss:

Et∼U([0,T ])Ex(0)∼p(x(0))Ex(t)∼p(x(t)|x(0))
∥∥Sθ(x(t), σ(t))−∇x(t) log p (x(t) | x(0))

∥∥2
2
.

By expanding p(x(t) | x(0)) with Eq. (4.1), the score-matching loss simplifies to:

Et∼U([0,T ])Ex(0)∼p(x(0))Eϵ∼N (0,σ2(t)I) ∥Dθ(x(0) + ϵ, σ(t))− x(0)∥22 ,

where we compute Sθ(x(t), σ(t)) based on the prediction Dθ(x(t), σ(t)) at step 0:

Sθ(x(t), σ(t)) =: (Dθ(x(t), σ(t))− x(t))/σ2(t) . (4.4)

4.2.1 Score-Based Diffusion Models for Audio

DiffWave [172] and WaveGrad [173] were the first diffusion (score) based generative models in audio,
tackling speech synthesis. Many subsequent models followed these preliminary works, mainly condi-
tioned to solve particular tasks such as speech enhancement [174–177], audio upsampling [178, 179],
MIDI-to-waveform [180, 181], or spectrogram-to-MIDI generation [182]. The first work in source-
specific generation with diffusion models is CRASH [183]. [184–186] proposed text-conditioned
diffusion models to generate general sounds, not focusing on restricted classes such as speech or
music. Closer to our work, diffusion models targeting the musical domain are Riffusion [187] and
Moûsai [26]. Riffusion fine-tunes Stable Diffusion [106], a large pre-trained text-conditioned vision
diffusion model, over STFT magnitude spectrograms. Moûsai performs generation in a latent do-
main, resulting in context lengths that surpass the minute. Our score network follows the design of
the U-Net proposed in Moûsai, albeit using the waveform data representation.

4.3 Multi-Source Audio Diffusion Models

In our setup, we have N distinct source waveforms {x1, . . . ,xN} with xn ∈ RD for each n. The
sources coherently sum to a mixture y =

∑N
n=1 xn. We sometimes use the aggregated form x =

(x1, . . . ,xN ) ∈ RN×D.
In this setting, multiple tasks can be performed: one may generate a consistent mixture y or
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separate the individual sources x from a given mixture y. We refer to the first task as generation
and the second as source separation. A subset of sources can also be fixed in the generation task, and
the others can be generated consistently. We call this task partial generation or source imputation.
Our key contribution is the ability to perform all these tasks simultaneously by training a single
multi-source diffusion model (MSDM), capturing the prior p(x1, . . . ,xN ). The model, illustrated in
Figure 4.1, approximates the noisy score function:

∇x(t) log p(x(t)) = ∇(x1(t),...,xN (t)) log p(x1(t), . . . ,xN (t)) ,

with a neural network:
Sθ(x(t), σ(t)) : RN×D × R→ RN×D , (4.5)

where x(t) = (x1(t), . . . ,xN (t)) denotes the sources perturbed with the Gaussian kernel in Eq.
(4.1). We describe the three tasks (illustrated in Figure 4.2) using the prior distribution:

• Total Generation. This task requires generating a plausible mixture y. It can be achieved
by sampling the sources {x1, ...,xN} from the prior distribution and summing them to obtain
the mixture y.

• Partial Generation. Given a subset of sources, this task requires generating a plausible ac-
companiment. We define the subset of fixed sources as xI and generate the remaining sources
xI by sampling from the conditional distribution p(xI | xI).

• Source Separation. Given a mixture y, this task requires isolating the individual sources that
compose it. It can be achieved by sampling from the posterior distribution p(x | y).

The three tasks of our method are solved during inference by discretizing the backward Eq.
(4.3). Although different tasks require distinct score functions, they all originate directly from the
prior score function in Eq. (4.5). We analyze each of these score functions in detail. For more
details on the discretization method, refer to Section 4.3.4.

4.3.1 Total Generation

The total generation task is performed by sampling from Eq. (4.3) using the score function in Eq.
(4.5). The mixture is then obtained by summing over all the generated sources.

4.3.2 Partial Generation

In the partial generation task, we fix a subset of source indices I ⊂ {1, . . . , N} and the corresponding
sources xI := {xn}n∈I . The goal is to generate the remaining sources xI := {xn}n∈I consistently,
where I = {1, . . . , N} − I. To do so, we estimate the gradient of the conditional distribution:

∇xI(t)
log p(xI(t) | xI(t)). (4.6)

This falls into the setting of imputation or, as it is more widely known in the image domain,
inpainting. We approach imputation using the method in [23]. The gradient in Eq. (4.6) is
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Algorithm 2 “MSDM Dirac” sampler for source separation.
Require: I number of discretization steps for the ODE, R number of corrector steps, {σi}i∈{0,...,I}

noise schedule, Schurn
1: Initialize x̂ ∼ N (0, σ2

I I)
2: α← min(Schurn/I,

√
2− 1)

3: for i← I to 1 do
4: for r ← R to 0 do
5: σ̂ ← σi · (α+ 1)
6: ϵ ∼ N (0, I)

7: x̂← x̂+
√
σ̂2 − σ2

i ϵ

8: z← [x̂1:N−1,y −
∑N−1

n=1 x̂n]
9: for n← 1 to N − 1 do

10: gn ← Sθ,n(z, σ̂)− Sθ,N (z, σ̂)
11: end for
12: g← [g1, . . . ,gN−1]
13: x̂1:N−1 ← x̂1:N−1 + (σi−1 − σ̂)g
14: x̂← [x̂1:N−1,y −

∑N−1
n=1 x̂n]

15: if r > 0 then
16: ϵ ∼ N (0, I)

17: x̂← x̂+
√
σ2
i − σ2

i−1ϵ

18: end if
19: end for
20: end for
21: return x̂

approximated as follows:

∇xI(t)
log p([xI(t), x̂I(t)]) ,

where x̂I is a sample from the forward process: x̂I(t) ∼ N (xI(t);xI(0), σ(t)
2I). The square bracket

operator denotes concatenation. Approximating the score function, we write:

∇xI(t)
log p(xI(t) | xI(t)) ≈ Sθ,I([xI(t), x̂I(t)], σ(t)) ,

where Sθ,I denotes the entries of the score network corresponding to the sources indexed by I.

4.3.3 Source Separation

We view source separation as a specific instance of conditional generation, where we condition the
generation process on the given mixture y = y(0). This requires computing the score function of
the posterior distribution:

∇x(t) log p(x(t) | y(0)) . (4.7)

Standard methods for implementing conditional generation for diffusion models involve directly
estimating the posterior score in Eq. (4.7) at training time (i.e., Classifier Free Guidance, as
described in [25]) or estimating the likelihood function p(y(0) | x(t)) and using the Bayes formula
to derive the posterior. The second approach typically involves training a separate model, often a
classifier, for the score of the likelihood function as in Classifier Guided conditioning, outlined in

From Source Separation to Compositional Music Generation 38



4.3. Multi-Source Audio Diffusion Models

[188].
In diffusion-based generative source separation, learning a likelihood model is typically unneces-

sary because the relationship between x(t) and y(t) is represented by a simple function, namely the
sum. A natural approach is to model the likelihood function based on such functional dependency.
This is the approach taken by [118], where they use a Gaussian likelihood function:

p(y(t) | x(t)) = N (y(t) |
N∑
n=1

xn(t), γ
2(t)I), (4.8)

with the standard deviation given by a hyperparameter γ(t). The authors argue that aligning the
γ(t) value to be proportionate to σ(t) optimizes the outcomes of their NCSN-BASIS separator.

We present a novel approximation of the posterior score function in Eq. (4.7) by modeling
p(y(t) | x(t)) as a Dirac delta function centered in

∑N
n=1 xn(t):

p(y(t) | x(t)) = 1y(t)=
∑N

n=1 xn(t)
. (4.9)

The complete derivation can be found in Appendix B.1, and we present only the final formulation,
which we call “MSDM Dirac”. The method constrains a source, without loss of generality xN , by
setting xN (t) = y(0)−

∑N−1
n=1 xn(t) and estimates:

∇xm(t) log p(x(t) | y(0)) ≈ Sθ,m((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t))

− Sθ,N ((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t)) , (4.10)

where 1 ≤ m ≤ N − 1 and Sθ,m, Sθ,N denote the entries of the score network corresponding to the
m-th and N -th sources. Our approach models the limiting case wherein γ(t) → 0 in the Gaussian
likelihood function. This represents a scenario where the dependence between x(t) and y(t) becomes
increasingly tight, sharpening the conditioning on the given mixture during the generation process.

