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� The paper investigates some mathematical properties of the Photo Re-
sponse Non Uniformity Pattern noise that can be used for the identifi-
cation of the source device of an image.

� The paper proves that the 2D decreasing rearrangement of PRNU im-
age provides specific and device-dependent geometric structures that
can be properly coded by the Radon transform.

� The empirical distribution of the Radon transform of PRNU 2D de-
creasing rearrangement is a feature robust to image manipulations and
independent of image size.
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Abstract

Source camera identification represents a delicate, crucial but challenging
task in digital forensics, especially when an image has to be used as a proof
in a court of law. This paper investigates some properties of the Photo Re-
sponse Non Uniformity (PRNU) pattern noise that represents the fingerprint
of any acquisition sensor. The main goal is to define specific and distinctive
features for this noise source that enable the identification of the acquisition
sensor by simply analysing a single image. These features are required to
be independent of image size, modifications, storage mode, etc. To this aim
the discrimination power of the decreasing rearrangement of a function, com-
bined with the Radon transform, has been investigated. Preliminary tests
show that a proper rearrangement of PRNU image provides specific and
device-dependent geometric structures that can be properly coded through
the Radon transform. In particular, the empirical distribution of the Radon
Transform of rearranged Flat Field images alone is capable to correctly char-
acterize each device with high accuracy, showing robusteness to some stan-
dard image modifications, such as quantization and blurring; in addition, it
guarantees independence of image size.

Keywords: Radon Transform, function monotonic rearrangements, source
camera identification, PRNU

1. Introduction

In the last decade, the authentication of visual documents for their valida-
tion in the forensic field has gained increasing importance because of the ex-
pansion of communication networks and the massive dissemination of smart
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devices [36]. The intensive use of images, and more in general multimedia
content, plays a dual role: on the one hand, it makes images crucial for
investigation purposes; on the other hand, it makes investigations difficult
from different points of view as, for example, large amount of data to process
and analyse, authenticity assessment of image content, identification of the
source generating the image, robustness to image manipulation and modifica-
tion due to transmission, storage, posting on social networks and so on. This
contrasting aspect opened the way to different research topics and problems
that are far from to be solved, including source camera identification. The
latter aims at assessing the origin of an image, by determining the source
sensor in terms of device type, brand, model till the specific device. The aim
is to retrieve a source fingerprint, as for example the Photo Response Non-
Uniformity pattern noise (PRNU), that allows to establish a correspondence
between a device and the images that have been acquired by it. In particular,
it is expected that devices equipped with the same sensor left a similar finger-
print; on the other hand, each device has its own fingerprint that should allow
to distinguish it from any other device. In fact, PRNU consists of a noise
image component that is caused by the CCD imperfections [30]. As a result,
specific pixels are susceptible to giving brighter intensities than others. This
causes the signature of the specific device that is different even among devices
of the same brand and model [13]. Unfortunately, retrieving this fingerprint
is a hard task due to the complexity of the acquisition process that makes
harder PRNU modeling. In addition, images can be further manipulated
after their acquisition; for example, they can be stored in different formats,
sent by email, shared in social networks and so on, so that their original
content, as well as their PRNU component, may be severely compromised or
modified. PRNU is often modeled as a multiplicative noise source [13] and
defined as one of the main components of the residual image deriving from a
regularization of the original image. Therefore, the residual image is used for
PRNU characterization purposes. It is then evident the importance of having
a feasible and reliable mathematical model for the acquired image that allows
for a straightforward PRNU extraction through a non linear regularization
process; in addition, it is fundamental to define projection or approximation
procedures that allow us to emphasize some peculiar PRNU features, while
maintaining robustness to eventual inaccuracies in the adopted model. This
is the reason why the literature concerning source camera identification fo-
cuses on both PRNU extraction and PRNU classification, either separately
or jointly — see [1, 3, 10, 11, 14, 27, 29, 30, 31, 47] and references therein.
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A sketch of the source identification process is depicted in Fig. 1. As it
can be observed, regularization plays a fundamental and dual role in PRNU
extraction as it is used in the definition of both the reference PRNU, i.e. the
one characterizing the device, and the image PRNU, i.e. the one extracted
from the single image. Inspired by the pioneering paper in [30], the existing
literature mainly concerns on the definition of a better denoiser [2, 35, 37, 26],
a better noise modeling [22, 32, 39], or on a proper selection of the image
domain where to extract reliable information [8, 10, 29, 40, 41]. Regarding the
estimation of the reference PRNU, denoising is combined with enhacement
operations that mainly aim at estimating the reference PRNU from several
images acquired by the same device. Maximum likelihood estimators are
commonly employed with the purpose of suppressing artifacts and additional
noise sources in the single residuals [13].

