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Abstract: Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins,
including neuroactive toxins. Venom adaptations might have played a fundamental role in the radia-
tion of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified
family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from
the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species
Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report,
for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses
revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty
novel toxin families, including some with high levels of expansion, were discovered. No significant
difference was observed between the distal and proximal venom duct secretions. Peptides related
to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide
isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components
may constitute ancestral adaptations for venom production in conoideans. Although often neglected,
salivary gland secretions are of extreme importance for understanding the evolutionary history of
conoidean venom.

Keywords: Raphitomidae; transcriptome; conotoxin; venom duct; salivary glands; venom evolution;
trophic ecology

Key Contribution: A diversified venom repertoire, mostly composed of novel conotoxin-like peptides,
was retrieved from the venom duct of the carnivorous gastropod Raphitoma purpurea (Neogastropoda:
Conoidea). Toxins were also retrieved from the salivary glands of R. purpurea, possibly representing
ancestral adaptations to venom production in the evolutionary history of Conoidea.

1. Introduction

Venoms are secretions with the capacity to interfere with the physiological processes
of a target organism [1,2]. In the animal kingdom, a wide range of different venoms has
evolved for both defensive and offensive functions in predation and intraspecific com-
petition [3]. Toxins, the bioactive molecules that take part in the envenomation process,
are of great interest for basic and applied research due to their relevance in shaping the
ecology and evolution of venomous organisms and their possible pharmacological applica-
tion [4]. Venom composition is related to different trophic ecological traits, such as dietary
breadth [5–7], predation strategy [8], diet shift [9], and intraspecific niche partitioning [4,10].

Marine gastropods include many venomous taxa, the most studied being the cone
snails of the family Conidae Fleming, 1822, which employ powerful neurotoxins to incapac-
itate their prey or elude their predators [4,11]. The conid venom cocktail is characterised by
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a mixture of short neuroactive peptides named conotoxins, which are highly diversified and
able to affect a wide range of vertebrate and invertebrate taxa [12]. The signal sequence and
cysteine pattern of conotoxins are sufficiently conserved to achieve a sound classification
system [13,14], which comprises at least 16 superfamilies [15]. In envenomation, conotoxins
can enable prey capture [16,17] and play a defensive role [17] or several metabolic func-
tions [18,19]. Neuropeptides have high therapeutic potential, making the toxin-rich venom
cocktails of Conidae an interesting target for translational research [19].

Although the venom of ~120 cone snail species has been characterised (https://
www.conoserver.org, accessed on 7 May 2024), the number of described conotoxins is
meagre compared to the estimated total [20,21]. One of the mechanisms underlying the
extraordinary diversification of conotoxins is the neofunctionalisation of genes following
duplication and positive selection [5,22]. This process involves not only toxins but also toxin
maturation and processing enzymes. For instance, a whole different family of chaperone
protein disulfide isomerases, specialised in toxin folding, was retrieved in the venom duct
of Conidae [23].

Our knowledge of neogastropod venoms is mostly limited to cone snails, and many of
the adaptations underlying their toxicity are known for this family only. The secretions of a
few other conoidean taxa have also been assessed, such as Terebridae and Turridae—as
well as some species of superfamilies Tonnoidea, Buccinoidea, and Muricoidea—but the
taxonomic coverage of predatory gastropods outside of Conidae is still very low [24–26].
To gain a better understanding of the evolutionary history of the venom (e.g., what an-
cestral innovations promoted the use of toxins? When did the expansion of toxin genes
occur?), a broader taxonomic scope is needed. Given that the evolution of a venom system
might have constituted a key evolutionary innovation leading to adaptive radiation in
Conoidea [26–28], one of the best targets for such studies is certainly the most species-rich
group [29,30] of Conoidea, Raphitomidae Bellardi, 1875. The family Raphitomidae includes
almost 900 extant described species (WoRMS, accessed on 13 May 2024) and a probably
larger portion of undescribed species [26]. According to the most recent phylogenetic
reconstruction of Conoidea, whose origin is estimated to be ~138 Ma, this family emerged
at ~50 Ma and is closely related to cone snails [31,32]. The type genus Raphitoma Bellardi,
1847 is a surprisingly complex taxon, with 57 extant named species (WoRMS, accessed on
13 May 2024), of which over a third were described in the last decade in the Mediterranean
Sea [33–35]. Despite the potential interest in this radiation in various biological aspects
(e.g., the evolution of larval development [36–38]), the life history and evolutionary biology
of Raphitoma are still largely unknown.