The separation procedure can be additionally employed in the weakly-supervised source sepa-
ration scenario, typically encountered in (independent) Bayesian source separation [28, 118, 132]
(Section 3.1.2). We remind the reader that this scenario pertains to cases where we know that
specific audio data belongs to a particular instrument class, but we do not have access to sets of
sources that share a context. To adapt to this scenario, we assume independence between sources
p(x1, . . . ,xN ) =

∏N
n=1 pn(xn) and train a separate model for each source class. We call the resulting

model “Independent Source Diffusion Model (ISDM) with Dirac Likelihood” or “ISDM Dirac”. We
derive its formula and formulas for the Gaussian likelihood versions “MSDM Gaussian” and “ISDM
Gaussian” in Appendix B.2. While the ISDM method lacks generative capabilities, in the sense
that it cannot produce a full mix, it enables us to demonstrate the effectiveness of generative source
separation when combined with Dirac likelihood.

4.3.4 The Sampler

We use a first-order ODE integrator based on the Euler method and introduce stochasticity following
[169]. The amount of stochasticity is controlled by the parameter Schurn. As shown in Table 4.4
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Table 4.1: Inference time for a 12-second separation, and number of parameters for each model in Table
4.5. Demucs + Gibbs (256 steps) was added because 256 is the minimum number of steps that makes
the SI-SDRI over all instruments (17.59) greater than the one of ISDM. While ISDM and MSDM are not
time-competitive to Demucs, they are more time-efficient compared to Demucs + Gibbs (256 and 512 steps).

Model Inference Time (s) # of parameters

Demucs 0.111±0.071 40M
Demucs + Gibbs (512 steps) 0.111±0.071 × 512 = 56.832±36.352 ∼ 40M
Demucs + Gibbs (256 steps) 0.111±0.071 × 256 = 28.416±18.176 ∼ 40M

ISDM (correction) 4.6±0.345 × 4 = 18.4±1.38 405M ×4
MSDM (correction) 4.6±0.345 405M

and explained in detail in [169], stochasticity significantly improves sample quality.
We implemented a correction mechanism [23, 118] iterating for R steps after each prediction

step i, adding additional noise and re-optimizing with the score network fixed at σi. This correction
procedure entails injecting additional noise and then re-denoising at each denoising step i employing
the score network fixed at σi. This process is repeated R times for each denoising step i. The
pseudocode for the “MSDM Dirac” source separation sampler is outlined in Algorithm 2.

As per [169], we adopt a non-linear schedule for time discretization that gives more importance
to lower noise levels. It is defined as:

ti = σi = σ
1
ρ
max +

i

I − 1
(σ

1
ρ

min − σ
1
ρ
max)

ρ ,

where 0 ≤ i < I, with I the number of discretization steps. We set σmin = 10−4, σmax = 1, ρ = 7.

4.4 Experimental Setup

4.4.1 Datasets

Our experiments are conducted on the Slakh2100 dataset [119], which was also utilized in the
preceding chapter. In order to maintain a fair comparison with the work of [1], to whom we
compare our results, we restrict our usage to the dataset’s four most frequently occurring classes:
Bass, Drums, Guitar, and Piano. These instruments feature prominently in the vast majority of
the tracks, with their occurrence rates being 94.7% for Bass, 99.3% for Drums, 100.0% for Guitar,
and 99.3% for Piano.

MUSDB18-HQ [134] serves as the uncompressed variant (in WAV format) of the MUSDB18
dataset [14], a benchmark dataset for the music source separation task. It contains 150 tracks, with
100 allocated for training and 50 for testing, amounting to roughly 10 hours of professional-grade
audio. Each piece within the dataset is separated into the stems: Bass, Drums, Vocals, and Other,
with the latter encompassing any elements not included in the categories above.

We recall from Section 3.4.2 that Slakh2100 contains∼150h of audio, more than 10× the quantity
of data in MUSDB18, although not reaching the same level of quality of the latter, given that the
tracks are synthesized from MIDI. The volume of data is critical in generative modeling, which
positions Slakh2100 as a more suitable dataset for our research. Despite this, we also extend our
analysis to include MUSDB18-HQ, as detailed in Table 4.6.
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Table 4.2: Comparison between total generation capabilities of MSDM (Slakh2100) and an equivalent
architecture trained on Slakh2100 mixtures. Both subjective (quality and coherence, higher is better) and
objective (FAD, lower is better) evaluations are shown. The quality and coherence columns refer to the
average scores of the listening tests, with respective variances.

Model FAD ↓ Quality ↑ Coherence ↑

MSDM 6.55 6.44± 2.12 6.34± 2.37
Mixture Model 6.67 6.04± 2.48 5.63± 2.65

Table 4.3: Quantitative and qualitative results for the partial generation task on Slakh2100. We use both
subjective (quality and density, higher is better) and objective (sub-FAD, lower is better) evaluation metrics.
The sub-FAD metric is reported for all combinations of generated sources (B: Bass, D: Drums, G: Guitar,
P: Piano). The quality and density columns refer to the average scores of the listening tests, with respective
variances.

Slakh2100 B D G P BD BG BP DG DP GP BDG BDP BGP DGP Quality Density

MSDM 0.45 1.09 0.11 0.76 2.09 1.00 2.32 1.45 1.82 1.65 2.93 3.30 4.90 3.10 6.2± 2.6 6.1± 2.6

4.4.2 Architectures and Training

The implementation of the score network is based on a time domain (non-latent) unconditional ver-
sion of Moûsai [26]. We used the publicly available repository audio-diffusion-pytorch/v0.0.4322.
The score network is a U-Net [189] comprised of encoder, bottleneck, and decoder with skip connec-
tions between the encoder and the decoder. The encoder has six layers comprising two convolutional
ResNet blocks, followed by multi-head attention in the final three layers. The signal sequence is
downsampled in each layer by a factor of 4. The number of channels in the encoder layers is [256,
512, 1024, 1024, 1024, 1024]. The bottleneck consists of a ResNet block, followed by self-attention,
and another ResNet block (all with 1024 channel layers). The decoder follows a reverse symmetric
structure with respect to the encoder. We employ audio-diffusion-pytorch-trainer3 for train-
ing. We downsample data to 22kHz and train the score network with four stacked mono channels
for MSDM (i.e., one for each stem) and one mono channel for each model in ISDM, using a context
length of ∼ 12 seconds. All our models were trained until convergence on an NVIDIA RTX 6000
GPU with 24 GB of VRAM. We trained all our models using Adam [98], with a learning rate of
10−4, β1 = 0.9, β2 = 0.99 and a batch size of 16. Inference times and number of parameters are
reported in Table 4.1.

4.5 Experimental Results

4.5.1 Music Generation

The performance of MSDM on the generative tasks is tested through subjective and objective
evaluation.

Subjective evaluation is done through listening tests, whose form format is reported in Figure
4.3. Concisely, we produce two forms, one for total generation and one for partial generation. In

2https://github.com/archinetai/audio-diffusion-pytorch/tree/v0.0.43
3https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/79229912
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the first, subjects are asked to rate, from 1 to 10, the quality and instrument coherence (i.e., how
the instruments sound plausible together) of 30 generated chunks, of which 15 are generated by
MSDM and 15 by a model trained on mixtures (using the same diffusion architecture as MSDM).
In the second one, knowing the fixed instruments, subjects are asked to rate, from 1 to 10, the
quality and the density of the generated accompaniment. Namely, ‘quality’ tests how the full chunk
sounds plausible with respect to the ground truth data, and ‘density’ tests how much the generated
instruments are present in the chunk. We also provide examples of mixture and accompaniment
generation4.

Figure 4.3: Snippets from the subjective evaluation form. The first row is relative to total generation,
there people were asked to evaluate 30 songs, of which 15 were from the mixture model and 15 from MSDM.
45 people answered the survey. The second row is relative to partial generation. Subjects were asked to
evaluate 15 songs. For each song, a random subset of sources is fixed and the other are generated by MSDM.
The requested sources are explicitly stated above the song (e.g., in the snippet, the model has to generate
only the bass). 25 subjects answered.

As for the objective evaluation of the generative tasks, we use the Fréchet Audio Distance (FAD)
[190] metric with VGGish embeddings [191]. The recent study [192] shows that using using VGGish

4https://gladia-research-group.github.io/multi-source-diffusion-models/
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Table 4.4: Hyperparameter search for source separation using “MSDM Dirac” (top-left), “ISDM Dirac”
(bottom-left), “MSDM Gaussian” (top-right) and “ISDM Gaussian” (bottom-right) posteriors. We report
the SI-SDRI values in dB (higher is better) averaged over all instruments (Bass, Drums, Piano, Guitar).

