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a b s t r a c t

This study presents a novel, semi-automated approach for integrating decision rules and object-based
image analysis (OBIA) methods for identifying and mapping karst zones and landforms. We developed
a multi-resolution segmentation approach using an Approximate Gaussian function to compute the
degree of fuzzy memberships of object-based features and applied it to Sentinel-2 satellite images and
a digital elevation model. The object based features and decision rules were applied to identify and detect
karst landforms in the semi-automated approach. The efficiency of each technique was examined based
on two case studies in Takht-Soleiman and Parava-Biston in Iran using a fuzzy synthetic evaluation (FSE)
approach and ground control points. The validation of the karst landform detection and delineation
yielded high accuracies for the six prominent landforms, namely Dolin (96.8%), Ouvala (99.2%), Lapiez
(95.1%), Canyon (98.3%), Polje (96.1%) and Karren (97.4%), respectively. Based on the research outcome,
we conclude that the combined use of spatial (e.g. shape index, compactness, asymmetry), spectral
(e.g. brightness, mean and standard deviation) and textural (grey-level co-occurrence matrix, GLCM) fea-
tures allows us to detect and map karst landforms efficiently. This fuzzy rule object-based approach can
enhance the accuracy of geomorphological and geological maps and allows for a regular update of the
usually labor-intensive geological mapping campaigns.
� 2022 National Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Karst zones are the main source of drinking water in many
regions (Kalhor et al., 2019). A karst area is a type of terrain that
encompasses a significant thickness of limestone mass. Such
limestone areas are characterized by interesting landforms that
are created by underground drainage (Waltham and Fookes,
2005). Specifically, the karst landforms differentiated based on
their features are the Dolin, Ouvala, Lapiez, Canyon, Aven, Polje,
Karren and Cave. Maps showing the various landforms in a karst
area are key in efficient water resource management because of
the potential of these areas to store and transmit large quantities
of water (Kalhor et al., 2019). Landforms exhibit the physiological
and morphological characteristics of the earth, which can
contribute to aid our understanding of past and presently active

processes of it (Gerçek, 2010). Generally, landform information is
available in analogue format in the form of geomorphological
maps, which indicate land units based on their genesis, material
and shape (Robson et al., 2020).

There are three approaches to exploring and recognizing karst
phenomena, namely the engineering geological classification, dril-
ling, and geophysical prospecting (Alexopoulos et al., 2011;
Vargemezis et al., 2012; Zaidi and Kassem, 2012; Farooq et al.,
2012; Putiska et al., 2014). However, these methods provide lim-
ited tools for identifying a karst area and mapping its landforms
(Hofierka et al., 2018). The geophysical methods, for instance, pro-
vide some critical underground information such as a vulnerability
evaluation and hazard calculation or groundwater exploration
(Chalikakis et al., 2011). Mapping karst areas and the associated
landforms still depends on traditional and manual mapping tech-
niques (Groppelli and Viereck-Goette, 2010). Furthermore, the
mapping of karst areas and their respective landforms is costly
and labor-intensive due to the limited availability of data
(Mohamed and Verstraeten, 2012). Hence, there is a significant
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need for faster methods that provide a low-cost option for identi-
fying karst areas and mapping the associated landforms.

Satellite observation data now provides up-to-date spectral
imagery with a high spatial and temporal resolution via different
sensors with which we can detect the earth’s landforms at the glo-
bal scale (Pederson, 2016; Kazemi Garajeh and Feizizadeh, 2021).
In this context, the benefits of using remote sensing imagery have
led to the development of semi-automated and automated
approaches for extracting and mapping environmental features
based on their object-based properties, for example using object-
based image analysis (OBIA) (Najafi et al., 2019; Kazemi Garajeh
et al., 2021). Semi-automated OBIA uses object-based rule sets
and applies them to a variety of satellite images. In the domain
of remote sensing, this approach has gained prominence because
of its ability to overcome the weaknesses of the traditional image
processing techniques (e.g., the pixel-based approach) by integrat-
ing contextual and geometric information with the spectral prop-
erties (Drăgut� and Eisank, 2012; Feizizadeh et al., 2017). This
rule-based approach can determine readily utilizable objects from
images and serves to bridge the gap between GIS spatial analysis
and image processing for modelling land objects based on spectral
and spatial information simultaneously (Thouret et al., 2015;
Simionato et al., 2021). OBIA can be applied to an object that con-
sists of grouped pixels. It uses spectral and textural neighborhood
relationships and shape characteristics information to classify
objects (Amatya et al., 2021; Lima et al., 2021). Additionally, the
rule-based approach allows users to apply local variation to analy-
ses and that it can take advantage of user’s knowledge at various
stages of the classification approach (Najafi et al., 2021).