As far it concerns PRNU classification, the literature focuses on the defi-
nition of similarity metrics, features extraction, clustering methods [1, 9, 31,
47], and, more recently, on machine and deep learning methods properly built
to accomplish this task for specific use cases [11, 15, 18, 24, 33, 43, 44, 45, 46].
In fact, the best methodology cannot be obviously independent of the specific
working scenario [16]. In closed-set scenarios the task is to establish if a given
image has been captured by a device among a predefined and available set.
On the contrary, in open-set scenarios, the goal is to establish if two images
have been acquired by the same device, independently of the specific device
kind. However, in both cases, the main requirement is robustness to im-
age manipulations, such as filtering, quantization, enhancement, or specific
transmission/storage process, as for example, uploading and downloading
from social networks. That is why several benchmarking datasets [12, 23, 38]
have been built and made available to the scientific community; each of them
with the specific aim of collecting images able to replicate the real scenarios:
different social networks, device type and models, more common manipula-
tions.

Although the plethora of existing approaches, the mathematical model-
ing [32] of such a problem mainly refers to the pioneering paper in [13] and
remains an open research field. One of the main problems that arises when
comparing image PRNU and reference PRNU is the image size. In fact, on
the one hand the same device allows to set the resolution of the output image;
on the other hand, image manipulations, such as sampling and interpolation,
modify image size. As a result, there is the need of having classification
methods that are independent of image size. Projecting a function into a
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proper domain allows to emphasize some of its features, making it distin-
guishable from other functions. Projecting in a n-dimensional feature space,
where n is fixed, allows us to compare functions (in our specific case, images)
of different nature and size.

Based on these considerations, in this paper we investigate some fur-
ther PRNU properties and evaluate their invariance to some modifications
of the original acquisition. To this aim, flat field (FF) images have been
considered as PRNU is the dominant component in such images. A spe-
cific 2-dimensional rearrangement along the two spatial directions has been
applied to the image [4]. This spatial rearrangement is strictly linked to
the noise cumulative distribution and highlights some geometrical structures
that are peculiar for each device model and can be compactly represented
by the Radon transform. The n-dimensional space is then set in this paper
as the empirical probability of the Radon Transform of the 2-dimensional
rearrangement of the acquired image, where n indicates the number of bins.
Preliminary results achieved on flat field images from Dresden database [25]
show that the proposed feature vector allows for the detection of the image
source device in closed-set scenarios with high accuracy by using standard
distances for probability density functions. In addition, it allows us to com-
pare PRNU images having different size, showing robustness to some common
image manipulations. Finally, the proposed feature is useful whenever only
few images are available for the estimation of the reference PRNU.

The remainder of the paper is the following. Next section presents the
conventional PRNU mathematical modeling and the main steps of the source
identification process. Section 3 is devoted to the description of the proposed
feature-based method. Section 4 contains some preliminary results concern-
ing recognition accuracy, comparative studies and robustness to image ma-
nipulations. Finally, the last section draws the conclusions.

2. PRNU modeling

The image formation process is quite complex and camera/manufacturers-
dependent. It includes signal quantization, white balance, demosaicking
(color interpolation), color correction, gamma correction, filtering, and, of-
ten, JPEG compression. Based on these considerations, the image J at the
pixel spatial location x = (x, y) that is acquired by a given device d̃ is mod-
elled as it follows [13]

J(x) = gγ(Y (x)(1 + K̄d̃(x)) + Λ(x))γ + Θq(x), ∀ x ∈ Ω ⊂ R2 (1)
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Figure 1: Block scheme of the source identification process in a closed-set scenario. The
main phases are: regularization, enhancement and classification.
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where g ∈ R+ denotes the color channel gain, γ ∈ R+ is the gamma cor-
rection exponent, Y is the scene light intensity, K̄d is the device PRNU, Λ
represents other noise sources including the dark current, shot noise, and
read-out noise, while Θq is the quantization noise.