Dirac Likelihood Gaussian Likelihood

Schurn
Constrained Source γ(t)

Bass Drums Guitar Piano 0.25σ(t) 0.5σ(t) 0.75σ(t) 1σ(t) 1.25σ(t) 1.5σ(t) 2σ(t)

M
S
D

M

0 4.41 5.05 3.28 2.87 -41.54 6.37 6.05 5.67 5.729 5.13 4.33
1 7.90 8.18 7.03 7.05 -47.24 6.79 6.51 6.15 6.19 5.66 4.45
20 14.29 12.99 12.19 11.69 -47.17 11.07 10.51 9.43 10.19 9.18 7.58
40 14.28 13.02 5.51 4.78 -47.17 -36.92 12.48 11.25 11.87 10.80 9.03

IS
D

M

0 5.05 3.69 -2.50 6.93 -45.46 7.12 6.50 5.78 5.02 4.49 3.69
1 9.23 8.57 7.28 9.20 -47.54 7.57 7.20 6.32 5.35 4.82 3.83
20 15.35 15.08 13.20 15.36 -46.86 12.89 12.21 10.87 9.32 8.32 6.47
40 17.26 15.77 15.30 14.98 -46.86 -35.97 14.09 12.82 10.85 10.02 8.26
60 16.21 15.57 15.51 14.20 -46.80 -46.85 14.06 12.57 11.83 10.81 9.24

embeddings is not as reliable as CLAP [193] or EnCodec [148] embeddings. We opted for VGGish
embeddings due to their widespread adoption within the research community. Additionally, the
foundational work for this chapter was completed prior to the release of [192], which highlighted
potential limitations of VGGish embeddings for computing the FAD metric.

We generalize the evaluation protocol in [151] to our total generation task and to partial gener-
ation with more than one source. Given Dreal a dataset of ground truth mixtures chunks and I a
set indexing conditioning sources (∅ for total generation), we build a dataset Dgen whose elements
are the sum between conditioning sources (indexed by I) an the respective generated sources. We
define the sub-FAD as FAD(Dreal, Dgen). Our method is the first able to generate any combination
of partial sources, and as such, we do not have a competitor baseline. We thus report the sub-FAD
results of our method as baseline metrics for future research, together with listening test results.

Results for total and partial generations are reported in Tables 4.2 and 4.3 respectively, both for
subjective and objective evaluations. Results in Table 4.2 show a minimal difference between the
model trained on mixtures and MSDM. This suggests that, given the same dataset and architecture,
the generative power of MSDM is the same as the model trained on mixtures while being able to
perform separation and partial generation. Table 4.3 shows via the subjective results that the task
of partial generation can be performed with non-trivial quality. Our method being the first able to
generate any combination of partial sources, does not have a competitor baseline for the objective
metrics. We thus report the sub-FAD results of our method as baseline metrics for future research.

4.5.2 Source Separation

In order to evaluate source separation, we use the Scale-Invariant SDR Improvement (SI-SDRI)
metric [194]. We recall from Chapter 2 that the SI-SDR between a ground-truth source xn and an
estimate x̂n is defined as:

SI-SDR(xn, x̂n) = 10 log10
∥αxn∥2 + ϵ

∥αxn − x̂n∥2 + ϵ
,

where α = x⊤
n x̂n+ϵ

∥xn∥2+ϵ . We set ϵ = 10−8. Also recall that the improvement with respect to the mixture
baseline is defined as SI-SDRI = SI-SDR(xn, x̂n)− SI-SDR(xn,y).
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Table 4.5: Quantitative results for source separation on the Slakh2100 test set. We use the SI-SDRI as
our evaluation metric (dB – higher is better). We present both the supervised (“MSDM Dirac”, “MSDM
Gaussian”) and weakly-supervised (“ISDM Dirac”, “ISDM Gaussian”) separators and specify if a correction
step is used. “All” reports the average over the four stems. The results show that: (i) Dirac likelihood
improves overall results, even outperforming the state of the art when applied to ISDM (ii) adding a correction
step is beneficial (iii) MSDM with Dirac likelihood and one step of correction gives results comparable with
the state of the art and superior to the Demucs model trained in [1] overall. We stress again that while the
baselines are trained on the separation task alone, MSDM is able to perform also generative tasks.

Model Bass Drums Guitar Piano All

Demucs [1, 2] 15.77 19.44 15.30 13.92 16.11
Demucs + Gibbs (512 steps) [1] 17.16 19.61 17.82 16.32 17.73

Dirac Likelihood
ISDM 18.44 20.19 13.34 13.25 16.30
ISDM (correction) 19.36 20.90 14.70 14.13 17.27
MSDM 16.21 17.47 12.71 13.29 14.92
MSDM (correction) 17.12 18.68 15.38 14.73 16.48

Gaussian Likelihood [118]
ISDM 13.48 18.09 11.93 11.17 13.67
ISDM (correction) 14.27 19.10 12.74 12.20 14.58
MSDM 12.53 16.82 12.98 9.29 12.90
MSDM (correction) 13.93 17.92 14.19 12.11 14.54

Slakh2100

On Slakh2100, we compare our supervised MSDM and weakly-supervised MSDM with the “Demucs”
[2] and “Demucs + Gibbs (512 steps)” regressor baselines from [1], the state-of-the-art for supervised
music source separation on Slakh2100, aligning with the evaluation procedure of [1]. We evaluate
over the test set of Slakh2100, using chunks of 4 seconds in length (with an overlap of two seconds)
and filtering out silent chunks and chunks consisting of only one source, given the poor performance
of SI-SDRI on such segments.

We conduct a hyperparameter search over Schurn to evaluate the importance of stochasticity
in source separation over a fixed subset of 100 chunks of the Slakh2100 test set, each spanning
12 seconds (selected randomly). To provide a fair comparison between the Dirac (“MSDM Dirac”,
“ISDM Dirac”) and Gaussian (“MSDM Gaussian”, “ISDM Gaussian”) posterior scores, we execute a
search over their specific hyperparameters, namely the constrained source for the Dirac separators
and the γ(t) coefficient for the Gaussian separators. Results are illustrated in Table 4.4. We observe
that: (i) stochasticity proves beneficial for all separators, given that the highest values of SI-SDRI

are achieved with Schurn = 20 and Schurn = 40, (ii) using the Dirac likelihood we obtain higher values
of SI-SDRI with respect to the Gaussian likelihood, both with the MSDM and ISDM separators,
and (iii) the ISDM separators perform better than the contextual MSDM separators (at the expense
of not being able to perform total and partial generation).

We report results comparing our Dirac score posterior with the Gaussian score posterior of
[118], using the best parameters of the ablations in Table 4.4 and 150 inference steps. Results
are illustrated and discussed in Table 4.5. Concisely, MSDM proves to be very close to the state
of the art. Moreover, the newly defined sampling procedure, when used in the weakly supervised
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Table 4.6: Comparison of results of MSDM and Demucs v2 [2]. We report the SI-SDRI values in dB (higher
is better). The network is the same as the one trained on Slakh2100 but the sampling rate is 44kHz and it
is trained on chunks of length 6 seconds.

Tested on MUSDB18-HQ Finetuned on MUSDB18-HQ Trained on MUSDB
Model Bass Drums All Bass Drums All Bass Drums Other Vocals All

Demucs v2 - - - - - - 13.28 11.53 8.59 16.80 12.55
MSDM -0.83 -0.94 -0.88 3.46 5.03 4.25 4.87 3.28 1.97 6.83 4.24

Figure 4.4: Autoregressive-sampling for source separation with score-based diffusion.

flavor, yields results that are better than the state of the art for some stems. Surprisingly, it
performs better than contextual MSDM. As such we invalidate the hypothesis in Section 3.1.3,
which nevertheless proved useful for the development of this new line of research. However, the
reader should notice that 4 independent separators have 4 times more parameters than the base
MSDM. In future research we plan to investigate more thoroughly the importance of modeling the
context in music source separation.

MUSDB18-HQ

We report in Table 4.6 the results of MSDM and Demucs v2 [2] on the MUSDB18-HQ test set.
We try three different strategies, we first check the out-of-distribution ability of the model trained
on Slakh2100 by testing directly on MUSDB18-HQ. Then, we tried finetuning the model trained
on Slakh2100 on MUSDB18-HQ, and finally, we trained directly on MUSDB18-HQ. Since the only
stems that MUSDB18-HQ and Slakh2100 share are “Bass” and “Drums”, the first and second strate-
gies could be tested only on these two stems.
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Table 4.7: Results on duet singing voices separation evaluated on MedleyVox [3].