In the last decade, the application of OBIA for geomorphological
landform detection and mapping has increased significantly
(Drăgut� and Blaschke, 2006; Martha et al., 2010; Hölbling et al.,
2012; Minar et al., 2018; Comert et al., 2019; Bandura et al.,
2021), and detection of volcanic landforms (Van Asselen and
Seijmonsbergen, 2006; Kassouk et al., 2014; Thouret et al., 2015;
Feizizadeh et al., 2021a). Several researchers also have applied
remote sensing datasets, including LiDAR, airborne laser scanning,
and digital elevation model for karst landforms identification and
mapping (Waele et al., 2015; Silva et al., 2017; Hofierka et al.,
2018; Garcia and Grohmann, 2019; Su et al., 2021). In this regard,
the present study represents a new semi-automated fuzzy object-
based approach to detect and map a karst area and its landforms,
including Dolin, Ouvala, Lapiez, Canyon, Polje and Karren. There-
fore, we use Sentinel 2 images and auxiliary data such as a DEM
and its derivatives (e.g. slope, flow direction, flow accumulation)
in the case study areas of Takht-Soleiman and Parave-Biston
mountains northwest and west Iran, respectively.

2. Location and geomorphological properties of the study areas
and datasets

2.1. Case study area 1

Takht-Soleiman is situated in northwest Iran (Fig. 1) and is a
tourist destination because of its historical monuments such as
Azergoshnasb temple and Soleiman prison. From a geological per-
spective, the Takht-Soleiman basement rocks are Precambrian. The
geological activities of the area have included repeated episodes of

Fig. 1. Location of case study area 1, a) in Iran, b) in the west Azerbaijan province, and c) in Takht-Soleiman.
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orogenous activity, rifting, sedimentation and magmatism (Rezaei
Moghaddam et al., 2011). The formations of the Takht-Soleiman
area include various rock types of metamorphic, igneous and sed-
imentary origin that span in age from the Precambrian to the Ceno-
zoic (Geology organization of Iran, 2012). The sequence of rock
formations in the area is as follows: Precambrian metamorphic
rocks, Precambrian and Cambrian sedimentary rocks, Paleozoic
metamorphic rocks, Oligocene sedimentary and volcanic rocks
and Pliocene and young Quaternary deposits (Omrani et al.,
2020). Most of the study area is covered by metamorphic rocks
(Gneiss, Amphibolite, Mica and Schist). These types of rocks are
characterized by rough topography that forms at the highest alti-
tudes (Rezaei Moghaddam et al., 2011). Fig. 2 represents the geo-
logical features of Takht-Soleiman.

2.2. Case study area 2

The Parave-Biston Mountain (with an area of 879.3 k2) is
located in the northeast of Kermanshah province, in west Iran
(Fig. 3). The Parave-Biston Mountain is a limestone mass dating
back to the Triassic to late Cretaceous (Entezari and Aghaeipour,
2018). The evaluation of exo-karst formations in the Parave-
Biston Mountain indicates that the dissolution process at various
levels has created a particular landscape and topography (e.g.,
karst zones and landforms) with a specific geomorphic signature.
It is characterized by underground drainage systems with sink-
holes and caves (Billi et al., 2016). The wider area of Parave-
Biston Mountain is covered by limestone that formed at the end
of the Cretaceous on the folded Zagros mountain range. Therefore,

the complex and utterly failed construction in this area reflects the
intense orogenous activities in the past and present that have led
to the development of various karst landforms. Fig. 4 represents
the geological features of Parave-Biston as second case study area
(Karimi and Sharafi, 2016).