The trophic ecology of raphitomids has not yet been determined. They are presumed
to be carnivorous predators like the rest of the conoideans, also considering their foregut
anatomy, which includes a toxoglossan proboscis and a venom duct, as in Conidae [30,39].
Direct observations of polychaetes as the target prey [40], indeed, matched our unpublished
data from metabarcoding of the stomach content in a specimen of Raphitoma bicolor Risso,
1826 (NCBI accession number: PP913530), identified with the polychaete genus Polycirrus.
The anatomical variability of raphitomids, with several taxa completely lacking a venom
duct [30,39], might suggest an evolutionary pattern driven by trophic adaptations, making
them an interesting model for the study of toxicity. The characterisation of Raphitomidae
venom would be crucial to clarify many ecological aspects of these poorly understood
species and provide an explanation for the remarkable radiation which occurred in the
family. Furthermore, the characterisation of toxins produced by Raphitoma could reveal
if those discovered in cone snails originated during the radiation of Conidae or rather
constitute earlier adaptations shared with their sister lineage.

In recent years, venom research has been revolutionised by large-scale sequencing
approaches, which implement next-generation platforms to gather a comprehensive dataset
of transcripts in a specific tissue involved in the envenomation, like salivary or venom
glands and their ducts [27,41]. When dealing with the first transcriptome of a major
taxon (family, order, etc.), an approach based mainly on sequence homology could fail to
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retrieve most novel substances; however, modern bioinformatic pipelines retrieve toxin
components adopting multiple strategies such as the detection of transmembrane domains
and cysteine patterns, folding prediction, cellular localisation, and expression levels [42].
High-throughput sequencing data are subject to sequencing and bioinformatic analyses
biases and tissue contamination [42,43], and the functional characterisation of transcripts
(e.g., toxic vs. physiological) needs to be experimentally validated through bioactivity
assays [44,45]. Furthermore, the overall venom composition may vary depending on the
moment the sample is collected, e.g., after a predation event (when the animal may be
replenishing the venom) vs. during a predation event (when active production may be
scarce). However, despite these limitations, transcriptomic approaches have provided
a huge boost to the identification of new toxins compared to proteomic assays [28]; the
number of peptides putatively identified as toxins in reference databases is increasing
exponentially, demanding caution in the interpretation of transcriptomic results.

In this study, we performed an in-depth characterisation of the secretome of salivary
glands and venom duct of Raphitoma purpurea. We identified and described the main
toxic components on the basis of tissue-specific expression, the scoring system of DeTox, a
comprehensive pipeline for toxin discovery, and a manually curated annotation. Published
data from a large set of neogastropod species, especially conids, were used as a reference
to identify potential functional similarities of Raphitoma toxins. Our large-scale approach
aimed to identify both peptides with toxic properties (with a focus on conotoxin-like
peptides) and proteins responsible for toxin maturation and regulation. Finally, evidence of
predatory behaviour in Raphitoma is provided as two additional prey taxa are identified
from the gut contents using the mitochondrial marker 16S rDNA.

2. Results
2.1. Bioinformatics Analyses

Following extraction, the RNA quantity of the carcases was 19.44–40.32 µg, with
4.9–6.2 RIN values. The RNA quantity of salivary glands and venom ducts was 19.4–269 ng,
with 6.4–8 RIN. Sequencing yielded 786 million paired-end reads, 40–72 million per sample.
The final assembly comprised 937,142 transcripts, with an N50 of 881.

The highest BUSCO score was retrieved for the Metazoa reference, with a 99.48%
completeness score (94.76% complete and 4.72% fragmented matches), while the Mollusca
score was 71.26% (66.59% complete and 4.66% fragmented matches). Bacterial-targeted
analyses had the lowest completion scores. Most matching transcripts were detected in the
salivary glands, followed by the venom ducts. A total of 10,671 transcript matches were
found overall in the transcriptomes, of which 486 were retrieved by DeTox as candidate
venom components.