As Y is the dominant term, eq. (1) can be rewritten as it follows

J(x) = (g Y (x))γ
(

1 + K̄d̃(x) +
Λ((x))

Y (x)

)γ
+ Θ(x)

and the first two terms in the Mc Laurin expansion of the function (1 + t)γ,
with t = K + Λ

Y
, can be kept, i.e.,

J(x) = (g Y (x))γ
(

1 + γK̄d̃(x) + γ
Λ(x)

Y (x)

)
+ Θq(x).

By setting I = (g Y (x))γ, we have

J(x) = I(x)(1 +Kd̃(x)) + Θ(x), (2)

where I represents the original image content (output of the sensor with-
out noise), Kd̃ is the device PRNU multiplied by γ, while Θ includes noise
sources that are independent of Kd̃ [30]. Kd̃ is modelled as a zero-mean noise
component that is independent of I and it represents the fingerprint of the
device d̃ that took the image J .

With reference to the scheme in Fig. 1, the image PRNU commonly is
the estimation of Kd̃ from a single image. Let D denote a regularization

operator (denoiser), and let Î = D(J), with J defined as in eq. (2), be an
estimate of the original image I. The residual image R is defined as

R(x) = J(x)− Î(x)

and a simple algebra [13] allows us to rewrite R as it follows

R(x) = J(x)Kd̃(x) + Θ̄(x), (3)

where Θ̄ represents all noise sources, including the one introduced by the
regularization procedure. Θ̄ is assumed to be nearly independent of JKd̃.

Regarding the reference PRNU, let {Ji,dj}i=1,...,Nj
a set of Nj images ac-

quired by the device dj. For each image Ji,dj , eqs. (2) and (3) hold true.
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Enhancement then consists of suppressing noise contribution in the residual
images

Ri,dj(x) = Ji,dj(x)Kdj(x) + Θ̄i,dj(x), i = 1, ..., Nj. (4)

In particular, by assuming the noise sources Θ̄i,dj i.i.d., the maximum likeli-
hood estimator [13, 30, 31] provides the following estimation for Kdj

Kdj(x) =

∑Nj

i=1 Ri,dj(x)Ji,dj(x)∑Nj

i=1 J
2
i,dj

(x)
, ∀ x ∈ Ω ⊂ R2. (5)

Finally, to establish if the image J has been acquired by the device dj,
i.e. if d̃ = dj, image PRNU in eq. (3) and reference PRNU in eq. (5) have
to be compared. The normalized correlation [34] is often used to address this
issue. It is defined as

ρ(Kdj , R) =
σKdj

R

σKdj
σR
, (6)

where σKdj
R is the cross correlation between Kdj and R, while σKdj

and σR
are the standard deviations of Kdj and R respectively. The closer to 1 ρ, the

more reliable the match between dj and d̃.
Finally, the task in closed-set scenarios is then accomplished by finding

the device dĵ, among a set of available sensors dj, j = 1, ...,M , such that

ĵ = argmaxj=1,...,M ρ(Kdj , R). (7)

As mentioned in the introduction, both denoising and enhancement play
a crucial role in PRNU estimation. The former heavily influences both device
and image fingerprint extraction; the latter is directly related to the refer-
ence PRNU, and can be somewhat dependent on the number Nj of available
images. In addition, the direct comparison of image PRNU and reference
PRNU is limited by the constraint on the size of the images. In order to
contribute to the definition of different criteria in fingerprint estimation, the
decreasing rearrangement [4, 19, 6, 7] of flat field images has been considered
in this paper, as described in the following section.

3. The proposed model

A source identification method is required: i) to be robust to image ma-
nipulation; ii) to be independent of the size of the comparing images. To
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accomplish the second requirement, a reasonable strategy can be the projec-
tion of the image in a feature space of fixed dimension where some significant
elements of the original image are emphasized. If the features are robust to
some image manipulations, the first task is accomplished too. To this aim,
the 2D monotonic rearrangement of FF images is studied in this section.

