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Abstract: The linear parameter-varying (LPV) models have broad applications in advanced mathe-
matics and modern control systems. This paper introduces a new method for controlling the LPV
systems. This method includes the gain-scheduled state-feedback technique and a fuzzy system to
calculate the state-feedback gain. The main goal of the control system is to stabilize the system and
bring its states to equilibrium points. Linear matrix inequalities calculate feedback gains to stabilize
the system. On the other hand, a fuzzy control system also produces a combined signal with the
primary controller signal to speed up this operation. Lyapunov’s theory is used to guarantee the
control system’s stability. Finally, to evaluate the performance of the proposed control system, the
inverted pendulum has been investigated as a case study. The results show that the proposed method
has good efficiency and performance.

Keywords: robust control; fuzzy system; linear parameter-varying systems; linear matrix inequalities;
inverted pendulum

MSC: 93C42; 93D05; 93C40

1. Introduction

The behavior of many dynamic systems can be analyzed with a high accuracy by
linear parameter-varying (LPV) models. These models have attracted a lot of attention.
One of the main reasons for such attention is the potential application of LPV models in
advanced mathematical tools, such as linear matrix inequalities (LMIs), the concept of
convex systems, and interest-scheduling controllers [1,2].

The methods that are frequently used for this problem include optimization-based
techniques (conditions according to an algorithm minimum/maximum), Richard equations,
and convex programming [3]. Most of the methods presented in these articles use unequal
algorithms and the linear matrices of the iteration. The basic form of approach repetition
is that there is no systematic theory to stop the repetition and reach value without a final
value. In operational applications, the objective function after low repetitions achieves this.
However, the values obtained are not necessarily the general response. In other words, the
presented methods have no guarantee of convergence, and there is no specific response.
Another drawback is the lack of a general rule for giving the initial value to recurring
parameters. Thus, conservatism is an integral part of repetitive algorithms [4,5].

In the absence of economic restrictions and physical conditions, such as the location
of sensors, the state-feedback method can also be used. In some applications, operational
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sensitivities and control attitudes require feedback directly from a particular situation. For
example, in many interceptors, the roll rate of a typical missile is essential. Therefore, some-
times the roll rate of a typical missile must be measured directly. Most articles’ common
assumption is that accurate scheduling parameter values are available in real time. This is
a limiting condition in operational applications because the presence of measuring noises,
calibration errors, and other uncertainties is inevitable. Therefore, the designed controllers
must resist the uncertainties created by the scheduling parameters [6,7]. Moreover, in many
operational applications, only some physical parameters can be measured, and others lack
parametric certainties. As a result, parametric uncertainties can also lead to indefinite
scheduling parameters. In [8,9], the effect of the inaccuracy of scheduling parameters has
been investigated. Only aggregate indeterminate is assumed to be present. Inaccurate
scheduling parameters in the form of θ̃i(t) = θi(t) + δi(t) have been represented.

Finally, using the mentioned scheduling parameters, the dynamic output of the state-
feedback controller is designed. A similar display for incorrect scheduling parameters
is provided in [10]. In this reference, the design is based on the dynamic output of the
state-feedback controller. In [11], the problem of designing a full-order state-feedback
controller in incorrect scheduling parameters is considered. The main disadvantage of this
study is that the bias errors are not considered. In other words, the inaccurate schedul-
ing parameter is considered as θ̂(t) = λ θ(t), in which θ(t), θ̂(t), and λ are the exact
scheduling parameters, inaccurate scheduling parameters, and fixed numbers, respectively.
In [12], the full-order state-feedback controller in the presence of incorrect scheduling
parameters has been designed. In this design, two types of collapsible and proportional
uncertainties have been investigated. In [13], the inaccurate parameters in the form of
θ̃i(t) =

(
1 + δ

p
i (t)

)(
θi(t) + δa

i (t)
)

are considered and the full-order state-feedback con-

troller is designed. δa
i (t) and δ

p
i (t) can be interpreted as additional and proportional

uncertainties. Moreover, in [10], the effects of inaccurate scheduling parameters in the
design of state-feedback controllers have been investigated. The inequalities obtained in
this work are solved by the iterative method. As mentioned earlier, iterative approaches
face many challenges, including setting initial conditions [14].

The studies mentioned above use multiplicative and collapsible models to express
inaccurate scheduling parameters and design processes. One of the most critical challenges
in gain-scheduled controllers is the presence of time-invariant uncertainty in the LPV
systems. Because of gain scheduling, controllers make sense of time changes. However, the
mentioned uncertainties are fixed and uncertain. Indeed, we are dealing with two opposing
concepts. Therefore, the interest rate controller designer’s main challenge is to consider
both concepts. In such a case, the difficulty of design increases when uncertainty that does
not change with time cannot be explicitly extracted. Few articles have studied both of
these phenomena. It should be noted that the studies above have considered parametric
uncertainties without using the parameter variable systems approach [15,16].

Although the approaches presented in these articles have been practical, the unde-
niable problem of the proposed approaches in the mentioned articles is their presence
of computational difficulties, such as complex return relations, and the imposition of the
assumptions on the dynamics of nonlinear systems. For these reasons, designers prefer to
use the parameter variable systems approach to control nonlinear systems. Researchers
have used parametric variable systems in [17] and considered parametric uncertainties that
do not change with time. The reference [18] presents the feedback-mode control method in
the presence of parametric uncertainties that do not change with time. One of the main
challenges of this paper is to consider the input matrix constant. In other words, only the
state matrix is considered a variable parameter. In this paper, the input matrix is affected
by parametric uncertainties that do not change over time. However, it is assumed that
the range of these uncertainties is small, and as a result, these uncertainties have been
replaced by their own mean values. This causes the input matrix to be considered constant.
It is quite clear that if such a limiting assumption is taken into account, the possibility of
system instability in operating conditions will be greatly increased. Similar issues have
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been investigated in [19–21]. The adjustment of the feedback gain has been investigated
in various studies [22]. Various methods, such as fuzzy [23] and adaptive [24], have been
proposed to achieve this goal. In [25], a feedback gain adjustment method for a quadcopter
with three degrees of freedom is proposed.

