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Abstract

Stroke is a leading cause of adult serious and long-term disability. Notably,
improving upper limb functioning is the primary therapeutic goal in stroke
rehabilitation to maximize patients’ functional recovery and reduce long-term
disability. Nowadays, Brain-Computer Interfaces (BCIs) can be used as add-on
to traditional therapies to activate rehabilitative devices directly decoding the
brain activity of the user noninvasively, e.g. by means of electroencephalogram
(EEG). However, the consequences of a stroke involve regions apart from the
focal lesions due to disruption of connections along neural pathways. Therefore,
a BCI system for motor rehabilitation should allow to train both brain and
peripheral activity, reinforcing the volition that is brain control over muscular
activation together with physiological muscular activation patterns.

In this PhD thesis, Cortico-Muscular Coupling (CMC), which measures the
synchronization between central and peripheral activation (recorded respectively
through EEG and electromyogram – EMG), was studied as hybrid feature to
detect movement attempts and to reinforce the physiological brain control of
muscles activity.

The widespread functional brain-muscle connectivity (derived from multiple
EEG-EMG pairs) was characterized and compared in healthy subjects and
stroke patients by means of indices derived ad-hoc from graph theory. CMC
resulted to contain information about the movement type performed as well as
the general clinical status of stroke patients in terms of their hand functionality,
showing a high potential to be used as input of hybrid BCI (h-BCI) systems.

Thus, a processing pipeline for the translation of CMC computation and
the consequent CMC-based movement detection from offline to real-time was
defined and optimized. A novel h-BCI prototype aimed to Re-establish Cortico-
Muscular communication was developed and its feasibility was validated. More-
over, a study on the feedback delivery strategy (i.e. Functional Electrical
Stimulation - FES) was performed with the ultimate aim of tailoring the
stimulation to patients’ impairment. Such rehabilitative prototype recognizes
close-to-normal EEG-EMG coupling during hand movement attempts, taking
into account both the CMC features to reinforce during the h-BCI training, and
the ones to discourage to avoid the maladaptive movement abnormalities typical
of post-stroke recovery. Upon movement detection, it triggers the delivery of
FES to the target muscle to support full movement execution. Such system
resulted to be reliable and easy-to-use with high accuracy and timing.

The developed hybrid device would allow to follow patients along recovery
with a strategy tailored on their rehabilitative stage and hence maximizing the
time and amount of functional recovery with potentially high impact on the
stroke survivors’ quality of life (personalized medicine).
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General Introduction

Stroke is the leading cause of adult long-term disability in Western countries
and the second leading cause of death worldwide [1]. It is no longer a disease
of the elderly, indeed the 25% to 30% of patients affected by stroke are younger
than 55 years [2].
The overall global burden of stroke, in terms of functional, psychological, social,
and also socioeconomic impact, is reaching epidemic proportions in Western
industrialized countries [3]. Despite the efforts of traditional rehabilitation
approaches, 101 million people are living with stroke aftermath and this number
is almost doubled over the last 30 years (data related to 2019 - World Stroke Or-
ganization1) [4]. The most common and widely recognized impairment caused
by stroke is motor impairment contralateral to the affected brain hemisphere
(hemiparesis). Notably, the main predictor of an individual resuming a normal
professional and personal life is upper limb extremity function [5]. Indeed,
improving upper limb functioning is the primary therapeutic goal in stroke
rehabilitation to maximize patients’ functional recovery and reduce long-term
disability [6].

Various innovative neurorehabilitation strategies are emerging in order to
enhance beneficial plasticity, which it is known to occur after brain damages,
and improve motor recovery after stroke [2], [4]. Among them, Brain-Computer
Interfaces (BCIs) have proven their efficacy to enhance upper limb motor
recovery exploiting brain signals to control visual or proprioceptive feedbacks/-
effectors [2], [7]–[14]. BCI’s overall principle is based on the fact that closing
the loop between cortical activity (motor intention) and movement — thereby
producing afferent feedback activity — might restore functional corticospinal
and corticomuscular connections [10]. As for the feedback, it can be delivered
in an abstract form (e.g., a moving cursor on a computer screen) or as em-
bodied feedback (e.g., visual representations of the participant’s body parts
over a virtual avatar on a computer screen, in a VR head-mounted display or
directly overlaid on the participant’s limbs); or through Functional Electrical
Stimulation (FES) which has been employed in stroke rehabilitation for its
capability to assist movement and has been shown to induce changes in the
brain, bearing witness of brain plasticity modulation [13], [15].

1https://www.world-stroke.org
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BCIs for post-stroke motor rehabilitation rely on the principle that rein-
forcement of close-to-normal motor related brain activity (most commonly
derived from electroencephalogram - EEG), results in an improvement of motor
function [16]. BCI technology allows patients with severe impairment, thus with
complete plegia, to exploit motor imagery to elicit changes in EEG sensorimotor
power spectra and trigger a contingent sensory feedback (e.g., virtual hand)
which drives the brain reorganization toward improved motor function and
against maladaptive brain changes [9].
Another BCI paradigm consists of asking patients to attempt the movement
with their paretic hand. However, in this case other aspects should be taken
into account because the consequences of a stroke involve regions apart from
the focal lesion. Indeed, along the process of motor recovery after stroke,
several abnormalities in upper limb function have been described such as muscle
weakness and spasticity, abnormal muscle co-activation, increased activity of
the antagonist muscles [17]–[20]. Electromyography (EMG) can be used to
monitor the residual or recovered muscular activity along the rehabilitation
processes [21], [22] and EMG-related features can be exploited to avoid the
reinforcement of such maladaptive changes in patients with residual or recovered
muscle activity who can attempt the movement.
Hybrid BCIs (h-BCIs) include peripheral signals such as EMG, in addition
to brain signals, as control feature [23] and they have mostly been developed
to improve the classification performance of the system as in assistive BCIs
[24]–[27]. Such devices usually combine the EEG and EMG feature in the clas-
sification stage, meaning that each feature (brain and muscular) is calculated
separately and combined sequentially or simultaneously using a balanced weight
or Bayesian fusion approach to better control the assistive device [24], [28].
Nevertheless, there is no consensus on which movement-related features should
be encouraged (or discouraged) within a BCI training to pursue physiological
muscular activation patterns. Ideally, h-BCI systems specifically developed
for hand motor rehabilitation should allow to train both brain and peripheral
activity in a top-down framework [29] in which volition, that is brain control
over muscular activation, is reinforced together with correct muscular activation
patterns [30].

Thus, here a hybrid EEG-EMG feature, Cortico-Muscular coupling (CMC),
is proposed as input of a novel h-BCI system aimed at re-establishing the brain-
muscles communication after stroke. CMC gives information on how much
cortical surface motor potentials are phase-locked to muscular firing during
voluntary movement. It can be considered a simple form of hybrid functional
connectivity measuring the spectral coherence between EEG and EMG [31]. It
has been proposed as a potential biomarker for post-stroke motor deficits [32],
indeed its amplitude has been proven to be reduced post-stroke and its increase
has been correlated with functional recovery [33]–[36]. Recently, h-BCIs based
on CMC have been studied for post-stroke motor rehabilitation testifying the
potential role of CMC as control feature in a rehabilitative BCI paradigm [37],
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[38].
However, so far most CMC studies in stroke patients have limited the observa-
tion to few EEG electrodes in the affected hemisphere and the target muscle
[33], [35], [36], [39]. Similarly, the implementation of CMC-based BCIs has been
limited to few EEG-EMG couples determined a priori [37], disregarding the
comprehensive functional connectivity pattern involving several brain regions
and muscles, which participate in the post-lesional re-arrangements [40]–[43].

During the three years of my PhD, I implemented a non-invasive BCI-
controlled FES device for upper limb rehabilitation after stroke based on online
detection of cortico-muscular activation. The control feature was derived from
a combined EEG and EMG connectivity pattern estimated during upper limb
movement attempts. In particular, the first year was dedicated to the study
of the state of the art and the development of a methodology for the effective
extraction of CMC patterns able to characterize physiological movements and
to be used for movement classification. Moreover, to analyze the functional
connectivity between cortex and muscles after stroke, an ad-hoc protocol was
developed for the multimodal acquisition of stroke patients’ data during simple
and complex tasks and, during the second year the data collected were used
to characterize brain-muscles patterns during the movement of the impaired
hand. Finally, the CMC computation was translated in real-time and the third
year was dedicated to the design and the feasibility testing of a reliable and
easy-to-use rehabilitative h-BCI system based on CMC features. Moreover, a
study on the strategy of the feedback delivery (i.e. FES) was performed with
the ultimate aim of tailoring the stimulation to patients’ impairment.

My research activity was carried out in the laboratory on Neuroelectrial
Imaging and Brain-Computer Interface Laboratory (NeiLab) at Fondazione
Santa Lucia IRCCS (Rome, Italy), run by Dr. Donatella Mattia, where a
multidisciplinary team allowed me to have a comprehensive view of the clinical
needs for the development of a technology for post-stroke motor rehabilitation.
Moreover, thanks to the inpatients and outpatients services of Fondazione
Santa Lucia and the availability of patients who believed in our research,
the recruitment of participants for the experimental protocol was possible, in
accordance with Covid-19 regulations, even during the second phase of the
pandemic. Such research was performed within the broader context of the
project RECOMmENceR: RE-establishing COrtico Muscolar COMunication to
ENhance Recovery funded by the Italian Ministry of Health.
Finally, during my last year part of my research was conducted at the Transla-
tional Neural Engineering (TNE) Lab of EPFL, run by Prof. Silvestro Micera,
where I pursued a secondment as visiting PhD student.

The thesis is divided in two main sections which contain the two main goals
achieved in these three years: the first section includes three studies aimed
at the characterization of the physiological and pathological cortico-muscular
patterns in healthy subjects and stroke patients, whereas the second section
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describes in three studies the translation of CMC computational pipeline from
offline to online and the design of the BCI prototype.
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Introduction

To address the design of a novel hybrid BCI (h-BCI) for motor rehabilitation,
here Cortico-Muscular Coupling (CMC), computed from the EEG and EMG
signals, is proposed as control feature. CMC is a measure of synchronization
between central and peripheral activation and stroke related CMC studies have
shown alterations in both the acute and chronic phases [1]–[4]; furthermore,
changes have been correlated with functional recovery [5].
Until recently, most CMC studies in stroke patients have limited the observation
to few EEG electrodes in the affected hemisphere and the target muscle [2],
[4], [6]. Similarly, the implementation of CMC-based BCIs has been limited
to few EEG-EMG couples determined a priori [7]. However, the complexity of
post-stroke recovery is such that several brain regions and muscles participate
in post-lesional re-arrangements [8]–[11]. Lately, stroke-related CMC studies
have broadened the observation to multi-channel recordings to describe complex
phenomena such as the contralesional hemisphere contribution [5], [12] or the
abnormal recruitment of antagonists and proximal muscles [4], [13], [14]. All this
evidence supports the potential role of CMC control feature in a rehabilitative
BCI paradigm for its capability to encode both volitional control over movement
and possible deviations from the physiological motor system activation, thus
well beyond the purpose of increasing system classification performance, usually
pursued by h-BCIs [15]–[17].

To characterize the widespread functional brain-muscle connectivity in both
physiological and pathological condition, in the first part of this section the
cortico-muscular coupling between several EEG-EMG pairs was analyzed as a
comprehensive brain-muscles network to characterize simple hand movements
(i.e. finger extension and grasping) in healthy subjects (Study 1) [18] and
stroke patients (Study 2) [19]. These tasks are the most used in BCI-based
rehabilitative context [20]–[22].
In Study 1, the EEG and the EMG data of 20 healthy participants during simple
motor task were analyzed, the grand-average cortico-muscular patterns were
obtained and compared in different conditions with the aim of identifying their
distinctive traits. Moreover, the ability of multi-channels EEG-EMG features
in discriminating movements from rest condition and different movements tasks
was evaluated with the ultimate aim of addressing the design of a h-BCI able
to train both brain and peripheral activity.
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Once identified the physiological characteristics of CMC patterns, in Study 2
their alterations were investigated in stoke patients. Thus, high-density CMC
networks (derived from multiple EEG and EMG channels) and their relation
with upper limb motor deficit were analyzed by comparing data from 12 stroke
patients (EXP group) with 12 healthy participants (CTRL group) during simple
hand tasks. Network properties were extracted by means of indices derived
ad-hoc from graph theory and their ability in quantifying motor impairment
was assessed comparing the two groups [19].

Finally, to further investigate the movements specificity of CMC features,
their ability to discriminate different types of hand movements was analyzed
more in details in Study 3. Different classification approaches were evaluated
[23] and performances were compared with the ones obtained by the canonical
BCI’s classification method based on only brain features. Indeed, going beyond
the BCI application for motor rehabilitation, the ability to non-invasively de-
code different type of movements by exploiting all remaining functionalities
is crucial in other BCI applications for motor substitution in which "natural
control" (i.e. that resembling physiological control) of prosthetic devices is
cutting-edge [24]–[26].
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1. Study 1

Cortico-muscular and
intermuscular coupling in
healthy subjects

1.1 Background and Objectives

Brain activity and connectivity patterns are widely altered after stroke [11]
and such changes involve brain areas distant from the lesion, both ipsi and
contralateral to the lesion itself. The muscular patterns are also altered after
stroke resulting in excess activation of muscles other than the target one (motor
overflow, co-activation of agonists and antagonists and even bilateral involve-
ment) [10], [27]. Thus, this study analyzed a combination of cortico-muscular
coherence (CMC) and intermuscular coherence (IMC) as control features for a
novel hybrid BCI for rehabilitation purposes.
CMC is a measure of brain-muscle interplay during movement, derived from
EEG-EMG coupling within motor relevant EEG frequency bands [1], whereas
IMC provides information about the common corticospinal drive among differ-
ent muscles and has been employed to investigate intermuscular coordination
during upper limb motor tasks in healthy participants [28], [29]. In stroke
subjects, IMC provides information on the pathophysiological basis of altered
muscular patterns related e.g. to spasticity [30]. It has been shown that both
CMC [31] and IMC [32] can be modulated in a neurofeedback/biofeedback
training paradigm.
The combination of information encoded in CMC and IMC would enable a
hybrid BCI (h-BCI) to reinforce volitional control of those movement attempts
that most resemble physiological muscular activation patterns, thereby lessening
the probability to facilitate maladaptive motor re-learning.

Here, both CMC and IMC were explored in healthy participants perform-
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ing simple hand movements such as finger extension and grasping. Although
some studies in both healthy and stroke participants have employed CMC as
a BCI control feature [7], [31], [33] the combined use of CMC-IMC for hybrid
rehabilitative BCIs has not been conceived yet.
CMC and IMC values were estimated from multiple EEG and EMG electrodes
rather than considering only few pre-determined scalp electrodes and movement
target muscles [4], [5], [7], [33]. This multichannel approach returned EEG-
EMG and EMG-EMG synchronization pairs as a comprehensive functional
connectivity pattern for each tested movement. The performances of CMC and
IMC as features to classify simple hand motor tasks versus rest or different
tasks against each other were evaluated [18].

This signal processing framework contributed to the design of a novel hybrid
BCI system for upper limb motor rehabilitation in stroke subjects (the h-BCI
prototype described in Section II-Study 5), providing the necessary knowledge
on (i) how multimodal features should be defined for successful detection of
correct (i.e. “close-to-normal”) movement to be volitionally controlled via BCI,
and eventually implemented for the online processing, (ii) the inter-subject and
intra-subject variability to be taken into account when approaching the variety
of movement impairment in stroke population.

1.2 Materials and Methods

1.2.1 Participants and experimental protocol
Twenty healthy volunteers (9 females/11 males, age 27.8±2.4 yo), all right-
handed and with no history of neuromuscular disorders, were enrolled in the
study. All participants were informed about the experimental protocol and
gave their informed written consent to the study. The study was approved by
the ethics board of the IRCCS Fondazione Santa Lucia, Rome, Italy (Prot.
CE/PROG. 730).

During the experiment participants were seated in a comfortable chair with
their forearms on the armrests. Visual cues were presented on a screen facing
them. Participants were instructed to perform four movements: finger extension
(Ext) and grasping (Grasp), with either the right (R) and left (L) hand. The
experiment was administered in two sessions including 4 blocks (one per move-
ment: ExtR, ExtL, GraspR, GraspL) of 30 trials each. An inter-block break was
set to 1 minute and an inter-session break to 10 minutes. The block sequence
was randomized inter- and intra-sessions. The total trial duration was 7s with
an inter-trial interval of 3.5s. Each trial began with a cursor appearing at the
bottom of the screen, moving toward the top at constant velocity on a vertical
line, reaching the top of the screen at the end of the trial. The screen was split
into two vertically stacked regions with different background colour (black/green
for the bottom/top regions, respectively), so that the moving cursor would
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cross the boundary between the regions exactly 3s after the trial’s start (Figure
1.1). The moving cursor provided the participants with a visual cue of the
timing of the tasks: participants were instructed to rest in the first 3s of the
trial (cursor in the black region) and to perform the task along the remaining
4s (cursor on the green region). The task consisted of a gradual extension or
flexion of their right or left hand fingers, spanning across the final 4s of each trial.

This instruction was given to reduce the inter-subject and intra-subject
variability in executing the motor tasks. Furthermore, such gradual/slow
execution of finger extension/grasping was chosen as more suitable keeping in
mind the target stroke population with different degrees of motor impairment.

Figure 1.1. Timeline of the experiment with details on the screen shown to the
participant. The orange and the blue lines show the time intervals selected for
the analysis of rest ([0 2]s) and task ([4 6]s), respectively [18].

1.2.2 EEG and EMG data collection
EEG and EMG signals were simultaneously collected with a sampling fre-
quency of 2400Hz by means of the g.HIamp amplifier (g.tec medical engineering
GmbH Austria1). Scalp EEG potentials were collected from thirty-one passive
electrodes assembled on an electrode cap placed above the sensorimotor area
according to an extension of the International 10-20 system (FC5, FC3, FC1,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2,
CP4, CP6, P5, P3, P1, Pz, P2, P4, P6, PO3, POz, PO4). Potentials were
referenced to the linked earlobes and grounded to the left mastoid. The contact
impedance of each electrode was kept below 5kW. The EMG data were collected
from 10 muscles of the upper limbs (5 per side) namely: extensor digitorum
(ED), flexor digitorum superficialis (FD), triceps (TRI), biceps brachii (BIC)
and lateral deltoid (DELT). EMG sensors were placed according to the guide-
lines reported in Barbero et al. [34]. For each muscle two surface Ag/AgCl

1https://www.gtec.at

https://www.gtec.at
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electrodes, 10mm diameter, were placed at 20mm inter-electrode distance on
the centre of the muscle belly, in the direction of the muscle fibres, according to
the SENIAM recommendations [35]. Crosstalk between forearm muscles during
electrode placement was minimized and tested by the execution of specific
movements associated with the muscles. The quality of EEG and EMG signals
was visually checked prior to beginning the measurements and continuously
monitored afterwards. Three maximum voluntary contractions (MVCs) lasting
5s were recorded for each muscle [36], [37] at the beginning of the experiment.

1.2.3 Data Analysis
Figure 1.2 shows the flow chart illustrating the methodological steps of the
analyses presented below.

Figure 1.2. Flow chart illustrating the methodological steps of the analyses [18].

EEG and EMG data pre-processing

Vision Analyzer 1.05 software (Brain Products GmbH, Gilching, Germany) was
used to pre-process the data. EEG and EMG signals were downsampled to
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1000Hz after an appropriate filtering to avoid aliasing. EEG and EMG signals
were band-pass filtered with a Butterworth zero-phase filter in the range 3—100
Hz and 3—500 Hz, respectively. A notch filter at 50Hz was applied to remove
power-line interference on both signals. Continuous traces were segmented in
7s epochs, comprising the 3s of rest and the 4s of motor execution. Trials with
EEG signals exceeding in absolute value the amplitude of 100µV and trials
contaminated by muscular artifacts were rejected. All EEG and EMG trials
were visually inspected to identify artifacts. Following this assessment, three
participants were excluded from further analysis due to artifacts in more than
50% of trials. EEG signals were re-referenced according to the common average
reference. The following analyses were performed using custom code developed
in Matlab R2019a (The MathWorks, Inc., Natick, Massachusetts, USA).

Assessment of muscle activation

Two time intervals of interest lasting 2s were selected for the CMC and IMC
analysis according to the muscle activation level: (i) a rest interval, from 0s
to 2s, and (ii) a task interval, from 4s to 6s with respect to the trial start (see
Figure 1.1). To verify that participants showed a stable and predictable muscle
activation in these windows, the EMG activation was computed as follows. The
root-mean-square (RMS) of EMG signal on the target muscle for each trial (FD
for grasping movements, ED for finger extension movements) was computed
on windows of 0.15s length sliding across the whole trial duration and on the
three MVC repetitions of the corresponding muscle. The EMG activation was
expressed as percent of the ratio between the RMS in each short window of the
trial and the maximum RMS among the three corresponding MVC repetitions
(%MVC). The activation level values, expressed as %MVC values were finally
averaged across all time points belonging either to the rest or the task intervals,
and across trials (EMG activation level).

Coherence estimation

The magnitude squared coherence values between EEG and EMG signals, i.e.
CMC, or between EMG signals, i.e. IMC, were computed in the range 8-100
Hz.

Cortico-muscular coherence
The CMC values were computed as

CMCxy(fj) = |Sxy(fj)|2 (1.1)

Sxy(fj) = 1
n

n∑
i=1

Xi(fj) ∗ Yi(fj) (1.2)

where Sxy(fj) represents the cross-power spectrum between the EEG signal
x and the EMG signal y at a given frequency fj , estimated using the Welch
periodogram method with a Hann window. The length and overlap of the
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periodogram windows were tailored to the specific aim of the subsequent analysis
(see below). EMG signals were rectified before entering in the CMC computation
[38].

The absolute square value of the cross-spectrum (as in 1.1) was used as
measure of EEG-EMG synchronization, instead of the classical coherence
formulation [39]. This approach prevents, in fact, the detection of false positives
in CMC when the muscle activation level is around 0, as observed in the
rest time interval of the experiment [40]. To be consistent with IMC analysis
and previous literature, I will refer to the corticomuscular cross-spectrum by
maintaining the designation of coherence.

Intermuscular coherence
Intermuscular coherence was computed between pairs of unrectified EMG signals
recorded from muscles of the same side (10 pairs of ipsilateral muscles). The
IMC values were computed as [41]

IMCxy(fj) = |Sxy(fj)|2

|Sxx(fj)| ∗ |Syy(fj)| (1.3)

where Sxy(fj) represents the cross-power spectrum between the EMG signals
x and y and Sxx(fj) and Syy(fj) are the auto-spectra of x and y, respectively.
Cross- and auto-spectra were computed according to Welch periodogram with
Hann window as described above for the CMC formula.

Across-trials and single-trial estimations
CMC/IMC values were estimated for each participant, movement (ExtR, ExtL,
GraspR, or GraspL), and interval of interest (task, rest). Two different proce-
dures were followed for the CMC/IMC estimation (across-trials or single-trial
approaches), differing in how the periodogram windows were defined and
averaged, serving different purposes in the downstream analysis. In the across-
trials approach (periodogram window length of 1s with 0% overlap) a single
CMC/IMC spectrum was estimated from all trials in the dataset of a single
participant for each EEG-EMG/EMG-EMG pair, in order to have an average
CMC/IMC pattern for each participant to be included in the grand average (see
paragraph 1.2.4 - CMC and IMC grand average patterns). Before computing
the average IMC pattern for each participant, the significance of non-zero IMC
values were assessed [41] by comparing them to the chance level defined by the
equation [42]

CL(α) = 1 − (1 − α)
1

(n−1) (1.4)

where n is the number of windows of the signals used in the spectra estimation.
The significance level was set to α= 0.01 and corrected according to the False
Discovery Rate procedure, FDR [43]. Values below CL(α) were set to zero.
In the single-trial approach (periodogram window length of 0.125s with 50%
overlap), a CMC/IMC spectrum was estimated for each trial in the dataset, in
order to have different observations of CMC/IMC patterns for each participant
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to be used as features of a classifier discriminating task vs rest or different
movements among each other (see paragraph 1.2.3 - Movement classification).

Characteristic frequencies
To select specific frequencies in which CMC and IMC are modulated by a

specific task, we divided the frequency spectrum into four bands: alpha (8—12
Hz), beta (13—30 Hz), gamma (31—60 Hz) and high frequencies (HF, 61—100
Hz). In each band we identified a characteristic frequency f∗ as the frequency
in which CMCxy(fj) (or IMCxy(fj)) showed the highest value, for all fj in
the band. The characteristic frequency was specific for each pair of signals x
and y, thus for each movement type (Ext and Grasp) and in each band we
obtained a set of 310 characteristic frequencies for the CMCxy (31 EEG x
5 EMG from muscles ipsilateral to the task side x 2 sides) and a set of 20
characteristic frequencies for the IMCxy (the number of pairs among 5 EMG
signals from muscles ipsilateral to the task side x 2 sides). As for “inactive”
muscles, characteristic frequencies that were determined when the xy pair
included a muscle ipsilateral to the movement (e.g. right DELT during GraspR)
were also used for the same xy pair when the movement was contralateral to the
muscle (e.g. right DELT during GraspL). Analyses of the rest interval borrowed
the characteristic frequencies of the matching task interval. In subsequent
analyses, only CMC/IMC values taken at the characteristic frequencies are
considered.

Movement classification

A single-subject binary classification model was trained to evaluate the per-
formance of CMC and IMC values to discriminate task vs rest intervals, for
each movement. CMC and IMC values from single trials were merged into a
feature vector containing, therefore, CMC values from all possible EEG-EMG
pairs and IMC values from all possible EMG-EMG pairs, for each frequency
band (CMC+IMC approach). Only pairs including muscles ipsilateral to the
movement (e.g. the 5 muscles of the right upper limb in ExtR or GraspR) were
included in the feature vector. Thus, the feature space was 660-dimensional:
620 CMC features (31 EEG channels x 5 EMG channels x 4 frequency bands)
and 40 IMC features (10 pairs among 5 EMG channels x 4 frequency bands).
For each movement and participant, the dataset consisted of 120 observations
(60 trials x 2 intervals i.e. task and rest).