Let us then consider the model in eq. (2) and let us suppose uniform light
intensity, i.e. Y (x) = C, ∀ x ∈ Ω, where C is constant. This corresponds
to select almost constant images, commonly denoted as flat field (FF) images.
With these assumptions, eq. (2) reduces to

J(x) = C(1 +Kd̃(x)) + Θ(x), (8)

where C denotes the intensity of the constant image background. Despite
the presence of the noise component Θ, FF images better correlate with Kd̃.
This is the reason why they are the preferred and recommended candidates
for reference PRNU estimation [30]. Hence, the set of available images is
supposed to satisfy the following equation

Ji,dj(x) = Ci,dj + Ci,djKdj(x) + Θi,dj(x), i = 1, .., Nj, (9)

where Ci,dj are constant values.
Ji,dj mainly depends on noise sources having different origins and distri-

butions; on the other hand, the decreasing rearrangment [19, 20, 21] of a
function f , namely f ∗, is a monotonically decreasing function and can be de-
fined as the generalized inverse of the cumulative distribution function Mf (y)
of f , according to the following definition.

Definition 1 Let µ be a measure, f(t) : Ωt → R be a µ-measurable and
non negative function and

Mf (y) = µ({t ∈ Ωt : f(t) > y}). (10)

The decreasing (non-increasing) rearrangement f ∗ of f is the function f ∗(t) :
[0, µ(Ωt)]→ R such that

f ∗(t) = M−1
f (t) = inf{y ∈ f(Ωt) : Mf (y) ≤ t}. (11)

f ∗ is then strictly related to the distribution of the function itself and
satisfies the following properties:
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1. f ≤ g ⇒ f ∗ ≤ g∗, with f and g two real-valued and non-negative
functions;

2. fn → f ⇒ f ∗n → f ∗, with fn a sequence of real-valued and non-
negative functions;

3. if f is α− Lipschitz with Lipschitz constant L, then f ∗ is α− Lipschitz
with constant L∗ ≤ L;

4.
∫
A
f(t)dt =

∫
[0,µ(A)]

f ∗(t)dt;

5.
∫

Ω
f(t)g(t)dt ≤

∫
[0,+∞]

f ∗(t)g∗(t)dt.

It is worth observing that f ∗ preserves the regularity/irregularity of the origi-
nal function, but the bound in the Lipschitz definition is tighter. In addition,
for non negative functions, properties 4 and 5 imply ρ(f, g) ≤ ρ(f ∗, g∗). As
a result, if the monotonic rearrangements of two functions are poorly corre-
lated, their not rearranged counterparts are likewise.

The natural extension of Definition 1 to the multidimensional case con-
sists in cascading the 1D monotonic rearrangement along the x and y direc-
tion [5], according to the following definition.

Definition 2 Let µ be the Lebesgue measure, f(x, y) : Ω = Ωx ×Ωy →
R2

+ be a µ-measurable and non negative function,

Mf (σ, y) = µ({x ∈ Ωx : f(x, y) > σ}), σ ∈ R+

the distribution function of f in the first variable, and

Mf (x, τ) = µ({y ∈ Ωy : f(x, y) > τ}), τ ∈ R+.

Then

1. the decreasing rearrangement f ∗x of f in the first variable x is

f ∗x(s, y) = inf{σ ∈ R+ : Mf (σ, y) ≤ s}; (12)

2. the decreasing rearrangement f ∗y of f in the second variable y is

f ∗y (x, t) = inf{τ ∈ R+ : Mf (x, τ) ≤ t}; (13)

3. the 2D decreasing rearrangement f ∗ of f is

f ∗(s, t) = [f ∗x(s, y)]∗y(t). (14)
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Fig. 2 contains the rearranged version of three FF images that has been
obtained by cascading the two 1D rearrangements, according to eq. (14).
Two images have been acquired by the same device while the third one has
a different source. As it can be observed, their monotonic rearrangements
clearly show featuring geometrical patterns that allow source device discrim-
ination nearly at the first glance. In fact, images acquired by the same device
model (first two images in Fig. 2) exibit a similar pattern, while images cap-
tured by different device model show a different pattern (compare the first
two images in Fig. 2 with the last one).