Methods SI-SDRI SDRI

iSRNet [3] 15.10 14.20
NMF 5.12 5.97
Naive 6.61 ± 0.25 7.60 ± 0.21
Segmented 11.14 ± 0.48 11.77 ± 0.47
AR (proposed) 11.24 ± 0.40 11.89 ± 0.34
AR w/ TF 11.75 ± 0.38 12.34 ± 0.39

4.6 Applications to Singing Voice Separation

In the Sound Demixing Workshop 2023 paper [30], we use ISDM with the Dirac separator (Eq.
(4.10)) for the task of separating duet singing voices. We leverage the model’s capacity for zero-shot
learning in handling audio sources of similar timbre, such as singing voices, without necessitating
vast amounts of paired training data. We trained our model over 8 public singing voice datasets
comprising over more than 104h of audio data [195, 196]. By dividing the audio mixture into
overlapping segments and employing an auto-regressive sampling approach conditioned on preceding
segments (AR), the model demonstrates improved consistency in singer identity across separated
audio tracks (see Figure 4.4). We evaluated this sampling strategy on the MedleyVox dataset
[3], as shown in Table 4.7 confirming its superior performance over blind methods such as NMF
and showing that it improves substantially over the direct application of Eq. 4.10 on long audio
segments (Naive). The naive application of the sampler causes voices to swap over longer time spans,
decreasing performance. Also performing separation on short non-overlapping chunks (Segmented)
improves metrics. Nevertheless, the method is bounded by the supervised baseline iSRNet [3].

The complete details, including source code and pre-trained models, are accessible at the repos-
itory duet-svs-diffusion5.

4.7 Summary and Prospects

We have presented a general method, based on denoising score-matching, for source separation,
mixture generation, and accompaniment generation in the musical domain. Our approach utilizes
a single neural network trained once, with tasks differentiated during inference. Moreover, we have
defined a new sampling method for source separation. We quantitatively tested the model on source
separation, obtaining results comparable to state-of-the-art regressor models. We qualitatively and
quantitaively tested the model on total and partial generation. For the first one we showed the
model has the same generative power of the same model trained on mixtures. For the latter, we
showed the accompaniment generated are plausible and nontrivial.

Our model’s ability to handle both total and partial generation and source separation positions it
as a significant step toward the development of general audio models for music. This flexibility paves
the way for more advanced music composition tools, where users can easily control and manipulate
individual sources within a mixture.

5https://github.com/yoyololicon/duet-svs-diffusion
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Additionally, it would be intriguing to explore the possibility of extending our method to sit-
uations where the sub-signals are not related by addition but rather by a known but different
function.

The amount of available supervised data constrains the performance of our model. To address
this, pre-separating mixtures and training on the separations, as demonstrated in [151], can prove
beneficial. In the following chapter we ask how we can relax the data assumptions on the model,
in order to not depend on supervised datasets, neither pre-separating. In a certain way, we want
to return to the independent Bayesian setting, where we can process single instances, but at the
same time we want to perform the same tasks as delineated in this chapter: total generation, partial
generation and source separation. Source separation is easier to frame in such setting, given that
we can apply the ISDM method. But, for example, how can we perform accompaniment generation
with independent Bayesian inference? In such a case the context is missing, making, at least at first
glance, the task intractable.
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Chapter 5

Generalized Multi-Source Inference for
Text Conditioned Music Diffusion
Models

We have already discussed in the previous chapter that the task of musical generation has seen
significant advancements recently, thanks to developments in generative models. The families of
generative models showcasing state-of-the-art results are latent language models [19] (Section 3.2)
and (score-based) diffusion models [22–24] (Section 4.2). Despite differences between these gener-
ative models, they typically share some mechanisms for conditioning on rich textual embeddings,
obtained either using text-only encoders [197] or audio-text contrastive encoders [149, 193, 198].
Such a mechanism allows generating a musical track following a natural language prompt.

Generative models for music typically output only a final mixture. As such, generating the
constituent sources is challenging. This implies that musical generative models are hard to employ
in music production tasks, where the subsequent manipulation of sub-tracks, creation of accompa-
niments, and source separation is often required. Two approaches aim to address this issue. The
first approach, Multi-Source Diffusion Model (MSDM), was presented in the previous chapter. We
recall that we trained a diffusion model in time domain on (supervised) sets of coherent sources
viewed as different channels, without conditioning on textual information. Such a model allowed
for generating a set of coherent sources, creating accompaniments, and performing source separa-
tion. Despite being a versatile compositional model for music, MSDM has three limitations: (i) It
requires knowledge of separated coherent sources, which are hard to acquire. (ii) It architecturally
assumes a fixed number of sources and their respective class type (e.g., Bass, Drums, Guitar, Piano).
(iii) It is impossible to condition the sources on rich semantic information, as commonly done with
text-conditioned music models. The second approach, based on supervised instruction prompting
[199, 200], fine-tunes a latent diffusion model with instructions that allow adding, removing, and
extracting sources present in a musical track. Although this approach addresses the issues (ii) and
(iii) of MSDM, it does not solve the problem (i), necessitating pre-separated supervised data. A
strategy for scaling both models is training with data obtained by separating sources from mixtures
using a pre-trained separator [151]. This approach, though, is not flexible because such separated
data contains artifacts, and we are limited to the number and type of sources the separator can
handle.
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5.1. Background

Figure 5.1: Diagram for unconditional generation procedure with GMSDI, sampling two coherent sources.

In this chapter we develop a novel inference procedure for the task, called Generalized Multi-
Source Diffusion Inference (GMSDI), that can be used in combination with any text-conditioned
(time-domain) diffusion model for music. Such a method: (i) Requires only mixture data for
training, resulting in an unsupervised1 algorithm when paired with a contrastive encoder. (ii)
Parameterizes an arbitrary number and type of sources. (iii) Allows for rich semantic control. To
our knowledge, this is the first general algorithm for unsupervised compositional music generation.
After developing the required background notions in Section 5.1, we develop the inference techniques
in Section 5.2. We detail the experimental setup in Section 5.3 and show empirical results in Section
5.4. We conclude the chapter in Section 5.5.

5.1 Background

5.1.1 Text Embeddings

While we typically do not have direct access to the audio constituents {xn}n∈[N ′] (see Eq. 2.1) in
a general mixture y, we are usually equipped with text embeddings zn which provide information
about sources (weakly-supervised setting). We can obtain z = Etext

ϕ (q) by encoding a text descrip-
tion q with a text-only encoder Etext

ϕ , or use a pre-trained contrastive [149, 150, 193] audio-text
encoder Econtr

ϕ to extract embeddings both from the audio mixtures z = Econtr
ϕ (y) and from text

descriptions z = Econtr
ϕ (q). Notice that, differently from Chapter 3, where we had only descrip-

tions of sources in the form of their labels, here we can describe more generally mixtures and their
constituent sources, also via semantic attributes (e.g., a guitar playing slowly together with a fast
drum track).

1See the end of Section 5.1.2 for the precise meaning of the term unsupervised used in this chapter.
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5.1.2 Text-conditioned Score-based Diffusion Models

We work with continuous-time score-based [23] diffusion models like in the previous chapter. A
text-conditioned score-based diffusion model Sθ parameterizes the logarithm of the perturbed audio
mixture density (see Eq. (4.2)), conditioned on the textual embedding:

∇y(t) log p(y(t) | z) ≈ Sθ(y(t), z, σ(t)) . (5.1)

At inference time, differently from the previous chapter, we use classifier-free guidance [25], inte-
grating

S∗
θ (y(t), z, σ(t)) = Sθ(y(t), z, σ(t)) + w(Sθ(y(t), z, σ(t))− Sθ(y(t), z

∗, σ(t))) ,

where z∗ is a fixed learned embedding modeling the unconditional ∇y(t) log p(y(t)), and w ∈ R is
the embedding scale hyper-parameter. We can use a negative embedding [201] instead of z∗ to better
guide inference, by providing a direction that has to be avoided during sampling. With an abuse of
notation, we will refer to S∗

θ as Sθ.
In this chapter, we give (yet a) different meaning to the word unsupervised, when the embeddings

z are provided to the diffusion model by a pre-trained contrastive embedder Econtr
ϕ . In such a case,

during the training of the generative model, it is not necessary to use textual data for training:
we input the mixture y to Econtr

ϕ and condition the diffusion model with Econtr
ϕ (y). This is the

approach taken, for example, by [8] using the MuLan [150] contrastive embedder and by us with
the model trained on MTG-Jamendo (see Section 5.4) using CLAP [193] embeddings. At inference
time, we use the embedders in the same way to parameterize the sources. In such a way, we can say
that the training of the model is unsupervised, because it does not depend on external conditioning
information during training. Such a terminology is also used in other works in literature: [202]
uses a pre-trained tagger to steer the results during inference calling the method unsupervised. In
reality, the contrastive encoder has been trained on tuples of the form (y, z) and we are implicitly
in a weakly-supervised data setting. We can see this as a parametric pre-partitioning of the data
during the training of the generative model, an evolved version of the manual partitioning performed
in Chapter 3 using labels. While we are not in a proper unsupervised learning setting, given that
we encapsulate the labeling information in an external (black-box) model we refer to this setting as
unsupervised learning in the remaining of the thesis.