Feature scaling (z-score standardization) was applied to the dataset to take
into account differences among types of features. A feature selection algorithm
based on the stepwise regression [44] with an empty initial model was applied to
reduce the dimensionality of the feature space before building the classification
model. The results of this feature reduction process also served to assess the
subset of features most relevant to classification (see below). A support vector
machine classifier with linear kernel [45] was used as classification model on the
reduced features space. A 10-iteration cross-validation was applied to train the
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model and evaluate the classification performances. In each iteration, 70% and
30% of the observations were used as training and testing dataset, respectively.

Two CMC+IMC more models (Ext-Grasp classifiers) were considered to
assess whether CMC and IMC features can discriminate different movement
types. Only features from task intervals of two ipsilateral movement types were
included in each model (one model per side), thus discriminating either GraspR
vs ExtR or GraspL vs ExtL classes.

In order to disentangle the role of each feature type (CMC or IMC) in the
movement discrimination, the single-subject binary classification Task vs Rest
and Ext vs Grasp was repeated considering CMC and IMC values as features
separately (CMC and IMC approaches).

Four different metrics were computed to evaluate the performance of all
classification models: i) the area under the curve (AUC) of the Receiver Oper-
ating Characteristic (ROC) curve [46], ii) the accuracy, iii) the specificity and
iv) the sensitivity of the classifier.

The subset of features selected by the stepwise regression were analyzed
to identify the most recurrent EEG-EMG and EMG-EMG pairs used in the
classification models. The number of times a specific channel pair was selected
across participants and cross-validation iteration was counted irrespectively of
the frequency band they corresponded to.

1.2.4 Statistical Analysis
CMC and IMC grand average patterns

Each movement was described by a coherence pattern as result of a grand
average analysis computed on CMC/IMC values across participants.

For each movement type, frequency band and channel pair a paired sample
t-test (across participants, N=17) was applied using as independent variable
the interval (task vs rest) and as dependent variable the CMC/IMC values
computed in the across-trials procedure. The significance level was set to 0.05.
False Discovery Rate (FDR) was used to control family-wise error rate.

Significant differences will be interpreted as a marker of relevance of a
specific pair/band in the execution of a specific movement.

Classification performance evaluation

To investigate the effect of the side and type of movement on the performance of
task-rest classifiers, a two-way repeated measures analyses of variance (ANOVA)
was performed considering as within main factors the MOVEMENT (2 levels:
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Ext, Grasp) and the SIDE (2 levels: right, left) and as dependent variable the
AUC value.

To evaluate whether the discriminability between grasping and extension
movements depends on the side, the resulting AUC values were analysed by
means of a paired t-test with significance threshold equal to 0.05.

Performances obtained by the combination of CMC and IMC features and
CMC and IMC features alone were statistically compared using a one-way
repeated measures ANOVA. AUC values were used as dependent variable and
the features type (CMC, IMC, CMC+IMC) as within factor. The same analysis
was repeated for each movement and side in the task vs rest classification and
for each side in the Ext vs Grasp classification.

The statistical significance level for all tests was set to p<0.05 and the
Tukey’s post-hoc analysis was performed to assess differences among pairs.

1.3 Results

1.3.1 Assessment of muscle activation
The EMG activation levels in the task interval (mean ± standard error across
participants, N=17) were 9.5 ± 0.9 %MVC and 9.9 ± 1.0 %MVC for the ED
muscle in ExtR and ExtL, respectively and 5.5 ± 0.9 %MVC and 6.3 ± 1.2
%MVC for the FD muscle in GraspR and GraspL, respectively. The activation
levels in the rest interval (mean ± standard error across participants, N=17)
were 1.3 ± 0.1 %MVC and 1.3 ± 0.2 %MVC for the ED muscle in ExtR and
ExtL, respectively and of 1.8 ± 0.3 %MVC and 2.5 ± 0.8 %MVC for the FD
muscle in GraspR and GraspL, respectively.

1.3.2 CMC and IMC grand average patterns
Figures 1.3 and 1.4 show the grand average CMC (panels a and c) and IMC
(panels b and d) patterns observed for the right and left finger extension and
grasping, respectively. As expected for a healthy experimental group, no sig-
nificant CMC and IMC values were observed for the side contralateral to the
movement.

As for right and left Ext movements (Figure 1.3), the highest CMC values
were found for connections involving mainly the target muscle (ED) and most of
the bilateral sensorimotor EEG electrodes, in alpha and beta bands. At higher
frequency bands (gamma and HF), CMC values were lower and less muscle
specific. Results also revealed that the left Ext movement (non-dominant hand;
left hand, Figure 1.3 c) was characterized by EEG-EMG connections involving
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Figure 1.3. Grand average coherence patterns during finger extension. Cortico-
muscular (CMC) and Intermuscular (IMC) patterns for the right finger extension
movement (Ext) (panels (a) and (b) for CMC and IMC, respectively) and left Ext
(panels (c) and (d) for CMC and IMC, respectively) and for each frequency band:
alpha (8–12 Hz), beta (13–30 Hz), gamma (31–60 Hz) and high frequency, HF,
band (61–100 Hz). The representation is seen from the above: scalp with nose
pointing toward the top of the page and arms in front of the participant. Only
statistically significant CMC/IMC values are represented (paired t-test between
task and rest intervals, α = 0.05 FDR correction). The color bar codes for the
CMC/IMC average value (across participants, N = 17) in the task interval [18].
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Figure 1.4. Grand average coherence patterns during grasping. Corticomuscular
(CMC) and Intermuscular (IMC) patterns for the right finger extension movement
(Ext) (panels (a) and (b) for CMC and IMC, respectively) and left Ext (panels
(c) and (d) for CMC and IMC, respectively) and for each frequency band: alpha
(8–12 Hz), beta (13–30 Hz), gamma (31–60 Hz) and high frequency, HF, band
(61–100 Hz). The representation is seen from the above: scalp with nose pointing
toward the top of the page and arms in front of the participant. Only statistically
significant CMC/IMC values are represented (paired t-test between task and rest
intervals, α = 0.05 FDR correction). The color bar codes for the CMC/IMC
average value (across participants, N = 17) in the task interval [18].
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mainly the target ED muscle and other proximal muscles (e.g. deltoid), whereas
the same movement executed with the dominant hand (right hand, Figure
1.3 a) showed connections also with the antagonist FD (across all frequency
bands). As for the IMC patterns, significant patterns were found for both right
and left Ext movement only in beta, gamma and HF bands. None or isolated
EMG-EMG connections were found in alpha band. The highest IMC values
were observed between target ED and FD for both left and right Ext. For all
movements, IMC patterns in HF appeared to be less specific, i.e. involving all
muscles.

As for right and left Grasp movements (Figure 1.4), lower CMC values were
obtained than in Ext. The EEG-EMG connections mainly involved the target
muscle FD in alpha band, whereas ED and proximal muscles were involved in
higher frequency bands. Similar to what observed for Ext, the involvement of
bilateral sensorimotor areas characterized these CMC patterns. Like the Ext
movement, the IMC patterns in both left and right grasping movement showed
significant connections in beta, gamma and HF bands, with more muscles
progressively involved at higher frequencies. A strong connection between ED
and FD across these frequency bands is confirmed for Grasp movement executed
with both left and right hand.

1.3.3 Movement Classification

Task-rest classification

The task-rest classification performances expressed as AUC, Accuracy, Speci-
ficity and Sensitivity are shown in Table 1.1. Overall, higher classification
performances were observed for Ext with respect to Grasp, whereas perfor-
mances are comparable between left and right movements.

The ANOVA on task-rest classification AUC revealed a significant effect of
MOVEMENT (F(1,16) = 13.16, p < 0.01) and MOVEMENT x SIDE (F(1,16)
= 6.06, p = 0.03) factors. No significant effect of the SIDE factor was observed
(F(1,16) = 0.19, p = 0.67). The Tukey’s post-hoc analysis revealed significant
differences (p < 0.01) between movements (Ext and Grasp) for both the right
and the left side, as already suggested from the mean values in Table 1.1 (see
Figure 1.5).
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Table 1.1. Classification performances (AUC, Accuracy, Specificity and Sensitivity)
of the CMC + IMC approach, reported as mean (standard error) across 17
participants, of the task-rest classifier. ExtR: finger extension with the right hand;
ExtL: finger extension with the left hand; GraspR: grasping with the right hand;
GraspL: grasping with the left hand.

Task vs Rest
Movement AUC Accuracy Specificity Sensitivity
ExtR 0.95(0.01) 0.90(0.02) 0.95(0.01) 0.85(0.02)
ExtL 0.98(0.01) 0.94(0.01) 0.98(0.01) 0.90(0.01)
GraspR 0.89(0.03) 0.82(0.03) 0.86(0.03) 0.79(0.02)
ExtR 0.87(0.02) 0.80(0.02) 0.85(0.01) 0.76(0.02)

Figure 1.5. Distribution of task-rest classification performance. Boxplot of the
distributions (N = 17 participants) of the AUC values for each movement (Ext,
finger extension, and Grasp, grasping) executed with either hand (right and
left). Markers (**) indicate significant differences (p < 0.01) between groups
resulting from the Tukey’s post-hoc test on the significant factor MOVEMENT
X SIDE. Significant differences were observed between movements, with higher
performance in Ext movement classification.The intra-group variability, expressed
as interquartile range of each AUC distribution, is higher for the grasping (0.14
and 0.11 for left and right grasping, respectively) than for extension (0.02 and
0.07 for left and right finger extension, respectively). Differences between sides
were not significant [18].

The analysis on selected features revealed that about 60 features were se-
lected by the stepwise regression for each iteration and participant: 62 ± 3 ExtR,
64 ± 3 ExtL, 57 ± 3 GraspR, 52 ± 5 GraspL, presented as mean ± standard
error. Figure 1.6 illustrates the most recurrent features across participants
(N = 17) and cross-validation iterations (IT = 10). For Ext movements, the
IMC feature between the extensor digitorum muscle and the flexor digitorum
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Figure 1.6. Features selected in task versus rest classification. Most recurrent
EEG-EMG pairs and EMG-EMG pairs selected by the stepwise regression across
participants (N = 17) and cross-validation iterations (IT = 10) in the classification
of each movement versus rest. The matrix shows for each EEG-EMG pair and
EMG-EMG pair the number of times, expressed as percentage, each pair was
selected over all participants and all iterations of the cross-validation. EEG-EMG
pairs are identified by boxes from the intersection of EEG channels on the x-axis
and EMG channels on the y-axis. EMG-EMG pairs are identified by boxes from
the intersection of EMG channels on the x-axis and EMG channels on the y-axis.
Panels (a) ExtR: finger extension with right hand, (b) ExtL: finger extension with
left hand, (c) GraspR: grasping with right hand, (d) GraspL: grasping with left
hand [18].
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muscle resulted the most recurrent (∼70%). As for the type of movements,
CMC features involving the extensor digitorum muscle were recurrent in Ext
movement. The CMC features involving distal (extensor and flexor digitorum
muscles) as well as proximal muscles were selected in the Grasp movement,
thus indicating a less “muscle-specific” selection for Grasp with respect to Ext
movement. The CMC features mostly involved the central and centro-parietal
EEG channels strips bilaterally, including the midline electrodes. No clear
lateralization of CMC patterns (i.e. involvement of EEG electrode position
contralateral to the movement) was found, except for ExtL (CP2 with the
extensor digitorum muscle).

The same classification approach was applied separately for CMC and
IMC features. The one-way repeated measures ANOVA on AUC, applied to
test differences among types of features (CMC + IMC, CMC, IMC), revealed
significant lower performance for IMC features in each of the four movements,
as shown in Table 1.2. No significant differences were observed between CMC
and CMC + IMC features. The following classification performances for the
three types of features were achieved: 0.92 (0.01) for CMC + IMC, 0.92 (0.01)
for CMC and 0.74 (0.02) for IMC, presented as mean AUC (standard error)
across movements.

Table 1.2. Results of the one-way repeated measure ANOVA on AUC considering
as independent variables the type of features (CMC + IMC, CMC and IMC) for
each movement. The last three columns show the results of the Tuckey post-hoc
analysis, — no significant differences, ** significance differences (p < 0.01).

Movement F(p)
CMC+IMC

versus
CMC

CMC+IMC
versus IMC

CMC
versus IMC

ExtR
(df=2,32)

28.86
(<0.01) — ** **

ExtL
(df=2,32)

22.37
(<0.01) — ** **

GraspR
(df=2,32)

43.59
(<0.01) — ** **

GraspL
(df=2,32)

57.29
(<0.01) — ** **

Ext-Grasp classification

The ability of CMC and IMC features to discriminate between Ext and Grasp
movements was tested with the same approach used to classify each movement
versus rest. The Ext-Grasp classification performances expressed as AUC,
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Accuracy, Specificity and Sensitivity are shown in Table 1.3.

Table 1.3. Classification performances (AUC, Accuracy, Specificity and Sensitivity),
reported as mean (standard error) across 17 participants, Ext-Grasp classifier.

Ext versus Grasp
Side AUC Accuracy Specificity Sensitivity
Right Hand 0.98 (<0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
Left hand 0.99 (<0.01) 0.95 (0.01) 0.96 (0.01) 0.95 (0.01)

The paired t-test on Ext-Grasp classification AUC values did not reveal any
significant effect of the SIDE (t = 0.77, p = 0.45). The analysis on selected
features revealed that about 60 features were selected by the stepwise regression
for each iteration and participant: 64 ± 3 ExtR-GraspR, 55 ± 5 ExtL-GraspL,
presented as mean ± standard error. Figure 1.7 illustrates the most recurrent
features across participants (N = 17) and cross-validation iterations (IT = 10).
The CMC features mostly involved the central and centro-parietal EEG channels
strips bilaterally, including the midline electrodes. No clear lateralization of
CMC patterns (i.e. involvement of EEG electrode position contralateral to the
movement) was found.

The same classification approach was applied separately for CMC and
IMC features. The one-way repeated measures ANOVA on AUC, applied to
test differences among types of features (CMC + IMC, CMC, IMC), revealed
significant lower performance in Ext versus Grasp classification for IMC features
when movements were executed with both the right and the left side, as shown
in Table 1.4. No significant differences were observed between CMC and CMC
+ IMC features. The following classification performances for the three types of
features were achieved: 0.98 (<0.01) for CMC + IMC, 0.98 (<0.01) for CMC
and 0.85 (0.02) for IMC, presented as mean AUC (standard error) across sides.

Table 1.4. Results of the one-way repeated measure ANOVA on AUC considering as
independent variables the type of features (CMC + IMC, CMC and IMC) for each
side. The last three columns show the results of the Tuckey post-hoc analysis,—
no significant differences, ** significance differences (p < 0.01).

Side F(p)
CMC+IMC

versus
CMC

CMC+IMC
versus IMC

CMC
versus IMC

Right hand
(df = 2,32)

16.91
(<0.01) — ** **

Left hand
(df = 2,32)

22.04
(<0.01) — ** **
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Figure 1.7. Features selected in Ext versus Grasp classification. Most recurrent
EEG-EMG pairs and EMG-EMG pairs selected by the stepwise regression across
participants (N = 17) and cross-validation iterations (IT = 10) in the classification
of finger extension versus grasping for each side. The matrix shows for each EEG-
EMG pair and EMG-EMG pair the number of times, expressed as percentage,
each pair was selected over all participants and all iterations of the cross-validation.
EEG-EMG pairs are identified by boxes from the intersection of EEG channels on
the x-axis and EMG channels on the y-axis. EMG-EMG pairs are identified by
boxes from the intersection of EMG channels on the x-axis and EMG channels on
the y-axis. Panels: (a) Right hand movements, (b) Left hand movements [18].

1.4 Discussion

This study identified the corticomuscular and intermuscular synchronization
patterns (CMC and IMC) derived from EEG/EMG multichannel recording
performed during the execution of simple hand movements (Ext and Grasp) in
a sample of healthy participants. The finger extension and grasping movements
could be distinguished by using the combination of CMC and IMC with better
(offline) classification performances for the Ext with respect to Grasp move-
ment. Furthermore, such combined CMC + IMC features allowed for successful
classification of Ext versus Grasp. All in all, these findings represent a first
step in designing novel hybrid BCI systems which better cope with central and
peripheral drive of functional motor recovery after stroke.
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1.4.1 CMC patterns characterization
The CMC grand average patterns showed significant connections between the
whole sensorimotor areas and the muscles of the limb involved in the movement
in the entire frequency range from alpha to gamma bands. This is in line with
previous studies identifying beta as the typical band for CMC and alpha and
gamma bands as reflecting feedback and feed-forward EEG-EMG interaction,
respectively [47].

Focusing on the distribution of those connections on the scalp, it can be no-
ticed that the sensorimotor areas bilaterally concurred to the pattern regardless
of the side and type of movement performed. Indeed, a prevalent activation
of the contralateral sensorimotor cortex during upper limb movements would
be expected according to common anatomical and physiological knowledge
[48]. This lateralized cortical activation has been widely described in several
EEG [24], [49], [50] and CMC studies [3], [6], [51]. Nevertheless, the active
contribution of the ipsilateral motor cortex was described to have a facilitatory
role in the control of the moving limb [52].

It is well-known that movement preparation and execution is associated to
an event-related desynchronization (ERD) which is an oscillatory phenomenon
occurring within motor-related EEG frequency bands [53]. While ERD is highly
lateralized (i.e. occurs mainly on the sensorimotor areas contralateral to the
movement) at movement onset, it has been described to evolve bilaterally on
the scalp as movement progresses [54], [55]. In the paradigm analyzed here,
participants were explicitly asked to perform Ext and Grasp movement slowly
(for 4 s) and the time window for coherence analysis was defined as to start one
second after the actual movement onset (see Figure 1.1). It could be hypothe-
sized that the bilateral involvement of the scalp sensorimotor areas in CMC
patterns observed in this experimental condition would reflect the progression
in time of the execution of the movements. It remains to be elucidated whether
such bilateral scalp involvement are confirmed in stroke subjects [5] and how
this impacts on appropriate CMC features selection in a rehabilitative hybrid
BCI setting.

Regarding the muscle-specificity of the observed CMC patterns, a central
role of the agonist muscle (ED) was found during Ext movement, especially
with the non-dominant hand. This observation was consistent with the task
versus rest classification finding wherein the ED connections were the most
recurrently selected among EEG-EMG pairs (see Figure 1.6). The observed
difference between dominant and non-dominant hand patterns did not affect
task versus rest classification performances, which achieved around 90% for
both ExtR and ExtL.

Grand average CMC patterns during Grasp movement showed lower CMC
values than those obtained for Ext. This finding could reflect a certain degree of
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the inter-individual variability in performing the grasping movement that could
be attributed to the wide spectrum of functional and behavioral correlates of
the grasping movement [56]. A previous study on healthy participants showed
how motor imagery of grasping movement was characterized by behavioral
differences among individuals which significantly impacted on EEG sensorimotor
reactivity [57]. The CMC patterns of Grasp showed less muscle-specificity (with
respect to Ext). This finding is consistent with that observed for task versus
rest classification where no muscle among the EEG-EMG pairs appeared more
frequently selected than others (see Figure 1.6).

1.4.2 IMC patterns characterization
As for IMC pattern representation, results showed significant differences across
frequency bands. Specifically, IMC patterns appeared to be more movement-
specific in beta and gamma bands whereas unconnected and fully connected
IMC patterns were observed in the alpha and HF band, respectively. Overall,
these findings are in line with previous evidence [29] showing that IMC in
alpha encodes for postural and subcortical control whose relevance is likely
marginal in the paradigm used here (simple hand movements executed by
healthy participants), while beta and gamma bands reflect cortical control on
movement execution [28], [41], [58], [59].

Among EMG-EMG pairs, the connection between ED and FD muscles (i.e.
the agonist/antagonist and antagonist/agonist for the Ext and Grasp move-
ments, respectively), resulted to be the strongest in IMC patterns found in this
analysis, confirming findings of Kamper and colleagues [41]. The occurrence of
spasticity and pathological co-contraction after stroke results in weakening of
the agonist–antagonist coupling [41]. For this reason, the ED-FD synchroniza-
tion would likely be a crucial feature for the implementation of the proposed
hybrid BCI paradigm for stroke subjects’ rehabilitation. Nevertheless, the
analysis of the features selected by the offline classification model to recognize
each movement showed that connections involving the muscles other than ED
and FD were also recurrent among healthy participants (e.g. biceps brachii
in Grasp). This finding supports the methodological approach used overall
throughout this thesis of acquiring information from multiple muscles (i.e. not
limited to the forearm muscles) as necessary for the accurate classification of
different hand movements. This will be especially true in the case of stroke sub-
jects, where movement is often characterized by abnormal muscular activations
(motor overflow, agonist–antagonist co-contractions) whose occurrence should
be capable of being monitored and discouraged.

1.4.3 Movement Classification
Classification results revealed high performance of CMC/IMC features in dis-
criminating each task against rest. Lower classification performances were,
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however, observed for the Grasp movement with respect to Ext. This find-
ing is consistent with higher intra-individual variability for the Grasp already
highlighted by the observation of CMC and IMC patterns. Again, a possible ex-
planation for this could be found in the complexity of behavioral and functional
implications of the grasping movement with respect to finger extension [56],
[57]. Overall, our classification performances are higher than those reported
in similar studies [60], and this is especially true for the Ext movement. Of
note, finger extension, and more generally extension movements are commonly
employed in the rehabilitation of stroke subjects, especially when effectors such
as robots or functional electrical stimulation are employed [21], [61], [62], to
contrast the common pathological flexion synergy of the upper limb [63].

To further evaluate the movement specificity of CMC and IMC features, here
their ability to classify Ext versus Grasp in the dominant and non-dominant
upper limb was tested. Performances were again very high for both sides.
The ability to non-invasively decode different types of movement is potentially
interesting to achieve the so-called “natural control” of neuroprostheses [64],
which is an emerging issue in the field of BCIs for clinical applications beyond
stroke (e.g. control of hand neuroprostheses after spinal cord injury [25]).

In all conditions (task versus rest and Ext versus Grasp), the hybrid approach
presented here did not outperform the classification results obtained by CMC
alone, while both CMC and hybrid were significantly better than IMC. Thus,
further studies focused only on CMC features and its ability to monitor the
quality of movement was evaluated more in details.

1.4.4 Conclusions, limitations and feature steps
Results obtained on CMC and IMC from healthy participants support the
validity of the elements of novelty proposed in this paradigm. First, the con-
ception of a h-BCI which includes EEG and EMG derived features encoding
for physiological movement patterns (beyond the mere pursue of higher classifi-
cation rates, yet showing satisfying performances). Second, the use of multiple
EEG electrodes and EMG from several muscles bilaterally to compute CMC,
in compliance with the literature showing that post-stroke changes may involve
brain areas distant from the lesion and muscles other than the target ones. The
characterization of CMC patterns in a population of stroke subjects will be
discussed in the next study of this section aiming at (i) defining how interactions
between central and peripheral nervous systems are altered after stroke and
(ii) providing new potential neurophysiological markers for post-stroke motor
impairment and recovery along the rehabilitative process.

Despite the promising findings reported in this study, further investigations
are needed to evaluate the feasibility of real-time extraction of CMC-based
features suitable to control a hybrid BCI system and are addressed in Section II.
The proposed multi-channel approach including signals from the whole sensori-
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motor areas and both upper limb muscles has been useful to comprehensively
describe each simple movement by means of a CMC pattern highly discriminable
against rest. However, this approach could hardly be translated as it is in an
online BCI paradigm. To cope with this computational issue, the complexity
of such multi-channel analysis were reduced in the subsequent analyses on
the real-time control of a hybrid BCI by selecting the best individual hybrid
features for each task (e.g. few EEG-EMG channels pairs in specific frequency
bands).

The study just presented was published in the International Journal of Neural
Systems as part of the Special Issue: "Brain/Neural Assistive Technologies"
[18].
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2. Study 2

High-density
cortico-muscular networks
in stroke patients

2.1 Background and Objectives

The potential of CMC patterns derived from high-density EEG/EMG as a
feature for a rehabilitative hybrid BCI (h-BCI) in healthy subjects performing
simple hand movements (most commonly employed in BCI paradigms) was
explored in Study 1, obtaining high classification performances with the most
discriminant EEG-EMG features [18]. With respect to currently available
h-BCI systems which combine different signals at the classification stage, CMC
can be conceived as an intrinsically hybrid feature per se allowing simultaneous
monitoring of the interaction between brain (EEG) and muscular (EMG) activ-
ity. A successful introduction of CMC control feature in rehabilitative BCIs
requires to first identify which properties of the widespread corticomuscular
network (namely which EEG-EMG features) would best outline the complexity
of post-stroke motor deficit to ensure that such h-BCI will favor functional
motor recovery and eventually discourage maladaptive changes.