DeSeq2 (Figure 1) identified 9990 differentially expressed transcripts, of which 2614
were overexpressed in the salivary glands and 7208 in the venom duct samples. Further-
more, 106 and 112 transcripts were overexpressed in the distal and proximal portions of the
venom duct, respectively, compared to the whole duct, and 34 transcripts were differentially
expressed between the two sections. Those overexpressed in the proximal fragment were
related to cellular transport—such as actin, myosin light, and heavy chains, troponin I-like,
filamin-A—and muscle contraction—such as titin-like, twitchin-like, and LIM—and did
not include any putative venom component (PVC). Transcripts overexpressed in the distal
fragment had very low expression levels and could not be characterised. The correlation
matrix among the tissue samples did not differentiate between the two sections of the
venom duct (Figure 1).
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Figure 1. Results of the differential expression analysis; (a) Correlation matrix among samples, yel-
low colour represents high correlation; (b) Tissue-specific gene expression plots for venom duct vs. 
salivary glands (above) and distal vs. proximal venom duct (below), red dots represent differentially 
expressed transcripts. 

A total of 74,520 transcripts were selected by the DeTox pipeline (Figure 2; Supple-
mentary Material Table S1) as candidate venom components, and 118 passed the filtering 
steps based on scoring and expression level and were subsequently processed for func-
tional annotation. After annotation, 14 transcripts were discarded as unrelated to toxic 
activity, resulting in 104 PVC (Table 1; Supplementary Material Table S2)—with function 
related to post-translational modification (n = 12) or regulation (n = 23) and biosynthesis 
(n = 69). The expression level in either the salivary glands or the venom duct was high for 
47% of the PVC, medium for 11%, and low for the remaining. Several transcripts (n = 53) 
were recognised as differentially expressed between salivary glands and venom ducts, the 
vast majority predominantly expressed in the latter (n = 51). Venom duct neuropeptides 
represented the highest number of PVC (n = 49) with the highest expression levels (40 
highly expressed, including ten with TPM > 10000). This group also included all the lowest 
DeTox scoring transcripts (“S”, n = 17), which were retained because of their outstanding 
TPM values but could not be adequately annotated. 

Table 1. List of putative venom components in Raphitoma purpurea. Colours represent maximum 
TPM among samples (white: 0 to 10; blue: 10 to 50; green: 50 to 100; yellow: 100 to 250; orange: 250 
to 500; light red: 500 to 1000; dark red: 1000 to 5000; black: over 5000); transcript marked with “x” 
were differentially expressed in VD or SG, those marked with “!” had expression in carcases within 
10 folds of envenomation organs; Matching domains in HHpred with low scores single (~75 p) or 
double (~50 p) underlined; number of domains specified in parentheses; DeTox rating (see Material 
and Methods). 

ID C SG VD pVD dVD len Matching Domains Rating 
Post-translational modification 

PVC-01      488 Peptidase S10 serine carboxypeptidase  SBCD 
PVC-02   x   943 Aminopeptidase M1, ERAP1 SCD 
PVC-03   x   725 Peptidase S9 prolyl oligopeptidase  SBD 
PVC-04   x   716 Peptidase S9 prolyl oligopeptidase  SBCD 

Figure 1. Results of the differential expression analysis; (a) Correlation matrix among samples,
yellow colour represents high correlation; (b) Tissue-specific gene expression plots for venom duct vs.
salivary glands (above) and distal vs. proximal venom duct (below), red dots represent differentially
expressed transcripts.

A total of 74,520 transcripts were selected by the DeTox pipeline (Figure 2; Supplemen-
tary Material Table S1) as candidate venom components, and 118 passed the filtering steps
based on scoring and expression level and were subsequently processed for functional
annotation. After annotation, 14 transcripts were discarded as unrelated to toxic activity,
resulting in 104 PVC (Table 1; Supplementary Material Table S2)—with function related
to post-translational modification (n = 12) or regulation (n = 23) and biosynthesis (n = 69).
The expression level in either the salivary glands or the venom duct was high for 47% of
the PVC, medium for 11%, and low for the remaining. Several transcripts (n = 53) were
recognised as differentially expressed between salivary glands and venom ducts, the vast
majority predominantly expressed in the latter (n = 51). Venom duct neuropeptides repre-
sented the highest number of PVC (n = 49) with the highest expression levels (40 highly
expressed, including ten with TPM > 10000). This group also included all the lowest DeTox
scoring transcripts (“S”, n = 17), which were retained because of their outstanding TPM
values but could not be adequately annotated.

Table 1. List of putative venom components in Raphitoma purpurea. Colours represent maximum
TPM among samples (white: 0 to 10; blue: 10 to 50; green: 50 to 100; yellow: 100 to 250; orange: 250
to 500; light red: 500 to 1000; dark red: 1000 to 5000; black: over 5000); transcript marked with “x”
were differentially expressed in VD or SG, those marked with “!” had expression in carcases within
10 folds of envenomation organs; Matching domains in HHpred with low scores single (~75 p) or
double (~50 p) underlined; number of domains specified in parentheses; DeTox rating (see Material
and Methods).