5.2 Generalized Multi-Source Diffusion Inference

We train (or use) a text-conditioned diffusion model (Eq. (5.1)) Sθ(y(t), z, σ(t)), with audio mix-
tures y(t) and associated text embeddings z, containing information about the sources present in
the mixture. We assume that each text embedding z is of the form z1 ⊗ · · · ⊗ zN (more compactly⊗N

n=1 zn), where each zn describes a source xn present in y and ⊗ denotes an encoding of concate-
nated textual information (e.g., z1 ⊗ · · · ⊗ zN = Etext

ϕ (q1, . . . ,qN ), with Etext
ϕ (qn) = zn). The idea

is to leverage such text embeddings for parameterizing the individual source score functions:

∇xn(t) log p(xn(t) | zn) ≈ Sθ(xn(t), zn, σ(t)) , (5.2)
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even if the model is trained only on mixtures. We devise a set of inference procedures for Sθ, called
Generalized Multi-Source Diffusion Inference, able to solve the tasks of SMSDM

θ (see Eq. (4.5)) in
the relaxed data setting.

5.2.1 Total generation

In order to generate a coherent set of sources {xn}n∈[N ], described by text embeddings {zn}n∈[N ],
we can sample from the conditionals p(xn(t) | xn̄(t),y(t), z1, . . . , zN , z1 ⊗ · · · ⊗ zN ):

p(x(t),y(t) | z1, . . . , zN , z1 ⊗ · · · ⊗ zN )

p(xn̄(t),y(t) | zn̄, z1 ⊗ · · · ⊗ zN )
, (5.3)

where xn̄ = {xm}m∈[N ] − {xn} is the the complementary set of stems, fixing a source xn. First, we
develop the numerator in Eq. (5.3) using the chain rule:

p(x(t),y(t) | z1, . . . , zN , z1 ⊗ · · · ⊗ zN )

= p(xn(t) | zn)p(y(t),xn̄(t) | xn(t), zn̄, z1 ⊗ · · · ⊗ zN )

= p(xn(t) | zn)p(y(t) | x(t))p(xn̄(t) | xn(t), zn̄)

≈ p(xn(t) | zn)p(y(t) | x(t)) . (5.4)

We assume independence of the likelihood p(y(t) | x(t)) from embeddings and approximate the
last equality dropping the unknown term p(xn̄(t) | x(t), zn̄). We substitute Eq. (5.4) in Eq. (5.3),
take the gradient of the logarithm with respect to xn(t) and model the likelihood with isotropic
Gaussians [118] depending on a variance γ2xn

(the denominator cancels being constant w.r.t. xn(t)):

∇xn(t)
log p(xn(t) | zn)p(y(t) | x(t))

log p(xn̄(t),y(t) | zn̄, z1 ⊗ · · · ⊗ zN )

=∇xn(t) log p(xn(t) | zn) +∇xn(t) log p(y(t) | x(t))

=∇xn(t) log p(xn(t) | zn) +∇xn(t) logN (y(t) |
N∑
m=1

xm(t), γ
2
xn
I)

=∇xn(t) log p(xn(t) | zn) +
1

γ2xn

(y(t)−
N∑
m=1

xm(t)) . (5.5)

Applying similar steps we obtain the score of the density on y(t) conditioned on x(t) (notice the
opposite likelihood gradient):

p(y(t) | x(t), z1, . . . , zN , z1 ⊗ · · · ⊗ zN )

≈ ∇y(t) log p(y(t) |
N⊗
m=1

zm) +
1

γ2y
(
N∑
m=1

xm(t)− y(t)) . (5.6)
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Figure 5.2: FAD (lower is better) between generated sources and Slakh100 test data (200 chunks, ∼12s
each). Neg Prompt indicates the presence of negative prompting.

During inference, we sample from Eqs. (5.5) and (5.6) in parallel, replacing the gradients of the
log-densities with score models (Eq. (5.2)):Sθ(xn(t), zn, σ(t)) +

1
γ2xn

(y(t)−
∑N

m=1 xm(t))

Sθ(y(t),
⊗N

m=1 zm, σ(t)) +
1
γ2y
(
∑N

m=1 xm(t)− y(t)) .
(5.7)

A diagram of the method is illustrated in Figure 5.1. Given a partition {Jm}m∈[M ] of [N ] containing
M subsets (i.e., ∪m∈[M ]Jm = [N ]), we can perform inference more generally with:Sθ(

∑
j∈Jm

xj(t),
⊗

j∈Jm
zj , σ(t)) +

1
γ2Jm

(y(t)−
∑N

m=1 xm(t))

Sθ(y(t),
⊗N

m=1 zm, σ(t)) +
1
γ2y
(
∑N

m=1 xm(t)− y(t)).
(5.8)

As we did in the previous chapter for source separation, it is also possible to model the likelihood
function with Delta functions, parameterizing the mixture with the sources. Such a choice, however,
resulted in unsatisfactory outcomes in our tests. We hypothesize that the conditioning with Dirac
imposes too strong of a constraint, especially in the initial phase of the sampling procedure, and
therefore leads to poor solutions.

5.2.2 Partial generation

We can generate accompaniments xJ for a given set of sources xI , described by {zi}i∈I , by selecting
a set of accompaniment text embeddings {zj}j∈J . We integrate Eqs. (5.7) for j ∈ J :

Sθ(xj(t), zj(t), σ(t)) +
1
γ2xj

[
y(t)−

(
α
∑

i∈I xi(t) + β
∑

m∈J xm(t)
)]

Sθ(y(t),
⊗N

m=1 zm, σ(t)) +
1
γ2y

[(
α
∑

i∈I xi(t) + β
∑

m∈J xm(t)
)
− y(t)

]
,

(5.9)

with xi(t) (i ∈ I) sampled from the perturbation kernel in Eq. (4.1) conditioned on xi and α, β ∈ R
scaling factors. Using Eq. (5.8), we can generate the accompaniment mixtures

∑
j∈J xj directly.
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Figure 5.3: FAD (lower is better) results on total and partial generation, with respect to Slakh2100 test
mixtures (200 chunks, ∼12s each). Results for MSDM in the partial setting are slightly different to those in
Tables 4.3 because we enforce non-silent results with MSDM in this case (leading to slightly higher values
of the FAD).

5.2.3 Source separation

Source separation can be performed by adapting Eq. (4.10) to the text-conditioned model. Let
an observable mixture y(0) be composed by sources described by {zn}n∈[N ]. We can separate the
sources by choosing a constrained source (w.l.o.g. the N -th) and sampling, for n ∈ [N − 1], with:

Sθ(xn(t), zn, σ(t))− Sθ(y(0)−
N−1∑
m=1

xm(t), zN , σ(t)) . (5.10)

We call this method GMSDI Separator. We also define a GMSDI Extractor, where we extract the
n-th source xn with:

Sθ(xn(t), zn, σ(t))− Sθ(y(0)− xn(t),
⊗
m̸=n

zm, σ(t)) , (5.11)

constraining the mixture
∑

m ̸=n xm(t), complementary to xn(t).

5.3 Experimental Setup

To validate our theoretical claims, we train two time-domain Moûsai-like [26] diffusion models.
The first model is trained on Slakh2100 [119]. Slakh2100 is a dataset used in source separation,
containing 2100 multi-source waveform music tracks obtained by synthesizing MIDI tracks with
high-quality virtual instruments. We train the diffusion model on mixtures containing the stems
Bass, Drums, Guitar, and Piano (the most abundant classes). To condition the diffusion model,
we use the t5-small pre-trained T5 text-only encoder [197], which inputs the concatenation of the
stem labels present in the mixture (e.g., “Bass, Drums” if the track contains Bass and Drums).
Given that we know the labels describing the sources inside a mixture at training time, such an
approach is weakly supervised. The window size is 218 at 22kHz (∼12s).

The second model is trained on a more realistic dataset, namely MTG-Jamendo [203]. MTG-
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Table 5.1: Grid search over embedding scale w on 100 chunks (∼12s each) of Slakh2100 test set. Results
in SI-SDRI (dB – higher is better). The source in parenthesis is the constrained source.

Model w = 3.0 w = 7.5 w = 15.0 w = 24.0

GMSDI Extractor 7.66 9.61 6.00 -0.62
GMSDI Separator (Bass) 8.10 6.72 -1.09 -20.60
GMSDI Separator (Drums) 9.44 8.69 -1.48 -21.62
GMSDI Separator (Guitar) 5.82 4.37 -2.27 -17.49
GMSDI Separator (Piano) 7.60 6.41 -2.68 -16.90

Jamendo is a music tagging dataset containing over 55000 musical mixtures and 195 tag categories.
We train our diffusion model on the raw_30s/audio-low version of the dataset, using the first 98
shards for training and the last 2 for validation. The model window is of 219 samples (∼24s) at
22kHz. We condition the model with the pre-trained music_audioset_epoch_15_esc_90.14.pt2

checkpoint of the LAION CLAP contrastive encoder [198]. At training time, we condition the diffu-
sion model with embeddings Econtr

ϕ (y) obtained from the training mixtures y themselves, resulting
in an unsupervised model. At inference time, we use ADPM23 [204] with ρ = 1 for generation and
AEuler2 with schurn = 20 for separation.