2.3. Datasets

We used Sentinel 2 images with a spatial resolution of 10 m to
detect and map the karst landforms. Topographic maps acquired in
digital format from the Iranian National Cartographic Center were
properly processed to generate Digital Elevation Models (DEMs) of
each area. We then applied all reformatting and editing and pro-
duced the digital elevation model. Next, we employed spatial anal-
ysis in ArcGIS 10.4.1 to derive the secondary data, namely the
slope, aspect, flow direction, curvature, hillshade, and flow accu-
mulation to integrate the satellite images and GIS dataset for the
detection and mapping of the karst landforms. In addition, the field
observation dataset was collected by GPS in both case study areas.
We collected 210 GPS control points (both point and polygon
recorded by GPS) for both study areas to be used as training data
and as ground control points to validate the results. Geological
and geomorphological maps of the study areas were also consid-
ered for the validation analysis and accuracy assessment.

3. Methodology

OBIA comprises three main steps, namely segmentation, classi-
fication, and accuracy assessment (Kassouk et al, 2014). To detect

Fig. 2. Geological features of Takht-Soleiman as the first case study area (Geology organization of Iran, 2012).
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and delineate karst areas and associated landforms, we first
employed a multi-resolution segmentation algorithm on satellite
images followed by a fuzzy rule-based classification in eCognition
software from Trimble Geospatial. In the third stage, the FSE
method is applied to determine the accuracy of the classification
results (Fig. 5).

3.1. Image segmentation

Image segmentation is one of the most critical steps in object-
based image analysis (Möller et al., 2007). The main aim of this
process is to subdivide the digital image into smaller objects based
on the spatial and spectral information (Feizizadeh et al., 2021b).
Our present study emphasizes the applicability of the multi-
resolution segmentation algorithm for generating the image
objects for fuzzy rule-based classifications. The multi-resolution
segmentation algorithm is a bottom-up region-merging segmenta-
tion algorithm that is frequently used for image segmentation in
earth science (Liu et al., 2005; Blaschke, 2010). In multi-
resolution segmentation, the scale factor is considered as the
heterogeneity threshold for the color or spectral information. This
factor also determines the proximity degree of the grey value to
each other in an image object (Attarzadeh and Momeni, 2012).
Determining an appropriate scale parameter, shape and compact-
ness factors are critical in the segmention process to carry out a
successful image analysis (Blaschke et al., 2014). Thus, several scale
parameters were examined based on previous experience and
using an iterative ‘‘trial-and-error” approach to achieve the most
appropriate scale parameter, shape and compactness factors.

Table 1 shows the segmentation parameters we used in this study
to identify and detect the karst zones and landforms. Fig. 6 also
depicts various segmentation scales employed to achieve an
appropriate scale and its parameters.

3.2. Classification and selection of efficient object-based features

The classification is commonly based on rulesets in the OBIA
methodology. The rulesets describe the relationships between
properties and may have weighting factors. The object features
have properties such as color, shape, texture, scale and area.
Class-associated features include a connection to nearby objects
and features such as statistical similarities and nearest neighbor
(Amatya et al., 2021). To identify and detect the karst zones and
landforms, we included the obtained fuzzy membership degrees
of the sample objects as the experimental information. Each object
was classified based on various features, including geometric char-
acteristics and the average pixel information per object (Ruggeri
et al., 2021; Kazemi Garajeh et al., 2022). To calculate the member-
ship degree values of the functions, we tried to select a pure object
from the karst zones and respective landforms separately to allo-
cate a set of membership values (i.e. a number of values) for each
selected function. We then employed a total of 22 appropriate
object-based features (e.g. spectral, shape and textural features)
to compute a fuzzy membership degree. We also applied the
Approximate Gaussian function to obtain the fuzzy membership
values of each feature. Table 2 indicates the object-based features
used to calculate the fuzzy membership degree.