System state-space matrices are considered uncertain due to invariant parametric
uncertainties. The most critical challenge of this effect is the constraint imposed on the
system state-space matrices. In other words, the assumption was that the uncertainties in
the system state-space matrices could be explicitly extracted from the mentioned matrices.
More precisely, it is assumed that each of the indeterminate matrices of the system state
space can be rewritten as two separate components, the first containing only time-invariant
parametric uncertainties and the second containing exact timing parameters. However, it is
impossible to separate unchanging parametric uncertainties over time in many applications.
For example, aerodynamic coefficients can be considered parametric uncertainties that do
not change over time in interceptor systems. However, the dynamic equations governing
the interceptor are so complex that these coefficients cannot be extracted purely. This is true
in many complex operational applications. To overcome this problem, the reference [26]
of the feedback law has proposed a robust state resistant to parametric uncertainties with
time. In the mentioned reference, the auxiliary timing parameters of the upper and lower
boundaries of the variable with time have been used. These parameters are obtained
by maximizing and minimizing the indefinite timing parameters at any given time and
in the entire interval provided for the indefinite. Such a process must be online and
impose a sizeable computational volume on the processor. For this reason, this method has
limitations in practical applications.

The present paper discusses the design of feedback controllers for the robust state
timing of variable parametric linear systems in the presence of time-invariant parametric
uncertainties. In the first step, we select the desired values from the intervals provided for
the mentioned uncertainties and place them in the indefinite timing parameters instead of
the existing uncertainties. As a result, we will have specific timing parameters. Therefore,
the variable system with the parameter is known. However, the specified parameters
cannot be used to create the final controller because the selected values for the uncertainties
are not necessarily equal to the correct values. Therefore, we are looking for a way to
compensate for this difference. In these cases, we will use the proposed new non-binding
parameters. Thus, according to the intervals defined for parametric uncertainties and the
intervals of changes in parameter-variable system modes, we find values of the parametric
uncertainties that minimize and maximize the indeterminate timing parameters. New
timing parameters will be obtained by placing the ready-made values in the indefinite
timing parameters and their combinations. The feedback controller is then proposed in
a state that the new parameters have timed. The proposed controller is resistant to all
values of the given intervals for parametric uncertainties. In other words, the closed-loop
system will remain stable with whatever arbitrary value we choose for the mentioned
uncertainties. The proposed controller contains all the information about the minimum
and maximum indefinite scheduling parameters. The concept of system convexity, the
matrix linear inequalities, and the Lyapunov stability concept are the tools used to find
the ultimate controller. Finally, the proposed law controls the rolling channel of a kind of
air-to-ground interceptor. The results obtained in the simulations are compared with those
of the hardware laboratory in the loop. One of the solutions to control theory problems,
such as optimization, changes in system dynamics, changes in parameters, etc., is using
computational intelligence. For example, neural networks, fuzzy systems, and evolutionary
algorithms can be used as a complement to classical control methods.

The combination of fuzzy systems and neural networks is now used in various ap-
plications [27]. Currently, various methods of controlling technological objects in a fuzzy
environment based on mathematical models have been presented. These methods can work
well to deal with uncertainties [28,29]. In [30], an adaptive neuro-fuzzy sliding mode con-
trol method is proposed. The proposed method in this study has been implemented on an
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autonomous underwater vehicle (AUV) and the uncertain behavior of the system has been
resolved by a neural network. Another problem that this study has solved is the chattering
phenomenon. This problem is solved using an adaptive fuzzy proportional–integral control.
The fractional orders of the controller of the previous study, i.e., the adaptive neuro-fuzzy
sliding mode control in [31], have been used for the class of fuzzy singularly perturbed
systems. This method works well to deal with system uncertainties. Dealing with internal
disturbances is one of the challenges of any system. In summary, the innovations presented
in this article are:

• Present a novel robust gain-scheduled control for LPV systems.
• A fuzzy control system design for the online determination of feedback gain.
• Proof of control system stability based on the Lyapunov theory.

In the remaining parts, some preliminaries are given in Section 2. The problem is
described in Section 3. Then, a robust state-feedback controller is designed in Section 4. The
simulation results obtained using the proposed controller are given in Section 5. Finally,
the discussion and conclusions are presented in Section 6 and Section 7, respectively.

2. Preliminaries

In the following, the symbols used in this article are presented. I is a single matrix with
suitable dimensions. [Ci]p, [C(i,j)]p×p , Θ(t, η)| η=ηc

, and Θ(t, ηNew)| η=ηNew
are defined

as follows:
[Ci]p =

[
C1 C2 . . . Cp

]
(1)

[C(i,j)]p×p =


C(1,1) C(1,2) . . . C(1,p)
C(2,1) C(2,2) . . . C(2,p)

...
...

C(p,1) C(p,2)

. . .
. . .

...
C(p,p)

 (2)

Θ(t, η)| η=ηc
=
{

θi(t, η)| η=ηc
|i = 1, 2, . . . , p

}
(3)

Θ(t, ηNew)| η=ηNew
=
{

θiNew(t, ηNew)| η=ηNew
|i = 1, 2, . . . , p

}
(4)

where Θ(t, η) ∈ Rp, Θ(t, ηNew)| η=ηNew
∈ Rp are the set of specific and new vector schedul-

ing parameters, respectively, η is a vector of parametric uncertainties that does not change
with time in indefinite scheduling parameters, ηc is the vector of arbitrary values selected
from the defined range for parametric uncertainties, which by placing them in indefinite
scheduling parameters, specific scheduling parameters will be obtained. The vector ηNew
contains ηi,min, ηi,max (i = 1, 2, 3, . . . , p) which are values of parametric uncertainties that
make the −i of the indefinite timing parameter the minimum and maximum, respectively.
The symbol (*) represents the elements below the original diameter of a symmetric matrix.
Moreover, in this paper, parametric uncertainties do not change with time. Parameters
p(t), ρ(t), Ix, h, V(t), S, D, CLδa , δa(t), and CLp , respectively, denote rolling rate
(deg/sec), air intake (kg/m3), moment of inertia around the longitudinal axis (kg-m2),
height (m), interceptor velocity (m/s), interceptor base area (m2), the diameter of the inter-
ceptor (m), the coefficient of change of its rolling torque due to changes in its rolling control
(deg−1), its rolling command (deg), and the damping coefficient of its rolling channel
(deg−1). Moreover, M(t) is the velocity in Mach.