In the present study, CMC patterns were estimated by means of high-density
recordings to best capture the widespread corticomuscular network properties
in stroke patients during the execution of simple hand movements such as
grasping and finger extension. With this aim, the network’s properties were
then characterized by means of ad-hoc indices derived from a graph theoretical
approach [65]. Statistical analysis was performed to outline differences between
healthy subjects and patients, performing the movements both with the affected
and unaffected hand (AH, UH), and to seek correlation with upper limb motor
impairment as assessed by clinical scales.
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2.2 Materials and Methods

2.2.1 Participants

Thirteen stroke participants (6 females/7 males, age 52.7±17.7 yo) were enrolled
in the study according to the following inclusion criteria: (1) first-ever unilat-
eral, cortical, subcortical, or mixed stroke, caused by ischemia or hemorrhage
(confirmed by magnetic resonance imaging), that occurred 3 to 12 months
prior to study inclusion; (2) upper limb hemiparesis that was caused by the
stroke; and (3) age between 18 and 80 years. The exclusion criteria were the
presence of: i) neuropsychological deficits preventing the ability to understand
the instructions related to the experiment; ii) concomitant diseases affecting
the upper limb motor function (i.e. orthopedic injuries or other neurologic
diseases affecting reaching or grasping); iii) spasticity of each segment of the
upper limb scored higher than 4 on the Modified Ashworth Scale (MAS [66]).
All stroke participants were recruited within the inpatients and outpatients
services of Fondazione Santa Lucia, IRCCS, Rome, Italy and were undergoing
a rehabilitative treatment (usual care).
Fifteen right-handed healthy participants (10 females/5 males, age 48.7±17.9
yo) were involved in the experimental protocol. Subjects did not present any
evidence/known history of neurologic or neuromuscular disorders, nor any
permanent/transient condition that could affect upper limb motor function.
The study was approved by the local ethics board at Fondazione Santa Lucia,
IRCCS, Rome, Italy (CE PROG.752/2019) and all the participants signed an
informed consent.
Twelve of the thirteen stroke participants were selected as experimental group
for this study (EXP group: 6 females/6 males age 52.5±18.5 yo), one stroke
patient was excluded due to too many artifacts after the pre-processing in
the data analyzed here. Whereas, twelve of the of fifteen healthy participants
(CTRL group: 9 females/3 males, age 43.6 ± 15.3 yo), matched in age and
gender with the EXP group (see Results paragraph 2.3.1), were analyzed in
the study as a control group.
Clinical and functional evaluation was performed by expert physiotherapists
before data acquisition (same day) by means of the following scales: i) the
National Institute of Health Stroke Scale (NIHSS) to assess general impairment
derived from stroke [67]; ii) the Manual Muscle Test (MMT) to assess strength
in the paretic upper limb testing shoulder abduction, elbow flexion/extension
and wrist flexion/extension [68]; iii) the MAS scale to assess spasticity of shoul-
der, elbow and wrist muscles. The upper extremity section of the Fugl-Meyer
Assessment scale (FMA), comprising the four sub-scales “Upper Limb”, “Wrist”,
“Hand”, “Coordination and Velocity” was performed to extensively describe
the paretic upper limb residual function [69]. Handedness was assessed in all
participants by means of the short form of the Edinburgh Handedness Inventory
(EHI [70]).
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2.2.2 Experimental Design and Data Acquisition
The EEG and EMG signals were acquired simultaneously and sampled at 1 and
2 KHz, respectively. 61-channel EEG was recorded from the scalp by means of
active electrodes (Brain Products GmbH, Germany1) arranged according to an
extension of 10-20 International System (reference on left mastoid and ground
on right mastoid). Surface bipolar EMG signals were recorded by means of Pico
EMG sensors (Cometa S.r.l., Italy2) from the following 16 muscles: extensor
digitorum (ED), flexor digitorum superficialis (FD), lateral head of the triceps
muscle (TRI), long head of the biceps brachii muscle (BIC), pectoralis major
(PEC), lateral deltoid (Lat_DELT), anterior deltoid (Ant_DELT) and upper
trapezius (TRAP) of both sides (L: left, R: right for healthy subjects, AH:
affected hand, UH: unaffected hand for stroke participants). EEG and EMG
signals were amplified by means of BrainAmp (Brain Products GmbH, Ger-
many) and Wave plus 16 channels (Cometa S.r.l., Italy) amplifiers, respectively.
A TriggerBox (Brain Products GmbH, Germany) was adopted to synchronize
the EEG and EMG acquisition.

The experimental setting is illustrated in Figure 2.1. All participants
were seated in a comfortable chair or wheelchair if needed, with their forearms
resting on a pillow placed over a table (Figure 2.1a). Participants were presented
with visual cues displayed on a screen (1m distance). The experimental session
consisted of 4 runs (intermingled with breaks adapted to the patients’ necessities)
during which the participant was asked to perform finger extension (Ext) and
grasping (Grasp) with the right and the left hand separately (UH, AH for stroke
participants). Each run comprised 40 trials (20 “task” trials of 8s each and 20
”rest” trials of 4s each in random order). The inter-trial-interval lasted 3s during
which participants were required to fixate a cross in the middle of the screen.
“Task” trials started with 4s of preparation (”get ready” instruction) afterward a
go stimulus appeared (”task” instruction) and the participant had to perform the
task for 4s (Figure 2.1b). In “rest” trials participants had to relax for 4s (“relax”
instruction – Figure 2.1c). The Maximum Voluntary Contraction (MVC) was
recorded for each muscle at the beginning of the experiment for 5s and the
MVC values of the target muscles (ED and FD of both sides) were computed
right after. Participants were instructed to perform the movement as fast as
they could and hold it at approximately 15% of the MVC of the target muscle
until the end of the trial. Before starting the experiment, participants were
asked to perform some repetitions guided by the experimenter, to understand
how to perform the task at the desired activation level of 15% with respect
to MVC of the target muscle. Subjects’ EMG level of activation of the target
muscle normalized by its MVC was monitored by the experimenter via the
EMG acquisition software (EMG and Motion Tools, Cometa S.r.l., Italy) during
the entire experiment and indications on the muscular performance were given
to the participants at each trial, when different from those requested. Stroke

1https://www.brainproducts.com
2https://www.cometasystems.com

https://www.brainproducts.com
https://www.cometasystems.com
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participants attempted the movement with their paretic hand to the best of
their own residual ability.

Figure 2.1. Experimental setting. a) participant setting; b and c) experiment
timeline for Task (movement) and rest trials. The red dotted line represents the
activation profile required to correctly complete the task as for the target muscle
(ED for Ext and FD for Grasp) and Rest. In addition to EEG and EMG data, the
recording included also kinematic data. They were collected at 100 Hz by means
of 8 IMUs (MTw Awinda, Xsens Technologies, The Netherlands). The IMUs were
placed by a double-sided medical tape on the following anatomical points: hand,
mid forearm, mid arm of both upper limbs, over the clavicular notch and at the
lumbar vertebrae level. Such data were not included in this study.

2.2.3 Data Analysis
EEG-EMG Data Pre-processing

EEG data were band-pass filtered [3-60]Hz and Independent Component Anal-
ysis was used to remove ocular artifacts (Vision Analyzer 1.05 software, Brain
Products GmbH, Gilching, Germany). EMG signals were downsampled to
1000Hz, band-pass filtered [3-500]Hz and the electrocardiographic (ECG) com-
ponent was rejected through template matching approach [71]. A notch filter at
50Hz was applied to remove power-line artifacts on both EEG and EMG signals.
Task trials were segmented in 8s epochs while Rest trials were segmented in
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4s epochs, both from the cue onset. To obtain EEG and EMG artifact-free
trials, a semi-automatic procedure was applied. Specifically, for the EEG trials
a voltage threshold (±100µV) was defined and all trials in which 5 channels
exceeded the threshold were rejected, otherwise a spherical interpolation was
performed to replace noisy channels and the trial was saved. As for the EMG
trials, a statistical criterion based on the comparison between the EMG charac-
teristics of each trial and the median EMG characteristics of all trials (reference
characteristic) [72] was applied then the selected trials were visually inspected
and validated.

As for the EXP group, the EEG time series recorded over different scalp
positions from patients with right-sided lesions were flipped along the midsagittal
plane so that the ipsilesional side was common to all patients. Similar procedure
was also applied to EMG data in all the patients with left affected hand
(right hemisphere lesion). Both flipping procedures thus ensured to label the
left hemisphere and contralateral right hand as ”affected” in all the stroke
participants, independently from their actual lesion side.

Corticomuscular coupling (CMC) pattern computation

The EEG signals were re-referenced according to the common average reference
(CAR) to correctly localize CMC peaks over sensorimotor areas in agreement
with physiology of movement, as it has been demonstrated in [38]. The EEG
edge electrodes (Fpz, Fp2, AF8, F8, FT8, T8, TP8, P8, PO8, O2, Oz, O1, PO7,
P7, TP7, T7, FT7, F7, AF7, Fp1) were excluded from the analysis due to the
possible presence of artifacts related to facial movements, thus only 41 EEG
electrodes were included in the analysis. EMG signals were rectified before
entering the CMC computation.

The CMC was computed in a 2s-window which were selected differently for
Task and Rest condition. As for “task” trials, the interval of [5-7]s from cue
onset was selected whereas the first artifact-free interval of 2s length in “rest”
trials was selected.
CMC values were estimated in the range [1-60]Hz for each participant, movement
(ExtR/AH, ExtL/UH, GraspR/AH, or GraspL/UH) and interval of interest
(Task, Rest) as in Study 1 paragraph 1.2.3. Two different procedures were
followed for the CMC estimation: across-trials and single-trials for Group
Analysis and Single Subject Analysis, respectively. As for the across-trials
approach (periodogram window length of 1s with 0% overlap), a single CMC
pattern was estimated from all trials in the dataset of a single participant,
in order to have an average of CMC pattern for each single participant to
enter in the grand average (see paragraph 2.2.4 – GA patterns). As for the
single-trial approach (periodogram window length of 0.250s with 50% overlap),
a CMC spectrum was estimated for each trial in the dataset, to obtain different
observations of CMC patterns for each single participant. The CMC values
were then extracted for the 3 considered frequency bands defined as alpha
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[8-12]Hz, beta [13-30]Hz and gamma [31-60]Hz. For each of these bands, the
characteristic frequency was identified as the frequency in which CMC showed
the highest value for each pair of signals. The characteristic frequency was
specific for each pair of signals, it was computed in the Task condition and
used also for the Rest in order to compare patterns at the same frequency (see
Study 1 paragraph 1.2.3 for further details).

Analysis of CMC patterns properties by graph theory indices

CMC networks estimated at single-subject level were assessed against chance
level and thus transformed into weighted CMC adjacency matrices. The single-
subject CMC adjacency matrices were built as follows: for each EEG-EMG pair
an unpaired t-test was applied between task and rest conditions on CMC values
estimated by means of the single-trial procedure. The significance level was
set to 0.05. False Discovery Rate (FDR) was used to control family-wise error
rate [43]. Such statistical comparison was used to assess CMC values obtained
during movement execution/attempt against chance level using as null-case
statistical threshold the corresponding CMC values in rest condition. The
application of this test allowed to obtain for each subject and each movement
a CMC adjacency matrix where null-values correspond to EEG-EMG connec-
tions not significantly different from rest while non-null values correspond to
connections where CMC values were significantly higher during movement than
rest condition. The comparison between task and rest conditions allowed also
to reduce the presence of spurious connections in CMC networks due to volume
conduction which is an intrinsic phenomenon of the EEG signals.

The Graph Theory was applied to the obtained CMC adjaceny matrices to
extract a set of ad-hoc indices which synthetically described the main properties
of the CMC patterns. This procedure aimed at reducing the CMC matrix
complexity and thus allowing its interpretation. Such computation was repeated
for each subject, movement, and band.
Global network properties:

• CMC Weight is defined as the average of CMC values of the existing
connections in the network. It is a measure of the strength of the EEG-
EMG connections which is well-known to be reduced in stroke patients
[5].

• Network Density (ND) computed as the total number of existing connec-
tions in the pattern normalized for the possible number of connections.

Network density was also calculated for each of the identified 4 sub-networks
as follows (local networks properties):

• Density (of) Contralateral Hemisphere (DCH) calculated as the total num-
ber of existing connections that link the target muscle (FD in Grasp and
ED in Ext) with EEG electrodes in contralateral hemisphere (normalized
for the possible number of connections in this sub-network).
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• Density (of) Ipsilateral Hemisphere (DIH) calculated as the total number
of existing connections that link the target muscle (FD in Grasp and ED
in Ext) with EEG electrodes in ipsilateral hemisphere (normalized for the
possible number of connections in this sub-network).

• Density (of) Involved Side (DIS) calculated as the total number of existing
connections entailing muscles in the side involved in a given motor task –
target muscles (normalized for the possible number of connections in this
sub-network).

• Density (of) Uninvolved Side (DUS) calculated as the total number of
existing connections entailing muscles in the side which is not involved
in a given motor task – non-target muscles (normalized for the possible
number of connections in this sub-network).

To further investigate the selective engagement of muscles, the following indices
were computed:

• Muscle Degree (MD) defined as the total number of connections that
each muscle establishes with EEG channels normalized for the maximum
number of possible connections involving it. This index allowed us to
measure the involvement of each muscle in the pattern and to identify
the muscles with a dominant role (higher degree) with respect to others.
It was calculated for each of the recorded 16 muscles both during Ext and
Grasp, and then a qualitative comparison was performed between the
muscle degree values relative to the movement involved and uninvolved
side.

• Distal/Proximal Degree Ratio (DPDR) was computed considering the
degree of the muscles of the movement involved side, that were labeled as
distal (FD and ED) and proximal (BIC, TRI, Ant_DELT, Lat_DELT,
PEC, TRAP). It was defined as the ratio between the degree of distal
muscles and the sum of degrees in distal and proximal muscles. DPDR
value was set as equal to: 1 if the activation regarded only distal muscles;
0 for the activation of only proximal muscles; 0.5 in the case of both
proximal and distal muscle activation with the same weight.

2.2.4 Statistical Analysis
Grand Average (GA) CMC patterns
Each movement was described by a coherence pattern as a result of a GA analysis
computed for the CMC values across participants (see Figure 2.2 and 2.3). A
paired sample t-test with the interval (Task vs Rest) as independent variable
and the CMC values computed in the across-trials procedure as dependent
variable was applied to each movement type, frequency band and channel pair.
The significance level was set to 0.05. FDR was used to control family-wise
error rate.
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Between-groups differences in CMC pattern properties
A Kruskal-Wallis test was applied on each graph theory derived index consider-
ing as factor the three groups: CTRL - control group executing the task with
the right hand; EXP_UH - stroke group executing the task with the unaffected
hand; EXP_AH - stroke group executing the task with the affected hand. A
Tukey’s post hoc test was applied to assess between groups differences. The
right hand for CTRL group was selected since no significant differences were
observed in the graph indices between left and right hand.

Correlation between network indices and functional/clinical scales
Network indices that significantly described the CMC patterns of stroke patients
performing movements with the affected arm were correlated with the scores
obtained from the following clinical scales: FMA total, FMA sub-scales and
MMT. The Spearman’s correlation test was applied with the indices values
as the dependent variable and the clinical scales’ scores as the independent
variable.

2.3 Results
2.3.1 Participants
No significant between group (EXP and CTRL groups) differences were found in
age (t-test p=0.22) and number of subjects per gender (Chi-square test p=0.08).
All subjects in the CTRL group were right-handed according to the EHI. Ten
patients in the EXP group were also right-handed while 2 were ambidextrous.
Stroke severity was mild according to NIHSS which was lower or equal to 4 in
all EXP participants [73]). Upper limb deficit as classified with FMA was mild
to moderate, ranging from 23/66 to 63/66 [74]. See Table 2.1 for further details
about participants.

2.3.2 CMC Grand Average (GA) patterns
Figure 2.2 illustrates the GA CMC patterns obtained for the Ext (left panel)
and Grasp (right panel) executed with left (panel a, c) and right (panel b, d)
hand in CTRL group. As expected, these results confirmed what obtained in
Study 1 [18]. In Ext condition (Figure 2.2, Ext, panel a-b), the highest CMC
values were found for connections involving mainly the target muscle (ED) and
most of the bilateral sensorimotor EEG electrodes, in alpha and beta bands. In
gamma band, CMC patterns were more diffuse involving almost all the muscle
of the relative side and showed lower values of coherence with respect to those
in the alpha and beta band. The Grasp condition (Figure 2.2, Grasp, panel
c-d) showed CMC values lower than those obtained in Ext. The target muscle
FD was connected with almost all the electrodes over the bilateral sensorimotor
areas in alpha band, whereas ED and proximal muscles were more involved in
higher frequency bands (beta, gamma).
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Table 2.1. Demographic and clinical characteristics of the patients expressed in means
(± standard deviation). C=Chronic; FMA=Fugl-Meyer Assessment scale, upper
limb section, ranging from 0 (most affected) to 66 (least affected); H=Hemorrhagic;
I=Ischemic; L=left; LH=left-handed; MH=mixed-handed; MAS=Modified Ash-
worth Scale; NIHSS=National Institute of Health Stroke Scale; R=right; RH=right-
handed S=Subacute.

GROUP EXP (N=12) CTRL (N=12)
AGE (YR) 52.2 (±18.5) 43.6 (±15.3)
HANDEDNESS 10RH + 2MH 12RH
TIME FROM EVENT (MO) 5.5 (±3.3) –
TYPE (S/C) 6S + 6C –
ETIOLOGY (I/H) 6I + 6H –
SIDE OF LESION (R/L) 7L + 5R –
FMA 49.4 (±13.7) –
NIHSS 2.42 (±1.3) –
MAS 0.9 (±1.4) –
MMT 20.3 (±4.8)

Different CMC patterns were observed in the stroke group (EXP) as illus-
trated in Figure 2.3. First, the GA CMC patterns obtained in all experimental
conditions showed a lower number of connections and lower CMC values with
respect to the CTRL group (Figure 2.3, both Ext and Grasp), being the CMC
lowest values observed in the AH condition (attempted movements; Figure
2.3 b-d). The UH condition (Figure 2.3 a-c) revealed CMC patterns that
mainly linked the bilateral sensorimotor areas with ED in Ext and FD in Grasp,
respectively. Similar to what observed for the CTRL group, both tasks were
characterized by a reduction of CMC values and a less specificity of the muscles
involved in the task as the frequency increased. The GA CMC patterns were
poor of significant connections when Ext and Grasp were executed with the
affected hand (Figure 2.3 b-d). Very few connections were found between ED
and bilateral sensorimotor areas during Ext. The CMC patterns were denser
in Grasp condition with respect to Ext but they show less muscle selectivity,
involving muscles other than the target ones even in alpha band.

2.3.3 Analysis of CMC patterns by graph theory indices

Table 2.2 reports the results of the between-group (CTRL, EXP-UH, EXP-AH)
analysis on graph theory derived indices which characterized the CMC patterns
in the different frequency bands and movements. The trends relative to these
statistical differences are reported in Figure 2.4 for beta band during Ext
movement. A similar behavior was observed in the other two frequency bands
(data not shown).
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Table 2.2. Results of the Kruskal-Wallis test (p-values) obtained considering as
dependent variables the different graph theory indices separately and as between
factor the group (CTRL, EXP-UH, EXP-AH). Tests were repeated for each
frequency band (alpha, beta, gamma) and each movement (Ext, Grasp). ND –
network density; DIS – density involved side; DUS – density uninvolved side; DCH
– density contralateral hemisphere; DIH – density ipsilateral hemisphere; DPDR -
distal/proximal degree ratio.

EXTENSION GRASPING
ALPHA BETA GAMMA ALPHA BETA GAMMA

CMC weight 0.113 0.009* 0.014* 0.068 0.003* 0.006*
ND 0.033* 0.005* 0.001* 0.84 0.719 0.831
DCH 0.55 0.31 0.73 0.62 0.89 0.46
DIH 0.28 0.87 0.7 0.45 0.32 0.77
DIS 0.344 0.133 0.029* 0.934 0.776 0.384
DUS 0.012* 0.0001* 0.011* 0.125 0.337 0.299
DPDR 0.071* 0.004* 0.014* 0.503 0.551 0.982
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Figure 2.4. Boxplot diagrams reporting the distribution of graph theory derived
indices characterizing CMC patterns in beta band during extension movement for
the three different groups (CTRL, EXP-UH, EXP-AH). Each panel refers to a
specific index: a) CMC weigth, b) network density, c) density (of) involved side
d) density (of) uninvolved side, e) degree ratio of distal/proximal muscle. The
symbol * indicates a statistical difference as revealed by the post-hoc test.

The CMC weight index estimated in beta and gamma bands was signifi-
cantly different between the EXP and CTRL group in both Ext and Grasp
conditions, showing lower weight when the EXP group performed Ext with AH
with respect to UH and to the CTRL group (Figure 2.4 a).
A significant effect of the group factor was found for ND only for the Ext
movement in all the frequency bands: higher connection density was observed
for AH with respect to the UH in the EXP group (Figure 2.4 b). As for the sub-
network density analysis, no between-group differences were found for densities
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in both ipsi- and contra-lateral hemispheres. On the other hand, significantly
higher density of connections with muscles of the uninvolved side (DUS) were
observed in all frequency bands (Table 2.2) when the movement was performed
by the EXP group with AH (Figure 2.4 d) with respect to UH and to the CTRL
group. A similar trend was observed for density in the involved side (Figure
2.4 c), reaching statistical significance only in gamma band (Table 2.2).

Significant between-group differences were observed for DPDR index for Ext
movement in all frequency bands (Table 2.2). The EXP group showed a signifi-
cantly lower DPDR when the movement was performed with AH with respect to
UH and to the CTRL group (Fig. 2.4e). The DPDR is almost 1 in CTRL and
in EXP-UH, reflecting the exclusive engagement of distal muscles in movement
execution. Such ratio decreased to a median of 0.7 in the EXP group when the
movement was attempted with AH, revealing a contribution of proximal muscles.

Figure 2.5 illustrates the degree distribution for each of the 8 considered
muscle in both arms for the 3 frequency bands during extension movement
performed by CTRL and EXP group (similar results were observed for grasping).
As for the CTRL group (Figure 2.5 a), maximum degree was observed for ED
and FD in the involved side in all the frequency bands. The median was around
90% with a very short inter-quartile range, indicating a high reproducibility of
this result across healthy participants. Degree close to zero was obtained for
all the other muscles both in involved and uninvolved side in alpha and beta
bands. Small degree (around 10%) was found only in gamma band for all the
muscles in the involved side other than FD and ED reflecting the more diffuse
CMC patterns at high frequencies.
As for the EXP group, a different behavior was found when the Ext was executed
with unaffected (Figure 2.5 b) and affected (Figure 2.5 c) hand. Under the
UH condition, the maximum degree was found for ED muscle (median around
95%) in almost all the patients (short inter-quartile range). Degree distribution
for FD muscle showed a median around 60% with a high inter-quartile range,
reflecting the variability among patients in the engagement of the FD during
Ext task. The degree distribution of all the other muscles was similar to that
described in CTRL group: zero degree of the uninvolved side in all the frequency
bands; zero degree of all the muscles in the involved side other than ED and
FD in alpha and beta bands; small degree (around 10%) for all the non-target
muscles in the involved side in gamma band.
The observation of muscle degree distribution during movement attempt with
AH showed a degree different from zero for most of the non-target muscles
(both proximal and distal) in the involved side with a high variance across
the patients in all the frequency bands. Furthermore, a non-null degree was
observed in muscles in the side not involved in the task (the unaffected side),
especially of ED and FD in alpha and beta bands and of all other muscles in
gamma band.
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Figure 2.5. Degree distribution for each muscle in both involved and uninvolved
sides for the 3 frequency bands during extension movement. Panels refer to the
CTRL group executing movement with right side (panel a) and the EXP group
when the movement was executed with unaffected (UH, panel b) and affected
(AH, panel c) side.
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2.3.4 Correlation of CMC patterns properties with clini-
cal scales

The Table 2.3 reports the results of the correlation analysis conducted between
graph theory derived indices which significantly characterized the CMC patterns
in Ext and Grasp movements, and the clinical scale scores describing upper limb
motor function and strength (FMA total and subsections and MMT). Positive
correlation was found between CMC weight and FMA-”Hand” subsection scores
for Ext and between CMC weight and MMT for Grasp, in all the frequency
bands. The DPDR index positively correlated with MMT for Grasp only in beta
band. Negative correlation was observed between DIS index and FMA-”Hand”
scores in alpha and beta bands for Ext and in gamma band for Grasp.

Table 2.3. Results of the correlation between the scores obtained for the two clinical
scales, FMA-Hand subsection and MMT, and each of the graph theory derived
indices which significantly characterized the CMC patterns in stroke patients
during AH condition. The analysis was repeated for each frequency band (alpha,
beta and gamma) and each movement (Ext, Grasp). ND – network density; DIS –
density involved side; DUS – density uninvolved side; DPDR - distal/proximal
degree ratio.

FMA HAND
EXTENSION GRASPING

ALPHA BETA GAMMA ALPHA BETA GAMMA
CMC weight 0.75 0.72 0.59 0.36 0.46 0.44
ND -0.55 -0.55 -0.52 -0.54 -0.53 -0.58
DIS -0.59 -0.59 -0.41 -0.52 -0.5 -0.59
DUS -0.53 -0.3 -0.44 -0.35 -0.2 -0.17
DPDR 0.48 0.14 0.16 0.55 0.39 0.55

MMT
EXTENSION GRASPING

ALPHA BETA GAMMA ALPHA BETA GAMMA
CMC weight 0.57 0.53 0.49 0.62 0.62 0.58
ND -0.25 -0.25 -0.23 -0.28 -0.27 -0.33
DIS -0.24 -0.28 -0.12 -0.27 -0.26 -0.31
DUS -0.3 -0.12 -0.3 -0.06 -0.002 0.08
DPDR 0.2 -0.15 -0.18 0.46 0.59 0.48

2.4 Discussion
The main objective of this study was to identify corticomuscular network prop-
erties which would describe the upper limb motor impairment in stroke patients,
to ultimately guide the design of a novel hybrid BCI for motor recovery. To
this aim, CMC networks related to simple hand movements attempted with the
affected hand and executed with the unaffected hand in stroke patients were
analyzed and compared with those obtained from a sample of age-matched
healthy participants performing the same movements with right and left hand.
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As for healthy participants, results retrace those obtained in the Study 1
[18]. This analysis confirmed that CMC patterns observed during simple hand
movements (Figure 2.2) are widely distributed over the sensorimotor scalp areas,
muscle involvement is more selective to the target muscle during extension than
grasping, and less specific in higher bands for both movements. Furthermore,
CMC values are lower for the grasping movement with respect to extension.

Grand average patterns obtained from stroke patients (Figure 2.3) show
much less connections with lower CMC values, both in the UH and AH con-
ditions, probably due to a higher inter-subject variability as well as to the
expected reduction in CMC weight. Indeed CMC weight had significantly lower
values in patients for both movements, under UH and AH conditions in beta
and gamma bands (Table 2.2), already identified as most significant to highlight
brain-muscle communication disorders [30].

As evident in Figure 2.3, grand average patterns in patients during AH are
almost devoid of connection, especially for extension movement. As mentioned,
this shortage of connections in the grand average pattern can be imputed to
a high inter-subject variability among patients, that was possibly higher in
the extension task with respect to grasping. Indeed, it might be argued that
the extension task resulted more challenging to our patients and thus lead
to individually distinct compensation strategies. The pattern for grasping
with AH is slightly richer, possibly due to the fact that grasping holds a high
behavioral and functional complexity and that the patients involved in the
study were all undergoing a standard rehabilitative program likely including
upper limb functional exercises when the experiments were performed. Nev-
ertheless, with respect to grasping patterns from healthy subjects, patients
showed lower muscle specificity in all bands. This result is largely expected
from a revision of CMC literature in stroke patients, showing involvement of
proximal muscles to compensate for distal impairment [13] or higher contri-
bution of antagonist muscles with respect to healthy subjects [4], [14]. More
generally, alterations of muscular involvement in post-stroke patients have
largely been described through the phenomena of motor-overflow, co-activation
of agonists and antagonists, spasticity and appearance of mirror movements [30].