ID C SG VD pVD dVD len Matching Domains Rating

Post-translational modification

PVC-01 488 Peptidase S10 serine
carboxypeptidase SBCD

PVC-02 x 943 Aminopeptidase M1,
ERAP1 SCD
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Table 1. Cont.

ID C SG VD pVD dVD len Matching Domains Rating

PVC-03 x 725 Peptidase S9 prolyl
oligopeptidase SBD

PVC-04 x 716 Peptidase S9 prolyl
oligopeptidase SBCD

PVC-05 x 573
Prolyl-4-

hydroxylase,
tetratricopeptide

SBCD

PVC-06 x 564
Prolyl-4-

hydroxylase,
tetratricopeptide

SBCD

PVC-07 253 Peroxiredoxin IV SBCD

PVC-08 445 Copper type II PAM
monooxygenase (2) SCD

PVC-09 ! 500 Disulfide isomerase SBCD
PVC-10 ! 492 Disulfide isomerase SBCD

PVC-11 ! 211 Cyclophilin
CeCYP16 SBD

PVC-12 ! 353 Glycoside hydrolase
47 SBD

Regulation

PVC-13 x 148 Attractin-like
C-lectin SCD

PVC-14 x 136 Peptidase M13
neprilysin SCD

PVC-15 x 369 Peptidase M13
neprilysin SCD

PVC-16 x 446
GDA1/CD39

nucleoside
phosphatase

SCD

PVC-17 x 197 SUSHI repeat (2) SCD
PVC-18 x 113 Elevenin SB
PVC-19 214 EF-hand protein SD
PVC-20 81 Neuropeptide F SBD
PVC-21 122 Elevenin SB
PVC-22 436 vWFA-like (2) SBCD

PVC-23 263 Heparin, amyloid
A4 precursor SCD

PVC-24 ! 90 Ferritin BD
PVC-25 ! 111 Ferritin BD
PVC-26 ! 414 Calreticulin SD
PVC-27 ! 172 TRAP-delta SD

PVC-28 ! 596
Exonuclease-

Endonuclease-
Phosphatase

SCD

PVC-29 ! 1407 vWFC-like, collagen SCD

PVC-30 ! 165 Transposase, PAX
domain SCD

PVC-31 ! 155 ML domain SCD
PVC-32 ! 598 Saposin (7) SCD

PVC-33 ! 560
Peptidases C1

cathepsin, cathepsin
inhibitor, cystatin (2)

SBCD

PVC-34 ! 351
Peptidases C1

cathepsin, cathepsin
inhibitor

SBCD

PVC-35 ! 291 Galactose-binding
lectin (2) SCD

Biosynthesis
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Table 1. Cont.

ID C SG VD pVD dVD len Matching Domains Rating
PVC-36 x 56 - S

PVC-37 x 78 Beta flower 3,
DUF3931 S

PVC-38 x 65 DUF3530 S
PVC-39 x 71 tick salivary peptide S
PVC-40 x 91 tick salivary peptide SC

PVC-41 x 67
Conotoxin,

DUF2756, Clavanin,
haemadin

SC

PVC-42 94 Conotoxin, spider
neurotoxin SC

PVC-43 x 93 Conotoxin SC
PVC-44 x 92 tick salivary peptide SC
PVC-45 x 55 Conotoxin S

PVC-46 x 80 Conotoxin, Clavanin,
haemadin SC

PVC-47 x 51 - S

PVC-48 x 78 Conotoxin, secapin,
haemadin SC

PVC-49 x 71 Conotoxin, heavy
metal binding SC

PVC-50 x 48 - S
PVC-51 x 36 Defensin propeptide S
PVC-52 72 Conotoxin SC

PVC-53 x 95 tick salivary peptide,
Defensin SC

PVC-54 x 136 Kunitz/BPTI SCD
PVC-55 x 105 DUF3931 SC
PVC-56 x 143 Kunitz/BPTI (2) SBCD
PVC-57 x 74 Secapin SC
PVC-58 x 38 - S
PVC-59 x 47 tick salivary peptide S
PVC-60 88 Conotoxin SC
PVC-61 x 53 - S
PVC-62 x 45 - SC
PVC-63 x 45 - SC
PVC-64 x 46 Transmembrane 219 S