3. Problem Description

Consider a variable system with the following indeterminate parameter:

Ẋ(t) = A(Θ(t, η))X(t) + B(Θ(t, η))u(t) (5)

where A(Θ(t, η)) ∈ Rp×p and B(Θ(t, η)) ∈ Rp×m are the state and input matrices and
Θ(t, η) ∈ Rp are the vectors of the indeterminate timing, respectively. P is the number
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of corners. Moreover, X(t) ∈ Rp and u(t) ∈ Rm are mode vectors and control inputs,
respectively. Select the desired value of the parametric uncertainties, ηc, from the defined
intervals for the existing uncertainties and place it in Θ(t, η) ∈ Rp. Then, we have a variable
linear system with a specific parameter as follows:

Ẋ(t) = A
(
Θ(t, η)

∣∣
η=ηc

)
X(t) + B

(
Θ(t, η)

∣∣∣ η=ηc

)
u(t) (6)

which we call Θ(t, η)
∣∣

η=ηc ∈ Rp as a vector of specified timing parameters. Moreover, the
input and state matrices shown as convex are expressed in the following relation:

A
(
Θ(t, η)

∣∣
η=ηc

)
=

p

∑
i=1

Aiθi(t, η)
∣∣

η=ηc (7)

where

B
(
Θ(t, η)

∣∣
η=ηc

)
=

p

∑
i=1

Biθi(t, η)
∣∣

η=ηc (8)

where Ai and Bi are convex polygonal angles. Suppose the state-feedback control rule is
defined as follows:

u(t) = K(ΘNew(t, ηNew))X(t) =
p

∑
i=1

(KiθiNew(t, ηNew))X(t) (9)

where i = 1, 2, . . . , p and Ki are fixed matrices that must be calculated. In traditional
methods, this parameter is usually calculated by trial and error, but in this article, a fuzzy
system is used to calculate and update the Ki. ΘNew(t, ηNew) ∈ Rp is the vector of the new
scheduling parameters and K(ΘNew(t, ηNew)) is the feedback mode of the scheduling mode.
Moreover, the vector ηNew contains ηi min and ηi max, where i = 1, 2, . . . , p. The terms ηi min
and ηi max denote the minimum and maximum values of parametric uncertainties.

By substituting Equation (9) in Equation (6), we will obtain the following equation:

Ẋ(t) = Ac
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
X(t) (10)

where
Ac
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
=

A
(
Θ(t, η)

∣∣
η=ηc

)
+ B

(
Θ(t, η)

∣∣
η=ηc

)
K(ΘNew(t, ηNew))

(11)

Therefore, the design problem of the feedback control timing mode of variable linear
systems with an indeterminate parameter is defined as follows. Consider a variable
linear system with an indeterminate parameter, Equation (5). The aim is to find the K-state-
feedback gain, so as to overcome the uncertainty of the parameter that does not change over
time, and finally, the stable closed-loop system is asymptotic. New scheduling parameters
must be defined in this path. In the next section, new scheduling parameters and robust
mode feedback controller design methods are presented.

4. The Proposed Control System

As we have stated, by selecting the desired values from the defined range for paramet-
ric uncertainties and placing them in indefinite scheduling parameters, we achieve specific
scheduling parameters. However, the selected values are not necessarily equal to the
actual values. Therefore, new scheduling parameters must be introduced to ensure that the
proposed interest rate scheduling controller creates a smooth and, ultimately, asymptotic
stability of the loop system depending on all values associated with the parameter uncer-
tainty intervals. Now, suppose that the specified timing parameters meet the relational
constraints. The new scheduling parameters are then defined as follows:

θiNew(t, ηNew) =
ai(t)
b(t)

(12)
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where ai(t) and b(t) are as follows:

ai(t) = (p− 1)θi(t, η)
∣∣

η=ηi min +

(p− 1)
(
θi(t, η)

∣∣
η=ηi max + µ

)
−

p

∑
j = 1
j 6= i

( θi(t, η)
∣∣∣ η=ηj max − µ)+

1
p− 1

p

∑
j = 1
j 6= i

p

∑
` = 1
` 6= j

(
θj(t, η)

∣∣
η=η` max

)
+ θi(t, η)

∣∣
η=ηc

(13)

b(t) = (p− 1)

(
p

∑
q=1

θq(t, η)
∣∣∣ η=ηq max +

p

∑
q=1

θq(t, η)
∣∣

η=min +
p

∑
q=1

2µ +
1

p− 1

)
(14)

So that i = 1, 2, . . . , p and ηi min and ηi max are resistances of parametric uncertainties
that make the parameter −i indefinite, minimum and maximum, respectively. Parameter
µ is a non-negative constant value that establishes the inequality

(
θi(t, η)

∣∣
η=ηi max + µ

)
≥(

θi(t, η)
∣∣∣ η=ηj max − µ

)
for i 6= j and i = 1, 2, . . . , p. Parameter η is a parametric uncer-

tainty that does not change over time. ηcis is the preferred vector of choice. Parameter
θi(t, η)

∣∣
η=ηi min , θi(t, η)

∣∣
η=ηi max , θi(t, η)

∣∣∣ η=ηj max and θi(t, η)
∣∣

η=ηc are −i timing param-
eters, respectively, calculated from the placement of ηi min, ηi max, ηj max, and ηc in η.
θj(t, η)

∣∣
η=ηl max is the timing parameter −j, obtained by placing ηl max in η. Parameter p is

the number of corners. The definitions of θq(t, η)
∣∣∣ η=ηq min and θq(t, η)

∣∣∣ η=ηq max are similar

to θi(t, η)
∣∣

η=ηi min and θi(t, η)
∣∣

η=ηi max , respectively.
In following, we prove that Equations (13) and (14) will form the timing parameters.