To characterize these alterations through CMC pattern evaluation in a quan-
tifiable and objective manner, indices derived from graph theory were defined
and applied to single-subject networks. Overall network density was higher in
the patient group for the AH condition (Ext movement only), suggesting that
a higher number of connections in the network is required to accomplish the
task. In classical graph theory, indeed, an increase in overall network density is
described as a deterioration of such an optimal criterion according to which
physiological networks are organized (well-known as small-world networks) [75].
This increase in overall density could be ascribed to compensatory strategies
which were more relevant in the extension task. To further interpret this result
and thus, to characterize deviations from the physiological condition, the index
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was split considering four sub-networks relative to the hemispheres contra- or
ipsi- lateral to the hand task, and to the muscles on the side involved and
uninvolved (contralateral) in the task.

As for the distribution of connections on the scalp, no statistical differences
were observed in indices describing scalp lateralization of CMC patterns. Such
bilateral distribution of connections was already observed in healthy subjects
and discussed in Study 1. The current findings on patients demonstrate that
the presence of a unilateral stroke lesion does not affect this pattern distribution
that remains balanced between the ipsilateral and contralateral hemisphere
during movement with the healthy or paretic hand. This is not entirely expected
according to the widely described interhemispheric unbalance of electrical ac-
tivity after stroke [76]. However, patients involved in this study were all in
subacute to chronic phase, with low level of impairment and undergoing a stan-
dard rehabilitative treatment when the experiments were performed. A lack
of interhemispheric unbalance has already been associated with good recovery
[77], thus it could be that more severe patients recorded closely to the stroke
event might still show the differences in CMC pattern distribution between the
affected and unaffected hemisphere that were not seen in the analyzed sample.

As for sub-networks related to muscles of the involved and uninvolved task
side, while density values were higher in both the involved and uninvolved side
(Figure 2.4 panels c and d), the uninvolved side density only was significantly
higher in patients for AH condition, demonstrating an abnormal recruitment of
healthy side muscles during the extension task with the paretic side. Visible
mirror movements were not present in our sample during AH tasks (except for
two patients), however the occurrence of non-paretic upper limb movements
during paretic motor attempts in stroke is largely described [10], [27]. Thus, it
can be speculated that this analysis on CMC network properties might reveal
subclinical alterations.
Muscle degree, i.e. the number of connections involving each recorded muscle
was employed in order to quantify muscle specificity for each task. As expected,
the target muscle of the involved side holds the highest degree in both groups
and conditions (in Figure 2.5, red ED bars). However, in the CTRL group and
only in UH condition for EXP group all other muscles have very low degrees
(except for low values appearing mainly in gamma band), whereas in the AH
conditions several muscles are represented from the involved and contralateral
side. Among those, the highest values are observed in the ipsilateral BIC
muscle. The bicep is crucial for post stroke upper limb flexion spasticity [78]
as testified by clinical studies [79], [80]. Despite the low or absent clinical
spasticity in our patients (as assessed by MAS), it can be argued that this
finding may represent a subclinical substrate for elbow flexion spasticity; future
studies involving stroke patients showing higher level of spasticity are needed
to definitely corroborate this argumentation.

As for the distal/proximal degree ratio, results show that during AH in
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the EXP group, proximal muscles were involved confirming a compensatory
proximal activity during hand motor tasks in paretic patients [4].

Altogether these findings confirm that CMC is a promising metric to analyze
post-stroke changes in upper limb motor activity as it allows to quantify com-
monly reported alterations (co-activation of proximal and contralateral muscles
as possible substrates for spasticity and for mirror movements). To further
evaluate the solidity of such a method to describe post-stroke upper limb motor
impairment, the correlation of CMC indices with clinical/functional scales of
the upper limb was tested. Significant results were found for the FMA “Hand”
subscale (mainly for the extension movement) and for MMT (grasping only).
In particular, CMC weight was lower in more impaired patients. Similarly,
the distal/proximal muscle degree ratio was lower in more impaired patients,
proving the higher need of proximal compensation. Conversely, density and
involved side muscle density were negatively correlated, showing a network
organization that was more similar to healthy subjects in less impaired patients
(lower density as a possible indicator of a higher network efficiency). With
the caution required by the relatively small sample in this study, these results
could be interpreted taking into account the differences between the two clinical
scales. Indeed, FMA is a fairly complex scale which entails several aspects such
as reflex activity, different functional movements and synergies, coordination,
and speed; on the other hand, MMT is merely a measure of residual strength in
different upper limb segments. It might be speculated that grasping being less
challenging for stroke patients as compared to extension could be responsive to
a grosser evaluation such as MMT, while correlations with FMA are observed
for extension task as the scale reflects motor functional improvement in a more
complex fashion.

To my knowledge, the present work is among the first to analyze CMC
in stroke patients in terms of a widely distributed network (i.e., considering
several EEG scalp positions and muscles) [4], [12]–[14], and the first to apply a
graph theoretical approach to such networks. In a recent study [81], Xi et al.
applied graph theory to CMC networks in healthy subjects. The present work
moves a step forward by defining specific indices apt to describe post-stroke
movement alterations in a quantifiable and objective manner.

The results obtained in this study grounded the design and the implemen-
tation of the novel hybrid BCI system described in Section II-Study 5 which
reinforces only those CMC network features that most resemble normal acti-
vation with the aim of subsiding favorable motor outcome. The findings of
the present work indeed confirmed that the reinforcement of CMC throughout
a BCI paradigm is desirable, as a reduction of its weight is correlated with
upper limb motor impairment. Moreover, the identified CMC features that
describe derangements from physiological motor system activation will be dis-
couraged along the BCI training protocol to counteract maladaptive changes
(see Study 5). A major limitation of the present study is that the small number
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of patients included resulted in a consequent low variability in the degree of
impairment. Indeed, most enrolled patients were mildly impaired and with
little or no spasticity. This was mainly due to the complex experimental setup
and relatively long experiment that could result too tiring (if at all doable) for
more severe patients. Future steps will require an optimization of the setup
and experimental protocol (even according to the results presented here) to be
able to include more patients with different levels of impairment.

This study showed that analysis of high-density CMC networks by means of
graph theory indices can describe motor abnormalities in stroke patients during
simple hand movements, which are the most commonly employed motor tasks
in rehabilitative BCI paradigms. Such results have driven the implementation
of a novel hybrid BCI system (the h-BCI prototype-Study 5) able to reinforce
those CMC network features that most resemble normal activation and thus,
subside favorable motor outcome. Indeed, correlations of graph theory indices
with upper limb motor impairment support their use in wider clinical and
rehabilitative applications. As an example, correlations between CMC network
properties and clinical scales are promising for the application of such mea-
surements as rehabilitation outcome metrics, in line with the constant need for
evidence-based and personalized rehabilitation approaches [82], [83].

The analysis presented here was published in the Journal of NeuroEngineer-
ing and Rehabilitation [19].





59

3. Study 3

Cortico-muscular coupling
to discriminate different
types of hand movements

3.1 Background and Objectives

CMC was assessed to be a valuable feature to discriminate movement from rest
condition and different movement types (see Study 1) [18]. Thus, a CMC-based
paradigm might be useful not only for motor rehabilitation but also for BCI
applications aimed to replace or restore lost motor functions [84].
Indeed, an emerging issue in the field of assistive BCIs for spinal cord injuries is
to achieve the so-called natural control of external devices that assist movements
(e.g., functional electrical stimulation or robots) [64]. In this context the ability
to non-invasively decode different type of movements by exploiting all remaining
functionalities is crucial [24], [25].
EEG-based BCIs for neuroprostheses control rely typically on changes of oscilla-
tions originating from sensorimotor areas [53], [85], [86]. The analysis proposed
in this study has the main aim to evaluate the ability of hybrid features, such
as CMC, with respect to existing methods based on only brain features, such as
sensorimotor rhythms (SMR), in discriminating different hand movements in 15
healthy subjects. In particular, I i) identified the best classification algorithm
in discriminating between hand grasping and extension and ii) explored how
the variation in the dimensionality of the feature domain would influence the
different classifier performances for each type of feature (CMC/SMR).

Although many classification approaches have already been investigated for
EEG-based features [87], classification algorithms able to discriminate different
tasks through CMC features has never been investigated before. To identify the
best classification approach, four classification methods were compared: support
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vector machine with linear kernel (SVM) and with radial basis or gaussian
kernel (SVM-RBF), linear discriminant analysis (LDA) and decision tree (DT)
[23]. Since the number of features used for the classification directly impacts on
the number of physical electrodes required to collect data, the performances of
the different classification approaches were evaluated on varying of the feature
space size (two, four or ten features). The performances obtained using the
best combination of classifier-number of features were compared between the
two feature types (hybrid and only EEG-based).

3.2 Materials and Methods

3.2.1 Participants and experimental protocol
The fifteen right-handed healthy participants (10 females/5 males, age 48.7±17.9
yo) enrolled in the experimental protocol described in Study 2 were analyzed
in this study.
The experimental paradigm used to collect the data is reported in details in
Study 2 paragraph 2.2.2 and summarized here. EEG and EMG data were
acquired simultaneously and sampled respectively at 1000Hz and 2000Hz. EEG
signals were recorded from the scalp with 61 active electrodes arranged according
to an extension of 10-20 system (reference on left mastoid and ground on right
mastoid) by means of BrainAmp amplifiers (Brain Products GmbH, Germany);
surface EMG data were recorded through Pico EMG sensors (Cometa S.r.l.,
Italy) from 16 muscles of the arm and the forearm collected in bipolar fashion.
The experiment consisted of 4 runs, with a break among them, in which the
participants was asked to perform finger extension (Ext) and grasping (Grasp)
with the right (R) and the left (L) hand separately. Each run comprised 40
trials, half labelled as “task” and half as “rest” condition. Task and rest trials
lasted respectively 8s and 4s. The inter-trial-interval, consisting in a fixation
cross in the middle of the screen, was set to 3s. Task trials started with 4s of
preparatory period, after which a go stimulus occurred and the participant had
to perform the task for 4s (see Figure 2.1).

3.2.2 EEG and EMG data pre-processing
EEG signals were band-pass filtered [3-60]Hz and Independent Component
Analysis was used to remove ocular artifacts. EMG signals were downsampled
to 1000Hz, band-pass filtered [3-500]Hz and the ECG component was rejected
through template matching [71]. A notch filter at 50Hz was applied to remove
power-line artifacts on both signals and data were segmented in 8s epochs for
task trials and 4s epochs for rest trials from the cue onset.

A subset of EEG channels over the sensorimotor area (FC5, FC3, FC1, FCz,
FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2,
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CP4, CP6, P5, P3, P1, Pz, P2, P4, P6) were selected and analyzed in the
next steps. The same procedure used in Study 2 paragraph 2.2.3-EEG-EMG
Data Pre-processing was applied to reject trials with EEG and EMG artifacts.
After artifact rejection, 19.8 ± 0.11 and 19.7 ± 0.2 artifact-free task trials were
obtained respectively for Ext and Grasp movements of the left hand, whereas
19.5 ± 0.3 and 19.1 ± 0.4 for Ext and Grasp movements of the right hand.

3.2.3 Feature Extraction

CMC and SMR features were extracted in the time interval [5-6]s with respect
to the cue onset in task trials of both Ext an Grasp conditions.

Cortico-Muscular Coupling

Only the 8 EMG channels over the muscles ipsilateral to the movement (e.g. the
8 muscles of the right upper limb in ExtR and GraspR) were selected for CMC
features extraction. EMG signals were rectified [38] and the cortico-muscular
coupling between each EEG-EMG pair was computed as in Study 1 paragraph
1.2.3 (Welch periodogram method, 250ms-Hann windows and 50% of overlap).
For each movement type, the characteristic frequency of each EEG-EMG pair
was extracted in three frequency bands of interest showed to be most informative
for CMC features according to the results obtained in Study 1: alpha (8-12)Hz,
beta (13-30)Hz and gamma (31-60)Hz. The single-trial CMC values at the
characteristic frequencies of each EEG-EMG pair were then used as feature
space of dimension 672 (28 EEG channels x 8 EMG channels x 3 frequency
bands).

Sensorimotor rhythms

To extract SMR features, Welch periodogram was used to compute the power
spectrum of each EEG channel dividing the selected 1s-window in 7 segments
(250ms-Hann windows with 50% of overlap), as for CMC features. Two fre-
quency bands of interest, normally associated to brain correlates of voluntary
movements, were considered: alpha and beta bands. SMR features were ex-
tracted as the mean value in each frequency band of interest of the power
spectrum in dB. Thus, SMR feature space was 56 dimensional (28 EEG chan-
nels x 2 frequency bands).
To visualize SMR features during finger extension and grasping, SMR values
were extracted also in rest condition (time interval [2-3]s of rest trials) and the
mean SMR values across trials of the 15 healthy subjects were compared for all
the 61 EEG channels in task and rest condition by means of a paired t-test (α
= 0.05, False Discovery Rate correction). Scalp maps with the topographical
distribution of SMR features were then visualize.
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3.2.4 Movement Classification
Only task trials were considered in both Ext an Grasp condition for the move-
ments classification. CMC and SMR features were used separately as features
to classify finger extension from grasping in each limb by means of a single-
subject 10-iteration cross-validation. In each iteration, the 80% of Ext an Grasp
observations were used as training set, whereas the remaining 20% were used as
testing set. Feature scaling (z-score standardization) was applied to the dataset
to avoid numerical difficulties during the calculation [88]. Four classifiers were
compared in terms of classification performances for each type of feature (CMC
and SMR): SVM, SVM-RBF, LDA and DT.
Support vector machine algorithm uses a discriminant hyperplane to identify
classes. The selected hyperplane is the one that maximizes the distance (margin)
from the nearest data points (support vectors) of each class and it can apply
different kernel functions to define the hyperplane decision boundary between
the classes. Two types of kernel were tested: SVM with linear kernel, most
basic type of kernel usually faster than other kernel; and the SVM-RBF that
non-linearly maps samples into a higher dimensional space. Thus, unlike the
linear kernel, it can handle the case when the relation between class labels and
attributes is nonlinear [88].
For the LDA classifier, a regularized LDA classifier was used which include a
regularization term for which the two classes have the same covariance matrix.
Regularized classifier has been demonstrated to be more effective and more
robust for small dataset than LDA [87].
DT is a classifier which partitions the feature space until terminal nodes, each
one assigned to a predicted value. DTs are very easy to use for no-statisticians,
they work for non-linear functions and the treatment of missing values is more
satisfactory than most other model classes. However, the best model might not
be able to be found at all and results can be quite variable: small changes in
the data can potentially lead to completely different splits (i.e. trees) [89].

All classifiers were tested, even on varying of the input number of features
N: two, four and ten features were considered. To select the best N features, a
feature selection algorithm based on the stepwise regression [44] with an empty
initial model was applied.

The following metrics were computed to evaluate the performance of all
classification models: i) the area under the curve (AUC) of the Receiver
Operating Characteristic (ROC) curve [46], ii) the accuracy, iii) the specificity
and iv) the sensitivity of the classifier.

3.2.5 Statistical Analysis
To investigate the effect on the performances of the classification approach and
number of features used in the model, a two-way repeated measures ANOVA
(rmANOVA) was performed for each type of feature and side separately, consid-



3.3 Results 63

ering as within main factors the CLASSIFIER (4 levels: SVM, SVM-RBF, LDA,
DT) and the NUMBER OF FEATURES (3 levels: 10, 4, 2) and as dependent
variable the AUC value. The statistical significance level for all tests was set to
p < 0.05 and the Duncan post-hoc analysis was performed to assess differences
among pairs.

To evaluate the ability of CMC and SMR features to discriminate finger
extension from grasping, the best combination of classifier-number of features
was identified by the rmANOVA for each type of feature and the performances
obtained with the two approaches were compared (paired t-test, α = 0.05).

3.2.6 Analysis of Ext vs Grasp feature space
For the best combination of classifier-number of features obtained in the CMC-
based classification, the same feature analysis performed in the Study 1 para-
graph 1.2.3-Movement classification for CMC and IMC features was applied here
to evaluate the most recurrent EEG-EMG pairs selected by the stepwise. Thus,
the number of times a specific channel pair was selected across participants
and cross-validation iteration was counted irrespectively of the frequency band
they corresponded to. Moreover, to characterize the physiological process that
allows to discriminate the two movement types, the same procedure was applied
to evaluate the most recurrent frequency band selected by the stepwise.

The same approach performed for CMC features was used to evaluate the
most recurrent EEG channels and frequency bands selected by the stepwise
when using SMR features as inputs of the best classifier type revealed by the
statistical analysis for the SMR-based classification.

3.3 Results

3.3.1 Feature extraction
To better understand how each type of feature behaves during Ext and Grasp
movements, the grand-average CMC patterns and the grand-average SMR scalp
maps were reported.

Cortico-Muscular Coupling

CMC grand-average patterns in healthy participants can be visualize in the
Study 2 paragraph 2.3.2-Figure 2.2 for each movement type in the three
frequency bands of interest. CMC values during finger extension movements
resulted to be higher than in Grasp movement and CMC patterns more muscle-
specific. Moreover, increasing the frequency band led to more connections in
the patterns with the involvement of also the proximal muscles, in particular
during Grasp movements.
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Sensorimotor rhythms

Figure 3.1 shows the topographical distribution of significant SMR values in
task condition with respect to rest for each movement type and frequency band
of interest. Similar desynchronizations (SMR Task < SMR Rest) were obtained
for Ext (panel a and b) and Grasp (panel c and d) movements in both sides.
A prevalent activation of the contralateral sensorimotor cortex over the hand
motor area [48] is obtained for both movement types in particular in beta band
(13-30)Hz, whereas alpha band (8-12)Hz is characterized by a more widespread
distribution over the scalp.

Figure 3.1. Grand average SMR scalp map estimated for each of the 2 frequency
bands of interest: alpha (8-12)Hz and beta (13-30)Hz bands. Ext: SMR scalp
map obtained for the extension movement executed with left (panel a) and right
(panel b) hand. Grasp: SMR scalp map obtained for the grasping movement
executed with left (panel c) and right (panel d) hand. Scalp maps were obtained
comparing (paired t-test, α = 0.05, False Discovery Rate correction) the mean
SMR values of the 15 healthy participants in task and rest condition for all the 61
EEG channels. Hot colours codes for t-values when Task>Rest, blue colours code
for t-values when Task<Rest.

3.3.2 Movement Classification
Figure 3.2 shows the distribution of AUC values obtained for each combination
of classifier-number of features tested when using CMC (Figure 3.2 a and b)
and SMR (Figure 3.2 c and d) features to discriminate finger extension from
grasping. Overall, CMC-based classification showed higher performances than
SMR-based classification for both sides. Indeed, regardless of the classification
model the AUC distributions when using CMC features resulted to overcome
more considerably the chance level (AUC on average higher than 0.79, chance
level = 0.5) than when using SMR features (AUC on average higher than 0.67).



3.3 Results 65

High inter-subject variability resulted in the distributions of the Ext-vs-Grasp
performances obtained with the SMR-based classification approach, whereas
tight distributions were obtained in the CMC-based classification with lower
variability for the classification movements of the dominant side (right side).

Figure 3.2. Distribution (boxplots) of the Ext-vs-Grasp classification performances
expressed as AUC achieved when using CMC (panel a and b) and SMR (panel c
and d) features, for each combination of classifier and number of features tested
in both left (panel a and c) and right (panel b and d) side.

The two-way rmANOVA performed on the AUC values obtained with the
CMC-based classification for the two sides separately revealed a significant effect
of CLASSIFIER (F(3,42)=15.61, p<0.01 for left side and F(3,42)=29.35, p<0.01
for right side) and CLASSIFIER x NUMBER OF FEATURES (F(6,84)=5.32,
p<0.01 for left side and F(6,84)=4.25, p<0.01) factors. No significant differences
were found for the number of features used. The Duncan post-hoc test on CLAS-
SIFIER factor showed that SVM had highest performances compared to the
other classifier types, whereas DT had the lowest ones, with the only exception
for SVM and SVM-RBF during right hand movements between which no signif-
icant differences were found. The post-hoc test on CLASSIER x NUMBER OF
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FEATURES factor revealed that even the best combination of classifier-number
of features for the SVM-RBF, LDA and DT approaches did not significantly
differ from the SVM with linear kernel based on 2 features, for both right
and left hand movements. Such combination resulted to achieve on average
the highest performance with the lowest number of features and thus to be
the best classification approach for the CMC-based Ext-Grasp classification [23].

As for SMR-based classification, the two-way rmANOVA showed a significant
effect in both sides only for the CLASSIFIER factor (F(3,42)=16.4, p<0.01
for left side and F(3,42)=7.6, p<0.01 for right side). From the post-hoc test,
the two linear models SVM and LDA resulted to achieve higher performances
with respect to the other classification models, no significant differences were
obtained between the two classifier types. Thus, LDA with 2 input features was
selected for the comparison with the CMC-based SVM classification approach.
As suggested by Figure 3.2, the paired t-test revealed the superiority of the
CMC-based approach in discriminating finger extension from grasping of both
hands (p<0.01 for both sides).

Tables 3.1 and 3.2 report the metrics of the best combination of classifier-
number of features identified by the statistical analysis for the CMC and
SMR-based classification respectively. The superiority of CMC features in
discriminating Ext and Grasp movements is consistent for all the metrics.

Table 3.1. Classification performances (AUC, Accuracy, Specificity and Sensitivity),
reported as mean (standard error) across 15 participants, obtained using the
CMC-based SVM classifier with 2 features.

Side AUC Accuracy Specificity Sensitivity
Left Hand 0.88 (0.02) 0.78 (0.02) 0.78 (0.03) 0.79 (0.04)
Right hand 0.91 (0.02) 0.82 (0.02) 0.78 (0.03) 0.85 (0.03)

Table 3.2. Classification performances (AUC, Accuracy, Specificity and Sensitivity),
reported as mean (standard error) across 15 participants, obtained using the
SMR-based LDA classifier with 2 features.

Side AUC Accuracy Specificity Sensitivity
Left Hand 0.76 (0.04) 0.72 (0.04) 0.71 (0.04) 0.73 (0.04)
Right hand 0.76 (0.05) 0.72 (0.04) 0.69 (0.05) 0.74 (0.04)
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3.3.3 Analysis of Ext vs Grasp feature space
To investigate the neurophysiological processes involved in Ext-Grasp classi-
fication based on both hybrid (CMC) and cortical (SMR) features, Figures
3.3 and 3.4 show the most frequently selected features for the CMC-based and
SMR-based classification when only 2 features were selected by the stepwise.
The most recurrent EEG-EMG pairs (Figure 3.3 left) and EEG channels (Figure
3.4 left) selected by the stepwise regression regardless of the frequency band
were flanked by pie-charts (3.3 and 3.4 right) reporting the number of times (in
percentage) each frequency band is selected irrespective of the EEG-EMG pair
or EEG channel, respectively for CMC and SMR features.

Overall, the same CMC feature was selected no more than 7% of times.
However, the agonists/antagonist muscles (extensor digitorum - ED and flexor
digitorum superficialis - FD) resulted to be involved in the selected pair re-
spectively 64.7% and 33.3% of times for left hand movements and 52.7% and
25.3% of times for right hand movements. Moreover, more than 30% of the
selected CMC features involved the Lateral deltoid muscle (Lat_DELT), for
both left and right side. No clear lateralization of selected CMC features (i.e.
involvement of EEG electrode position contralateral to the movement) was
found. With regards to frequency bands, beta and gamma bands resulted to
be the most recurrent frequency bands in both sides (Figure 3.3).

Figure 3.3. Features selected in CMC-based Ext vs Grasp classification. Most
recurrent EEG-EMG pairs selected by the stepwise regression across participants
(N = 15) and cross-validation iterations (IT=10) when using as classification
approach a SVM classifier based on two features. The matrix shows for each
EEG-EMG pair the number of times, expressed as percentage, each pair was
selected over all participants and all iterations of the cross-validation. EEG-EMG
pairs are identified by boxes from the intersection of the 28 EEG channels on the
x-axis and the 8 EMG channels on the y-axis. Pie charts report the percentage
each frequency band of interest was selected under the same condition. Panels:
(a) Left hand movements, (b) Right hand movements.
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As for SMR features, the same EEG channels was selected up to 20% of
times and the most recurrent features resulted to be placed over the hemisphere
contralateral to the involved side. Pie charts show how beta band was slightly
more frequent than alpha band in both sides (Figure 3.4).

Figure 3.4. Features selected in SMR-based Ext vs Grasp classification. Most
recurrent EEG channels selected by the stepwise regression across participants (N
= 15) and cross-validation iterations (IT=10) when using as classification approach
a LDA classifier based on two features. The scalp map shows the topographical
distribution of the number of times each of the 28 EEG channels was selected. Pie
charts report the percentage each frequency band of interest was selected under
the same condition. Panels: (a) Left hand movements, (b) Right hand movements.

3.4 Discussion
This study had the aim to analyze cortico-muscular coupling as feature to
discriminate different types of hand movements, and thus its potentiality to be
used as input of a hybrid BCI. Data of 15 healthy subjects were analyzed during
finger extension and grasping to identify the best classification approach to use
when using CMC features, taking into account also the usability of a future
BCI system (i.e. number of features required), and compared the performances
obtained with existing BCI paradigms, such as those based on sensorimotor
rhythms.

Overall, Figure 2.2 shows how CMC patterns derived from multiple EEG
and EMG channels are able to characterize the execution of simple hand move-
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ments such as finger extension and grasping. Whereas, considering only the
brain correlates, similar desynchronizations of the EEG power spectrum occur
during the two movements execution (Figure 3.1).
Indeed, CMC features extracted from multiple EEG-EMG pairs within 3 fre-
quency bands of interest, allow for a successful classification of two different
movements types, confirming results obtained in Study 1 even with a much
smaller number of features (up to 10). Whereas, lower performances were ob-
tained using SMR-based classification regardless on the classification algorithm
used.

Furthermore, identifying the best classification approach according to the
BCI application is one of the main challenges faced by BCI technology [87].
This study showed that a CMC-based SVM classifier with linear kernel achieved
higher performance with respect to the other classification approaches based on
the same feature. A linear classifier is fast and powerful in interpretative terms.
As in rehabilitation contexts the reinforcement of physiological brain-muscles
patterns is the main aim, such a classifier can optimize timing and consistency
of feedback to patients favoring effective motor re-learning. Moreover, the high
performances achieved by the SVM classifier with linear kernel based on only 2
features are promising in term of system usability and patient’s set-up time,
matching the use of BCI technology in clinical context or home environment.