PVC-65 x 69 Conotoxin, tick
salivary peptide SC

PVC-66 x 81 - S
PVC-67 x 187 Apolipoprotein M SBC
PVC-68 x 88 Conotoxin SC
PVC-69 x 154 Kunitz/BPTI SCD
PVC-70 x 69 tick salivary peptide SC
PVC-71 x 90 tick salivary peptide SC
PVC-72 x 64 - S
PVC-73 x 110 Conotoxin, macin SC

PVC-74 x 47 Beta flower 3,
DU3931 S

PVC-75 x 36 - S

PVC-76 94 Myticin
preproprotein SBC

PVC-77 x 232 Kunitz/BPTI (2) BD
PVC-78 x 55 - S

PVC-79 41 Pleurocidin
antimicrobial 12 SB

PVC-80 x 157 Kunitz/BPTI (2) SBCD

PVC-81 41 Pleurocidin
antimicrobial 12 SB
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Table 1. Cont.

ID C SG VD pVD dVD len Matching Domains Rating

PVC-82 100 Conotoxin, spider
neurotoxin SCD

PVC-83 x 606

DUF885,
nucleoporin FG2,

tyrosine
carboxypeptidase

SD

PVC-84 143 Kunitz/BPTI (2) SBCD

PVC-85 x 235
Nicotinic

acetylcholine
receptor

SCD

PVC-86 115 Conotoxin,
chitin-binding SCD

PVC-87 97 Conotoxin,
chitin-binding SB

PVC-88 120 Chitin-binding SB
PVC-89 457 CRISP, ShK toxin (3) SBCD
PVC-90 99 Conotoxin SB

PVC-91 920 Tumour necrosis
factor SCD

PVC-92 311 Cardio active
peptide (2) SBC

PVC-93 434 Chitin-binding (3),
pentraxin SCD

PVC-94 x 203 Insulin-like growth
factor, conotoxin SCD

PVC-95 391 FMRFamide SD

PVC-96 417 Chitin-binding (3),
pentraxin SCD

PVC-97 ! 116 Conotoxin precursor SBC
PVC-98 ! 108 Conotoxin precursor SBC
PVC-99 ! 86 - SC

PVC-100 ! 70 Conotoxin,
Kunitz/BPTI SBCD

PVC-101 ! 185
Insulin-homologue

binding site,
Thyroglobulin

SCD

PVC-102 ! 409 Kunitz/BPTI, WAP
(3) SBCD

PVC-103 ! 219 CRISP SBCD

PVC-104 ! 139
Conotoxin,

Kunitz/BPTI,
Kunitz/BPTI

SCD

ConoDictor identified 9530 conotoxin-like peptides in the DeTox output. After filtering,
145 transcripts (of which only 15 were among the PVC) were retained, hereafter named
raphitoxins; they were ascribed to 20 putative raphitoxin families (PRF) (Supplementary
Material Table S3). The classes identified were conotoxins (n = 105), conodipines (n = 6),
conoCAP (n = 1), conkunitzins (n = 9), contryphan (n = 1), and conatokins (n = 6), while
17 transcripts remained unclassified. ConoPrec superfamily attribution based on the signal
sequence was unsuccessful for all sequences, and no close known conotoxin was retrieved
for any transcript. Following ConoDictor predictions—which were mostly not unanimous
within each family—the PRF was associated with superfamilies A (n = 3), M (n = 1), O1
(n = 6), conkunitzin (n = 2), and unknown (n = 8). Eleven clusters had higher expression in
the venom duct; two were mainly retrieved from the salivary glands, and the remaining
were similarly expressed. Four PRF showed signs of gene expansion, with 10–23 transcripts
each, including transcripts that were preferentially expressed in different tissues. In the
two PRFs, the mature peptide length was longer than expected for neuropeptides (>300 aa).



Toxins 2024, 16, 348 8 of 26

The signal sequence of 13 additional PVC not retrieved by this pipeline matched with some
of the clusters.
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Figure 2. UpsetR diagram of candidate toxic components identified by Detox with relative frequencies
of all score combinations. Constructed in RStudio [46]. Bars scaled with the “log2” parameter. Values
above the bars represent the frequencies. The pie chart shows the results of the PVC functional
annotation (marked with “*” over the upsetR diagram bars). Score legend: S = signal sequence and
no transmembrane domain; C = cysteine framework; D = domain match with Pfam; B = similarity
match with the reference database; T-x: TPM in salivary glands or venom duct equal to or greater
than x.