5.4 Experimental Results

First, we want to understand whether the model trained on Slakh2100 mixtures can parameterize
single sources well. We sample, for each stem, 200 chunks of ∼12s, conditioning with embeddings of
single stem labels (e.g., “Bass”). Then, we compute the FAD [190] with VGGish embeddings [191]
between such samples and 200 random Slakh2100 test chunks of the same source. In Figure 5.2, we
compare our model against the weakly supervised version of MSDM (ISDM), where a model learns
the score function for each stem class (a setting requiring access to clean sources). We notice that
single-stem prompting is insufficient for obtaining good FAD results, especially for Bass and Drums,
causing silence to be generated. We find negative prompts (Section 5.1.2) essential for obtaining
non-silent results using “Drums, Guitar, Piano” (Bass), “Bass” (Drums), “Bass, Drums” (Guitar),
“Bass, Drums” (Piano). In all settings above, we use 150 sampling steps.

Following, we ask how well the model can perform coherent synthesis with GMSDI. In Figure
5.3, we compute the FAD between 200 random Slakh2100 test mixture chunks (∼ 12s each) and
mixture chunks obtained by summing the model’s generated stems (unconditional) or the generated
stems together with the conditioning tracks (conditional). On total generation (All), we set γy =∞
and reach ∼ 1 lower FAD point, using 600 sampling steps. On partial generation, we sample using
300 steps, setting γy ≪∞, to inform the generated mixture about the conditioning sources. In this
scenario, MSDM tends to generate silence. To enforce non-silent results with MSDM, we sample
100 examples for each conditioning chunk and select the sample with the highest L2 norm.

For source separation, we employ the Scale-Invariant SDR Improvement (SI-SDRI) [205] (as
in Chapters 2 and 4) as an evaluation metric and follow the evaluation protocol of the sub-FAD
presented in Section 4.5.1. First, we perform a grid search (Table 5.1) to find a good embedding scale

2https://github.com/LAION-AI/CLAP
3https://github.com/crowsonkb/k-diffusion
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Table 5.2: Quantitative results for source separation on the Slakh2100 test set. Results in SI-SDRI (dB –
higher is better).

Model Bass Drums Guitar Piano All

Demucs + Gibbs (512 steps) [1] 17.16 19.61 17.82 16.32 17.73
ISDM 19.36 20.90 14.70 14.13 17.27
MSDM 17.12 18.68 15.38 14.73 16.48

GMSDI Separator 9.76 15.57 9.13 9.57 11.01
GMSDI Extractor 11.00 10.55 9.52 10.13 10.30
Ensamble 11.00 15.57 9.52 10.13 11.56

w. For the GMSDI Separator, we do not use negative prompting, while for the GMSDI Extractor,
we only use negative prompts for Bass and Drums. We evaluate on the full Slakh2100 test set with
w = 3 and constrained Drums for GMSDI Separator and w = 7.5 for GMSDI Extractor, showcasing
results in Table 5.2. Training only with mixtures (plus associated labels), the ensemble of the two
separators reaches 11.56 dB, being zero-shot, i.e., we do not target source separation during training
[6].

We release qualitative examples for the Slakh2100 and MTG-Jamendo models on our demo
page4.

5.5 Summary and Prospects

We have proposed GMSDI, a compositional music generation method working with any time-domain
text-guided diffusion model. Such a method, by exploiting text parameterization, performs source
separation while generating, effectively enabling inter-source context processing in a (independent)
Bayesian setting.

While the method obtains reasonable generation and separation metrics on Slakh2100, enabling
(effective) unsupervised compositional music generation for the first time, it still lags with respect to
the supervised MSDM. In future work, we want to extend the technique to latent diffusion models
and narrow the gap with supervised methods.

4https://github.com/gladia-research-group/gmsdi
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Chapter 6

Conclusion

In this thesis, we started in the context of universal sound separation (Chapter 2), where depen-
dencies between sources are weak. We showed how to improve metrics over a standard regressor by
adopting adversarial losses, typical of GANs. From this point, we started working in the setting
of generative source separation, presenting LASS. This method performs (independent) Bayesian
inference with autoregressive models in the latent domain of a VQ-VAE (Chapter 3). While per-
forming experiments in the musical domain with this model, the independence assumption made it
impossible to model the inter-dependencies between sources, which is typical of the musical domain.
At this point (Chapter 4), we began focusing on the musical domain and proposed a Multi-Source
Diffusion Model (MSDM) capable of generating the stems in a track, music accompaniments and
source separation, all with a single model. Such a model is a source-joint generative model and
introduces context into Bayesian inference. Finally, given the high data burden of the previous
model, which is supervised, we asked ourselves (Chapter 5) if we could perform the same tasks
in the independent (instance-based) Bayesian setting. We saw that such tasks could be solved by
modeling both the individual sources and arbitrary combinations of the latter via parameterizations
based on text information and performing separation while generating.

At this point, many questions arise about the possible ways to make the proposed models
more flexible and high-performing. Although we have provided suggestions for new research in the
concluding sections of the different chapters, here we want to look at future perspectives from a
higher point of view, and give hints about the possible solutions.

6.1 Improved Guidance Techniques for Diffusion Models

The (Bayesian) inference methods for diffusion models in MSDM and for all tasks in GMSDI are
local in time t, because the likelihood is dependent from the values y(t) and x(t), as shown in
Figure 6.1 on the left. We can call this type of inference local guidance. Local guidance requires
the likelihood to be compatible with the noise at level t [23]. Both in MSDM and GMSDI, we are
compatible to such a requirement, because the likelihood is the probabilistic version of the analytical
sum function (see Section B.1).

In many cases, especially when the likelihood term depends on learned auxiliary models, trained
only on clean data, we are not compatible with noisy samples x(t) at time t. This situation also
appears when we want to do inference with a latent diffusion model [26, 186, 206]: since we cannot
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LG / PG
LO When performing LG / PG it is not

guaranteed that results will end up on
the estimated data manifold .
Optimizing with LO ensures a closure
property: results are in !

Local Guidance (LG)
- MSDM
- GMSDI

Prediction Guidance (PG)
- Universal Guidance

Latent Optimization (LO)
- Consistency Models (CM)

- Consistency Trajectory Models (CTM)
- DITTO

Figure 6.1: An overview of different diffusion-based inference techniques. Left : Local Guidance. Middle:
Prediction Guidance. Right : Latent Optimization

sum latent vectors (in an analog manner as we could not sum them in the VQ-VAE domain in
Chapter 3), we need to transport them first in the audio domain via the latent decoder, compute
the likelihood term as a gradient of a loss L in audio domain and transport the gradients in latent
space via back-propagation. We can perform prediction guidance in such a case (Figure 6.1, middle),
which is also called universal gudiance [135] given its compatibility to any kind of guidance loss L.
Prediction guidance, at each step t, predicts the final value x(0) given x(t) as x̃(0) = Dθ(x(t), σ(t))

(see Eq. 4.4), the loss is computed as L(f(x̃(t)),y(0)), with f typically the sum (in GMSDI we
would have also a predicted y(0) = ỹ(0) = Dθ(y(t), σ(t))). Then we do guidance at step t with the
gradient of such loss.

When performing local or prediction guidance it is not guaranteed that results will converge
to the support of the prior density Ω (see Figure 6.1). This is evident when we perform source
separation: the sum consistency constraint imposed by a sum likelihood can be so strong that the
resulting mix completely resambles the observable mixture, but each stem contains artifacts of the
other. Of course we can adjust the weighting of such a term, but finding an ideal value can be a
burden (as exemplified by Tables 4.4 and 5.1). We can impose however that our solutions lie in
the probabilistic manifold as close as possible by performing latent optimization (Figure 6.1, right).
The idea is to depart from a fully posterior-based (Bayesian) approach and to optimize directly the
latents of the diffusion process (the noise values x(T ) at time T ; not to be confused with latents
ξ in the sense of autoencoding: the latents of the diffusion model are defined even when we train
the generative model directly in the original data space), similar to the optimization techniques in
Generative Adversarial Networks (e.g., [88]). Starting from x(T ), we perform a full inference run
and obtain x(0). Then we compute the loss L(f(x̃(t)),y(0)), as with prediction guidance, but this
time with the effective final sample. The gradients now backpropagate through the whole diffusion

From Source Separation to Compositional Music Generation 57



6.2. Multi-Source Latent Autoregressive Inference

1

2

2

3

3

Total
Generation

2

1 3

3

Separation Accompaniment
Generation

1

2

2

3

3

LASS step LASS step Input

Generate

Input

2

LASS step LASS step LASS stepLASS step
(difference
likelihood)

Figure 6.2: Multi-source inverence with autoregressive models. Black arrows define the graphical model
while dotted arrows define the inference procedure. The numbers index the steps we perform during inference.
Left: Total Generation. Midle: Source Separation. Right: Partial Generation.

sampling process and are applied to x(T ). If our optimization variables x(T ) lie inside the diffusion
prior N (x(t);0, σ2(T )I), the solutions should lie inside Ω. At the same time, notice that with the
previous approaches, it is more difficult to perform correction during inference, given the greedy
nature of local and prediction guidance.