First, we prove that θiNew(t, ηNew) are non-negative. By choosing µ, we can extract the
Equation (14) by selecting the appropriate value for inequalities. As a result, the following
relation holds:

(p− 1)
(
θi(t, η)

∣∣
η=ηi max + µ

)
−

p

∑
j = 1
j 6= i

(
θi(t, η)

∣∣∣ η=ηj max − µ
)
≥ 0 (15)

It is also clear that the following terms are non-negative:

(p− 1)
(
θi(t, η)

∣∣
η=ηi min

)
,

θi(t, η)
∣∣

η=ηc ,
1

p− 1

p

∑
j = 1
j 6= i

p

∑
` = 1
` 6= j

θj(t, η)
∣∣

η=η` max
(16)

Thus, ai(t) is non-negative. Moreover,
p
∑

q=1
θq(t, η)

∣∣∣ η=ηq max ≥ 0 ,
p
∑

q=1
θq(t, η)

∣∣∣ η=ηq min ≥ 0,

and p− 1 is positive. As a result, b(t) is positive, and θiNew(t, ηNew) =
ai(t)
b(t) is non-negative

for all values of i = 1, 2, . . . , p. Now, we show that the following relations are correct:

θi(t, η)
∣∣

η=ηi max + µ ≥ θi(t, η)
∣∣

η=η1 max − µ,
θi(t, η)

∣∣
η=ηi max + µ ≥ θi(t, η)

∣∣
η=η2 max − µ,

...
θi(t, η)

∣∣
η=ηi max + µ ≥ θi(t, η)

∣∣∣ η=η(i−1) max − µ,

(17)
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(p− 1)
(
θi(t, η)

∣∣
η=ηi max

)
≥


θi(t, η)

∣∣
η=η1 max + θi(t, η)

∣∣
η=η2 max

+ . . . + θi(t, η)
∣∣∣ η=η(i−1)max

+θi(t, η)
∣∣∣ η=η(i+1) max + . . .

+θi(t, η)
∣∣

η=p max − (p− 1)µ

 (18)

θi(t, η)
∣∣

η=ηi max + µ ≥ θi(t, η)
∣∣∣ η=η(i+1) max − µ,

...
θi(t, η)

∣∣
η=ηi max + µ ≥ θi(t, η)

∣∣∣ η=ηp max − µ,
θiNew(t, ηNew) ≤ 1

(19)

To continue the proof, we need to expand sentence ai(t). Equation (20) shows an extended
ai(t). Note that p− 1 ≥ 1, so relations (21)–(23) will be obtained.

ai(t) = (p− 1)θi(t, η)
∣∣

η=ηi min + (p− 1)θi(t, η)
∣∣

η=ηi max

+2(p− 1)µ− θi(t, η)
∣∣

η=η1 max − θi(t, η)
∣∣

η=η2 max

− · · · − θi(t, η)
∣∣∣ η=η(i−1) max − θi(t, η)

∣∣∣ η=η(i+1) max

− · · · − θi(t, η)
∣∣∣ η=ηp max + θi(t, η)

∣∣
η=ηc

+
1

p− 1



θ1(t, η)
∣∣

η=η2 max + θ1(t, η)
∣∣

η=η3 max + . . . + θ1(t, η)
∣∣

η=ηi max

+ . . . + θ1(t, η)
∣∣∣ η=ηp max + θ2(t, η)

∣∣
η=η1 max + θ2(t, η)

∣∣
η=η3 max + · · ·

+θ2(t, η)
∣∣

η=ηi max + · · ·+ θ2(t, η)
∣∣∣ η=ηp max + · · ·+ θ(i−1)(t, η)

∣∣
η=η1 max

+θ(i−1)(t, η)
∣∣

η=η2 max + · · ·+ θ(i−1)(t, η)
∣∣∣ η=η(i−2) max + θ(i−1)(t, η)

∣∣
η=ηi max

+ · · ·+ θ(i−1)(t, η)
∣∣∣ η=ηp max + θ(i+1)(t, η)

∣∣
η=η1 max + θ(i+1)(t, η)

∣∣
η=η2 max

+ · · ·+ θ(i+1)(t, η)
∣∣

η=ηi max + θ(i+1)(t, η)
∣∣∣ η=η(i+2) max + · · ·+ θ(i+1)(t, η)

∣∣∣ η=ηp max

+ · · ·+ θp(t, η)
∣∣

η=η1 max + θp(t, η)
∣∣

η=η2 max + · · ·+ θp(t, η)
∣∣∣ η=η(p−1) max


(20)

θ1(t, η)
∣∣

η=η1 max + 2µ ≥ 1
p−1 θ1(t, η)

∣∣
η=η` max , 1 < ` ≤ p,

⇒ (p− 1)
(
θ1(t, η)

∣∣
η=η1 max + 2µ

)
≥

1
p−1

(
θ1(t, η)

∣∣
η=η2 max +θ1(t, η)

∣∣
η=η3 max + · · ·+θ1(t, η)

∣∣∣ η=ηp max

) (21)

θ2(t, η)
∣∣

η=η2 max + 2µ ≥ 1
p−1 θ2(t, η)

∣∣
η=η` max , 1 ≤ ` ≤ p, ` 6= 2

⇒ (p− 1)
(
θ2(t, η)

∣∣
η=η2 max + 2µ

)
≥

1
p−1

(
θ2(t, η)

∣∣
η=η1 max +θ2(t, η)

∣∣
η=η3 max + · · ·+θ2(t, η)

∣∣∣ η=ηp max

) (22)

and so on until

θp(t, η)
∣∣∣ η=ηp max + 2µ ≥ 1

p−1 θp(t, η)
∣∣

η=η` max , 1 ≤ ` < p,

⇒ (p− 1)
(

θp(t, η)
∣∣∣ η=ηp max + 2µ

)
≥

1
p−1

(
θp(t, η)

∣∣
η=η1 max + θp(t, η)

∣∣
η=η2 max + · · ·+ θp(t, η)

∣∣∣ η=η(p−1) max

) (23)

Adding the relations (21)–(23), we will obtain the result (24):

(p− 1)


p

∑
q = 1
q 6= i

θq(t, η)
∣∣∣ η=ηq max +

p

∑
q = 1
q 6= i

2µ

 ≥
1

p− 1

p

∑
q = 1
q 6= i

p

∑
` = 1
` 6= q

θq(t, η)
∣∣

η=η` max

(24)
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It is clear that expression (25) is true.