As for SMR features, linear classifiers achieved the highest performances,
indeed they are generally the first choice for EEG signal classification due to
their simplicity, stability and insensitivity to overfitting [90].

Comparing the two types of features, higher performances and less inter-
subject variability were obtained using cortico-muscular features to discriminate
the two tasks than using only brain features. Previous studies demonstrated
that exploiting also peripheral signals in addition to brain ones allows to increase
BCI’s movement detection from rest condition [15], [91], this study showed how
using a hybrid feature potentially manages to better distinguish also different
hand movements. Indeed, CMC features provide a wider feature space with the
respect to only brain features and thus more information to discriminate the two
movements. Moreover, it worthy of note that the proposed approach consists of
exploiting the interplay between the cerebral and residual or recovered muscular
activity involved in a given movement, rather than simply combining EEG and
EMG features.

CMC features selected by the stepwise regression reflect the CMC grand
average patterns (Figure 2.2): involvement of agonist muscle for Ext and agonist
and antagonist muscles for Grasp, bilateral EEG connections, involvement of
proximal muscles at higher frequency bands in particular for Grasp movements.
The features selected with this classification approach belonged mainly to fre-
quency bands in which EEG and EMG spectral contributions overlap [18], [19].
Despite of the similar activation during Ext and Grasp movements for EEG fea-
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tures (Figure 3.1), the most recurrent features during SMR-based classification
are distributed over the hand motor area [48]. The difference in occurrences
between the most recurrent features across participants (N=15) and cross-
validation iteration (IT=10) between the two approaches could be attributed
to the higher dimensionality of the CMC features space.

Results achieved here show how CMC based-classification resulted to out-
perform SMR-based classification in the discrimination of finger extension from
grasping. However, further analysis on other types of EEG correlates, such
as movement related cortical potentials (MRCP) [49], are currently ongoing.
MRCP occurs naturally right before movements attempt, reaching the max-
imum negativity near the onset [49], [92]–[94], it was shown to be able to
decode movement intention [95], [96] and to discriminate different upper-limb
movements [25], [97], thus comparison between the approach proposed here and
an approach based on such features would be of utmost interest.

Moreover, such results were obtained considering earlobe referenced EEG
data given that the employment of a spatial filter requires to increase the
computational time of the BCI and implies the use of more EEG electrodes,
increasing the set-up time needed to kept the impedance under a satisfactory
level, as well as worsening the user’s comfort. However, EEG spatial filtering is
used to deblur the recorded signals so as to derive a more faithful representation
of the sources within the brain, and/or to remove the influence of the reference
electrode from the signal. It resulted to affect the extraction of both brain
[54], [98]–[100] and CMC features [38], [51]. Thus, the effects of EEG spatial
filtering such as Laplacian spatial filter, commonly used in EEG-based BCIs
[101], are currently under analysis.

In conclusion, the possibility to achieve high classification performances with
few features, in addition to the linearity and the interpretability of the model
yielded SVM with linear kernel to be considered the best classification approach
for a CMC-based h-BCI aimed at discriminating two simple hand movements.
The higher classification performances obtained with respect to a classification
approach based on only brain features showed the potentiality of a hybrid
approach, that take into account the interconnection between brain and muscles
during motor tasks, with respect to a canonical one. As such, this system could
be relevant for motor rehabilitation but also for technological applications for
motor substitution. Further investigations are needed to evaluate the feasibility
of real-time extraction of CMC features and the classification performances in
people with disability.
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Conclusion

The analyses performed in this section report how cortico-muscular patterns
show movement-specific characteristics and are able to quantify stroke-related
alterations in brain-muscle communications (see Studies 1 and 2) [18], [19]. The
analysis of the widespread brain-muscles connectivity patterns underlined the
potentiality of the CMC as tool to characterize motor abnormalities after stroke
during different motor tasks and provide a global picture of patient clinical
status. Such multimodal features could be used as objective biomarkers to
quantify motor impairment in stroke patients and could be valuable to assess
the recovery induced by a motor rehabilitation treatment.
Moreover, CMC features resulted to be able to discriminate movement from
rest condition and different movement tasks, showing a high potential to
be used as inputs of hybrid BCI systems. Indeed, CMC could provide a
comprehensive framework of the physiological and pathological patterns during
simple hand movements to be employed in a h-BCI system for post-stroke motor
rehabilitation. Such BCI could be able to encourage physiological movements
and discourage pathological ones providing a rehabilitative instrument congruent
to neurophysiological principles.

In the next section, the real-time extraction of CMC features and the
translation in an online BCI paradigm is addressed.
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Introduction

This section is composed by three main parts. In the first part, I reported a
study aiming at the definition and adaptation of a processing pipeline including
computation and the consequent CMC-based movement detection to be used
in real-time settings. In the second part, the design of a hybrid BCI (h-BCI)
based on CMC features to control a Functional Electrical Stimulation (FES)
and devoted to post-stroke motor rehabilitation for patients with residual or
recovered muscular activity is described and preliminary feasibility tests are
reported. The third part focuses on the stimulation strategy and described
an adaptive approach to modulate the intensity of FES stimulation based on
the residual or recovered muscular activity. Thus, the studies reported in this
section aim at the development of a technology able to support post-stroke
motor rehabilitation following the patient along each step of rehabilitation path
with an intervention tailored to his/her motor impairment.

As assessed by the studies of the Section I, CMC features extracted from
multiple EEG-EMG pairs can discriminate offline different simple hand move-
ments, such as finger extension and grasping, from rest condition (see Study
1) [1]. Moreover, cortico-muscular patterns change after stroke and are able
to characterize patients’ impairment (see Study 2) [2], thus CMC could be a
valuable hybrid feature to detect in real-time movement attempts and to train
the physiological brain control over muscles in a BCI-based intervention.

Before implementing a CMC-based BCI, classification accuracy and speed,
which are crucial factors for BCI technology [3]–[7], should be analyzed to
assess the feasibility of CMC as BCI feature. To evaluate and optimize the
real-time CMC computation and classification, a pseudo-online analysis on 13
healthy and 12 stroke participants during simple hand movements/attempts
was performed and the setting parameters that allow the best trade-off between
classification accuracy and speed were identified [8]. Such parameters were then
used to design the h-BCI.

The second part of this section describes the development of a h-BCI aimed
to RE-establish COrtico-Muscular communication after stroke. Such prototype
is a BCI-based rehabilitative device in which a complex pattern of cortico-
muscular activation is determined online during movement attempts of the
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upper limb and used to control FES. Such device was developed with the
ultimate aim of being used during post-stroke motor rehabilitation as an add-on
to traditional therapies to assist patients with residual or recovered muscular
activity in completing movements during rehabilitative exercises. The main
hypothesis is that a hybrid control signal for FES in a BCI setting will ensure
that volition (Central Nervous System - CNS activity recorded via EEG) and
specific muscular recruitment (multiple EMG recordings) are reinforced in the
training, re-establishing natural motor control and contrasting the consolida-
tion of pathological phenomena, i.e. co-contraction of antagonists muscles,
spasticity, motor overflow, abnormal muscle co-activation, mirror movements
[9]–[12], which often accompany motor skill regaining after stroke (maladaptive
plasticity).
Thus, in this h-BCI prototype CMC control features were chosen to reinforce
and exercise voluntary residual motor functions, so as to avoid the reinforce-
ment of maladaptive changes, i.e. restoring only ’correct’ central-to-peripheral
communication. For this reason, the device consists of two branches one aimed
to detect the movement attempt based on physiological patterns (to encourage)
and the other aimed to check that pathological patterns during such attempt
(to discourage) do not occur. Only when both conditions are satisfied the BCI
closes the loop delivering a stimulation to the patient to support full movement
execution.
The system architecture and the technological implementation of each building
module are shown in details. To test the feasibility of the h-BCI prototype,
the online classification timing and accuracy were evaluated in 3 healthy par-
ticipants. The ability of the prototype to generalize across different users
and its usability were assessed. Moreover, its ability to detect stroke-related
pathological movements was evaluated by a pseudo-online analysis on 11 stroke
patients during finger extension attempts of the paretic hand.

Finally, to deliver a stimulation customized to the patient needs, a modula-
tion strategy based on the residual or recovered muscles activity detected during
the rehabilitative exercise was developed. Customized stimulation strategies
were assessed to better improve the sensorimotor functions in stroke patients [13]
and allow to adjust the system according to the rehabilitative approach pursued.
Voluntary EMG (vEMG) is used to trigger FES in post-stroke rehabilitation
[14], [15] or to proportionally control in real-time the stimulation according
to the level of activation [16], [17]. Here, vEMG is used to modulate the FES
intensity triggered by the BCI. Thus, the BCI detects the volition based on
the EEG signals over the sensorimotor area to rehabilitate, and a stimulation
is sent to reinforce a close-to-normal brain activity [18]. The intensity of the
stimulation is modulated by the myoelectric level of activation right after the
BCI detection. The modulation strategy is based on a compensatory approach:
if no voluntary activation is detected, the full FES intensity is delivered to the
patient, whereas when residual or recovered muscular activity occurs a percent-
age of FES intensity complementary to the level of activation is sent. Such a
hybrid system allows to longitudinal follow the patient along the rehabilitation
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process delivering a stimulation tailored on his/her motor impairment. An
EEG-based BCI was used for this study in order to test the adaptive algorithm
designed for the modulation strategy on an already tested BCI paradigm [19],
[20],[21].
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4. Study 4

An optimized approach for
real-time Cortico-Muscular
Coupling computation

4.1 Background and Objectives

CMC values have been already used as inputs of a h-BCI to discriminate online
right-vs-left hand grasp movement in both healthy subjects and hemiparetic
stroke patients [22]. However, to the best of my knowledge, CMC studies on
h-BCI had neither assessed the ability of CMC to detect movement attempts
from rest condition nor optimized the online CMC-based movement classifica-
tion pipeline finding the parameters that allow to obtain both high accuracy
and speed.

Hence, the feasibility of real-time extraction of CMC features suitable for
movements versus rest classification, and thus to control a h-BCI system was
evaluated. Data of 13 healthy (CTRL) and 12 stroke (EXP) participants during
executed (CTRL and EXP unaffected arm) and attempted (EXP affected arm)
simple hand movements were analyzed simulating a real-time approach (i.e.,
pseudo-online) to optimize the choice of the parameters in the real-time CMC
algorithm that allow the best trade-off between classification performances and
classification speed. Indeed, together with a high classification accuracy, also a
short time for the BCI to detect a movement should be pursued, in order to
lead to significant plasticity induction and functionally relevant improvement in
agreement with Hebbian associative learning theory [23], [24]. For this reason,
different updating factors of the CMC computation (shifts) during the trial, as
well as different number of consecutive movement predictions to accumulate for
a final classification decision, were tested in terms of performance and time for
detection. Once identified the best parameters to be used in the real-time CMC
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approach, classification accuracy and speed obtained in stroke participants
were compared between different movements accomplished with affected and
unaffected hands, separately.

4.2 Materials and Methods

4.2.1 Participants
This study was performed on the same dataset acquired in Study 2. Thirteen
right-handed healthy subjects (9 females/4 males, age 48.5±19.3 yo) and twelve
patients (7 females/ 5 males, age 53.8±18 yo, months from event 5.3±3.5,
lesion side: 7 left/5 right) with clinically diagnosed stroke were selected for this
analysis. Details about the demographical and clinical data of such patients
are reported in Table 4.1.

4.2.2 Experimental Design
Data were collected according to the paradigm described in Study 2 paragraph
2.2.2 and summarizes here. EEG and EMG data were simultaneously recorded
and sampled respectively at 1kHz and 2kHz. Sixty-one active electrodes ar-
ranged according to an extension of 10-20 system (reference on left mastoid and
ground on right mastoid) were used to acquire the EEG data from the scalp by
means of BrainAmp amplifiers (Brain Products GmbH, Germany1), impedances
were kept below 5kW. Surface EMG data were recorded through Pico EMG
sensors (Cometa S.r.l., Italy2) from 16 muscles collected in bipolar fashion:
extensor digitorum (ED), flexor digitorum superficialis (FD), lateral head of the
triceps muscle (TRI), long head of the biceps brachii muscle (BIC), pectoralis
major (PEC), lateral deltoid (Lat_DELT), anterior deltoid (Ant_DELT) and
upper trapezius (TRAP) of both sides (L: left, R: right). The quality of EEG
and EMG signals was visually checked prior to beginning the recordings and
continuously monitored afterwards.
During the experiment, all participants were seated in a comfortable chair with
adjustable seat height and with their forearms placed on the table. Visual cues
were presented on a screen on the desk in front of them via Matlab’s Psychtool-
box3. The paradigm was administered using a block-design structure where
the four runs were randomly ordered across participants. Each run comprised
40 trials equally divided in task (8s duration) and rest (4s duration) condition,
presented to the participants according to a pseudo-random sequence which
did not allow more than two consecutive task or rest trials and two consecutive
rest trials at the beginning of the run to avoid fatigue and lapse in attention,
respectively. The inter-trial-interval, during which a fixation cross was displayed
in the middle of the screen, was set to 3s. During rest trials participants had

1https://www.brainproducts.com
2https://www.cometasystems.com
3http://psychtoolbox.org

https://www.brainproducts.com
https://www.cometasystems.com
http://psychtoolbox.org
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Table 4.1. Demographic and clinical information of stroke participants. FMA-UE
= Fugl-Meyer Assessment scale, upper extremity section, ranging from 0 (most
affected) to 66 (least affected); MAS = Modified Ashworth Scale; NIHSS =
National Institute of Health Stroke Scale.

to stay relaxed for 4s, whereas task trials began with 4s of preparatory period,
after which a go stimulus occurred, and the participant had to perform the
task for 4s (Figure 4.1). Participants were instructed to perform the task as
fast as they could and to hold it at 15% of Maximum Voluntary Contraction
(MVC) of the target muscle until the end of the trial (the experimenter guided
the participants via online visualization of EMG traces). MVCs were recorded
for each muscle at the beginning of the experiment for 5s and computed right
after for the target muscles (ED and FD of both sides). Stroke participants
attempted the movements with their affected limb to the best of their own
residual ability, following the same instructions.
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Figure 4.1. A) Schematic of the experimental setup: participants wore an EEG
cap over the scalp and EMG sensors over the upper limbs, they watched a screen
placed 1m in front of them on which a cue provided information on when to
perform/attempt the movement. B) Timeline of the experiment for task trials
with instructions provided to the participants on the screen, ITI: inter-trial-interval

4.2.3 Pre-processing
EEG data were band-pass filtered 3—60Hz whereas EMG signals were down-
sampled to 1000Hz and band-pass filtered 3—500Hz. A notch filter at 50Hz
was applied to remove power-line artifacts on both signals, task trials were
segmented in 8s epochs from the cue onset, while rest trials were segmented in
4s epochs from the cue onset. A subset of EEG channels over the sensorimotor
area (FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2, P4, P6) was considered
for the purposes of this study. Indeed, with the ultimate aim of successful online
control, a low number of electrodes is desirable to improve the usability of the
system, while the localization of the EEG electrodes over the sensorimotor
areas ensures the use of physiologic features for movement detection. The
epochs extracted from the trials and related to the subset of channels were
then checked for compliance to the instruction and presence of artifacts in the
EEG and EMG signals. All the trials labeled as “Rest” in which participants
moved, or trials labeled as “Task” where subjects missed the instruction and
did not perform the task were identified as non-compliant and removed from
the analysis. Regarding the artifacts management, two different criteria for the
identification of artifacts were adopted in EEG and EMG signals. The EEG
signals exceeding in absolute value the threshold of 100µV were considered as
artifactual. If artifacts were detected in more than one channel the trial was
rejected; otherwise a spherical interpolation was performed to replace the noisy
channel with a weighted average of its neighbors. A semi-automatic approach
was used to detect the artifacts in the EMG signals: a statistical criterion based
on the comparison between the EMG characteristics [25] of each trial and the
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median EMG characteristics of all trials (reference characteristic) was applied
separately for task and rest condition. Once the EMG artifacts were detected by
the statistical criterion, trials were visually inspected and validated for rejection.

EEG channels were interpolated due to presence of artifacts on average
in 1% of trials for the movements performed by healthy participants. No
channels were interpolated for the movements performed with the unaffected
hand by stroke participants, whereas one EEG channel was interpolated on
average in 1% of trials for the movement attempted with the affected hand.
One stroke participant was excluded from Ext movements analysis due to the
rejection of more than 50% of the trials (n = 11 for Ext movements analysis
in stroke participants). After rejection of non-compliant and artefactual trials,
the number of trials for healthy participants was on average 18.63 and 18.58 in
task and rest condition, respectively. For stroke participants, on average 17.74
task trials and 17.91 rest trials were considered for the following analyses.

Pre-processing of EEG data was computed by means of Vision Analyzer
1.05 software (Brain Products GmbH, Gilching, Germany) while all the other
steps described above were performed using custom codes developed in Matlab
R2019a (The MathWorks, Inc., Natick, Massachusetts, USA).

4.2.4 EMG onset detection
The EMG data of the target muscle (ED for Ext movements and FD for Grasp
movements) have been processed to obtain the EMG onset for each task trial.
The continuous raw EMG data were band-pass filtered in the range 30—300Hz
and a Teager–Kaiser energy operator was applied to improve Signal to Noise
Ratio and minimize erroneous EMG onset detection [26]. Signals were rectified
and low pass filtered at 50Hz. Then, EMG data were segmented in the 8s-task
trials and the EMG onsets were identified applying the Hodges e Bui algorithm
[27] on the EMG envelope of each task trial. Results were validated by visual
inspection.

4.2.5 CMC offline analysis
After the EEG/EMG preprocessing, an offline analysis was conducted with the
following aims to: i) identify the characteristic frequency of EEG-EMG coupling
in beta band (13—30)Hz for each EEG-EMG pair; ii) select the most powerful
CMC features in discriminating each movement from rest and iii) assess offline
the performances of CMC-based approach in movements detection against rest.

The data used for each participant in the offline analysis referred to a time
interval of 1s-length equal to the window [5—6]s in the task trials and [2—3]s in
the rest trials. For those two intervals, the cortico-muscular coupling between
EEG signal and the rectified EMG signal [28] was computed in the range
0—60Hz as in Study I [1].
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CMC characteristic frequency extraction

In this study, only the beta band (13—30)Hz was considered as frequency
band of interest, since previous studies identified it as the typical band for
CMC [1], [29]. The CMC across trials was computed using 1s-Hann windows
with no overlap and the characteristic frequency for each EEG-EMG pair was
extracted, as the frequency showing the highest CMC value in the beta band
range during task trials (see Study 1 paragraph 1.2.3-Characteristic frequencies).
The computation was repeated for each movement and each participant. The
single-trial CMC values at the characteristic frequency were thus considered in
the further analyses as feature space. Single-trial CMC values were computed
using the Welch periodogram with segments of 250ms, 50% of overlap and
tapered by means of the Hann window.

Feature selection

Since the number of features used for the classification impacts on the com-
putational cost and the number of physical electrodes required to collect the
data, the feature selection approach was used to choose two EEG-EMG pairs
to be considered in the analysis. The original feature space extracted as de-
scribed in the paragraph above was reduced by considering only the EEG-EMG
pairs characterized by the EMG channel over the target muscle (ED for Ext
movements, FD for Grasp movements) and by the EEG channels placed over
the sensorimotor strip of the hemisphere contralateral to the hand involved in
the task (ipsilesional hemisphere for the movement attempted with the paretic
hand of stroke participants). Feature selection was performed by ranking the
remained CMC features according to their discriminant power by Fisher crite-
rion [30] and selecting the two most discriminant ones. This allowed to reduce
the computational cost and achieve real-time movement detection.

For each movement and participant, the feature space was reduced to a 2-
dimensional feature space, consisting of 40 observations (20 trials x 2 conditions,
i.e. task and rest).

Binary classifier training

A 10-iteration cross-validation approach was used for the offline detection of
each movement vs rest in both healthy and stroke participants. In each iteration,
the 80% of task and rest observations were used as training set, whereas the
remaining 20% were used as testing set. A Support Vector Machine (SVM)
classifier with a linear kernel was used as classification model on the reduced
features space. If the difference between the number of task and rest trials
(after rejection of artefactual or non-compliant trials) was equal or higher than
three, the two classes were balanced randomly selecting the same number
of observations. The offline performances were assessed using the following
classification metrics: Area Under the receiver operating characteristic Curve
(AUC), accuracy, sensitivity and specificity [31], [32].
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4.2.6 CMC pseudo-online analysis
The pseudo-online analysis was conducted using a sliding window approach
mimicking the data reading from the temporary buffer of the amplifier used in
the online acquisition of biological signals. I considered sliding windows of 1
second duration updated along the trial of a certain number of samples (shift
parameter) to be varied in the study. The selected shifts were: 125ms, 250ms
and 500ms. For each participant, movement and window in a trial, single-trial
CMC values in beta band were computed for the two EEG-EMG pairs selected
in the offline analysis (paragraph 4.2.5-Feature selection). The CMC trend
along the trial duration was then analyzed for the different shift values in the
healthy participants with the aim to identify the best parameters to be used in
the future online analyses. The pseudo-online analysis for stroke participants
was conducted only for the best shift value identified in the analysis on healthy
participants.

Identification of best shift value in data from healthy participants

In order to identify the best shift value to be used in the sliding window ap-
proach for CMC computation, the movement onset from CMC trends along
trial (in brief CMC onset) was extracted and compared with the one extracted
from EMG signal (in brief EMG onset), considered as the temporal reference
for the beginning of the movement execution. The CMC onset was identified
with a double-threshold criterion: the statistical threshold (95th percentile)
was extracted from the distribution built considering all the CMC values of
rest trials and the CMC onset was identified as the time point in which CMC
values during task trials were above the statistical threshold in a temporal
window equal or longer than 500ms. The CMC onset was thus computed for
each participant, movement type, shift and trial considering the CMC values of
the EEG-EMG pair with the best CMC feature according to Fisher criterion.

For each trial, on the basis of the comparison between the EMG onset and
the CMC onset the following cases were identified:

• True Detection (TD) if CMC onset was delayed with respect to the EMG
onset

• False Detection (FD) if CMC onset was anticipated with respect to the
EMG onset

• No Detection (ND) if no CMC onset was detected in presence of an EMG
onset

The occurrence of TD, ND and FD across trials normalized for the total number
of trials was computed for each participant, movement type and shift. These
three performance parameters were flanked by a fourth one, the Mean Delay
(MD) obtained as the temporal difference (in seconds) between the CMC onset
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and EMG onset only in TD case.

To identify the best value for shift parameter maximizing both accuracy and
speed in CMC-based movement detection in the four movements analyzed, two
2-way repeated measures ANOVA (rmANOVA) were computed considering as
within main factors the MOVEMENT (4 levels: ExtL, ExtR, GraspL, GraspR)
and the SHIFT (3 levels: 125, 250, 500ms) and as dependent variables the
TD and the MD parameters, separately. ND and FD were not included in the
statistical analysis due to their low rates obtained in almost all the participants.
The statistical significance level for all tests was set to 0.05 and the Duncan’s
post-hoc test was performed to assess differences among the levels of the within
factors. A shift value of 125ms resulted to achieve the highest performances
(highest TD and lowest MD - see Results paragraph 4.3.2) and was therefore
used for further analyses.

Movement classification in healthy participants

To test the ability of CMC features in discriminating movements from rest condi-
tion in real-time, a single-subject pseudo-online validation was firstly performed
in healthy participants. The same feature space used in the offline approach (see
paragraph 4.2.5) was adopted for the pseudo-online analysis. An adaptation of
the Leave-One-Out Cross Validation was used to train the classification model
and evaluate the performances in task trials with the pseudo-online approach.
For each movement and participant, N different SVM classifiers (where N is the
number of task trials) were trained excluding one task trial at a time from the
training phase (training set observations = Ntot−trial – 1) and tested on the
excluded trial divided in 57 consecutive windows of 1s with 125ms of overlap
(total number of observations in testing phase equal to 57 for each leave-one-out
iteration).

The pseudo-online classification performances were evaluated considering
as:

• True Positive (TP) when at least M consecutive sliding windows after the
EMG onset of a task trial were predicted as task condition.

• False Positive (FP) when at least M consecutive sliding windows before
the EMG onset of a task trial were predicted as task condition.

• False Negative (FN) when no M consecutive windows were predicted as
task condition.

Here, the M parameter is the accumulation factor for which three different
values (1 – no accumulation, 2 and 3 windows) were tested to identify the best
trade-off between classification accuracy and speed. The following metrics were
computed according to the number M of windows to be accumulated before a
final movement detection:

Hit rate = TP

N
(4.1)
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False Positive Rate (FPR) = FP

N
(4.2)

False Negative Rate (FNR) = FN

N
(4.3)

Mean Delay (MD) = TMwindows
− EMGonset (4.4)

where TMwindows
is the time window after which M consecutive task predictions

(windows) have been accumulated in TP trials and N is the number of task trials.

To evaluate the differences in the above metrics among the number M of
consecutive windows, four 1-way rmANOVA were performed using as within
main factor M (3 levels: M=1, M=2, M=3) and as dependent variable the
hit rate, the FPR, the FNR and the mean delay, separately. The Duncan’s
post-hoc analysis was held to assess differences among the different levels of
the within factor and the significant level was set to 0.05.

Movement classification in stroke participants

To assess whether the results obtained in healthy participants could be confirmed
for movements performed/attempted by stroke patients, the same pseudo-online
analysis described in the above paragraph was performed on data from 12 stroke
participants for each movement type. In particular, the CMC computation was
performed with a sliding window approach considering windows of 1 second
duration and a shift of 125ms. Classification performances expressed in terms
of hit rate, FPR and MD were firstly evaluated in the stroke participants group
and then compared between movements performed with the affected and the
unaffected hand by a paired t-test, considering only the 11 stroke participants
analyzed during both Ext and Grasp movements. The significance level for all
tests was set to 0.05. FNR was evaluated but not included in the comparison
due to the low values obtained in all participants and movement types.

4.3 Results

4.3.1 CMC offline analysis

Offline classification performances of the movement versus rest classifier based
on two CMC features are shown in Tables 4.2 and 4.3 for healthy and stroke
participants respectively. Average AUC across healthy participants were ranging
from 0.98 to 1.00, whereas slightly lower performances were achieved in stroke
participants with AUC ranging from 0.93 to 0.98.
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Table 4.2. Offline task-vs-rest classification performances reported as mean ±
standard error across 13 healthy participants. ExtR: finger extension with the
right hand; ExtL: finger extension with the left hand; GraspR: grasping with the
right hand; GraspL: grasping with the left hand.