To support and prove this statement, we consider an equivalent defini-
tion of non increasing rearrangement of measurable functions that has been
studied in [4] and that employs the 2D decreasing rearrangement of a subset
of R2 and the layer-cake representation.

Definition 3 Let µ be the Lebesgue measure, E ⊂ R2

ϕE(x) = µ{y ∈ R : (x, y) ∈ E}, x ∈ R

and ϕ∗E the conventional 1D decreasing rearrangement of ϕE(x), i.e.

ϕ∗E(s) = inf{λ : Mϕ(λ) ≤ s}, s ∈ R+

with Mϕ(λ) = µ{x ∈ R : ϕE(x) > λ}. Then, the two dimensional decreasing
rearrangement of E is

E∗ = {(s, t) ∈ R2
+ : 0 < t < ϕ∗E(s)}, (15)

and the two dimensional decreasing rearrangement of f ∈ R2 is

f ∗̂(s, t) =

∫ +∞

0

χE∗(s, t)dw, (s, t) ∈ R2
+, (16)

with E = {(x, y) ∈ Ω ⊂ R2 : f > w}.

For measurable functions, the definition in eq. (16) is equivalent to the
definition in eq. (14) [4].

In addition, it is worth observing that, for a fixed value w of the function
f , the curve

Cw : {(s, t) : t = ϕ∗Ew(s)}, (17)
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Figure 2: 2D monotonic rearranged versions J∗ of FF images acquired by NikonD70 (first
two images) and Canon Ixuss 55 (bottommost image).
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with Ew = {(x, y) ∈ R2 : f > w}, is defined in the domain of f ∗ and
separates this domain into two regions: the one where f ∗ > w and the one
f ∗ ≤ w. Based on this observation, we can define the quantized version of f
as it follows.

Definition 5 Let wk, k = 1, ..., nb be nb ∈ N real and positive values
such that w1 > w2 > ....wnb

,

Ek = {(x, y) ∈ Ω ⊂ R2
+ : wk−1 ≤ fq(x, y) < ωk}, k = 1, ..., nb

and E0 = ∅. Let set Fk = Ek \ Ek−1. The quantized version of f is

fq(x, y) = wk, ∀ (x, y) ∈ Fk. (18)

fq well models an image acquired by a camera, including FF images. As
a result, if fq in eq. (18) represents the FF image J in eq. (8), then the
geometrical pattern observed in J∗ is composed of the curves

Cwk
= {(s, t) : t = ϕ∗Ek

(s)}, k = 1, ..., nb. (19)

.
In fact, according to Definition 5, J can be written as it follows

J(x, y) =

nb∑
k=1

wk χFk
(x, y)

and then, using eq. (15),

J∗(s, t) =

nb∑
k=1

wkχE∗
k\E

∗
k−1

(s, t),

with

E∗k\E∗k−1 = {(s, t) ∈ R2
+ : 0 < t < ϕ∗Ek

(s)}\{(s, t) ∈ R2
+ : 0 < t < ϕ∗Ek−1

(s)} =

= {(s, t) ∈ R2
+ : ϕ∗Ek−1

(s) ≤ t < ϕ∗Ek
(s)},

i.e. each set E∗k \ E∗k−1 is delimited by the curves Cwk−1
and Cwk

.
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3.1. Features representation

The image feature defined in eq. (19) can be coded by applying a direc-
tional transform to J∗, as for example, the Radon Transform (RT) [17]. The
latter is a non-linear transform that is widely used in tomography for the
recovery of the internal structure of an object from some of its projections;
however, it also is adopted in many applications as it concerns, in some sense,
the geometrical structure of the object of interest.

Definition 6 Let G(x, y) : R2 → R be a smooth function. The Radon
transform of G at a point (r, θ) ∈ R2 is defined as the integral of G along
the line identified by the parameters r and θ, i.e.

RG(r, θ) =

∫
R

G(rnθ + sn⊥θ )ds (20)

where nθ = (cos(θ), sin(θ)) and n⊥θ = (−sin(θ), cos(θ)).