(p− 1)
p

∑
q = 1
q 6= i

θq(t, η)
∣∣∣ η=ηq min ≥

−θi(t, η)
∣∣

η=η1 max − θi(t, η)
∣∣

η=η2 max −· · · − θi(t, η)
∣∣∣ η=η(i−1) max

−θi(t, η)
∣∣∣ η=η(i+1) max − · · · − θi(t, η)

∣∣∣ η=ηp max

(25)

Now, we add the expressions (p− 1)
(
θi(t, η)

∣∣
η=ηi max + 2µ

)
and (p− 1)

θi(t, η)
∣∣

η=ηi min to the two sides of relations (24) and (25), respectively. Finally, we come to
relations (26) and (27).

(p− 1)

 p

∑
q = 1

θq(t, η)
∣∣∣ η=ηq max +

p

∑
q = 1

2µ

 ≥ 1
p− 1

p

∑
q = 1
q 6= i

p

∑
` = 1
` 6= q

θq(t, η)
∣∣

η=η` max

+(p− 1)
(
θi(t, η)

∣∣
η=ηi max + 2µ

)
(26)

(p− 1)
p

∑
q = 1

θq(t, η)
∣∣∣ η=ηq min ≥

−θi(t, η)
∣∣

η=η1 max − θi(t, η)
∣∣

η=η2 max − · · · − θi(t, η)
∣∣∣ η=η(i−1)max

−θi(t, η)
∣∣∣ η=η(i+1) max − · · · − θi(t, η)

∣∣∣ η=ηp max + (p− 1)θi(t, η)
∣∣

η=ηi min

(27)

According to Equation (8), we can write:

1 ≥ θi(t, η)
∣∣

η=ηc (28)

From relations (26)–(28), we reach the following relation:

b(t) ≥ ai(t) ≥ 0 (29)

⇒ 0 ≤ ai(t)
b(t) ≤ 1

⇒ 0 ≤ θiNew(t, ηNew) ≤ 1
(30)

Thus, we proved that θiNew(t, ηNew) is in the range [0, 1]. Note that b(t) cannot be zero

because it is in the denominator. Finally, we prove that
p
∑

i=1
θiNew(t, ηNew) is equal to one.

In the first proof step, we rewrite ai(t) as follows:

ai(t) = (p− 1)
(
θi(t, η)

∣∣
η=ηi min

)
+ (p− 1)

(
θi(t, η)

∣∣
η=ηi max

)
+ 2µ(p− 1)︸ ︷︷ ︸

Xi

−
p

∑
j = 1
j 6= i

θi(t, η)
∣∣∣ η=ηj max +

1
p− 1

p

∑
j = 1
j 6= i

p

∑
` = 1
` 6= j

θj(t, η)
∣∣

η=η` max

︸ ︷︷ ︸
Yi

+θi(t, η)
∣∣

η=ηc (31)

It is not hard to see that
p

∑
i = 1

Yi = 0 (32)
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On the other hand,

p

∑
i = 1

Xi +
p

∑
i = 1

θi(t, η)
∣∣

η=ηc =

(p− 1)

(
p

∑
i=1

(
θi(t, η)

∣∣∣ ηi max
+ θi(t, η)

∣∣∣ ηi min

)
+

p

∑
i=1

2µ +
1

p− 1

) (33)

Thus,

p

∑
i=1

(θiNew(t, ηNew)) =

p
∑

i=1
ai(t)

b(t)
=

p
∑

i=1
Xi +

p
∑

i=1
Yi +

p
∑

i=1
θi(t, η)

∣∣
η=ηc

b(t)

=

p
∑

i=1
Xi +

p
∑

i=1
θi(t, η)

∣∣
η=ηc

b(t)
=

b(t)
b(t)

= 1

(34)

As a result, we proved that the new scheduling parameters satisfy the convex data
set and Equation (8). Therefore, the proof is complete. In the next step, we will present
Theorem 1. In this Theorem, a solution to find the state matrices of ki is introduced. After
calculating the ki, we use the new scheduling parameters and calculate

K(ΘNew(t, ηNew))X(t) =
p

∑
i=1

(KiθiNew(t, ηNew)) (35)

Therefore, it is enough to determine the gain of the feedbacks (Ki). In most similar works
and research, this parameter is calculated by trial and error, but in this article, a fuzzy
system performs this.

Theorem 1. The closed-loop system (10) is an asymptotic stable if there are definite positive
symmetric matrices P and matrices Qij, Gij, Γij, Ei, Si, Hi , Li, Ri, Yi, Xi, W0, L0. for i, j =
1, 2, . . . , p such that the linear inequalities of the matrix meet the following: Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23
∗ ∗ Ψ33

 < 0 (36)

(
Xi + XT

i
)
> 0 ,

((
Yi + YT

i
))

> 0(
Qij + QT

ij

)
> 0 ,

((
Gij + GT

ij

))
> 0(

Γij + ΓT
ij

)
> 0 , P > 0

(37)

where
Ψ11 = U0

Ψ12 =
[
U(0,i) + V(0,i)

]
p

Ψ13 =
[
U(0,i New)

]
p

Ψ22 =

[
U(i,i)

... U(i,j)

]
p×p

Ψ23 =
[
U(i,j New) + V(i,j New)

]
p×p

Ψ33 =

[
U(iNew,iNew)

... U(iNew,jNew)

]
p×p

(38)
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U0 = 2
(

L0 + LT
0
)
−

p
∑

i=1
Xi + XT

i −
p
∑

i=1
Yi + YT

i

U(0,i) = W0 + 2Ri + Xi − L0
U(i,j) = Gij +

(
Hi + Hj

)
−
(

Ri + Rj
)

(i < j)

(39)