Task AUC Accuracy Sensitivity Specificity
ExtL 0.98±0.01 0.93±0.02 0.90±0.02 0.97±0.01
ExtR 0.99±0.004 0.94±0.02 0.91±0.02 0.97±0.01
GraspL 1.00±0.002 0.97±0.01 0.94±0.01 0.99±0.01
GraspR 0.99±0.004 0.95±0.01 0.91±0.02 0.99±0.01

Table 4.3. Offline task-vs-rest classification performances reported as mean ±
standard error across 11 stroke participants for Ext movements and 12 stroke
participants for Grasp movements. ExtUH: finger extension with the unaffected
hand; ExtAH: finger extension with the affected hand; GraspUH: grasping with
the unaffected hand; GraspAH: grasping with the affected hand.

Task AUC Accuracy Sensitivity Specificity
ExtUH 0.93±0.03 0.88±0.03 0.83±0.05 0.93±0.02
ExtAH 0.98±0.01 0.92±0.03 0.88±0.04 0.96±0.02
GraspUH 0.95±0.03 0.91±0.03 0.84±0.06 0.99±0.01
GraspAH 0.95±0.03 0.90±0.03 0.85±0.05 0.96±0.01

4.3.2 CMC pseudo-online analysis
Identification of best shift value in data from healthy participants

Figure 4.2 shows how the shift value to be used in the sliding window approach
for CMC computation affects the shape of CMC trend along the trial and the
timing in CMC-based movement onset detection, considering a representative
healthy participant during movements performed with the left hand (similar
results were obtained for the right-hand movements). Independently of the shift
value, it is worthy of note how the CMC trend accurately tracks the muscular
activation as revealed by the EMG signal recorded at the target muscle (ED for
Ext movement, FD for Grasp movement), superimposed in each graph (Figure
4.2 A and 4.2 B, left). CMC resulted as almost null before the EMG onset
while it showed an increase and then a plateau around the holding phase of the
movement execution. The higher the shift value (updating factor of each sliding
window), the more discontinuous the CMC trend appears, as expected since
it is obtained for a reduced number of samples. The qualitative comparison
between EMG onset and CMC onset in the trends reported in Figure 4.2 shows
how in this representative subject the CMC onset was always delayed with
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respect to EMG onset and the delay increased with the increase of shift values
in both Ext and Grasp conditions. A similar behavior was observed in the
other healthy participants. Overall, pie charts (Figure 4.2 A and 4.2 B, right),
reporting the percentages of TD, FD and ND obtained in average across all
the healthy participants, show how CMC managed to detect the movement
onsets in all movement tasks. Indeed, the averaged percentage of TD across
participants (∼88%) considerably overcame the percentages of FD (∼12%) and
ND (<1%). FD parameter was the most affected by changes in the shift values,
increasing with the increase of the latter (from 9% to 17% in ExtL and from
7% to 15% in GraspL).

Figure 4.2. Impact of the shift value used in the sliding-window approach on the
detection of the movement onset based on CMC (CMC onset). The average CMC
and EMG trends across trials, considering the first EEG-EMG pair identified
by Fisher criterion and the target muscle respectively, were reported along trial
duration for different shift values separately for extension and grasping of the
left hand, (A) and (B) right panel respectively, in one representative healthy
participant (similar results were obtained for right-hand movements). Dashed
vertical line represents movement onset detected from EMG (EMG onset), whereas
continuous vertical line stays for detected CMC onset. Each graph is flanked by a
pie chart reporting the percentages of No Detection (ND), False Detection (FD)
and True Detection (TD) obtained on average across 13 healthy participants for
the different shift values in the two motor tasks shown [8].

The 2-way rmANOVA performed on both TD and MD parameters revealed
the SHIFT factor as the only significant effect (TD: F(2,24)=30.99, p<0.01; MD:
F(2,24)=13.13, p<0.01). Duncan’s post-hoc test applied on TD highlighted a
higher value when using the lowest updating factor (125ms) compared to the
others. A significant difference between 250ms and 500ms was also observed.
Post-hoc tests applied to MD revealed a significantly higher delay for a shift of
500ms with respect to other shifts tested. No differences were found between
shift of 125ms and 250ms for MD.
Figure 4.3 reports the trends of the distributions of TD (panel A) and MD (panel
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B) obtained varying the shift values in the sliding window approach for the four
movements separately. The lack of significance of the effect MOVEMENT x
SHIFT underlines how the shift affected TD and MD parameters independently
from the movement type.

Figure 4.3. Distribution (boxplots) of (A) True Detection (TD) and (B) Mean Delay
(MD) at the various shift values across 13 healthy participants, separately for the
four motor tasks (ExtL, ExtR, GraspL, GraspR) [8].

Given the results obtained from the statistical analysis, a shift value of
125ms to update the sliding windows used to compute the CMC was chosen
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for the pseudo-online movement classification analysis. Using 125ms of shift
resulted on average in TD higher than 82.87% and MD lower than 0.42s for
the four movements tasks.

Movement classification in healthy participants

Figure 4.4 reports the results of the pseudo-online movement classification
performed 1s window at a time every 125ms in each testing trial, for a represen-
tative healthy participant (same as Figure 4.2) during extension and grasping
of the left hand. It is worth noting how the classifier correctly classified as
rest almost all the windows preceding the EMG onset and as movement all the
windows succeeding the EMG onset in all the trials. Some misclassifications
were found in the movement phase of very few trials where the movement is
erroneously classified as rest.

Figure 4.4. Results of the pseudo-online classification (task vs rest) performed for
all the 57 windows in which each trial was epoched for a representative healthy
participant (same as Figure 4.2) during A) extension and B) grasping of left hand
(similar results were obtained for right-hand movements). Rectangles represent
the 1s windows processed by the trained classifier one at a time every 125ms.
Windows predicted by the classifier as rest condition present light color, whereas
windows predicted as task condition present dark color. The red dots indicate
the first window including the EMG onset (i.e. which ends 125ms after the EMG
onset) [8].

Table 4.4 summarizes the pseudo-online classification performances across
the healthy participants obtained for the different number M of consecutive
sliding windows tested as accumulation before a final classification decision
was taken. The FNR was null in all four movements, with the exception for
GraspR where a false negative (FN) occurred for one subject in one trial when
M was equal to 2 or 3. For all the movements, it was obtained on average a
hit rate above 88%, with a FPR ranging from 0 to 12% and a delay in the
movement detection from 320 to 680ms according to the value selected for
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the parameter M. Moreover, the results of the rmANOVA showed how the
parameter M significantly affected the classification performances (hit rate,
FPR and Mean Delay) in both Ext and Grasp conditions, except for hit rate
and FPR in Grasp. As expected, for all the movements, the increasing M led
to improved classification accuracy (increase of hit rate and decrease of FPR)
but also to an increase of the delay in the detection of movement onset. In
particular, the post-hoc tests of rmANOVA performed on each classification
parameter showed a significant difference between M=1 and M=3 windows
and M=1 and M=2 windows. No significant differences were observed in the
hit rate and the FPR achieved with M=2 and M=3 windows, whereas such
difference resulted to be present for the Mean Delay. Choosing a number M of
windows equal to 2 as accumulation before a final movement detection allowed
to achieve on average a hit rate higher than 90%, a FPR lower than 10%, and a
Mean Delay in the range 470ms and 530ms. Such accumulation factor resulted
to be the most promising based on healthy participants’ data.

Table 4.4. Pseudo-online classification performances reported as mean ± standard
error across 13 healthy participants for each movement task. Performances
are shown for the different number M of consecutive sliding windows tested as
accumulation before the final movement detection. The fourth column of each
parameter reports the p-value of the rmANOVA considering M as within factor.
Asterisks (*) indicate significant difference p<0.01, — ANOVA test not applicable.

Hit Rate FPR
Task M=1 M=2 M=3 p M=1 M=2 M=3 p

ExtL 0.89
(±0.04)

0.92
(±0.03)

0.93
(±0.03) <0.01* 0.11

(±0.04)
0.08

(±0.03)
0.07

(±0.03) <0.01*

ExtR 0.88
(±0.03)

0.90
(±0.03)

0.91
(±0.03) <0.01* 0.12

(±0.03)
0.10

(±0.03)
0.09

(±0.03) <0.01*

GraspL 0.99
(±0.01)

1.00
(±0.00)

1.00
(±0.00) — 0.01

(±0.01)
0.00

(±0.00)
0.00

(±0.00) —

GraspR 0.96
(±0.02)

0.97
(±0.02)

0.97
(±0.02) 0.75 0.04

(±0.02)
0.03

(±0.02)
0.03

(±0.02) 0.14

FNR Mean Delay (s)
Task M=1 M=2 M=3 p M=1 M=2 M=3 p

ExtL 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00) — 0.37

(±0.05)
0.53

(±0.06)
0.68

(±0.06) <0.01*

ExtR 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00) — 0.34

(±0.04)
0.50

(±0.04)
0.65

(±0.05) <0.01*

GraspL 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00) — 0.32

(±0.03)
0.47

(±0.03)
0.61

(±0.03) <0.01*

GraspR 0.00
(±0.00)

0.004
(±0.004)

0.004
(±0.004) — 0.36

(±0.03)
0.50

(±0.03)
0.67

(±0.04) <0.01*

Comparing the classification performances obtained with M=2 between
the left and the right-hand movements by means of a paired t-test (α=0.05),
no significant differences were observed for both Ext (p = 0.56) and Grasp
(p=0.12) movement.
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Movement classification in stroke participants

Table 4.5 reports the metrics obtained on varying M parameter with the pseudo-
online approach in 12 stroke participants for all the movement types. The four
1-way rmANOVAs performed on the accumulation factor M confirmed what
obtained in healthy participants. The FPR increased with increasing M and
the post-hoc test revealed significant differences between M=1 and M=2 as well
as between M=1 and M=3 when the movement was attempted with the paretic
hand. A significant difference between the FPR with M=2 and 3 resulted for
ExtUH, whereas no significant difference was shown in the FPR for GraspUH.
The statistical analysis revealed that in stroke participants the M parameter
affected the hit rate only for GraspAH with significant differences between M=1
and M=2 and M=1 and M=3 (no difference was found between the hit rate
obtained with M=2 and M=3). As with healthy participants, the higher the M
parameter, the greater the Mean Delay. False negatives were more frequent in
stroke with respect to healthy participants, in particular for higher M. However,
FNR did not exceed 4%.

Table 4.5. Pseudo-online classification performances reported as mean ± standard
error across 11 stroke participants for Ext movements and 12 stroke participants
for Grasp movements. Performances are obtained considering different number
M of consecutive sliding windows tested as accumulation before a final classi-
fication decision. The fourth column of each parameter reports the p-value of
the rmANOVA considering M as within factor. Asterisks (*) indicate significant
difference p<0.01, — ANOVA test not applicable.

Hit Rate FPR
Task M=1 M=2 M=3 p M=1 M=2 M=3 p

ExtUH 0.81
(±0.05)

0.82
(±0.05)

0.83
(±0.05) 0.75 0.19

(±0.05)
0.16

(±0.05)
0.13

(±0.04) 0.015*

ExtAH 0.84
(±0.04)

0.86
(±0.04)

0.87
(±0.04) 0.09 0.15

(±0.04)
0.13

(±0.03)
0.11

(±0.03) 0.05*

GraspUH 0.92
(±0.04)

0.93
(±0.03)

0.94
(±0.03) 0.25 0.06

(±0.03)
0.05

(±0.02)
0.04

(±0.02) 0.23

GraspAH 0.68
(±0.07)

0.74
(±0.05)

0.79
(±0.05) <0.01* 0.32

(±0.07)
0.26

(±0.05)
0.21

(±0.05) <0.01*

FNR Mean Delay (s)
Task M=1 M=2 M=3 p M=1 M=2 M=3 p

ExtUH 0.00
(±0.00)

0.02
(±0.02)

0.04
(±0.02) — 0.52

(±0.10)
0.66

(±0.10)
0.88

(±0.13) <0.01*

ExtAH 0.01
(±0.01)

0.01
(±0.01)

0.02
(±0.01) — 0.44

(±0.05)
0.62

(±0.07)
0.77

(±0.07) <0.01*

GraspUH 0.01
(±0.01)

0.01
(±0.01)

0.02
(±0.01) — 0.39

(±0.04)
0.54

(±0.04)
0.70

(±0.05) <0.01*

GraspAH 0.00
(±0.00)

0.00
(±0.00)

0.004
(±0.004) — 0.34

(±0.03)
0.50

(±0.03)
0.68

(±0.05) <0.01*

Given the results obtained in both healthy and stroke participants, to avoid
false positives while maintaining a good timing, the best accumulation factor
resulted to be M=2.
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As expected, performances were reduced with respect to those obtained
from healthy participants for both movements performed with AH and UH. In
Ext condition, for both sides, hit rate was around 84%, the FPR was around
15% while the delay in movement detection was around 580ms. Differences
in terms of classification performances between AH and UH were investigated
by means of a statistical analysis whose results are reported in Figure 4.5. A
significant difference was found between AH and UH in Grasp condition only
for hit rate and FPR (Figure 4.5 A and B) highlighting how the detection of
the grasping movement performed with the affected hand is significantly more
difficult with respect to the same movement performed with the unaffected
hand but also to the extension movement with both AH and UH. Indeed, in
Grasp condition the differences between AH and UH were bigger with respect
to Ext movement, with a hit rate significantly lower in Grasp than in Ext for
AH (paired t-test, p=0.046). Whereas the Mean Delay was approximately the
same for AH and UH (Figure 4.5C).

Figure 4.5. Boxplot diagrams reporting the distributions of A) the Hit rate, B) the
FPR and C) the Mean Delay in 11 stroke participants as results of the pseudo-
online classification using M=2 sliding windows as accumulation before a final
classification decision. Performances are reported separately for Ext and Grasp
and compared between AH and UH by means of a paired t-test (α=0.05) [8].

4.4 Discussion
In this study, it was shown that the cortico-muscular coupling between brain
and muscle activity could discriminate in real-time different hand movements
from rest condition in both healthy and stroke participants. The pseudo-online
analysis performed on healthy and stroke participants provided information on
the parameters representing the best trade-off between classification accuracy
and speed when translating CMC computation and its task vs rest classification
from offline to online domain. The testing of such parameters on a stroke par-
ticipants dataset assessed the feasibility of a CMC-based movement detection
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in a population of stroke subjects with residual arm activity.

The offline classification performances (Tables 4.2 and 4.3) confirmed the
validity of the features extraction and classification approach tested in the
Study 1 on healthy subjects, also in stroke patients. The high performances
obtained in that study using the entire set of features (CMC values from all
possible EEG-EMG pairs), have been confirmed in this work using as features
for movement detection CMC values from only few EEG-EMG electrodes,
showing its potential applicability in a clinical setting.

The pseudo-online analysis performed on the shift value showed how the
updating factor of CMC computation affects the ability of the CMC to detect
the movement. Indeed, it affected both the ability to detect the movement
onset (True Detection, TD) and the time to detect it (Mean Delay, MD).
Moreover, the pseudo-online classification approach showed how the number
of predictions to be accumulated before a given final classification decision af-
fected the pseudo-online classification performance. Classification performance
increased according to the number of windows accumulated, and the time to de-
tect the movement with respect to the EMG onset also increased according to it.

One of the main challenges faced by BCI technology is to improve speed
and accuracy [3]–[7] and achieve the reliability necessary for real-word appli-
cations [33]. For this reason, identifying the parameters that allow the best
trade-off between classification performances and speed is crucial. Over the
past decades, many studies have explored feature extraction and classification
approaches to improve the accuracy [34], raise the number of commands [35],
increase the information transfer rate and reduce the calibration time [36], [37].
P300-based speller and steady-state visual evoked potential-based BCIs have
mainly taken advantages from those methodological improvements [35], [38]
in order to avoid patient frustration caused by false and delayed detections
[39]. However, also in the context of BCIs for rehabilitation, it is crucial to
provide an immediate feedback, contingent with the user’s movement intention,
in order to re-establish the contingency between cortical activity related to the
attempted or imagined movement and the feedback. Indeed, this stimulates
the neuroplasticity that leads to motor recovery [40], [41]. In this application,
performance improvements were pursued in several ways, e.g. by combining
different features such as lateralized readiness potential and event-related desyn-
chronization [4], refining well-established algorithms of feature extraction and
classification and combining them in an innovative way [42] or investigating
which parameters returned the best performance in terms of both accuracy and
timing cost in the ERD/ERS classification [7].

Although great efforts have been devoted to the optimization of EEG-based
BCI, the optimization for the real-time CMC computation and classification
has not been investigated yet.
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Thanks to the results of this study, it was assessed that computing the
single-trial CMC every 125ms and accumulating 2 predictions before a final
classification decision allows to achieve good performance (hit rate on average
equal to 95% and 84%, FPR on average equal to 5% and 15% for healthy and
stroke participants, respectively) and timing (mean delay on average equal to
0.5s and 0.58s for healthy and stroke participants, respectively) during two
different motor tasks. Meanwhile almost no false negative detections were
obtained. The classification accuracy achieved in the present work is higher
than that reported in the two available studies using CMC for online control of
robotic orthosis in a rehabilitation context [22], [43]. Comparable performances
were obtained in [22] when an approach based on statistical correlation is used
instead of the classical CMC algorithm. The higher performances obtained
in this work could be due to the application of two processing steps help-
ing to manage the variability in CMC spectral and topographical properties
among patients: i) computation of CMC characteristic frequency in the two
EEG-EMG pairs selected for each patient and movement which takes into
account inter-patients differences in CMC frequency peak; ii) application of
a feature selection algorithm allowing to select the best EEG-EMG pairs to
detect movement, specifically for each patient. No direct comparison can be
made between this work and the above-mentioned studies on timing, since they
used a different experimental paradigm where the CMC was computed online
in a predetermined time interval with respect to the cue and thus the feedback
was sent to the patient several seconds after the movement attempt. Hence,
this study is the first among those published that analyzed the ability of the
CMC in detecting the movement and showed that potentially a CMC-based
BCI could send a contingent feedback to the patient right after the attempt.

Moreover, using CMC values as features to discriminate movements from
rest condition allows to obtain higher pseudo-online classification performance
in stroke patients with respect to previous studies on rehabilitative BCIs based
on EEG features only, such as movement related cortical potentials [24] and
sensorimotor rhythms in alpha and beta bands [44], detected during movement
attempts.
Beside the main purpose of the presented hBCI (i.e. promoting upper limb
motor recovery and avoiding the reinforcement of abnormal muscular activity),
its superiority in terms of classification performance can guarantee feedback
consistency to patients during training sessions, presumably increasing patients’
satisfaction and motivation towards the ultimate aim, that is a favorable re-
covery. It is worthy of note that such classification performances are obtained
using only fewer features (EEG and EMG channels) compared to those used in
previous EEG-based BCI systems during the attempt of motor tasks [19], [45].
Thus, this approach appears promising in terms of system usability (compu-
tational time, comfort) and set up time, meeting the needs of BCI usage in a
clinical context.

Regarding the timing achieved in the classification decision with the pa-
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rameters selected by this analysis, CMC features were able to provide a fast
classification in stroke patients which ensures not only to exploit and train
central-to-peripheral communication [43], but also to send ecological feedback
to the patient right after the onset of the movement attempt (a feedback that is
congruent in timing and content with the exercise setting), favoring an effective
motor re-learning. Comparing classification speed with previous works on
rehabilitative BCIs during movement attempts, comparable [45] or better ([19],
3.5-5s to deliver feedback) results were obtained with respect to EEG-based
approaches.

Furthermore, similar to what reported in Study 1 on healthy subjects, the
extension task was easier to detect by means of CMC features also in stroke
patients.

Despite the promising results obtained on both healthy and stroke par-
ticipants by applying the CMC-based approach in movements detection, the
performances obtained by means of a pseudo-online approach should be con-
firmed by online experiments. In fact, the exclusion of both non-compliant
and artefactual trials from the analysis before CMC computation might have
mildly overestimated the classification performances since they were calculated
on data with a higher signal-to-noise ratio. However, I am confident that
such overestimation effect is limited since the number of trials rejected were
around one/two trials out of the 20 requested per condition. In the online
implementation of this approach, non-compliance will be manually checked by
the therapist/experimenter who will start a new trial (request of movement
attempt) only when the muscle activation level will be below the desired thresh-
old or terminate the trial before the established duration if the patient is not
performing the task (i.e., non-compliant trials should virtually never occur).

To the best of my knowledge, this is the first study that tested the ability of
CMC features to detect in real-time movement attempts in stroke patients with
particular focus on the best parameters to use in the computation to ensure an
accurate and fast detection. The results obtained here stated the feasibility of
CMC features as inputs of a h-BCI for upper limb motor rehabilitation and
grounded the design of a novel non-invasive h-BCI in which the control feature
is derived from a combined EEG and EMG connectivity pattern estimated
during upper limb movement attempts, described in the next study.
The results obtained in this analysis were published in Frontiers in Human
Neuroscience [8].
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5. Study 5

Design and implementation
of the h-BCI prototype

5.1 Background and Objectives
CMC features can be employed for the real-time detection of different hand
movements in both healthy and stroke subjects. The best parameters to use
for the online CMC computation were identified (see Study 4) [8] as so as the
properties of the CMC pattern corresponding to physiological and pathological
movements in stroke patients (see Study 2) [2]. Thus, such features are valu-
able inputs of a h-BCI able to re-establish impaired cortico-muscular coupling,
achieving a good timing and accuracy crucial for patients’ motor re-learning
and motivation during the rehabilitation training.

Based on the evidence provided, an innovative h-BCI was implemented to
support post-stroke upper limb rehabilitation, in which real-time decoding of
CMC patterns during paretic hand movement attempts (e.g. finger extension)
drives FES to support full movement execution. The device recognizes close-
to-normal EEG-EMG coupling, taking into account both the CMC features to
reinforce during the h-BCI training, and the ones to discourage to avoid the
maladaptive movement abnormalities typical of post-stroke recovery [9]–[12],
and initiates FES of the target muscle.

In the next paragraphs the h-BCI design process, paradigm, and the feasi-
bility outcome of the interim analysis are described.

5.2 System Design
The h-BCI prototype was designed to rehabilitate upper-limb function based on
brain-muscles communication. User-centred methodologies were used through-
out the design phase; usability requirements were updated and refined during
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each development and verification phase. Physicians and neurologists provided
high-level clinical specifications that were then addressed for the technological
implementation.
The h-BCI device has the following hardware components as shown in Figure
5.1:

1. an EEG and an EMG acquisition system used to record simultaneously
brain and muscular activity:

• BrainAmp EEG amplifiers (Brain Products GmbH, Germany1) with
active electrodes

• Wave Plus wireless EMG system and Pico EMG sensors (Cometa
S.r.l., Italy2) capable to acquire the muscular activity of up to 16
muscles in bipolar fashion.

2. a laptop where the prototype’s software runs.

3. a FES stimulator (RehaMOVE2 system - Hasomed GmbH, Germany3)
used to deliver the stimulation to the patient. FIAB4 fully gelled electrodes
are used for neurostimulation.

Figure 5.1. The h-BCI components: the acquisition system acquires the EEG and
EMG signals through EEG active electrodes and EMG wireless sensors, and sends
them to a computer where they are processed in real-time to detect a correct
movement and trigger the FES stimulator to deliver the stimulation to the patient.

The h-BCI intervention consists of a screening session used to acquire data
and identify the BCI control features, and several BCI training sessions in

1https://www.brainproducts.com
2https://www.cometasystems.com
3https://hasomed.de
4https://www.fiab.it/it/category.php?id=188

https://www.brainproducts.com
https://www.cometasystems.com
https://hasomed.de
https://www.fiab.it/it/category.php?id=188
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which patients control the h-BCI device, after a proper calibration. Figure 5.2
shows the steps of the intervention.

Figure 5.2. The h-BCI intervention - A) Screening session comprises data collection,
feature extraction and selection of BCI control features. B) At the first BCI
training session the device is calibrated, and during each session FES parameters
are set, EEG and EMG signal are visually inspected and the online control of the
device during rehabilitative exercises is performed.

Each patient has a dedicated folder named with his/her ID where all the
data and information needed for the intervention are saved.

The steps of the h-BCI intervention are made possible by the building
modules of the prototype which interact to each other: Acquisition and Feature
extraction Modules, Calibration Module, FES Calibration Module, Control
and FES Modules. The modularity the h-BCI system allows to have as much
as possible the control over the operations performed, and to customize each
module according to the rehabilitative needs.

The information collected and extracted in the screening session (Acquisi-
tion and Feature extraction Modules,) are managed by the a Graphical User
Interface (Configuration GUI) to build the BCI classifier (Calibration Module)
and to control in real-time the FES feedback (Control and FES Modules), after
setting the FES parameters to use for the stimulation (FES Calibration Module).
The h-BCI prototype operates in two domains: offline and in real-time. In
the offline domain, each module works in open-loop and generates output files
that are asynchronously used as inputs of the next module, whereas during the
real-time control a synchronous communication is established between modules
and they work in close-loop with the patient.

The core of the h-BCI prototype was developed in OpenViBE v.3.1.05 where
5http://openvibe.inria.fr

http://openvibe.inria.fr
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patient’s EEG and EMG signals can be acquired, processed (offline and online)
and the FES feedback can be delivered in real-time to the patient. OpenViBE
is an open-source software platform dedicated to design, test and use BCIs in a
modular way. In OpenViBE, new software modules can be added according
to the users’ needs. This is ensured thanks to the box concept, an elementary
component in charge of a fraction of the whole processing pipeline, that allows
users to develop reusable components, reduces development time, and helps to
quickly extend functionalities [46].
Whereas the Feature extraction Module and the Configuration GUI were
developed in Matlab 2020a. Detailed description of each module is given in the
next paragraphs.

5.2.1 Acquisition Module
During screening session, the same experimental paradigm described in Study
4 is used to collect the data. Thus, EEG signals are recorded at 1kHz from
the scalp with 61 active electrodes arranged according to an extension of 10-20
system (reference on left mastoid an ground on right mastoid); surface EMG
data are recorded at 2kHz through Pico EMG sensors from 16 muscles of the
upper limbs collected in bipolar fashion. Patients are asked to attempt the
rehabilitative task with their paretic hand during Task trials (8s duration) and
to rest during Rest trials (4s duration). The EEG and EMG data are recorded
with the amplifiers’ property software Vision Recorder (Brain Products GmbH,
Germany) and EMG and Motion Tools (Cometa S.r.l., Italy) respectively, and
saved in two different files which will be analyzed to configure the parameters
of the BCI training sessions.