Due to its nature, this transform is able to capture the main orientations
of objects in the images. That is why it represents a good candidate for
capturing those geometrical structures that characterize the behaviour of
the monotonically rearranged version of device PRNU. Specifically, the RT
values quantify how many points in the image lay on the straight line having
slope equal to tan(θ) and intercept equal to r.

An equivalent definition of the transform allows us to rewrite RG as it
follows

RG(r, θ) =

∫
R

G(x, r)δ(r − xcos(θ)− xsin(θ))dxdy. (21)

It is straighforward to observe that a point in the function domain gen-
erates a sinusoid in the Radon domain, while collinear points intersect in the
point whose coordinates define the straight line they lay on. As a result, a
curve in the image domain is expected to distribute differently in the Radon
domain, according to its main orientations. It turns out that the comparison
between the RTs of the image PRNU and the reference PRNU is expected
to be informative about their similarity.

However, the dimension of the discrete Radon Tranform still is depen-
dent on the image size (see Figs. 3-5) — this would entail the need of having
image PRNU and reference PRNU with the same size, limiting the use of
this feature on a restricted real world cases. In order to allow for image
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comparisons independently of their dimension and avoiding additional modi-
fications, as sampling or interpolation, in this paper the empirical probability
of the quantized values of the transform has been considered, whenever the
number of bins b used for quantization is a priori fixed, i.e. PRJ∗ . Even
though it represents a global RT descriptor, the empirical probability of RJ∗

conveys information concerning the more or less oriented image content. In
addition, it is twofold advantageous. On the one hand, it allows for direct
comparisons between images having different size; on the other hand, it as-
sociates a monodimensional signal to the image, resulting computationally
advantageous in the classification process. Section 4 is devoted to quan-
titative evaluate the ability of the proposed feature in assigning an image
to the correct device, even under global image manipulations, as filtering,
quantization, resizing.

Remark Although other geometrical transforms could be adopted for
coding the geometrical pattern used as feature in this paper, the use of the
Radon transform has been mainly motivated by the parameter-free definition.
The dependence of the results on the selected transform or the definition of
the best transform to use are out of the scope of the presented paper, whose
aim was to investigate about the strength of 2D rearrangements in featuring
source noise component; however, they can be the subject of future research.

Figure 3: Left) Radon transform RJ∗ of the rearranged image in Fig, 2.top; (Right)
empirical probability of RJ∗ values.
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Figure 4: Left) Radon transform RJ∗ of the rearranged image in Fig, 2.bottom; (Right)
empirical probability of RJ∗ values.

Figure 5: Left) Radon transform RJ∗ of the rearranged image in Fig, 2.middle; (Right)
empirical probability of RJ∗ values.
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3.2. The Algorithm: closed set scenario

In this section, the whole source recognition process in closed-set scenario
is summarized. As we are dealing with FF images, the image PRNU is the
image J as defined in eq. (8).

Algorithm for closed-set scenario

1. Feature for image PRNU

� Compute J∗ as in eq. (16);

� Compute the Radon Transform of J∗, i.e. RJ∗ ;

� Quantize RJ∗ using NB quantization bins and compute its empir-
ical probability, i.e. PRJ∗ ;

� Define the feature for the image PRNU as PRJ∗ .

2. Feature for reference PRNU

� For each device dj, j = 1, ...,M

– For each image Ji,dj captured by the device dj:

* Compute J∗i,dj as in eq. (16);

* Compute the Radon Transform of J∗i,dj , i.e. RJ∗
i,dj

;

* Quantize RJ∗
i,dj

using NB quantization bins and compute

its empirical probability, i.e. PRJ∗
i,dj

.