From the gut content, two polychaete 16s rDNA fragments were successfully amplified.
One sequence matched genera of the family Terebellidae (whole sequence, PID~80), such
as Neoamphirite Hessle, 1917, Leaena Malmgren, 1866, or Polycirrus Grube, 1850; the second
sequence marginally matched genera of the family Spionidae (last 100 bp, PID~80), such as
Spio Fabricius, 1785 and Saccocirrus Bobretzky, 1872.

2.2. The Venom Cocktail of Raphitoma purpurea
2.2.1. Post-Translational Modification

The majority of PVC related to toxin modification processes were retrieved from
the venom duct, including peptidases and hydrolases of the S10, S9, and M1 families,
prolyl-4-hydroxylases (P4H), and peroxiredoxin 4 (PRX4). The S10 serine carboxypeptidase,
predicted in the endoplasmic reticulum, was the most highly expressed and matched
(PID~34) a venom serine carboxypeptidase from the salivary glands of the Triton’s trumpet
Charonia tritonis (Linnaeus, 1758) [47]. The S10 family of peptidases cleaves the C-terminal
region of peptides and is commonly associated with post-translational modification [48].
Physiological functions related to this enzyme activity include regulation of angiotensin
release [48], as well as some neurotoxic properties in bee venom [49]. The M1 peptidase
was one of the largest proteins identified. It was located in the endoplasmic reticulum
and included an N-terminal catalytic domain associated with aminopeptidase N and
Leukotriene hydrolase A4, as well as a C-terminal ERAP1-like domain. This enzyme
cleaves the N-terminal residues of oligopeptides and is involved in several processes,
including immunity, digestion [50], and toxic activity, such as toxin maturation or prey
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tissue degradation in snakes [51,52]. An aminopeptidase M was also retrieved from the
salivary gland of Charonia tritonis [47]. The S9 prolyl endopeptidase was represented by one
endoplasmic reticulum isoform, and another was located extracellularly (PID~56). They
both matched a prolyl endopeptidase from the digestive secretions of the vampire snail
Cumia reticulata (Blainville, 1829) [8]. This enzyme cleaves the C-terminal prolyl region
of propeptides and is related to toxin maturation in fungi [53]. Two isomers of P4H were
retrieved and located extracellularly. P4H is mainly responsible for the post-translational
modification of collagen [54] and also works as a chaperone for conotoxins in Conus [55,56].
PRX4 had a striking similarity (PID~90) with a peroxiredoxin retrieved from Profundiconus
vaubani (Röckel and Moolenbeek, 1995) [57]. This family of antioxidant proteins is essential
for reducing hydrogen peroxide and other dangerous substances in cells but can also take
part in structural modification processes involving cysteine bonds and is commonly found
in snake venom glands [58,59].

The only transcript with functions related to venom processing retrieved from the
salivary glands was copper type II peptidylglycine α-amidating monooxygenase (PAM).
This enzyme is common in all metazoans and performs C-terminal peptide amidation [60],
which is also considered one of the most frequently occurring post-translational modifica-
tions of conotoxins [61].

Finally, five additional venom processing transcripts were retrieved from all tissue
samples and carcases, including two disulfide isomerases, a cyclophilin, and a hydrolase.
One of the two disulfide isomerase isomers was retrieved as extracellular, while the other,
with lower expression levels, was retrieved as located in the endoplasmic reticulum. They
matched disulfide isomerases from the cone snails Conasprella coriolisi (Moolenbeek and
Richard, 1995) (PID~79) and Conus magus Linnaeus, 1758 (PID~70), respectively (additional
information in Section 2.3). Disulfide Isomerases are oxidoreductases involved in the
folding of proteins by catalysation of disulfide bonds [62] and represent a highly diversified
family of toxin chaperones in Conus [23,63]. The raphitomid cyclophilin resembled the
CeCYP16-like ortholog from Caenorhabditis elegans Maupas, 1900, whose function is not yet
completely understood [64]. Generally, cyclophilins belong to the peptidyl-prolyl cis-trans
isomerases (PPIase) involved in peptide folding, immunosuppression, and anti-parasitic
activity [64,65]. Finally, the glycoside hydrolase 47 protein, with a similarity match with
Profundiconus (PID~81), was found in the salivary glands and carcases. In Conus, these
hydrolases are hypothesised to enhance the effectiveness of other toxins in venom [66].