Fig. 3. Location of case study area 2, a) in Iran, b) in Kermanshah province, and c) in Parave-Biston.
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3.3. Validation analysis

We used the Fuzzy Synthetic Evaluation (FSE) approach to
obtain the accuracy of the classification results. The FSE is based
on a sufficient combination of linguistic fuzzy operators
(Sarmento et al., 2008). In this context, the main purpose of the
FSE approach is to integrate the matches and non-matches that
exist between a map classified using the fuzzy technique and a ref-
erence map (Pontius and Cheuk, 2006). The FSE allows us to esti-
mate the overall and per-class accuracy of a classified map using
the weighted sum of sample observation proportions in each Dif-
ference category per class in the map (Sarmento et al, 2008). The
Difference categories were weighted based on the proportion of
area occupied per primary and alternate reference landform
classes in each sample observation. For instance, a maximum area
of 91% is occupied by Canyon landform in VHCC situations (see
Table 3 for further understanding).

We assume our classes as N in the classified map labelled as C1

to CN , organized as a set of labels X ¼ C1toCNf g, and that a piece
sample observation is allocated to only one class and only one Dif-
ference category D ¼ VHCC; � � � ;VHEf g. If PN;d is the proportion of
sample observations from map class CN in Difference category d
and Wd the respective weight defined for the FSE appliance, then,
the computed accuracy PN for map class CN can be computed as
per equation (3).

PN¼
P

dPN;d
�Wd ð3Þ

To apply the FSE approach, we used field observation data col-
lected by GPS in both case study areas as reference data and com-
puted the respective confidence levels of FSE (Table 3).

4. Results

4.1. Detection and delineation of karst landforms

In this study, we developed an integrated OBIA and fuzzy rule-
based classification approach and applied it to identify and map
the karst zones and associated landforms, namely the Dolin,
Ouvala, Lapiez, Canyon, Polje and Karren in the two study areas
of Takht-Soleiman and Parava-Biston. Figs. 7–14 depict the
observed and delineated karst landforms.

Table 4 gives the results of the accuracy assessment based on
FSE for the study areas. As the results of the validation indicate,
all of the considered landforms are outlined and delineated with
an appropriate level of confidence (>95%).

5. Discussion

In this study, we applied a semi-automated OBIA approach to
identify and map karst landforms. The result of the FSE approach
indicates that the karst zones in the Takht-Soleiman and Parave-
Biston mountain study areas and the associated classes of Dolin
(96.8%), Ouvala (99.2%), Lapiez (95.1%), Canyon (98.3%), Polje
(96.1%) and Karren (97.4%) landforms were validated with a satis-
factory accuracy. The present study represents a significant step
towards the development and implementation of a flexible, low
cost and semi-automated fuzzy-OBIA approach for landform detec-
tion and delineation. Previous researchers (e.g., Waele et al., 2015;
Silva et al., 2017; Hofierka et al., 2018; Garcia and Grohmann,
2019; Su et al., 2021) have employed remote sensing datasets for
karst zone and associated landform detection and delineation. This

Fig. 4. Geological features of Parave-Biston as the second case study area (Geology organization of Iran, 2012).
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Fig. 5. The methodology of this study.
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Table 1
The various segmentation parameters used for identifying the karst zones and landforms.

Karst area and their landforms Segmentation algorithm used Scale parameter Shape factor Compactness factor

Karst area of the Takht-Soleiman 600 0.6 0.4
Karst area of the Parava-Bistoon mountain Multi-resolution segmentation algorithm 600 0.6 0.4
Dolin 550 0.8 0.2
Ouvala 570 0.8 0.2
Lapiez 350 0.4 0.6
Canyon 500 0.4 0.6
Polje 700 0.4 0.6
Karren 700 0.4 0.6

Fig. 6. The segmentation scales applied to Sentinel 2 image; a: 550 (Dolin), b: 350 (Lapiez), c: 700 (Karren), d: 700 (Polje), e: 500 (Canyon), f: 570 (Ouvala).
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work is the first to employ a fuzzy object-based approach to detect
and classify the karst zone and associated landforms. Our intro-
duced approach was uniquely suited to identify and map a compli-
cated and dynamic karst zone and its landforms. The approach we
outline here is particularly promising for landform detection and
delineation in other parts of the world. Our introduced approach
can be used as a fast and low-cost tool for researchers and geomor-
phologists to detect and delineate the earth’s landforms.