U(iNew,iNew) = −
(
Si + ST

i
)
−
(

Li + LT
i
)
−
(
Yi + YT

i
)

(i = j)
U(iNew,jNew) = Γij +

(
Si + Sj

)
−
(

Li + Lj
)

(i < j)
U(i,jNew) = Qij + Sj − Hi − Ri − Lj
V(0,i) = AiP
V(i,jNew) = BiEjNew

(40)

After solving the linear matrix inequalities (36) and (37), the state-feedback gain matrices, Ki, are
obtained from the following equation:

Ki = EiP−1 , i = 1, 2, . . . , p (41)

Proof. Consider the following Lyapunov selected function:

V(t) = XT(t)P−1X(t) (42)

where P is a definite positive matrix. Now, we derive from both sides of the relation (42)
with respect to time:

V̇(t) = ẊT(t)P−1X(t) + XT(t)P−1Ẋ(t) (43)

In the next step, we place the Ẋ(t) of relation (10) in (43), and we obtain the following
result:

V̇(t) = XT(t)× Ḡ
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
X(t) (44)

where
Ḡ
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
=

AT(Θ(t, η)
∣∣

η=ηc

)
P−1 + P−1 A

(
Θ(t, η)

∣∣
η=ηc

)
+KT(ΘNew(t, ηNew))BT(Θ(t, η)

∣∣
η=ηc

)
P−1

+P−1B
(
Θ(t, η)

∣∣
η=ηc

)
K(ΘNew(t, ηNew))

(45)

In order to establish asymptotic stability, the relation (44) must be less than zero. This
condition is equivalent to establishing the following relation:

Ḡ
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
< 0 (46)

Now, multiply relation (46) by right and left in P. Finally, according to Equations (7) and
(9), we reach Equation (47):

G
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
=

p
∑

i=1

(
θi(t, η)

∣∣
η=ηc

(
V(0,i) + VT

(0,i)

))
+

p
∑

i=1

p
∑

j=1

(
θi(t, η)

∣∣
η=ηc θjNew(t, ηNew) ×

(
V(i,jNew) + VT

(i,jNew)

))
< 0

(47)

V(i,jNew) = BiEjNew , V(0,i) = AiP (48)

which must be calculated as EjNew. In the following, we will use the S-process strategy
introduced in reference [25] and we will obtain the stability conditions. According to the
strategy above, Equation (47) will be established, if the expression

N
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
≥ 0 (49)

exists in such a way that the following inequality is established:

G
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
+ N

(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
< 0 (50)
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In order to reach relation (50), we propose N
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
as the

following equation:

N
(
Θ(t, η)

∣∣
η=ηc , ΘNew(t, ηNew)

)
=

U0 +
p
∑

i=1
θi(t, η)

∣∣
η=ηc

(
U(0,i) + XT

(0,i)

)
+

p
∑

i=1
θiNew(t, ηNew)

(
U(0,iNew) + XT

(0,iNew)

)
+

p
∑

i=1
θiNew

2(t, ηNew)U(i,i)+

p
∑

i=1

p
∑

j=1

(
θi
∣∣

η=ηc (t, η)× θjNew(t, ηNew)
)(

U(i,jNew) + UT
(i,jNew)

)
+

p−1
∑

i=1

p
∑

j=i+1

(
θiNew(t, ηNew)× θjNew(t, ηNew)

)(
U(iNew,jNew) + UT

(iNew,jNew)

)
+

p−1
∑

i=1

p
∑

j=i+1

(
θi(t, η)

∣∣
η=ηc × θj(t, η)

∣∣
η=ηc

)(
U(i,j) + UT

(i,j)

) (51)

Such that:

U0 = 2
(

L0 + LT
0
)
−
(
Xi + XT

i
)
−

p
∑

i=1

(
Yi + YT

i
)

U(0,i) = W0 + 2Ri + Xi − L0 ,
U(0,iNew) = −W0 + 2Li + Yi − L0 ,

(
Xi + XT

i
)
> 0(

Yi + YT
i
)
> 0 ,

(
Qij + QT

ij

)
> 0

(52)

U(i,i) = −
(
Xi + XT

i
)
−
(

Hi + HT
i
)
−
(

Ri + RT
i
)(

Gij + GT
ij

)
> 0,

(
Γij + ΓT

ij

)
> 0, P > 0

U(i,j) = Gij +
(

Hi + Hj
)
−
(

Ri + Rj
) (53)

U(iNew,iNew) = −
(
Si + ST

i
)
−
(

Li + LT
i
)
−
(
Yi + YT

i
)

U(iNew,jNew) = Γij +
(
Si + Sj

)
−
(

Li + Lj
)

U(i,jNew) = Qij + Sj − Hi − Ri − Lj , (i < j)
(54)

According to Equations (47) and (51), relation (50) can be rewritten as follows:

Π = ΛTTΛ < 0 (55)

where Λ and T will be as follows:

Λ =



I
θ1(t, η)

∣∣
η=ηc I

. . .
θp(t, η)

∣∣
η=ηc I

θ1New(t, ηNew)
∣∣

η=ηc I
. . .

θpNew(t, ηNew)
∣∣

η=ηc I


(56)

T =

 Ψ11 Ψ12 Ψ13
∗ Ψ22 Ψ23
∗ ∗ Ψ33

 (57)

Such that the elements in Equation (57) are equal to the elements defined in (36). It is
not hard to see that the fulfillment of relation (52) is less than zero. Therefore, Theorem 1
was proved.
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Remark 1. As mentioned earlier, two sets of new scheduling parameters are used in [32]. These
parameters are created by minimizing and maximizing indefinite scheduling parameters at any
point in time and in the entire interval related to parametric uncertainties. Such a process is very
time consuming and operationally impractical. In the set of scheduling parameters proposed in
the present paper, only the values of the parametric uncertainties are used so that, at all times, the
parameters minimize or maximize this. In other words, first offline and according to the period
of changes in the system modes and the period related to the parametric uncertainties, values of
uncertainties are obtained that minimize the indefinite scheduling parameters at all times. Then,
by replacing the existing parametric uncertainties in the indefinite scheduling parameters with the
values obtained, new scheduling parameters will be created. Moreover, the number of scheduling
parameters required to schedule the use of the proposed controller is half the number of the scheduling
parameters used in [32]. Therefore, in the proposed approach, the computational volume is reduced,
and from a practical point of view, it will be an operational approach.