2.2.2. Regulation

The transcripts that might be related to regulatory functions in the venom duct were
a C-type lectin, two isomers of neprilysin, a GDA1/CD39 nucleoside phosphatase-like
protein, and a SUSHI repeat-containing protein. The C-type lectin was the most expressed
among these PVCs. C-type lectins are calcium-dependent sugar-binding proteins that act as
receptors with a major defensive function in innate and adaptive immunity [67,68]. These
proteins were also retrieved in snake venoms, where they can disrupt prey coagulation
pathways [69], and in Profundiconus [57]. Two isoforms of a neprilysin-like peptide were
retrieved (PID~80), one located in the plasma membrane and one truncated and located ex-
tracellularly. Neprilysins are M13 membrane metalloproteinases involved in the regulation
of peptide signalling [70,71], but they also function as neurotoxins in spiders, snakes, and
jellyfishes [72] and can be secreted to cleave the components of the extracellular matrix,
facilitating the spreading of other toxins [73]. The GDA1/CD39 nucleoside phosphatase-
like protein belongs to a family of extracellular hydrolases that convert ADP to ATP and
ATP to ADP and is involved in signalling and regulation of several physiological path-
ways [74]. The SUSHI repeat protein contains two SUSHI domains, which are commonly
found in complement control proteins, adhesion peptides involved in protein-protein or
protein-ligand interactions [75,76].

In salivary glands, the transcripts associated with regulation were two elevenins, an
EF-hand protein, a hormone, a peptide with two von Willebrand factor A-like (vWFA)
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domains, and an amyloid A4 precursor. The two elevenins were only slightly similar
(PID~35%), and one was more highly expressed and matched the elevenin M2 from Conus
magus (PID~80). Elevenins are neuropeptides involved in many signalling pathways, in-
cluding the regulation of salivary secretions. In Conus, elevenins are also employed as
toxins, mimicking the prey’s neuroactive peptides [77]. EF-hand proteins have high cal-
cium affinity and are involved in most cell communication processes [78]. In snake venom,
EF-hand-like toxins have been linked to salivary secretion control [79]. The hormone had
a ~60 PID blast similarity with neuropeptide F from Conus magus [80], which regulates
reproductive and feeding behaviour in invertebrates [81]. The vWFA protein was located
in the lysosome and had a similarity match (PID~25) with a protein from the salivary
gland of Cumia reticulata ([8]). These domains are found in a large number of proteins, like
intracellular DNA-repairing enzymes, extracellular collagen or membrane receptors [82].
Von Willebrand factors also play an important role in coagulation and cell adhesion, and
vWFA-like toxins are widespread in snake and predator gastropods [8,83,84] or in parasites
like Plasmodium [85]. The amyloid A4 precursor included heparin and a copper-binding do-
main. This peptide is responsible for neurite outgrowth and is fundamental in Alzheimer’s
disease treatment [86]. Additional physiological functions outside the brain have been
observed in the intestinal epithelium and salivary glands of insects [87].

Several transcripts were identified in all tissue samples: two ferritins, a calreticulin,
the delta subunit precursor of the translocon-associated protein (TRAP), an exonuclease-
endonuclease-phosphatase (EEP), a von Willebrand Factor C peptide, a transposase, a
saposin-rich protein, an ML domain protein, two cathepsins and two galactose-binding
lectins. Two ferritin transcripts, one cytosolic and one extracellular, were highly expressed
in the carcases and salivary glands and moderately expressed in the venom duct. A high
similarity match (~91 PID) was retrieved with the Conus magus venom ferritin. Ferritins
act as iron-storage in cells and are involved in iron transportation when secreted, and they
are also involved in the development, regulation, and shell growth in molluscs [88]. The
calreticulin was expressed at a medium level in the salivary glands and located in the
endoplasmic reticulum. This peptide is fundamental in chaperoning and cell storage of
calcium, but venom calreticulins are also known to be involved in invertebrate parasitic
interactions, where they inhibit the immune reaction [89,90]. The TRAP-delta subunit was
found to be extracellular. In cells, this complex is fundamental for translocating secretory
proteins across the plasma reticulum membrane [91]. The EEP domain is shared by a large
number of proteins with phosphodiester cleaving capacity, which mostly bind to nucleic
acids, like DNA-repairing enzymes, or signal peptides [92]. It is also present in the bacterial
cytolethal distending toxins, which damage the DNA [93]. The vWFC-like protein was the
largest identified among all PVCs, with an N-terminal vWFC-like domain and a C-terminal
collagen-like domain. VWFCs are present in the cartilage matrix and regulate extracellular
protein binding [82,94]. Transposases are responsible for moving DNA fragments inside the
genome and could be involved in the replacement of defective genes or in gene duplication.
They are also very compelling tools for gene therapy [95]. Both ML and saposin domains
are lipid-recognition enzymes involved in immunity and lipid catabolism. They can bind
to pathogen-related products and trigger their degradation [96,97]. Of the two cathepsin
transcripts, one included a cathepsin inhibitor domain and a papain-like cathepsin domain,
and the other had two additional cystatin-like domains in the N-terminal region. Cathepsins
are cysteine lysosomal endopeptidases of the C1 peptidase family and take part in a broad
range of physiological activities, including immunity and anti-toxin activity [98]. These
proteins are inactive when translated by cysteine protease inhibitors in propeptide regions,
such as cystatins [98]. These transcripts had a blast match with cysteine-rich secretory
proteins of Charonia tritonis [47]. Galactose-binding lectins are sugar-binding proteins
involved in many physiological processes based on a carbohydrate recognition process.
They also take part in envenomation in snakes, disrupting the prey haemostasis system [99].
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2.2.3. Biosynthesis