Fuzzy classification can typically be employed in many different
ways, such as applying fuzzy classifiers, neural network
approaches or softening the output of hard classifications (e.g.,
with the maximum likelihood method) (Feizizadeh, 2018).
Nevertheless, using a soft classification based on membership
values is considered to be a major advantage of the fuzzy approach
(Hofmann et al., 2011). Object class membership values in fuzzy
OBIA represent the likelihood of the object belonging to each class
based on the membership function selected by experts or derived
from training data. Therefore, classification uncertainty can be
represented by objects that have relatively high membership val-
ues to more than one class or do not have sufficiently high mem-
bership values to belong to any class (Blaschke, 2010).

According to the results of our study, the OBIA approach per-
forms best for karst landform detection and mapping. In the con-
text of object-based karst landform detection, OBIA enables us to
apply object features, spatial relationships and expert knowledge
during the segmentation, classification and validation stages. In

terms of the karst landform mapping, certain geometric features
such as shape index, length/width, density, and roundness are
considered more efficient features. The geometric features are
based on image objects obtained from the segmentation process.
The geometric properties can be rotation variant because of their
raster-based images. As shown in Table 4, the geometric features
such as shape index, roundness, density and compactness per-
form well in the identification and detection of karst landforms
because of the landforms’ specific shapes such as a circle (Dolin)
and linear shape (Canyon). In terms of the textural features for
karst zone and landform mapping, the grey-level co-occurrence
matrix (GLCM) based on contrast and standard deviation was
identified as the most efficient feature for karst landform map-
ping. Therefore, the textural features’ GLCM was applied to eval-
uate the feasibility of the image objects to be in the karst zone
and landform classes based on an analysis of sub-objects that are
helpful for evaluating highly textured data according to the
GLCMs. According to our results, combining spectral features
such as the brightness and mean of object images with informa-
tion derived from GIS spatial analysis such as elevation and its
derivatives including flow direction, flow accumulation, slope,
curvature, hillshade and aspect can be efficiently applied for
karst landform mapping. The spatial and geometric features,
including length/width, shape index, roughness also yielded a
high level of confidence for karst landform mapping. To sum
up, the analysis of the result of the present research indicates

Table 2
Membership degrees obtained using the Approximate Gaussian function for features.

Faeture Case study 1 Case study 2 Dolin Ouvala Lapiez Canyon Polje Karren

Brightness 1 1 0 0 0 0 0 0
Mean hillshade 0 0 0.903 0.881 0 0 0 0
Mean elevation 0 0 0 0 0.901 0.891 0 0.901
Mean flow direction 0 0 0.993 1 0.952 0.972 0.912 0
Mean flow accumulation 0 0 0 0 0 0 0 0.991
Mean aspect 0 0 0 0 0.948 0 0 0.965
Mean slope 0 0 0 0 0.962 0.993 0 0
Mean band 2 0 0 0 0 0 0 0.903 0
STD band 3 0 0 0 0 0 0 0.92 0
STD flow direction 0 0 1 0.980 0 0 0.936 0
STD curvature 0 0 0 0 0.909 0 0 0
Length/width 0 0 0 0 0 0.963 0 0.932
Area 0 0 0.977 0.956 0 0 0 0
Border length 0 0 0.963 0 0 0 0 0
Asymmetry 0 0 0 0 0 0 0.945 0.914
Main direction 0 0 0 0 0 0 0 0.902
Shape index 0 0 0.942 0.965 0.969 0.975 0.958 0
Compactness 0 0 0 0 0.97 0 0 0
Roundness 0 0 0 0 0.930 0 0 0
Density 0 0 0 0 0.920 0 0.919 0
GLCM contrast 0.992 0.989 0 0 0 0 0 0
GLCM STD 0.985 0.982 0.972 0 0 0 0 0

Table 3
Difference function and respective default values for each category.

Accuracy Level of Confidence Class map ICR %

Demand class Alternative class

Confidence in classification Very High Confidence in Classification (VHCC) * � 90
High Confidence in Classification (HCC) * � 85
Acceptable Confidence in Classification (ACC) * � 80
Reduced Confidence in Classification (RCC) * 80 �
Very Reduced Confidence in Classification (VRCC) * 50

Magnitude of errors Acceptable Error (AE) 50 �
High Error (HE) � 85
Very High Error (VHE) � 90
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that the OBIA approach had optimal performance when compar-
ing the segmented areas with the assessed ground truth for
detecting and mapping the karst landforms.