5. Simulation

The pendulum equations are basically nonlinear; however, the proposed control
method is presented for LPV systems. Therefore, to apply the proposed method, the
nonlinear equations of pendulums or any other nonlinear systems in this class should
first be expressed in the form of Equation (5). Below, we apply the proposed control
method to an inverted pendulum (with exact equations) related to [32]. The inverted
pendulum system is shown in Figure 1. The dynamic equations of an inverted pendulum
are as follows:

ϕ̈(t) = g sin(ϕ(t))
4L
3 −

amp Lcos2(ϕ(t))
mp+MC

−
0.5amp Lϕ̇(t)2 sin(2ϕ(t))

mp+MC

4L
3 −

amp Lcos2(ϕ(t))
mp+MC

− a cos(ϕ(t))u(t)
4L
3 −

amp L cos(ϕ(t))
mp+MC

(58)

where ϕ(t), a, mp, L, g are the angular displacement, the fixed number dependent on
the pendulum mass and the cart mass (Mc), the pendulum length, and the gravitational
acceleration, respectively. The values of a, mp, L, and g are

2 ≤ mp ≤ 3 ,
1
19
≤ a ≤ 1

10
, g = 9.81 , L = 0.5. (59)

Considering the system modes as X(t) = [x1(t) x2(t)]
T = [ϕ(t) ϕ̇(t)]T , we can write

ẋ1 = x1
ẋ2 = f1(X(t))x1(t) + f2(X(t))u(t)

(60)

as

f1(X(t)) =
g− amp Lx2(t)

2 cos(x1(t))
mp+MC

4L
3 −

amp Lcos2(x1(t))
mp+MC

×
(

sin(x1(t))
x1(t)

)
(61)

f2(X(t)) =
−a cos(x1(t))

4L
3 −

amp L cos(x1(t))
mp+MC

(62)

Finally, the inverse pendulum state equations are written in the following multidimen-
sional form:

Ẋ(t) =
4

∑
i=1

θi(t, η)(AiX(t) + Biu(t)) (63)

where
θ1(t, η) = η1(t, η)w1(t, η)
θ2(t, η) = η1(t, η)w2(t, η)
θ3(t, η) = η2(t, η)w1(t, η)
θ4(t, η) = η2(t, η)w2(t, η)

(64)
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η1(t, η) =
f1max− f1
f1max− f1min

η2(t, η) =
f1− f1min

f1max− f1min

(65)

w1(t, η) =
f2max− f2
f2max− f2min

w2(t, η) =
f2− f2min
f2max− f2min

(66)

In this case, the η vector contains parameters a and mp. The range for these parameters
is 2 ≤ mp ≤ 3 , 1

19 ≤ a ≤ 1
10 . In [32], the arbitrary values selected for a and mp are 1/19

and 3, respectively.

Figure 1. Inverted pendulum on a cart system.

First, the main system is created using the selected values for the vector of parametric
uncertainties. Inaccurate scheduling parameters are then generated. Then, for each value of
the x1(t0) and x2(t0) modes at the moment t = t0 and according to the intervals provided
for the parameters a and mp, the maximum and minimum values of the timing parameters
will be obtained at the said moment. Due to the nonlinearity of these parameters, we have
to divide the intervals related to a and mp into small gaps and then, step by step, obtain
and store the values of the timer parameters. Finally, according to the obtained values,
we calculate the minimum and maximum of these parameters, i.e, θL

i (t, η) and θU
i (t, η) at

the moment t = t0, and call them the lower and upper bounds of the variable with time,
respectively. After that, the auxiliary parameters introduced in [32] will be obtained. These
auxiliary parameters are defined as follows:

θi =
θL

i (t)

∑
p
i=1 θL

i (t) + θU
i (t)

, θ̄i =
θU

i (t)

∑
p
i=1 θL

i (t) + θU
i (t)

(67)

Finally, the mode feedback gain will be calculated. The number of corners in the inverse view of
the inverse pendulum system is equal to 4. Therefore, we will have eight auxiliary parameters. A
total of four auxiliary parameters will be generated by θL

1 (t, η), θL
2 (t, η), θL

3 (t, η), θL
4 (t, η) and

another four auxiliary parameters will be generated by θU
1 (t, η), θU

2 (t, η), θU
3 (t, η), θU

4 (t, η).
As a result, the final auxiliary parameters are:

θ̄1(t, η) , θ̄2(t, η) , θ̄3(t, η) , θ̄4(t, η) , θ1(t, η) , θ2(t, η) , θ3(t, η) , θ4(t, η) (68)

Figure 2 shows the structure of the control system. As seen in Figure 2, the gain-
scheduling control system calculates θ parameters by taking feedback from the system
states and after multiplying by ki gain, they are applied as a control signal to the pendulum
system. The fuzzy system also has the task of calculating the gain at every moment
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according to the error of the states from their desired values. As can be seen from [32], its
method has led to an increase in computation, which is a major challenge in operational
applications. This has led the authors in the case of [32] to confine themselves to computer
simulation and not to carry out operational implementation. However, the approach
presented in [32] (which we called TRC) is applied to the inverted pendulum, and its
simulation results are compared with the proposed method herein. The step response of
the cart’s position and pole’s angle using the proposed method (FRC) is shown in Figures 3
and 4, respectively

Figure 2. Structure of the proposed control system.
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Figure 3. Position control of cart by FRC.
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Figure 4. Angle control of inverted pendulum by FRC.

Note that e(t) is the error between reference trajectory and actual output and Aj,
Bj, and Cj are fuzzy sets. Fuzzy sets can be triangular, Gaussian, trapezoidal, etc. The
parameters of these sets are adjusted by an expert according to the error values. Triangular
fuzzy sets are used in this article. For the error signal, five membership functions are
considered as shown in Figure 5. Moreover, for error changes (or error derivative), the
fuzzy sets are considered as Figure 6. Finally, the fuzzy membership functions for the
output of the fuzzy control system (here ki) are shown in Figure 7. The fuzzy rule base
is given in Table 1. The procedure is as follows: first, the error and its derivative are
determined for each of the membership functions, then the appropriate output is calculated
by referring to the rule base table. To read more about the fuzzy system, see [33].