– Define the feature for the reference PRNU as it follows

P̄dj =

Nj∑
i=1

PRJ∗
i,dj

(22)

3. Source device identification

� Assign the image J to the device dj̃ defined as it follows

j̃ = argmindjD(PRJ∗ , P̄dj),

where D is the selected similarity metric.
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Table 1: Selected images and devices from Dresden database [25].

n Device Model no FF images image size
1 Canon IXUS55 10 1944× 2592
2 Canon IXUS70 50 2304× 3072
3 Nikon D200 10 2592× 3872
4 Nikon D70 10 2000× 3008
5 Nikon D70S 10 2000× 3008
6 Nikon S710 10 3264× 4352
7 Olympus 1050SW 50 3648×2736
8 Panasonic DMC-FZ50 25 3648×2736
9 Pentax Optio A40 50 3648×2736
10 Ricoh Capilo GX100 25 3648×2736
11 Rollei RCP-7325XS 50 3072×2304
12 Samsung NV15 50 3648×2736
13 Samsung L74 50 2304× 3072
14 Sony DSC-T77 50 3648×2736
15 Sony DSC-W170 50 3648×2736

4. Experimental results

This section is devoted to evaluate the accuracy of the proposed feature
in discriminating images acquired by different devices. FF images from a
selected subset of devices included in Dresden database [25] have been con-
sidered in all tests. This dataset includes hundred of images captured by
several camera models and devices. It has been selected as if offers a consid-
erable number of FF images. In order to test the robustness of the proposed
feature, different image sizes have been considered as well as a different num-
ber of images per device. In particular, 15 devices and 500 FF images, listed
in Table 1, have been considered in the tests presented in this section.

As we are in the closed-set scenario, a LOSO (Leave One Subject Out)
validation approach has been used and the true positive rate (specificity) has
been evaluated, i.e. TPR = TP

TP+FN
, where TP and FN respectively denote

correct assignments and failures. Three different metrics [42] for evaluating
the distance between the empirical probability density functions have been
adopted, i.e.

i) the Euclidean distance, i.e. DE(p, q) =
√∑NB

i=1 |pi − qi|2;
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ii) the Hellinger distance, i.e. DH(p, q) = 1√
2

√∑NB

i=1(
√
pi −
√
qi)2, and

iii) the Triangular distance, i.e. DT (p, q) =
√∑NB

i=1
|pi−qi|2
pi+qi

,

where p and q denote the two comparing empirical pdfs and NB the number
of bins. NB has been set equal to 200 in all tests. In addition, in our tests
p = PRJ∗ and q = P̄dj . Each color channel is processed independently; the
final similarity index is then defined as euclidean norm of the vector whose
components are the distances evaluated for each color channel.

Figure 6: Confusion matrix of the classification results obtained using the Hellinger dis-
tance. False assignments do not belong to the diagonal. The True Positive Rate (TPR) is
99.00%.

Figs. 6, 7 and 8 contain the confusion matrices relative to the classifica-
tion results obtained using the three selected metrics. As it can be observed,
for all but one device all images have been assigned correctly. In addition,
the Hellinger distance shows the best true positive rate as only 5 images over
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Figure 7: Confusion matrix of the classification results obtained using the Euclidean dis-
tance. False assignments do not belong to the diagonal. The True Positive Rate (TPR) is
98.20%.
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Figure 8: Confusion matrix of the classification results obtained using the Triangular
distance. False assignments do not belong to the diagonal. The True Positive Rate (TPR)
is 98.80%.
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Table 2: True Positive Rate on different testing sets: comparisons between the proposed
method, and the method in [30] where resizing is used for images having different size.
The Table refers to the whole test dataset, and two of its subsets: Set I contains only
images having the same size (3648×2736), while Set II contains the remaining ones. TPR
refers to the Hellinger distance.

Proposed Method in [30]
all SET 99.0 96.4
SET I 100 100
SET II 98.3 92.9

500 have not been assigned to the corresponding source. It is also worth ob-
serving that the minimum distance value is measured independently of the
number of FF images used for estimating the feature of the reference PRNU.
Table 2 compares the proposed Radon-based feature method with the pio-
neering and reference approach in [30]. The latter uses an MLE strategy for
estimating the reference PRNU and the normalized correlation coefficient
ρ for assigning the source to each image, as described in Section 2 where
D is a wavelet-based denoiser. As ρ is defined for images having the same
size, resizing is used whenever images having different size have to be com-
pared. Table 2 clearly gives evidence of the main advantage of the proposed
method: it allows us to compare the image PRNU with any reference PRNU,
independently of the image size while guaranteeing high recognition rates. In
particular, whenever a testing set composed of images having the same size is
used (SET I in the Table 2) the proposed approach has the same recognition
rates of the competing method; on the contrary, for testing sets composed of
images having different size (allSET and SET II in the Table 2), the proposed
approach considerably outperforms the competing method that is penalized
by the resizing operation. In addition, the proposed feature-based approach
significantly reduces storage sources as a very short feature vector is required
instead of the whole reference PRNU image.