5.2.2 Feature extraction Module
Data recorded in the Acquisition Module are used as inputs of the Feature
extraction Module. An ad-hoc pipeline was developed to process EEG and EMG
data and to extract and select the CMC features to control the BCI. Figure
5.3 shows the block diagram with the inputs, the outputs and the operations
performed in the Feature extraction Module.

Feature extraction

EMG signals are downsampled to 1kHz, EEG and EMG data are synchronized
and merged in a unique dataset, which is saved in the patient’s folder for the
h-BCI calibration. EEG signals are band-pass filtered 3—60Hz, whereas EMG
signals 3—500Hz with a 6th order Butterworth filter. A notch filter, 10th order
IIR filter, at 50Hz is applied to remove power-line artifacts on both signals.
Task trials are segmented in 8s epochs from the cue onset, while Rest trials are
segmented in 4s epochs from the cue onset.
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Figure 5.3. Block diagram of the processing steps performed in the Feature extraction
Module, with details on the inputs imported and outputs generated.

A 1s-window (time interval [5-6]s for task trials and [2-3]s for rest trials) is
extracted from each trial to compute the cortico-muscular coupling between
EEG signal and the rectified EMG signal [28] in the range 0-60Hz as in Study
1.
The characteristic frequency for each EEG-EMG pair is extracted and the single-
trial CMC values of all the EEG-EMG pairs at the characteristic frequency are
considered as features space. The single-trial CMC computation is performed
using a Welch periodogram with segments of 250ms, 50% of overlap and tapered
by means of the Hann window, as in Study 4 paragraph 4.2.5-CMC characteristic
frequency extraction.

Feature selection

Pursuing physiological muscular activation patterns means reinforcing the
central communication to target muscles and avoiding pathological muscular
activation typical of post-stroke recovery [9]–[12]. CMC has proven to be able
to detect both physiological and pathological patterns (Studies 1 and 2). With
this aim, a feature selection approach is used to reduce the feature space and
choose the h-BCI control features. Two types of features are selected:

Features to encourage The 2 most discriminant and neurophysiologically
relevant CMC features are selected to reinforce the natural motor control. The
feature space is reduced by considering only the EEG-EMG pairs composed
by the EMG channel over the target muscle and by the EEG channels placed
over the sensorimotor area (Figure 5.4) of only the ipsilesional hemisphere
(neurophysiologically relevant according to the rehabilitation approach). Feature
selection is performed by ranking the remaining CMC features according to
their discriminant power with Fisher criterion [30] and selecting the 2 most
discriminant ones, as in Study 4.
Such features are then used to train the SVM classifier with linear kernel for
the real-time discrimination of movement from rest condition.
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Features to discourage Dysfunctional activation patterns during the
rehabilitative task performed with the paretic side must be discouraged. In
particular, co-activation of proximal and contralateral muscles could be possible
substrates for compensatory strategies and mirror movements, and as shown in
Study 2 they can be detected by CMC patterns. Thus, the following maladaptive
changes are detected and monitored during the h-BCI intervention:

1. compensatory proximal muscles activity movements (compensatory move-
ments)

2. abnormal recruitment of healthy side muscles (mirror movements)

through two EEG-EMG pairs, one for each type of dysfunctional pattern,
among the EEG signals over the sensorimotor area (Figure 5.4) and the EMG
signals of the proximal muscles of the affected limb, and the distal muscles of
the unaffected limb, respectively. Such pairs were identified as dysfunctional
brain-muscle connections according to a double-threshold statistical criterion.

Figure 5.4. 28 out of 61 EEG electrodes over the sensorimotor area considered in
the feature selection.

As output of the feature selection, the EEG-EMG pairs selected (the 2
features to encourage and the up to 2 features to discourage) and the corre-
sponding characteristic frequencies are reported in a sheet and saved in the
patient’s folder. Topographical distributions of such features are generated to
allow the neurologist to validate the control features of the h-BCI device.

5.2.3 Configuration GUI
The Configuration GUI was developed to guide with a user-friendly approach the
operator/therapist in the calibration and the online use of the h-BCI prototype
during the BCI training sessions. This module generates the configuration files
to customize each session to the patient.
The Configuration GUI is made by 2 tabs: Patient Tab and Settings Tab. In
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the Patient Tab, the patient folder can be selected from a list of all the existing
patient IDs saved in the specified database directory, by a drop-down menu
or typing the patient ID in search-mode and selecting the desired one. The
file with the selected features generated by the Feature extraction Module is
uploaded and shown in the Settings Tab. This tab allows the therapist to
visualize the selected features to encourage and discourage and the electrodes
to place on the patient for the BCI training (up to 4 EEG electrodes and up
to 3 EMG sensors). The Configuration GUI generates for each patient the
configuration files with the ad-hoc information required for the online control of
the device by converting the "Selected features" file in a format readable by the
BCI, and sets the session information (i.e. session ID, data directory, saving
directory, experimenter, etc).
At the bottom of the Settings Tab, four buttons allow the therapist to calibrate
the device and perform the online BCI session. Each button is associated to
a step of the BCI training session (Figure 5.2) and opens one of the modules
of such a session. Once each module is completed a led associated to the
corresponding step of the BCI training session turns green.

5.2.4 Calibration Module
During the first BCI training session, and whenever is needed to re-calibrate
the device, the Calibration button of the Configuration GUI is enabled. By
pressing it, the Calibration Module is opened and configured according to
the information entered in the Configuration GUI (i.e. patient’s folder path,
session ID, etc.). The module runs in OpenViBE and imports the screening
data generated by the Features extraction Module and the configuration files
generated by the Configuration GUI. It performs the training of the BCI
SVM classifier based on the 2 features to encourage selected for the real-time
movement discrimination. The same pipeline described in paragraph 5.2.2-
Feature extraction was implemented in OpenViBE to extract the 2 CMC
features selected to control the movement detection, and to train the SVM
classifier with linear kernel to discriminate task from rest condition. An ad-hoc
OpenViBE box (CMC box) was developed in the broader context of Python
for OpenViBE (Python version 3.8.1) to compute the CMC with the Welch
periodogramm as in the Feature extraction Module (paragraph 5.2.2).
When the calibration ends, the trained classification model is saved in the
patient’s folder, together with a log file with a summary of the operations
performed, the training classification accuracy and the 10-fold cross-validation
accuracy performed by OpenViBE classification box to validate the trained
model. Each patient will have his/her own SVM model according to the data
recorded in the screening session.

5.2.5 FES Calibration Module
FES parameters, such as current amplitude, pulse width and stimulation
duration, can be set specifically for each patient at every session according
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to standard guidelines to achieve full movement and so as to avoid any kind
of discomfort for him/her. By pressing the FES Calibration button in the
Configuration GUI , a dedicated interface pops-up and the FES system can be
calibrated identifying the best parameters for the stimulation, as well as the
best position for the FES electrodes over the target muscle to obtain the desired
movement. Such parameters are identified stimulating in open-loop the target
muscle. The interface was developed to allow the upload and the edit of existing
files or the creation of new ones after the testing. The editable parameters are
all those made available by the FES stimulator. The configuration file with the
ad-hoc FES parameters is saved in the patient’s folder to customize the online
session to the user.

5.2.6 Control Module

In all the BCI training sessions, the therapist can check the EEG and EMG
traces and start the online session pressing the corresponding button on the
Configuration GUI. The Configuration GUI opens the OpenViBE Acquisition
Server for the simultaneous real-time acquisition of the EEG and EMG data. A
customized driver was developed in collaboration with alfameg S.r.l.6 to record
EMG signals through Wave Plus wireless EMG system.
The Control Module is launched and configured by the Configuration GUI for
the online control of the device.

Figure 5.5 provides a zoom of the steps performed in this module and its
interaction with the patient. In this module, the EEG and EMG streams
recorded from the patient are sent to the Control Module where the data
are filtered as in the Feature extraction Module (see paragraph 5.2.2) with
a one-way IIR filter design. EMG signals are rectified and both EEG and
EMG data are segmented in 1s windows every 125ms. CMC values at the
characteristic frequency are extracted for all the selected EEG-EMG pairs by
the CMC box. The pre-processed EEG and EMG signals and the temporal
evolution of the selected CMC features are displayed to allow the therapist to
monitor the session.

6https://www.alfameg.com/

https://www.alfameg.com/


5.2 System Design 123

Figure 5.5. Block diagram of the steps performed in the Control Module. The
interaction with the FES Module and patient are also shown.

Then, the up to 4 CMC features extracted in CMC feature extraction block
are split in two branches:

• the 2 features to encourage are aggregated in a feature vector and sent
to the trained SVM classifier which returns the task or rest predictions.
This branch detects the brain control over muscles (branch to encourage).

• the up to 2 features to discourage are sent to a box which monitors the
dysfunctional patterns (branch to discourage).

The outputs of the two branches are both sent to the Feedback Control Strategy
block which represents the core of the Control Module. Such block takes the
final decision to trigger the FES, indeed it has 2 possible outputs: 1 - physio-
logical movement detected, 0 - no physiological movement occurred.
The Control Module has embedded a STImulation Control Interface (STICI)
developed via Python’s PySimpleGUI which temporizes the BCI training ses-
sion and starts a new trial of the BCI paradigm, (i.e. a new repetition of the
rehabilitative exercise, for further details about the timeline see paragraph 5.3).

During each online session, the EEG and EMG signals are saved together
with a log file with the outputs of the two branches and all the events occurred
during the session. This allows to track the improvement of the patients and
evaluate which branch failed to satisfy the physiological condition (branch to
encourage, branch to discourage).

5.2.7 FES Module
The FES module closes the loop delivering the stimulation to support the
patient in completing the movement when "correct" movements are detected by
the BCI, Figure 5.5. A custom OpenViBE box was developed in collaboration
with alfameg S.r.l to set the FES parameters according to the output of the
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FES Calibration Module and allow a continuous thread between OpenViBE
and the stimulator. The configuration files generated by the FES Calibration
Module are imported to configure the box. Such box controls the stimulator
triggering a standard stimulation pre-defined by RehaMove system.

5.3 The h-BCI paradigm

The h-BCI paradigm was designed as driven by the therapist and consists in
several trials/repetitions of the rehabilitative exercise according to the timeline
described in Figure 5.6. The STICI (see Figure 5.5), allows the therapist to
control the online session. It accepts 3 keyboard commands which corresponds
to the following stimuli: "start a new trial", "end bad trial", "end experiment".
At the beginning of each trial a beep sound is delivered informing the patient
to get ready to attempt the movement, after 3s an acoustic cue "GO" invites
the patient to start the task. The stimulation is delivered to the patient when
a physiological movement is detected, as described in paragraph 5.2.6.

Figure 5.6. Timeline of the experiment during online session.

The target muscle is stimulated for 4s, after which the control interface
makes the therapist wait at least 8s before the next trial (duty cycle: 1:2
to preserve muscle fatigue development, i.e. Tsafe=12s). After 4s from the
acoustic cue (Ttrial), if no physiological movement is detected the trial is ended
with a "time out". For safety purpose, the Feedback Control Strategy block
can be stopped by the therapist at any moment pressing the "end bad trial"
command if problems during the trial occur, such trial will be ended and will
be marked as "bad trial".
Letting the session being driven by the therapist allows to avoid as much as
possible muscular fatigue, common during FES stimulation, and to perform the
BCI training in the safest way possible, taking into account the patient’s needs.
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5.4 Prototype validation: proof-of-concept study

5.4.1 Online testing on healthy participants
The various components of the h-BCI prototype were tested and resulted to
communicate in a reliable and intuitive way. To test the feasibility of the
device, 3 right-handed healthy subjects were involved in a proof-of-concept
study. The classification speed and accuracy were evaluated and the ability of
the prototype to generalize across different users was tested. An evaluation of
prototype usability (i.e. preparation time) was performed.
The task performed during the online testing was finger extension, because the
rehabilitative exercise chosen for the h-BCI intervention in agreement with the
clinicians was finger extension attempt. Indeed, during this movement greater
stroke-related CMC alterations was found compared to grasping as resulted by
CMC pattern analysis performed in Study 2 on stroke patients, which revealed
a more dysfunctional pattern during finger extension attempts performed with
the paretic hand.

Data collection and analysis

Participants with no history of neuromuscular disorders and any contraindi-
cation to FES (such as pregnancy, proneness to faint, epilepsy, compromised
integrity of the stimulated limb, compromised sensation) were enrolled in the
proof-of-concept study.
They underwent a screening session and an online BCI session with the h-BCI
prototype in two different days, no more than a week apart. During such session,
participants performed the movement with their dominant hand (right hand).

After the screening session, the two features to encourage were identified,
whereas no dysfunctional pattern were detected, as expected in healthy individ-
uals. For this reason, the branch to discourage was turned off.
During the online session, the 2 selected EEG channels were placed over the
scalp (reference on left mastoid and ground on right mastoid), whereas 2 FES
electrodes (dimension 40x40mm) were placed over the target muscle (extensor
digitorum right, EDR) one next to the other along the fiber direction. The
EMG sensor was placed right after the FES electrodes over the ED muscle.
FES calibration was performed only with the purpose to evaluate the prepa-
ration time of the online session and the placement of the EMG sensor which
could affect the CMC. However to perform a study on data not altered by the
stimulation, the FES feedback during the online session was replaced by an
acoustic feedback. Participants performed 20 trials administrated according to
the BCI paradigm described in paragraph 5.3.
The EEG and EMG signals pre-processed in OpenViBE (EEG band-pass filtered
3-60Hz, EMG band-pass filtered 3-500Hz, notch filter applied at 50Hz) were
recorded during the online session and analyzed afterwords in Matlab. Signals
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were segmented in 20 epochs selecting the time interval [-2, 3]s with respect to
the start of the trial. The EMG onset for each trial was computed as in Study
4 paragraph 4.2.4 and the single-trial CMC features used for the movement
detection were calculated reproducing the pipeline of the Control Module (see
Figure 5.5).
The same metrics evaluated in Study 4 (hit Rate, FPR, FNR and Mean Delay)
were computed to assess the performances of the h-BCI prototype.

Results

The EEG channels of EEG-EMG pairs selected as features to encourage for
each participant are shown in Table 5.1. They were chosen among all the
possible pairs consisting of the EEG channels over sensorimotor area of the
hemisphere contralateral to the involved hand (left hemisphere) and the target
muscle (extensor digitorum right).

Table 5.1. EEG channels of the CMC features between the scalp and the target
muscle (EDR) selected as features to control the BCI, and online classification
performances reported as mean ± standard error across 20 cue-based repetitions
of the right finger extension (ExtR) in the 3 healthy participants who underwent
an online BCI session.

ID Features to
encourage Hit Rate FPR FNR Mean

Delay [s]

H01 FC5, C5 1 0 0 0.48
(±0.03)

H02 FC5, FC3 1 0 0 0.58
(±0.06)

H03 CP3, CP1 1 0 0 0.38
(±0.03)

The preparation time of the h-BCI training session took around 15 minutes,
whereas the online BCI session which comprised the preparation time and one
run of 20 repetitions lasted overall around 25-30 minutes.

Trends of the two CMC features are reported for each subject in Figure 5.7
together with a marker on the time sample the feedback was delivered for each
trial.
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H01

H02
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H03

Figure 5.7. Single-trial CMC and EMG trends considering the two EEG-EMG pairs
selected by Fisher criterion and the target muscle respectively, recorded online in
3 healthy participants (one panel for each trial). Dashed vertical line represents
movement onset detected from EMG (EMG onset), whereas continuous vertical
line stays for the time the BCI sent the feedback to the user. The online CMC
computation was updated every 125ms and two Task predictions were accumulated
(accumulation factor M=2) before a BCI’s feedback.

CMC managed to track in real-time the movement execution and the BCI
sent always a feedback to the user right after the movement onset. Differences
among participants can be attributed to CMC inter-subject variability as well as
slightly differences in the EMG electrode placement according to FES electrodes
position, which had the priority since they affected the movement induced by
the stimulation. Table 5.1 shows the classification performances and the average
time to deliver the feedback across trials (Mean Delay).

This testing provided evidence of the ability of the h-BCI prototype to
generalize across different users. The results achieved here confirmed what
obtained in the pseudo-online analysis performed in Study 4, also in an online
paradigm: CMC manages to detect the movement in real-time with high
performances in term of classification accuracy and speed. The use of up to 4
channels to control the h-BCI device allows for very short set-up times, whereas
the overall experiment time suggests that 2-3 runs could be performed in the
h-BCI rehabilitation intervention for a total duration of up to 30 minutes
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(preparation time excluded). Moreover, the high performances obtained online
in healthy subjects are promising for the real-time use of the h-BCI prototype
for post-stroke motor rehabilitation.

5.4.2 Pseudo-online testing on stroke patients
To test the ability of the branch to discourage in detecting pathological move-
ments, such as compensatory proximal muscles activity and abnormal recruit-
ment of healthy side muscles, a pseudo-online study on 11 stroke patients for
Ext movement (same as Study 4) was performed. Data related to the finger
extension’s attempt of the paretic hand were considered here.

Data analysis

The EEG and EMG data acquired as in Study 4 paragraph 4.2.2 were processed
with the offline pipeline used to extract and select the CMC features of the
h-BCI prototype during the screening session (see paragraph 5.2.2). The double
threshold criterion was applied on the CMC values of the reduced feature space,
obtained for the selection of the features to discourage, to detect dysfunctional
patterns during the movement attempt. Upon detection, a pseudo-online study
(mimicking the online pipeline developed in the Control Module) was performed
for each participant to evaluate the trends of such CMC features during each trial
and thus characterize the temporal evolution of such dysfunctional patterns.
For each task trial the time interval [-4,4]s with respect to the "GO" was
considered and the trend of the selected CMC features was computed using
1s-windows and 125ms of shift.

Results

Dysfunctional patterns were detected during the screening session for 5 out of
11 participants.
CMC features selected as to discourage for each participant with his/her
related FMA-UE are reported in Table 5.2. Not all stroke participants showed
both dysfunctional patterns (i.e. compensatory proximal muscles activity and
abnormal recruitment of healthy side muscles), indeed for three of them only
the involvement of proximal muscles were revealed.

Figure 5.8 shows the single-trial CMC trends in all task trials for the two fea-
tures to discourage (one feature for each panel) and their activation thresholds,
detected during the screening session, in a representative stroke participant.
For each type of dysfunctional pattern analyzed, after the "GO" (t=0s) CMC
values of the selected EEG-EMG pair resulted to increase, reach a pick and
decrease going under the activation threshold at the end of the trial. Testi-
fying the involvement of the selected dysfunctional connections in the movement.
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Table 5.2. EEG-EMG pairs selected as features to discourage for the 5 stroke
participants in which dysfunctional patterns were detected. The Fugl-Meyer
Assessment scale, upper extremity section (FMA-UE), ranging from 0 (most
affected) to 66 (least affected), was reported for each participant. AH = affected
hand side, UH = unaffected hand side, movements were attempted with the
affected hand.

ID FMA-UE Features to
discourage

S01 51 CP6-Lat_DELTAH ,
P4-FDUH

S02 26 FC6-BICAH

S03 23 FC3-Lat_DELTAH ,
C6-FDUH

S04 62 FC1-BICAH

S05 54 FC3-BICAH ,
CPz-EDUH

Results show how the algorithm developed for the selection of the features
to discourage (see paragraph 5.2.2) is able to detect dysfunctional patterns,
defined according to Study 2 on stroke patients, and follow their evolution
during the movement task. Such patterns start right after the movement onset
and last until its end.

Figure 5.8. Single-trial CMC trends of the CMC features to discourage selected for
the two dysfunctional pattern types A) compensatory proximal muscle activity (i.e.
compensatory movement) and B) abnormal recruitment of healthy side muscle (i.e.
mirror movement) in the 20 task trials for a representative stroke subject (S03).
Time was aligned to the "GO", horizontal black line represents the activation
threshold.
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In the online BCI session, the decision to send a feedback relies on the
combination of the branch to discourage and the branch to encourage. This
means that a feedback is sent to the patient only when the movement is detected
based on the CMC features to encourage and no dysfunctional movement occurs.
Assessment of BCI performances in stroke patients during online BCI training
sessions is needed to confirm the feasibility of this approach, including an
evaluation of usability, satisfaction and workload of patients and professionals
in a real-world setting.

5.5 Discussion
The h-BCI prototype was developed with the aim to re-establish cortico-
muscular communication after stroke with a BCI-controlled FES intervention. It
was design with a modular approach and each module can be adapted according
to the rehabilitative needs. Its interface was thought to provide an easy-to-use
tool for the therapist to manage the h-BCI intervention.
The preliminary studies on healthy subjects showed the prototype’s feasibility
and its ability to generalize among different users. The high performances
achieved proved the ability of CMC features in detecting movements in real-time
and sending a contingent feedback paired with subject’s movement intention
(branch to encourage), confirming what obtained in Study 4. Whereas, the
pseudo-online testing on the branch to discourage showed the prototype’s ability
to detect dysfunctional activations according to results of Study 2.
Clinical and functional efficacy on upper limb rehabilitation of the h-BCI tech-
nology will be assessed in the coming months within a Randomized Controlled
Trial (RCT) in chronic stroke patients undergoing rehabilitation (add-on) at
Fondazione Santa Lucia, IRCCS, Rome Italy. The study was already designed,
authorised by the local ethical committee and registered online at clinicaltri-
als.gov7(NCT05511207).

7https://clinicaltrials.gov/ct2/show/NCT05511207

https://clinicaltrials.gov/ct2/show/NCT05511207
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6. Study 6

An adaptive EMG-based
feedback modulation
strategy to use in a BCI
context

6.1 Background and Objectives
This study focuses on the stimulation strategy to use to design a rehabilitation
training challenging but feasible for the patient and tailored to his/her level of
impairment and was conducted during my secondment as visiting PhD student
at the Translational Neural Engineering Lab (TNE) - EPFL.
Surface functional electrical stimulation is widely used as a movement rehabilita-
tion technique [47]. Active engagement during the FES-supported rehabilitation
training is crucial for its optimal effect [48], [49], indeed administrating the FES
in the context of a volitional intent enhances its brain effects ([50], [51]. BCI
controlled-FES have led to improvement in motor functions [19], [52]. More-
over, voluntary EMG can be used to trigger FES in post-stroke rehabilitation
[14], [15] or to proportionally control in real-time the stimulation according to
the level of activation (reinforcement learning) [16], [17]. Active proportional
EMG control of FES required to reject the stimulation responses (M-wave) [53]
and to adopt comb filtering to reduce the harmonics of stimulation responses.
Moreover, to extract the voluntary myoelectric activation, a low stimulation
frequency (around 16Hz) [16] or complex adaptive filters [17] are needed to
reject the stimulation artifacts. However, low frequency stimulation generates
an unstable force far from the natural one [54].

Here, a hybrid system that integrates an EEG-based BCI and an adaptive
EMG-based modulation strategy of FES intensity is designed to rehabilitate
upper hand functions in post-stroke patients. Such system has the aim to
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be the first step for the transition from an «all or nothing» approach to a
gradually compensatory feedback targeted on patient’s level of impairment.
The FES intensity is modulated at each repetition of the rehabilitative exercise
based on the residual muscular activity recorded right after the brain-based
detection of the movement attempt. The goal is to obtain a modulation strategy
which reflects the rehabilitation approach of supporting the patient through the
functional recovery, thus a compensatory strategy is developed to deliver during
the rehabilitation training a FES intensity complementary to the residual or
recovered muscular activity of the patient. A canonical EEG-based BCI [18]
was chosen with the aim of validating the adaptive feedback strategy on an
already tested BCI paradigm.

6.2 Stimulation strategy
The EEG-based BCI detects the movement attempt and extracts the re-
lated muscular level of activation assessed by the EMG signals simultaneously
recorded. When a movement attempt is detected by the BCI, the stimulation
intensity is delivered to the patient to complete the movement. The stimulation
intensity is modulated by the myoelectric level through a compensatory ap-
proach: higher the myoelectric level and lower the amount of stimulation used
to support the full movement execution (see paragraph 6.4 for further details).
To avoid muscles fatigue induced by the stimulation and to make the experi-
mental exercise more dynamic, two deviations of hand extension were chosen
as experimental exercise: upward and outward Fdeviations.

FES stimulation patterns can be optimized to produce the desired sensory
and motor response without using standard stimulation strategies pre-defined
in the FES stimulator [13], [55]. Here, the stimulation strategy was developed
to obtain a reliable and safe system customisable according to the patient’s
needs, modifying some pre-existing ones [13], [55]. Such a strategy was build
to stimulate three different muscles of the forearm: abductor pollicis longus
(AP), extensor digitorum communis (EDC) and extensor carpi ulnaris (ECU).
It allows to stimulate each muscle at a time or two different combinations of
muscles: sequential stimulation of AP, EDC and ECU muscles (AP+EDC+ECU
strategy) and simultaneous stimulation of AP and EDC muscles (AP+EDC
strategy) to provide full extension of the hand. Indeed, fingers and thumb
are controlled separately by EDC and AP muscle’s fibers respectively, thus to
induce the full hand extension they have to be stimulated together.
The stimulation strategy was designed to deliver biphasic rectangular impulses
with a controlled amplitude and an adjustable pulse width, the stimulation
frequency was set to 40Hz to avoid discomfort for the patient. Moreover for
comfort purposes, current amplitude was limited to 20mA for AP, 30mA to
EDC and 25mA for ECU muscle. whereas the pulse width range was set from
150µs to 300µs for each muscle.
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The stimulation profile was made adjustable according to rehabilitative exercise
and it was different for the calibration and the online session. The calibration
session is performed in open-loop to identify the maximal stimulation intensity
(Imax) and the best FES electrodes location for each muscle and subject to
obtain the desired movement. The stimulation intensity is set increasing it to
the point where sufficient muscle contraction is produced or the subject feels
an unpleasant sensation.
For the calibration session, a slow profile was developed, shown in Figure 6.1:
10s duration with a smooth ramp of 4.65s and a steep descent starting at 6.725s
(Figure 6.1 A). For the AP+EDC+ECU strategy, after the stimulation of the
first muscle, the stimulation of the next one starts right before the descent
phase of the previous one (at 6.375s), for a total duration of 25s, Figure 6.1
B. Whereas for the combined stimulation of AP and EDC muscles (AP+EDC
strategy), muscles are stimulated simultaneously and the two stimulation profile
are superimposed (Figure 6.1 C). A faster profile, adjusted according to patient’s
characteristics, can be used during the close-loop control in order to overcome
the sensory threshold after a minimum of 100ms.