In the use of fuzzy object-based remote sensing for the identifi-
cation of karst zones and associated landforms, we have found one
main challenge that refers fuzzy OBIA has not yet been widely
applied for the detection and delineation of earth’s dynamic land-
forms, thus creating difficulties in choosing an appropriate scale
factor and function for various types of landform classification.
Further research in this area should include the development of
our approach to detect and map other karst landforms such as
Tower, Glaciokarst, Cone and Fluvikarst. We also recommend
future research regarding the efficiency of remote sensing-based
spectral indexes such as Karst Bare-Rock Index (KBRI), Karst Rocky
Desertification Synthesis Indices (KRDSI) and Spectral Mixture
Analysis (SMA) for the precise detection and delineation of karst
zones and associated landforms (Yue et al., 2009; Pei et al., 2018;
Qi et al., 2019).

6. Conclusion and outlook

Review of the research literature indicates that previous stud-
ies identified and classified karst landforms primarily based on
traditional techniques such as engineering geological classifica-
tion, drilling and geophysical prospecting methods. In this paper,
we present a new semi-automated object-based approach for
detecting and mapping karst landforms. According to our results,
the OBIA approach provides satisfactory results for detecting and
mapping a karst area and its landforms. In the context of karst
landform mapping, our study also provides detailed results
regarding the efficiency of the use of object-based features
instead of a per-pixel analysis. The results also reveal the unique
capability of OBIA to integrate and combine data from various
sources, which was indispensable for identifying and delineating
some of the karst landforms. The good performance of our semi-
automated approach for karst landform detection and mapping
is based on the integration of OBIA and a fuzzy ruleset. The

Fig. 7. Identified karst zones on, a, d) geological map, and c, d) identified kars zones on Sentinel-2 image using the Fuzzy-OBIA approach in Takht-Soleiman.
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outcome of this study can significantly contribute to developing
the GIScience and OBIA frameworks. The nature of the semi-
automated methodology allows us to transfer the developed
ruleset and to apply it to karst landform mapping in other case
studies after some adaptation and using different thresholds. The
authors are confident that this will support future research in
determining karst landforms cost-effectively and efficiently. Our
results illustrate the high efficacy of the OBIA approach to

improve the accuracy of existing geomorphological maps and
for updating such maps.
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The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Fig. 8. Dolin landform detected using the Fuzzy-OBIA approach based on Sentinel-2 and auxiliary data in Takht-Soleiman.
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Fig. 9. Ouvala landform detected using the Fuzzy-OBIA approach based on Sentinel-2 and auxiliary data in Takht-Soleiman.
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Fig. 10. Identified karst zone using the Fuzzy-OBIA approach in the Parava-Bistoon.
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Fig. 11. Lapiez landform detected using the Fuzzy-OBIA approach in the Parava-Bistoon.
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Fig. 12. Canyon landform detected using the Fuzzy-OBIA approach in the Parava-Bistoon.
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Fig. 13. Polje landform detected using the Fuzzy-OBIA approach in the Parava-Bistoon.
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Drăgut�, L., Eisank, C., 2012. Automated object-based classification of topography
from SRTM data. Geomorphology 141–142, 21–33.

Entezari, M., Aghaeipour, Y., 2018. Zonation of Surface Karst Development using
Entropy Model (Case Study: Parâw - Bisetoon Mountain Masses). J. Geogr.
Environ. Plann. 29, 8–21. In Persian.

Farooq, M., Park, S., Young, S., Kim, J.H., Mohammad, T., Adepelumi, A., 2012.
Subsurface cavity detection in a karst environment using electrical resistivity
(er): A case study from Yongweol-ri, South Korea. Earth Sci. Res. J. 16, 75–82.

Feizizadeh, B., 2018. A novel approach of fuzzy Dempster-Shafer theory for spatial
uncertainty analysis and accuracy assessment of object-based image
classification. IEEE Geosci. Remote Sens. Lett. 15, 18–22.

Feizizadeh, B., Blaschke, T., Tiede, D., Rezaei Moghaddam, M.H., 2017. Evaluating
fuzzy operators of an object-based image analysis for detecting landslides and
their changes. Geomorphology 293, 240–254.