To give evidence of the characterization of each single device, one FF
image has been considered as reference PRNU and the LOSO analysis has
been performed again. The boxplot plot of the assignments (evaluated using
the Triangular distance) obtained by comparing the image of interest with
the remaining test images is depicted in Fig. 9. As it can be observed,
boxes do not overlap and the classes are clearly separated. This result is
important as it makes the proposed feature useful whenever very few images
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are available for each device, resulting in limited data for the estimation of
the reference PRNU.

Figure 9: Boxplot of Triangular distance values obtained in the closed set scenario and
using a single FF image as reference PRNU.

Finally, in order to evaluate the robustness of the proposed feature to
image manipulations, test images have been modified using some standard
operations involving all image pixels, such as sampling (S), interpolation (I),
quantization (Q), blurring (B). They represent some standard and commonly
adopted image manipulations, as for example when uploading or download-
ing images from social networks, when sending an image by email or when
storing the image on a storage device. Table 3 contains the achieved true
positive rates corresponding to sampling steps equal to 2, cubic 2D interpola-
tion, blurring with a gaussian window having standard deviation equal to 2,
quantization bin size equal to 10. As it can be observed, the number of false
assignments slightly decreases for some operations like quantization, while it
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increases in case of blurring. True positive rate decreases more whenever ma-
nipulations are jointly used, although still remaining greater than 92%. Fig.
10 shows the confusion matrix for the case blurring combined with quantiza-
tion. As it can be observed, for most of the devices the assignments remain
correct for all images; incorrect assignments mainly refer to few specific de-
vices, as for example Olympus, Panasonic and Ricoh. It is worth observing
that the result is not negligible if one considers that just a simple and global
feature is employed. This analysis motivates future investigations. In fact,
it proves that a simple linear filter applied to FF images does not alter the
features that are captured by the RT of the sorted FF image. In addition,
even though the Hellinger distance seems to provide the best recognition re-
sults on average, the Triangular one seems to be a little bit more robust to
more complex manipulations. The role of the similarity metric will be one
of the topic worth of attention in the future studies.

Table 3: True Positive Rate achieved by the proposed method using Euclidean, Hellinger
and Triangular distances. Unaltered (U) and manipulated images using conventional op-
erations have been considered: sampling (S), interpolation (I), blurring using gaussian
filtering (B), quantization (Q), consecutive blurring and quantization (B+Q). For each
column, the best result is in bold.

U S I B Q B + Q

TPR (DE) 98.20 98.40 98.40 98.80 97.80 93.00
TPR (DH) 99.00 99.00 99.00 99.50 98.20 91.20
TPR (DT ) 98.80 98.80 98.80 99.20 97.80 92.80

5. Conclusions

In this paper a study concerning some properties of PRNU components in
an image have been investigated. Based on the relations between functions
and their rearrangements, it has been shown that the Radon Transform of
a proper rearrangement of PRNU matrix preserves some peculiarities of the
original data. Preliminary tests prove that the empirical probability of the
values of that transform is able to assign each FF image to its source device
with high accuracy. In particular, the proposed feature offers different ad-
vantages: i) it allows for the direct comparison between PRNU components
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Figure 10: Confusion matrix of the classification results obtained using the Triangular
distance on FF images that have been blurred and then quantized. The True Positive
Rate (TPR) is 92.80%.
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having different size; ii) it is a feature for each single image acquired by the
device, as a result it can contribute in providing reliable responses even if
very few images are available for the estimation of the reference PRNU; iii)
it is robust to some standard image manipulations. Based on the promis-
ing preliminary results, future research will be devoted to the extraction of
that feature from natural images by combining the theoretical properties of
both the decreasing rearrangements and the Radon transform. In addition,
features other than RT empirical probability will be investigated in order to
further improve recognition accuracy.
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