The main difficulty of latent optimization is the high memory complexity induced by transporting
gradients via a multi-step inference process (a situation similar to backpropagation in recurrent
neural networks [207, 208]). We can solve this in two ways. Firstly, we can distill the diffusion model
via modern distillation techniques such as Consistency Models [209, 210], Consistency Trajectory
Models [211] or Adversarial Distillation [212] obtaining a version of the diffusion model that can
perform sampling in one-step (or a few more for increased quality), similar to GANs. In such
a way, inference reduces to a single evaluation of the network and we can back-propagate easily.
A second interesting approach called DITTO (Diffusion Inference-Time T-Optimization) [136], by
checkpointing the gradients trough sampling, enables latent optimization without modifying the
diffusion model. While the authors apply the method for impressive control over the global structure
of the generation (intensity, melody and structure controls) it is still to be applied for inter-stem
generation [213].

6.2 Multi-Source Latent Autoregressive Inference

As pointed out in the conclusion of Chapter 3, an extension to more than two sources of LASS
is to be sought, ideally working with residual quantization and being able to include the tasks of
total and partial generation of stems. When we compare the continuous likelihoods of Chapters 4
and 5 (e.g., Gaussian, Dirac) with the discrete likelihood tensor in Eq. (3.6) we see that the main
difference is the fact that the first can be easily applied to any number of addends, while the second
has a fixed two input structure, and as such it must be applied in a recursive manner.

One way to proceed is to reason over the graphical model of the sum relationship at inference
step s (after linearizing the residual layers). Such a graphical model is represented in Figure 6.2 for
the different inference tasks. Take for example the graph on the left: the leaf nodes represent the
single stems, with the related autoregressive densities (here we only distinguish stems by indices but
they have to be parameterized via text like in Chapter 5). The sum relationship is represented from
left to right were at each inner node we have the conditional probabilities specified by the likelihood
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tensor in Eq. 3.6. To perform total generation, we first generate the total sum, then perform LASS
steps, moving left-to-right, until we have generated all stems (this is similar to setting γy = ∞ in
GMSDI). Source separation is similar except that the mixture token is provided as an input, as
in Chapter 3. Finally, to perform partial generation, we give as input the mixture containing the
conditioning tracks, use a LASS step with a difference likelihood function (we can slice the tensor
in Eq. 3.6 across the addend dimensions) and continue with normal LASS steps.

The graphical model employed is a Bayesian network [214], with extra information given by the
prior probabilities defined on the inner nodes (in a Bayesian network, marginal probabilities are
defined only on the leaf nodes). Considering the graphical model as a Bayesian network (neglecting
prior information on inner nodes), we can also perform inference using the belief propagation algo-
rithm [215]. Belief propagation integrates all information over the graph (passing the probabilities
both from left-to-right and right-to-left), estimating conditional densities on the leaf nodes, from
which one can sample. The downside of such algorithm is the high time-complexity cost required to
perform tensor operations during propagation. The algorithms presented in Figure 6.2 are greedy
in nature, instead, because we do not propagate probabilities across the whole graph during infer-
ence, sampling sequentially from left-to-right. Nonetheless, in this case we have the extra burden of
sampling and tracking the intermediate mixtures. Future research will establish which is the best
choice between the greedy method and belief propagation.

6.3 Training-Side Methods

In Chapter 5, we returned from the training-side setting of MSDM to the purely inference-side
setting of GMSDI, justified by the lack of supervised data. Furthermore, in the two preceding
sections, we have provided insights on how to improve inference techniques both in diffusion models
and with autoregressive models. As seen from Figure 5.3 and Table 5.2, using GMSDI alone, it
is difficult to achieve the results of MSDM, despite being competitive given the weakly-supervised
setting. This tells us that techniques like GMSDI, LASS and its multi-source extension should be
seen more as regularizers than as baselines, which can enhance the latter. In short, baselines should
be obtained on the training side. So the question we ask ourselves is how to best utilize the limited
supervised data on the training side? As mentioned in Section 3.1.1, fine-tuning techniques like
ControlNet [128] for diffusion models and LoRA [127] for autoregressive models, allow to control
a generative model trained on a large pool of data, by only fine-tuning with a relatively small
dataset. An example in the musical domain is MusicControlNet [15]. Through this fine-tuning
over datasets like MUSDB18-HQ [134] or MoisesDB [216], we can obtain models that generalize
MSDM: generative models conditioned by mixtures of stems like StemGen [217], which can be used
in a sequential manner or unconditional generative models, more similar to MSDM, for which the
ControlNet adapter only processes the internal states of the latter, acting like a context processor
and making it possible to use the generative model in parallel. Such techniques should be compatible
with the presented inference techniques, so as to obtain higher performance.
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Appendix A

Adversarial Permutation Invariant
Training for Universal Source Separation

A.1 Adversarial PIT for Speech Source Separation

We give a more detailed description of the Adversarial PIT methods for speech source separation
in Table 2.1.

A.1.1 CBLDNN

CBLDNN [48] combines PIT regression losses (at magnitude STFT, filterbank and pitch domains)
with adversarial training (a conditioned, context-based D in the magnitude STFT domain). The
D input format is (fake / real): [y, x̂1, x̂2] / [x,x1,x2], as in Table 2.1. Hence, D is conditioned on
the input mixture (y), and is context-based because D has access to all sources (x̂1, x̂2 for fake or
x1,x2 for real).

A.1.2 SSGAN-PIT

SSGAN-PIT [49] combines PIT regression in the magnitude STFT domain with three adversarial
training variants: (i) conditioned, context-based; (ii) non-conditioned, context-based; and (iii)
non-conditioned, instance-based (see Table 2.1). Variants (i) and (ii) are similar to CBLDNN [48]
but (i) is conditioned on y and (ii) not. Finally, variant (iii) is not conditioned on y, and is
instance-based (instead of context-based) because D assesses each source individually (instead of
assessing all sources together).

A.1.3 Furcax

Furcax [50] combines PIT regression in the waveform domain with adversarial training. The D is
non-conditioned and context-based as SSGAN-PIT [49] variant (ii), see Table 2.1.

A.1.4 Conv-TasSAN

Conv-TasSAN [51] combines PIT regression in the waveform domain with an alternative adversarial
training setup called MetricGAN. Magnitude STFTs are fed into the D of MetricGAN to estimate
normalized metric scores (from 0 to 1) for every pair of estimates x̂n and sources xn. Hence, the
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A.1. Adversarial PIT for Speech Source Separation

D outputs 1s for real input pairs [x1,x2,x1,x2], and normalized metric scores (from 0 to 1) for the
estimated (fake) pairs [x̂1, x̂2,x1,x2]. Note that if x̂k are bad estimates, the D outputs are close to
0s. They use PESQ [218] or STOI [219] as metrics.
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Appendix B

Multi-Source Diffusion Models for
Simultaneous Music Generation and
Separation

B.1 Derivation of MSDM Dirac Posterior Score for Source Separa-
tion

We prove the main result of Section 4.3.3. We condition the generative model over the mixture
y(0) = y. As such, we compute the posterior:

p(x(t) | y(0)) =
∫
y(t)

p(x(t),y(t) | y(0))dy(t) =
∫
y(t)

p(x(t) | y(t),y(0))p(y(t) | y(0))dy(t) .

The first equality is given by marginalizing over y(t) and the second by the chain rule. Following
Eq. (50) in [23], we can eliminate the dependency on y(0) from the first term, obtaining the
approximation:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t) | y(t))p(y(t) | y(0))dy(t) . (B.1)

We compute p(y(t) | y(0)), using the chain rule after marginalizing over x(0) and x(t):

p(y(t) | y(0)) =
∫
x(0),x(t)

p(y(t),x(t),x(0) | y(0))dx(0)dx(t)

=

∫
x(0),x(t)

p(y(t) | x(t),x(0),y(0))p(x(t) | x(0),y(0))p(x(0) | y(0))dx(0)dx(t) .