Figure 5. The fuzzy sets for kp.

Figure 6. The fuzzy sets for kd.
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Figure 7. The fuzzy sets for ki.

Table 1. The fuzzy rule base.

ė

−2 −1 0 1 2

e

−2 2 2 2 1 0
−1 2 2 1 0 −1
0 2 1 0 −1 −2
1 1 0 −1 −2 −2
2 0 −1 −2 −2 −2

As the first scenario, assume that the system has gone from the origin to point
x = −2 m, and then at t = 100 s, the cart moves from x = −2 m to x = 2 m, then at
t = 200 s, it moves from x = 2 m to x = −2 m. Figure 8 shows the performance of the
proposed fuzzy robust control (FRC) and traditional robust control (TRC) for cart’s position.
For more clarity, in Figure 9, a portion of Figure 8 is magnified.
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Figure 8. Position control of cart by FRC and TRC.
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Figure 9. Zoom an area of Figure 8.

Figure 10 illustrates the results of angle control by FRC and TRC, and Figure 11 shows
a magnified section of Figure 10.
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Figure 10. Angle control of inverted pendulum by FRC and TRC.
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Figure 11. Zoom an area of Figure 10.

In order to challenge the control system, it is assumed that at t = 50 s, a force equal
to 1 Newton is applied to the pendulum at one moment. The control system should
immediately prevent the pendulum from falling by moving the cart. Figure 12 shows the
performance results of both control systems.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

− 20

− 15

− 10

− 5

0

5

10

15

20

P
o

le
's

 A
n

g
le

 (
d

e
g

)

FRC TRC

Figure 12. Angle control of inverted pendulum by FRC and TRC.

Figure 13 shows the performance of both control systems in moving the cart to main-
tain the balance of the pendulum. Another challenge of all control systems is the existence
of uncertainty. Uncertainty is usually found in the value of parameters. We assume that the
parameters of the pendulum system, such as the mass and length of the pendulum, the
mass of the cart, and the coefficient of the friction between the trolley and the track, can
change 10% of their nominal values. In Figures 14 and 15, an indeterminate parameter is
applied to the system from the moment t = 10 s onward.
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Figure 13. Position control of cart by FRC and TRC.
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Figure 14. Cart position control despite parametric uncertainty.

As it is clearly seen in Figures 14 and 15, in the face of uncertainty, the performance
of the FRC is more obvious than the TRC, and the reason for this superiority is due to the
nature of fuzzy systems that have uncertainty in them.

State feedback is a common and efficient method to stabilize and control systems
whose dynamics are nonlinear functions of system states. However, the efficiency of this
method is challenged when the nonlinear functions are not accurate, or the dynamics of the
system change under different conditions. In order to solve this problem, the gain of the
state feedback can be considered adaptive (variable). This gain can be updated in different
ways, including by a fuzzy system, neural network, or other evolutionary algorithms.
However, the solution suggested in this article is to convert the nonlinear system into an
LPV system.
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Figure 15. Angle control despite parametric uncertainty.

6. Discussion

As we stated in the text of the article, the ηNew vector contains as that ηi min , ηi max , i =
1, 2, . . . , p are the values of the parametric uncertainties that minimize and maximize the −i
parameter of indefinite timing, respectively. In other words, first out of line and according
to the interval of change of the system modes and the interval related to the parametric
uncertainties, the values of uncertainties are obtained that minimize the indefinite timing
parameters at all times. The calculated values are denoted by ηi min and ηi max. Therefore,
we do not need to calculate the minimum and maximum scheduling parameters moment by
moment. For this reason, there is no need to create duplicate on-line computational loops,
and the overall computational time will be greatly reduced. Then, by replacing the existing
parametric uncertainties in the indefinite timing parameters with the values obtained and
using a special idea (which is expressed in the introduction of the new timing parameters
in the text of the current article), new timing parameters will be created. According to
Equations (12) and (13), the new scheduling parameters will be as follows:

θiNew(t) =
ai(t)
b(t)

i = 1, 2, 3, 4, . . . (69)

ai(t) = 3θi(t)
∣∣

η=ηi min + 3
(
θi(t)

∣∣
η=ηi max + 1

)
−

4

∑
j = 1
j 6= i

(
θi(t)

∣∣∣ η=ηj max − 1
)
+

1
3

4

∑
j = 1
j 6= i

4

∑
` = 1
` 6= j

(
θj(t)

∣∣
η=η` max

)
(70)

b(t) = 3

(
4

∑
q=1

θq(t)
∣∣∣ η=ηq max +

4

∑
q=1

θq(t)
∣∣∣ η=ηq min +

4

∑
q=1

2 + 1/3

)
(71)

where
η1max = [0.1 3], η1min = [0.052 2]
η2max = [0.1 3], η2min = [0.052 2]
η3max = [0.052 3], η3min = [0.1 3]
η4max = [0.052 3], η4min = [0.1 3]

(72)
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7. Conclusions

This article presented a new control system based on fuzzy logic for LPV systems. In
this method, a fuzzy system calculates the feedback gain for the controller. The controller is
based on a set of new scheduling parameters and is resistant to the usual parametric uncer-
tainties with time-based specific intervals. Moreover, the asymptotic stability conditions of
the closed-loop system were presented as linear matrix inequalities. An inverted pendulum
system was investigated and controlled to evaluate the proposed method in the simulation
section. The most critical challenge of the robust control system is determining the feedback
gain, which was performed by trial and error in the traditional methods (TRC) and by a
fuzzy system (FRC) in the proposed method. In the face of disturbance (the application of
external force) and parametric uncertainty, the FRC method showed its proper efficiency.
The proposed method can be used for controlling any systems in the form of Equation (5).
As suggestions to continue the work, type-2 and type-3 fuzzy systems can be used.
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