Feizizadeh, B., Kazemi Garajeh, M., Blaschke, T., Lakes, T., 2021a. An object based
image analysis applied for volcanic and glacial landforms mapping in Sahand
Mountain, Iran. CATENA 198.

Feizizadeh, B., Garajeh, M.K., Lakes, T., Blaschke, T., 2021b. A deep learning
convolutional neural network algorithm for detecting saline flow sources and
mapping the environmental impacts of the Urmia Lake drought in Iran.
CATENA. 207.

Garajeh, M.K., Feizizadeh, B., 2021. A comparative approach of data-driven split-
window algorithms and MODIS products for land surface temperature retrieval.
Appl. Geomatics 13 (4), 715–733.

Garajeh, M.K., Malakyar, F., Weng, Q., Feizizadeh, B., Blaschke, T., Lakes, T., 2021. An
automated deep learning convolutional neural network algorithm applied for
soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 778.

Garcia, G., Grohmann, C., 2019. DEM-based geomorphological mapping and
landforms characterization of a tropical karst environment in southeastern
Brazil. J. S. Am. Earth Sci. 93, 14–22.

Geology organization of Iran, 2012. www.gsi.ir.
Gerçek, D., 2010. Object-based classification of landforms based on their local

geometry and geomorphometric context, Ph.D., Department of Geodetic and
Geographic Information Technologies, Supervisor: Prof. Dr. Vedat Toprak Co-
Supervisor: Prof. Dr. Josef Strobl March, 202 pages.

Groppelli, G., Viereck-Goette, L. (Eds.), 2010. Stratigraphy and Geology of Volcanic
Areas. Geological Society of America Special, Colorado, United State, p. 291.

Hofierka, J., Gallay, M., Bandura, P., Šašak, J., 2018. Identification of karst sinkholes in
a forested karst landscape using airborne laser scanning data and water flow
analysis. Geomorphology 308, 265–277.

Hofmann, P., Blaschke, T., Strobl, J., 2011. Quantifying the robustness of fuzzy rule
sets in object-based image analysis. Int. J. Remote Sens. 32 (22), 7359–7381.

Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S., 2012. A semi-
automated object-based approach for landslide detection validated by
persistent scatterer interferometry measures and landslide inventories.
Remote Sens. 4, 1310–1336.

Kalhor, K., Ghasemizadeh, R., Rajic, L., Alshawabkeh, A., 2019. Assessment of
groundwater quality and remediation in karst aquifers: a review. Groundwater
Sustain. Dev. 8, 104–121.

Karimi, S., Sharafi, S., 2016. Comparative study of shape and slope changes using
sinusoidal index in karst roughness of Kermanshah province. Geogr. Sci. (Appl.
Geogr.) 12 (25), 50–69. In Persian.

Kassouk, Z., Thouret, J.C., Gupta, A., Solikhin, A., Liew, S.C., 2014. Object-based
classification of a high-spatial resolution SPOT5 image for mapping geology and
landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology.
221, 18–33.

Kazemi Garajeh, M., Feizizadeh, B., Weng, Q., Rezaei Moghaddam, M.H., Kazemi
Garajeh, A., 2022. Desert landform detection and mapping using a semi-
automated object-based image analysis approach. J. Arid Environ. 199.

Lima, F., Blanco-Sepúlveda, R., Gómez-Moreno, M.L., Dorado, J., Peña, J.M., 2021.
Mapping tillage direction and contour farming by object-based analysis of UAV
images. Comput. Electron. Agric. 187.

Liu, Z., Wang, J., Liu, W.P., 2005. Building extraction from high resolution imagery
based on multi-scale object oriented classification and probabilistic Hough
transform. Int. Geosci. Remote Sens. Symposium (IGARSS) 4, 2250–2253.

Martha, T.R., Kerle, N., Jetten, V., Van Westen, C.J., Kumar, K.V., 2010. Characterizing
spectral, spatial, and morphometric properties of landslides for semiautomatic
detection using object-oriented methods. Geomorphology 116, 24–36.

Minar, J., Bandura, P., Holec, J., Popov, A., Drăgut�, L., Gallay, M., Hofierka, J., Kaňuk, J.,
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