By the Markov property of the forward diffusion process, y(t) is conditionally independent from
x(0) given x(t) and we drop again the conditioning on y(0) from the first two terms, following Eq.
(50) in [23]. As such, we have:

p(y(t) | y(0)) ≈
∫
x(0),x(t)

p(x(0) | y(0))p(x(t) | x(0))p(y(t) | x(t))dx(0)dx(t) . (B.2)
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B.1. Derivation of MSDM Dirac Posterior Score for Source Separation

We model the likelihood function p(y(t) | x(t)) with the Dirac delta function in Eq. (4.9). The
posterior p(x(0) | y(0)) is obtained via Bayes theorem substituting the likelihood:

p(x(0) | y(0)) =
p(x(0))1y(0)=

∑N
n=1 xn(0)

p(y(0))
=


p(x(0))
p(y(0)) if

∑N
n=1 xn(0) = y(0)

0 otherwise

We substitute it in Eq. (B.2), together with Eq. (4.1) and Eq. (4.9), obtaining:∫
x(0):

∑N
n=1 x(0)=y(0)

p(x(0))

p(y(0))

∫
x(t)
N (x(t);x(0), σ2(t)I)1y(t)=

∑N
n=1 xn(t)

dx(t)dx(0) . (B.3)

We sum over the first N − 1 sources in the inner integral, setting xN (t) = y(t)−
∑N−1

n=1 xn(t):

∫
x1:N−1(t)

N (x1:N−1(t),y(t)−
N−1∑
n=1

xn(t);x(0), σ
2(t)I)dx1:N−1(t) (B.4)

=

∫
x1:N−1(t)

N−1∏
n=1

N (xn(t);xn(0), σ
2(t)I)N (y(t)−

N−1∑
n=1

xn(t);xN (0), σ
2(t)I)dx1:N−1(t)

= N (y(t);
N∑
n=1

xn(0), Nσ2(t)I) . (B.5)

The second equality is obtained by factorizing the Gaussian, which has diagonal covariance matrix,
while the last equality is obtained by iterative application of the convolution theorem [220]. We
substitute Eq. (B.5) in Eq. (B.3), obtaining:

p(y(t) | y(0)) ≈
∫
x(0):

∑N
n=1 xn(0)=y(0)

p(x(0))

p(y(0))
N (y(t);

N∑
n=1

xn(0), Nσ2(t)I)dx(0)

= N (y(t);y(0), Nσ2(t)I)

∫
x(0):

∑N
n=1 xn(0)=y(0)

p(x(0))

p(y(0))
dx(0)

= N (y(t);y(0), Nσ2(t)I) . (B.6)

At this point, we apply Bayes theorem in Eq. (B.1), substituting the Dirac likelihood:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t))p(y(t) | x(t))
p(y(t))

p(y(t) | y(0))dy(t) (B.7)

=

∫
y(t)

p(x(t))1y(t)=
∑N

n=1 xn(t)

p(y(t))
p(y(t) | y(0))dy(t) (B.8)

=
p(x(t))

p(
∑N

n=1 xn(t))
p(

N∑
n=1

xn(t) | y(0)) . (B.9)

Estimating Eq. (B.9), however, requires knowledge of the mixture density p(
∑N

n=1 xn(t)), which
we do not acknowledge. As such, we approximate Eq. (B.8) with Monte Carlo, using the mean of
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p(y(t) | y(0)), namely y(0) (see Eq. (B.6)), obtaining:

p(x(t) | y(0)) ≈
p(x(t))1y(0)=

∑N
n=1 xn(t)

p(y(0))
=


p(x(t))
p(y(0)) if

∑N
n=1 xn(t) = y(0)

0 otherwise
(B.10)

Similar to how we constrained the integral in Eq. (B.4), we parameterize the posterior, without
loss of generality, using the first N − 1 sources x̃(t) = (x1(t), . . . ,xN−1(t)). The last source is
constrained setting xN (t) = y(0)−

∑N−1
n=1 xn(t) and the parameterization is defined as:

F (x̃(t)) = F (x1(t), . . . ,xN−1(t)) = (x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)) . (B.11)

Plugging Eq. (B.11) in Eq. (B.10) we obtain the parameterized posterior:

p(F (x̃(t)) | y(0)) ≈ p(F (x̃(t)))

p(y(0))
(B.12)

At this point, we compute the gradient of the logarithm of Eq. (B.12) with respect to x̃(t):

∇x̃(t) log p(F (x̃(t)) | y(0)) ≈ ∇x̃(t) log
p(F (x̃(t)))

p(y(0))

= ∇x̃(t) log p(F (x̃(t)))−∇x̃(t) log p(y(0))

= ∇x̃(t) log p(F (x̃(t))) . (B.13)

Using the chain-rule for differentiation on Eq. (B.13) we have:

∇x̃(t) log p(F (x̃(t)) | y(0)) ≈ ∇F (x̃(t)) log p(F (x̃(t)))JF (x̃(t)), (B.14)

where JF (x̃(t)) ∈ R(N×D)×((N−1)×D) is the Jacobian of F computed in x̃(t), equal to:

JF (x̃(t)) =



I 0 . . . 0

0 I . . . 0
...

...
. . .

...
0 0 . . . I

−I −I . . . −I


The gradient with respect to a source xm(t) with 1 ≤ m ≤ N − 1 in Eq. (B.14) is thus equal to:

∇xm(t) log p(F (x̃(t)) | y(0)) ≈ [∇F (x̃(t)) log p(F (x̃(t))]m

− [∇F (x̃(t)) log p(F (x̃(t))]N ,
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where we index the components of the m-th and N -th sources in ∇F (x̃(t)) log p(F (x̃(t)). Finally, we
replace the gradients with the score networks:

∇xm(t) log p(F (x̃(t))|y(0)) ≈ Sθ,m((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t))

− Sθ,N ((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t)) , (B.15)

where Sθm and SθN are the entries of the score network corresponding to the m-th and N -th sources.

B.2 Derivation of Gaussian and Weakly-Supervised Posterior Scores
for Source Separation

In this Section we derive the formulas for ‘MSDM Gaussian’, ‘ISDM Dirac’ and ‘ISDM Gaussian’.
We first adapt the Gaussian posterior introduced in [118] to continuous-time score-based diffusion
models [169]. We plug the Gaussian likelihood function (Eq. (4.8)) into Eq. (B.7), obtaining:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t))N (y(t);
∑N

n=1 xn(t), γ
2(t)I)

p(y(t))
p(y(t) | y(0))dy(t) (B.16)

Following [118], y(t) is not re-sampled during inference and is always set to y(0). As such, we
perform Monte Carlo in Eq. (B.16) with y(0), the mean of p(y(t) | y(0) (see Eq. (B.6)), obtaining:

p(x(t) | y(0)) ≈
p(x(t))N (y(0);

∑N
n=1 xn(t), γ

2(t)I)

p(y(0))
. (B.17)

At this point, we compute the gradient of the logarithm of Eq. (B.17) with respect to xm(t):

∇xm(t) log p(x(t) | y(0)) ≈ ∇xm(t) log
p(x(t))N (y(0);

∑N
n=1 xn(t), γ

2(t)I)

p(y(0))

= ∇xm(t) log p(x(t)) +∇xm(t) logN (y(0);

N∑
n=1

xn(t), γ
2(t)I)

= ∇xm(t) log p(x(t)) −
1

2γ2(t)
∇xm(t)∥y(0)−

N∑
n=1

xn(t)∥22

= ∇xm(t) log p(x(t)) −
1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) . (B.18)

We obtain the ‘MSDM Gaussian’ posterior score by replacing the contextual prior with the score
network:

∇xm(t) log p(x(t) | y(0)) ≈ Sθ,m((x1(t), . . . ,xN (t)), σ(t))−
1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) . (B.19)
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The weakly-supervised posterior scores are obtained by approximating:

p(x1(t), . . . ,xN (t)) ≈
N∏
n=1

pn(xn(t)) ,

where pn are estimated with independent score functions Sθ,n. In the contextual samplers in Eq.
(B.15) (‘MSDM Dirac‘) and Eq. (B.19) (‘MSDM Gaussian‘), Sθ,n((x1(t), . . . ,xN (t)), σ(t)) refers to
a slice of the full score network on the components of the n−th source. In the weakly-supervised
cases, Sθ,n is an individual function. To obtain the ‘ISDM Dirac’ posterior score, we factorize the
prior in Eq. (B.13), then use the chain rule of differentiation, as in Appendix B.1, to obtain:

∇xm(t) log p(F (x̃(t)) | y(0)) ≈ ∇xm(t) log pm(xm(t)) +∇xm(t) log pN (y(0)−
N−1∑
n=1

xn(t))

≈ Sθ,m(xm(t), σ(t))− Sθ,N (y(0)−
N−1∑
n=1

xn(t), σ(t)) .

We obtain the ‘ISDM Gaussian’ posterior score by factorizing the joint prior in Eq. (B.18):

∇xm(t) log p(x(t) | y(0)) ≈ Sθ,m(xm(t), σ(t))−
1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) .
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