Figure 6.1. Stimulation profiles developed to calibrate the stimulation intensity of
A) one single muscle (e.g.AP), B) AP+EDC+ECU combination, C) AP+EDC
combination. The intensity is normalized for the tested Imax.

6.3 System Design
The hybrid system was designed in a modular, reliable and easy-to-use way. It
comprised the following building modules:
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• the Acquisition system which records the EEG and EMG data through
two gUSBamp amplifiers (g.tec medical engineering GmbH Austria1).

• the hybrid BCI which translates user’s intention.

• a Control Interface (CI) used to set the experiment and trigger the
stimulation.

• the FES Controller which provides the simulation strategy via a Beagle-
bone Black2.

• the Stimulation system which delivers the stimulation to the patient via
a RehaStim stimulator (Hasomed GmbH, Germany3).

The network diagram is shown in Figure 6.2 and explains the communication
between the modules.

Figure 6.2. Network Diagram of the hybrid system. The BCI processes the signals
collected by the Acquisition system and sends a trigger and the EMG parameter
used for the modulation strategy to the Control Interface. The Control Interface
computes the percentage of FES intensity to deliver and communicates to the
FES Controller the stimulation strategy selected by the therapist and the related
stimulation intensity. The FES Controller generates the stimulation strategy and
loads it to the Stimulation system that delivers the FES to the patient. The FES
Controller sends then back a response to the Control Interface about the outcome
of the delivery.

To keep the BCI, the CI and FES Controller synchronised, a strict mas-
ter–slave concept using a custom-made communication protocol based on User

1https://www.gtec.at
2https://beagleboard.org/black
3https://hasomed.de

https://www.gtec.at
https://beagleboard.org/black
https://hasomed.de
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Datagram Protocol (UDP) was implemented in Python 3.8.1 (socket package)
and produces a continuous thread among the modules. Such protocol allows
to have, if needed, each module in a different machine and lets them commu-
nicate through ethernet, USB or Wi-Fi. This solution allows to reduce the
computational cost of each machine in favour of the timing, crucial in BCI
applications.

6.3.1 Acquisition system
Two g.USBamp amplifiers allow to record up to 32 channels. EEG signals
are recorded trough g.LADYbird active electrodes, whereas for EMG signals
collection passive peripheral electrodes are used. Thanks to OpenViBE drivers,
the EEG and EMG data are acquired and sent in real-time to the processing
boxes.

6.3.2 BCI module
The acquisition system sends the EEG and EMG signals to the BCI, developed
in OpenViBE v.3.1.04, which uses an EEG-based classifier to detect user’s
movement intention and computes the EMG parameter for the FES intensity
modulation. A customized OpenViBE box was developed in Python 3.8.1 to
extract the EMG parameter. The experimental paradigm was designed so
that each repetition of the rehabilitative exercise is driven by the therapist
pressing a dedicated command from the keyboard. When the key is pressed the
BCI starts to accumulate predictions and when the detection rule is satisfied
(movement detection), the BCI trigger and the EMG parameter are sent to CI.
If patients are not compliant to the instruction or problems occur during the
task repetition, a dedicated key can be used to stop the thread between the
BCI and the CI, ending the ongoing repetition of the exercise.
An ad-hoc Python box was developed in OpenViBE to send the BCI trigger
and the EMG parameter to the CI via UDP.

6.3.3 Control Interface (CI) module
The CI, developed in Python 3.8.1, is the core of the system, it consists of a user-
friendly interface which allows the therapist to: i) set the general information
about the patient and the rehabilitation session (Figure 6.3 A), ii) calibrate the
FES stimulator parameters and testing the optimal current amplitude (Imax)
for each muscle or combinations of muscles (Figure 6.3 B and C) and iii) send
the commands to the FES Controller for the delivery of the stimulation to the
user (Figure 6.3D). Local libraries were developed to define the parameters,
the tasks identifiers and the message to deliver to the FES Controller. Such
message contains the command for starting the stimulation, the ID of the stim-
ulation profile to load (i.e. single muscle stimulation or combined stimulation

4http://openvibe.inria.fr

http://openvibe.inria.fr
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of different muscles), the parameters (i.e. current amplitude and percentage of
FES intensity) to use for the stimulation.

Figure 6.3. Tabs of the Control Interface. A) Calibration of the single muscle
strategies B) Calibration of AP+EDC+ECU and AP+EDC combined strategies
and C) Stimulation mode.

The FES intensity of each muscle in the AP+EDC+ECU and AP+EDC
stimulation strategies is set as a percentage of the Imax found during the single
muscle stimulation strategy calibration (Figure 6.3C). The CI, through its tab
"Stimulation mode" (Figure 6.3D), allows two stimulation modalities: only FES
(open-loop) in which the stimulation is driven by the therapist through the
dedicated button in the interface; and BCI modality (close-loop) in which the
stimulation is driven by the BCI and the FES intensity is modulated by the
EMG parameter. The therapist can select the experimental task and thus
the muscles to stimulate from a drop-down menu. For the BCI modality,
the therapist need to press the dedicated button to open the communication
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between the BCI and the CI. The stimulation intensity is modulated as a
percentage of Imax according to the EMG parameter received from the BCI.
For each tab (i.e. calibrations, stimulation mode) a yaml-file with the FES
parameters set and a history file with all the actions performed is generated in
the patient’s folder.
For safety purpose, the CI presents a STOP button that can immediately stop
the stimulation even when it is ongoing.

6.3.4 FES Controller module
The FES Controller receives the commands from the CI and loads the stimula-
tion profile on the FES stimulator, it also sends back a response to the CI with
the actions performed. FES Controller was developed as the CI in Python 3.8.1.
The commands sent to and the responses received from the FES controller were
defined and codified in a local library and are saved in a log file to track all the
operations and avoid undesired behaviours.

6.3.5 Stimulation system
The stimulator RehaStim is a portable electrical stimulation device that gen-
erates impulses on up to eight channels simultaneously. Surface electrodes
are used to stimulate target muscles [56]. The stimulation is controlled in
ScienceMode through a COM port by the FES Controller. Axelgaard PALS
electrodes (Axelgaard Manufactoring Co., Ltd5 of different dimension and shape
are used for the stimulation according to the patient characteristics.

6.4 Adaptive algorithm for a real-time myoelec-
tric modulation of FES intensity

To provide to the patient a stimulation tailored to his/her impairment, the
intensity of the stimulation is modulated varying its pulse width according to
the residual EMG activity recorded in real-time right after the BCI’s movement
detection. The compensatory modulation strategy was developed with the
aim of delivering a stimulation able to compensate patient’s residual muscular
activity, thus the developed control-stimulation relation is inversely proportional:
if the residual EMG activity does not differ from the activity at rest, then
the stimulation intensity is equal to Imax, set during the calibration phase to
provide the desired movement. Otherwise, the stimulation intensity is computed
as a percentage of Imax progressively lower until the reference myoelectric level
of activation (EMGref ) is reached. Different parameters were evaluated to
define the algorithm’s adaptive rule, such as the EMG parameter to use to
identify the residual muscular activity and the coefficient between the EMG
parameter and the pulse width (gain).

5https://www.axelgaard.com/

https://www.axelgaard.com/
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6.4.1 Data collection and analysis
Data collection

To rehabilitate different deviations of the hand extension such as upward and
outward deviations, the following stimulation strategies are used: combined
stimulation of AP and EDC muscles (AP+EDC strategy) and stimulation of
only ECU muscle (Only ECU strategy), respectively.
Data from seven healthy participants (3 females/4 males, age 29.1±5.5 yo)
were recorded during the execution of upward and outward hand extension
deviations with their dominant hand. Participants had no history of neuromus-
cular disorders and any contraindication to FES (such as pregnancy, proneness
to faint, epilepsy, compromised integrity of the stimulated limb, compromised
sensation). Three stimulation electrodes (3.2cm, round shape) were placed on
the skin over the motor points of the AP, EDC and ECU muscles, whereas a
ground electrode (5cm, round shape) were placed over the wrist bones. At the
beginning of the experiment, a calibration session was performed to find the
electrode position that gave the best fingers and thumb extension (AP+EDC
strategy) and lateral deviation (Only ECU strategy) and to set the optimal
FES intensity.
EMG signals were acquired at 1200Hz from the EDC and ECU muscles via a
g.USBamp amplifier. For each muscle, two surface Ag/AgCl electrodes, 10mm
diameter, were placed at 20mm inter-electrode distance right after the stimu-
lation electrodes, in the direction of the muscle fibers. The neutral (ground)
electrode was placed over the olecranon. Three repetitions of Maximal Voluntary
Contraction (MVC) lasting 5s were recorded for each muscle before starting the
experimental task. The paradigm was administrated in a block-design structure
in which each run consisted of one deviation. Each run comprised 10 trials of
5s duration, at the beginning of each trial an acoustic beep is sent informing
the participants to get ready to perform the movement, after 1s an acoustic
"GO" cue invited to start the movement and participants were instructed to
hold it for 4s after which a "STOP" stimulus occurred, Figure 6.4.
Stimulation electrodes were placed on participants’ forearm to study the com-
patibility between FES and EMG electrodes placement and to evaluate how
to extract the EMG parameter given the EMG signals recorded by such EMG
electrodes. No stimulation was delivered during the runs.

Data processing

EMG signals were band-pass filtered 10-500Hz and segmented in 6s epochs in
the interval [-1, 5]s with respect to the start of the trial. Epochs were visually
inspected and if artifacts were detected, they were rejected.
To calculate the EMG envelope, the root-mean-square (RMS) of the EMG
signal on the target muscle (EDC for upward deviation, ECU for outward
deviation) was computed on windows of 0.5s length sliding across the whole
trial duration and on the three MVC repetitions of the corresponding muscle.
For visualization purpose, a baseline correction was performed for each epoch
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Figure 6.4. A) Position of the FES and EMG electrodes used in the experiment B)
Timeline of the trial with representation of the two hand extension deviations

considering the mean value in the time interval [-1, 0]s as baseline, and the EMG
envelope was normalized by the the median value among the maximum RMS
of the three MVC repetitions (%MVC). The EMG activation levels, expressed
as %MVC, were finally averaged across trials.
The EMG onset of each epoch was computed as in Study 4 paragraph 4.2.4.

Compatibility between EMG and FES electrodes placement

To deliver the desired stimulation and support the two hand extension deviations,
three active FES electrodes and a ground electrode must be placed over the
forearm of the patient. At the same time, to modulate the FES intensity
according to the myoelectric level, the voluntary EMG of EDC and ECU
muscles must be recorded in bipolar fashion for the upward and outward
deviation respectively. Such electrodes must be placed immediately after the
stimulation ones, whose position is tied to the muscle motor points to induce
the movement, which means that EMG electrodes could be slightly over the
muscle belly.
Thus, as first step, the compatibility of the FES and EMG electrodes placement
over the forearm of the subject was tested. The mean envelope across epochs
were computed and visualized to check if the EMG signals reflected the two
movements and if different activations over the two recorded muscles can be
revealed depending on the type of movement.

EMG parameter extraction

The EMG parameter used to modulate the percentage of FES intensity delivered
to the patient was thought to be extracted in the BCI’s accumulation window
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needed to have enough evidence for a final classification decision. Thus, the
EMG envelope is computed in real-time from the beginning of the session and
when the BCI accumulates enough movement predictions, it retroactively looks
back to the accumulation window to extract the EMG parameter to send to
the Control Interface.
The EMG parameter was extracted as the maximum value of the EMG envelope
in the accumulation window. To evaluate the width of the accumulation window
needed to extract a EMG parameter which reflects the myoelectric level of
activation, three window size were tested: 62.5ms, 125ms and 250ms with
respect to the EMG onset. A Friedman’s test was applied on the mean EMG
parameter across epochs of each subject considering as factor the window width.
A Tukey’s post hoc test was applied to assess differences between window sizes.
Moreover, to test the ability of the EMG parameter to represent the muscular
activation level, the EMG values extracted were compared to the maximum
EMG value of the envelope through a Wilcoxon signed-ranks test. The signif-
icant level was set to 0.05 for all tests. A width of 250ms resulted to be the
best window size, and was thus used in following analyses.

Gain definition

The gain of the modulation strategy depends on three parameters: Imax (defined
in paragraph 6.2), the EMG at rest and EMGref (i.e. the reference level of
muscular activation). The stimulation intensity is computed as a inversely
proportional piecewise function between Imax at EMG at rest and no intensity
at EMGref . The EMG at rest and EMGref are obtained performing an EMG
recording during the calibration session and were defined as follow: the EMG
at rest is defined as the mean value of the EMG envelope computed during
rest condition, whereas the EMGref is defined as the activation level during
the non-paretic hand movement in the same window used for the extraction of
the EMG parameter, with a certain tolerance range defined according to the
difference between the two sides in healthy subjects.
To test the validity of the approach chosen for the extraction of EMGref and
define the tolerance range, the same dataset analysed in Study 2 was analysed
here only for the finger extension movement performed with the left and the
right hand by the 12 healthy participants (CTRL) and performed/attempted
with the unaffected and affected hand in the 12 stroke participants (EXP).
The EMG onset was computed in each trial and the EMG parameter was
extracted in the window [0-250]ms with respect to the EMG onset. A Wilcoxon
signed-ranks test was applied on the mean EMG parameter across trials to
assess the differences across participants between the two sides (left and right
side in CTRL group, unaffected and affected side in EXP group). To define
the range of tolerance according to which the EMG parameter extracted online
is considered equal to EMGref , the ratio between the mean EMG parameter
across trials in left and right side was computed for each healthy participant,
and the 75th and 25th percentile of the ratio distribution was used.
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6.4.2 Results

Compatibility between EEG and FES electrodes placement

Figure 6.5 shows the mean envelope across epochs during the two movement
types for a representative healthy participant recorded with the set up shown
in Figure 6.4 A. Similar results were obtained for the other participants.

A) Upward deviation

B) Outward deviation

Figure 6.5. EMG envelope (mean ± standard error) of the target and no-target
muscles during the two types of movement for a representative participant. A)
Upward deviation: EDC target muscle, ECU no-target muscle. B) Outward
deviation: ECU target muscle, EDC no-target muscle. EMG values are normalized
with respect to the MVC, vertical dashed line represent the start of the trial.
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The envelope tracks the movement and the activity of the target muscle
overcomes the one of the no-target muscle for each movement type, assessing
the discriminability between the two movements according to the EMG level of
the target muscle. Thus, the placement of EMG and FES electrodes resulted
to be feasible for recording the experimental tasks.

EMG parameter extraction

Figure 6.6 shows the distribution across participants of the mean EMG param-
eter when considering as window width 62.5ms, 125ms and 250ms, as well as
the distribution of the maximum value of the mean EMG envelope during the
outward deviation of the hand extension. Similar results were obtained during
the upward deviation.

The statistical analysis performed on the EMG parameter on varying the

Figure 6.6. Boxplots of the distribution (N = 7 participants) of the EMG parameter
extracted in the 3 windows analyzed (window size: 62.5ms, 125ms and 250ms) and
the maximum value of the mean EMG envelope (Max Value) during the execution
of the outward deviation. Similar results were obtained during the execution of
the outward deviation.

window size revealed significant differences in both movement types (Fried-
man’s test, p<0.01 in both upward and outward deviation). The post-hoc tests
highlighted a significant difference between window size of 62.5ms and 250ms,
no differences were found between 125ms and 250ms of window width, which
could be due to the high inter-subject variability.
Significant differences were obtained by Wilcoxon signed-ranks test between the
the maximum EMG value and the EMG parameter extracted in the window of
size 62.5ms for the upward deviation (p=0.0313) and in the windows of size
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62.5ms and 125ms for the outward deviation (p=0.016 in both windows). No
differences were revealed between the maximum EMG value and the EMG
parameter extracted in the window [0-250]ms with respect to the EMG onset.
Thus, the EMG parameter extracted in such window resulted to represent the
best the myoelectric level of activation and it is used to modulate the FES
intensity. Consequently the accumulation factor of the BCI was set to the same
duration.

Gain definition

For the analysis on EMGref on the participants of Study 2, the EMG parameter
was extracted as the maximum value of EMG envelope in the window [0-250]ms
with respect to the EMG onset. The Wilcoxon signed-ranks test revealed no
significant differences in the EMG parameter extracted during the movement
performed with the left and the right hand in CTRL group (p=0.79), whereas
a significant difference was obtained between the EMG parameter extracted
during the unaffected and the affected finger extension movement/attempt
(p<0.01) in EXP group. Thus, the unaffected side can be used as reference for
the target myoelectric activation (EMGref ) with the aim of obtaining during
the rehabilitation training the same no significant difference between the two
sides as in healthy participants.
Figure 6.7 shows the EMG parameter distribution when the movement was
performed by the left and right hand in CTRL group (panel A) and when was
performed/attempted by the unaffected and affected hand in EXP group (panel
B).

A) CTRL group B) EXP group

Figure 6.7. Boxplots of the distribution (N=12) of the EMG parameter extracted in
the window [0-250]ms with respect to the EMG onset during A) finger extension
performed with the left and right hand by healthy participants and B) move-
ment/attempt performed with unaffected and the affected hand by the stroke
participants. The symbol ** indicates a statistical difference as revealed by
Wilcoxon signed-ranks test (p<0.01).



146
6. An adaptive EMG-based feedback modulation strategy to use in a BCI

context

The interquartile range of the ratio between the EMG parameter of the left
and the right side in CTRL group resulted to be equal to 64% Thus, such range
is used a potential range of tolerance for EMGref in the adaptive algorithm.
In this way, when the EMG parameter extracted after the BCI’s movement
detection is under the activation threshold (EMG at rest), a FES intensity equal
to Imax is delivered to the patient and the percentage of stimulation decreases
with the increasing of the EMG parameter until when the ratio between the
EMG parameter and EMGref is in the range of tolerance. Analyses on a larger
group of participants are needed to confirm such results.

6.5 Discussion and future steps
The developed system manages to apply different stimulation strategies to the
patient during a rehabilitation training based on BCI-triggered FES or only FES.
In the BCI modality, the FES intensity can be modulated by patient’s residual
or recovered muscle activity. The modularity of the system design allows to
customize each block according to rehabilitative needs. The communication
protocol chosen guarantees the reliability and the timing of the processes.
Through the preliminary study performed to build the adaptive algorithm for
the myoelectric modulation of FES intensity, the compatibility between the
EMG and FES electrodes location was assessed and the EMG parameter to
use for extracting the residual muscular activity was defined. The reference
muscular activation was identified to build the function of the compensatory
strategy used to modulate the FES intensity.

Such system would provide a rehabilitative tool customisable to the patient’s
rehabilitation stage and potentially valuable for a longitudinal personalized
treatment [57]: following the patient from a severe impairment to the functional
recovery. Indeed, when a severely impaired patient has no residual activity, the
BCI triggers the FES, upon movement detection, and the FES intensity delivered
is the maximal one to obtain the full movement. Then when he/she progressively
recovers the hand function and has a residual myoelectric activation, the FES
intensity provides a muscular recruitment complementary to the natural one
detected by the EMG and needed to complete the movement. Higher the EMG
parameter and tinier the contraction induced by the stimulation, which even
if it goes under the motor recruitment threshold, can still provides a sensory
feedback on the patient’s skin until the functional movement is completely
recovered.
Validation of the hybrid system will be performed to evaluate the feasibility
of the approach and refine the modulation strategy through a experimental
paradigm designed ad-hoc for the desired rehabilitative exercises (upward and
outward deviations of the hand extension). A proof-of-concept study based on
a longitudinal trial will be performed on one patient with severe impairment
recruited within the inpatients service of Fondazione Santa Lucia, IRCCS,
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Rome, Italy.
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Conclusion

The studies performed in this section assessed that CMC features are valuable
features to discriminate in real-time different hand movements from rest condi-
tion in both healthy subjects and individuals with a diagnosed stroke. Thus,
such features can be used as inputs for a hybrid BCI control.
This prototype is a non-invasive h-BCI that manages to detect movements
in real-time and to send a contingent feedback (i.e., delivery of FES) to the
user based on brain-muscles communication. The two branches it consisted of
allow to detect physiological movements and, if needed, monitoring for incorrect
cortico-muscular patterns of activation related to stroke. Indeed, such a device
was designed to encourage only "correct" movements in a post-stroke BCI-based
rehabilitative intervention.

Moreover, delivering an ecological feedback which is enriched with sensory
inputs via the natural afferent pathways (i.e. via FES) allows to activate all the
spare components of the central nervous system involved in the motor control
[19], [58]. Adapting such feedback intensity to the muscular activation level
would allow to provide a BCI intervention challenging but feasible for the patient,
aimed to recover the motor abilities progressively complementing his/her deficit.

In conclusion, the hybrid system developed here exploiting the patients’
residual or recovered arm activity has the aim to increase the BCI-based
opportunities for upper limb stroke rehabilitation in order to follow patients
along recovery and giving him/her a feedback tailored on his/her rehabilitative
stage, consolidating the role of BCI in rehabilitation.
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General Conclusion

Because of the multifaceted nature of stroke, a BCI system for motor rehabili-
tation should allow to train both brain and peripheral activity, reinforcing the
volition that is brain control over muscular activation together with physio-
logical muscular activation patterns. For this reason, my three years of PhD
were dedicated to the study and the development of a rehabilitative technology
aimed to strengthen the communication between brain and muscles.

I went beyond the state of the art by extending the concept of CMC itself to
a complex pattern of synchronization between brain and muscular activations
thanks to a multivariate approach for connectivity estimation. The properties
of the widespread cortico-muscular patterns proved to be a valuable tool for the
identification of physiological and pathological (stroke-related) characteristics
during motor tasks. Moreover, the ability of cortico-muscular coupling to
detect movement in real-time was assessed. Such feature resulted to be able to
detect movements with high performance and a timing that allows the temporal
association between the cortical activation and the peripheral stimulation (i.e.
FES). Thus, a BCI-controlled FES system based on CMC features was designed
with the aim to encourage physiological movements and discourage pathological
ones, guiding the patient in the upper limb functions recovery.
The developed system will be validated in the coming months by assessing its
clinical and functional efficacy on upper limb rehabilitation within a Random-
ized Controlled Trial (RCT) in chronic stroke patients undergoing standard
rehabilitation according to the NCT05511207 clinical trial registered online at
clinicaltrial.gov6. The h-BCI intervention will be compared with physiotherapy
intervention focus on the upper limb in which FES is activated externally by the
physiotherapist. Greater clinical improvement is expected in the experimental
group as measured by functional scales (e.g. FMA) accompanied by a reduction
in spasticity.

This BCI-based protocol will allow to exploit the patient’s residual or re-
covered motor abilities, delivering a feedback that is not only functionally
meaningful (e.g. via virtual reality or passive movement of the paretic limb by
a robot), but also tailored to reorganize the targeted neural circuits by provid-

6https://clinicaltrials.gov/ct2/show/NCT05511207

https://clinicaltrials.gov/ct2/show/NCT05511207
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ing rich sensory inputs via the pathways natural afferent. Such system takes
into account not only both the cerebral and muscular activity involved in the
movement, but their interconnection, giving a global vision of the physiological
patterns involved in the movement that has to be recovered.

In conclusion, the hybrid BCI technology developed during my PhD has
the aim to do a step closer to increase the currently available BCI-based
opportunities for upper limb stroke rehabilitation in order to follow patients
along the process of regaining motor abilities. Indeed, such CMC-based BCI
would allow to fill the gap between the early stage of rehabilitation when
severely disabled patients (i.e., plegic) can only imagine the movements during
a BCI-based training intervention [1], [2] and the progressive functional recovery.
This would allow to follow patients along each stage of their rehabilitation path
with a strategy tailored to their level of impairment and hence maximizing the
time and amount of functional recovery with potentially high impact on the
stroke survivors’ quality of life (personalized medicine).
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Re-establishing Cortico-Muscular Communication to enhance recovery: 

development of a hybrid Brain-Computer Interface for post-stroke motor 

rehabilitation 

Stroke is a leading cause of adult serious and long-term disability. Notably, improving upper 

limb functioning is the primary therapeutic goal in stroke rehabilitation to maximize patients' 

functional recovery and reduce long-term disability. Nowadays, Brain-Computer Interfaces 

(BCIs) can be used as add-on to traditional therapies to activate rehabilitative devices directly 

decoding the brain activity of the user noninvasively, e.g. by means of electroencephalogram 

(EEG). However, the consequences of a stroke involve regions apart from the focal lesions due 

to disruption of connections along neural pathways. Therefore, a BCI system for motor 

rehabilitation should allow to train both brain and peripheral activity, reinforcing the volition 

that is brain control over muscular activation together with physiological muscular activation 

patterns.  

In this PhD thesis, Cortico-Muscular Coupling (CMC), which measures the synchronization 

between central and peripheral activation (recorded respectively through EEG and 

electromyogram – EMG), was studied as feature to detect movement attempts and to reinforce 

the physiological brain control of muscles activity. 

The widespread functional brain-muscle connectivity (derived from multiple EEG-EMG pairs) was 

characterized and compared in healthy subjects and stroke patients by means of indices derived 

ad-hoc from graph theory. CMC resulted to contain information about the movement type 

performed as well as the general clinical status of stroke patients in terms of their hand 

functionality, showing a high potential to be used as input of hybrid BCI (h-BCI) systems. 

Thus, a processing pipeline for the translation of CMC computation and the consequent CMC-

based movement detection from offline to real-time was defined and optimized. A novel h-BCI 

prototype aimed to Re-establish Cortico-Muscular communication was developed and its 

feasibility was validated. Moreover, a study on the strategy of the feedback delivery (i.e. 

Functional Electrical Stimulation - FES) was performed with the ultimate aim of tailoring the 

stimulation to patients’ impairment.  

Such rehabilitative prototype recognizes close-to-normal EEG-EMG coupling during hand 

movement attempts, taking into account both the CMC features to reinforce during the h-BCI 

training, and the ones to discourage to avoid the maladaptive movement abnormalities typical 

of post-stroke recovery. Upon movement detection, it triggers the delivery of FES to the target 

muscle to support full movement execution. Such system resulted to be reliable and easy-to-use 

with high accuracy and timing.  

The developed hybrid device would allow to follow patients along recovery with a strategy 

tailored on their rehabilitative stage and hence maximizing the time and amount of functional 

recovery with potentially high impact on the stroke survivors' quality of life (personalized 

medicine). 
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