Most of the venom duct transcripts were identified as conotoxins due to a match in
either their whole sequence or the signal sequence. Three transcripts matched with Conus
litteratus Linnaeus, 1758 precursor Lt22.2 (PID~65), and were the PVC with the highest simi-
larity with a known conotoxin (additional information in Section 2.3). With the exception of
conkunitzins (additional information in Section 2.3), all remaining toxins had no similarity
match with known venom products, and only a few were predicted in the conotoxin fami-
lies A, M, and O1. They were best characterised following additional domains identified
in the peptide sequence, including Kunitz/BPTI, secapin, and agatoxin. Two isomers
had a single BPTI domain, and four isomers had a double BPTI domain. Kunitz/BPTI
proteins are protease inhibitors widespread in venomous organisms, with functions related
to haemostasis impairing as thrombin inhibitors and ion-channel modulators [100]. In
Conus, these toxins are called conkunitzins and act as powerful channel-blocking neurotox-
ins [101]. The conkunitzins retrieved in Raphitoma had a similarity match with both tick
species (PID~40) and Californiconus californicus (Reeve, 1844) and Conus ermineus Born, 1778
(PID~50). Secapin was retrieved in two isomers. This protease inhibitor is a known com-
ponent of bee venom involved in immunity, anticoagulation, and neurotoxicity [102,103].
Two agatoxin transcripts were retrieved, one more expressed in the venom duct and one
in the salivary glands. These powerful spider neurotoxins induce paralysis by affecting
synaptic neuromuscular junctions [104]. There were also multiple low-score matches with
tick salivary peptides, haemadin, and clavanin. Ticks are parasites that feed on the blood
of their hosts and employ anticoagulants to facilitate feeding [105]. Salivary secretions
also contain neuroactive toxins that reduce the immune response and induce paralysis to
avoid detection and prevent removal [4,106]. Two peptides had an N-terminal clavanin-like
and a C-terminal haemadin-like domain. Haemadin is an anticoagulant toxin secreted by
leeches [107] with promising pharmacological applications [108], whereas clavanins are
antimicrobial peptides from tunicates [109]. The remaining transcripts remained mostly or
completely uncharacterised, including transcripts with the following domains: Beta flower
3 and DUF3931 (with the second highest expression level), DUF885, heavy metal binding,
macin, defensin, transmembrane 219, and apolipoprotein M.

The salivary gland toxins included conotoxins, a ligand-gated ion channel (LGIC)
receptor, a ShK cysteine-rich secretory protein (CRISP), a cardioactive peptide (CAP), and
pentraxins. The salivary conotoxin-like peptides could not be identified with any known
cone snail family, but two of them were similar (PID~65) to the peptides retrieved in Hemi-
fusus tuba Gmelin 1791. The LGIC transcript had a medium expression level and matched
the extracellular domain of the nicotinic acetylcholine receptor nAChR2, similar to typical
conotoxins of superfamily A [110]. LGIC mediates synaptic transmission and is permeable
to ion channels [111]. ShK domains are present in potassium-blocking neurotoxins first
isolated from sea anemones [112], and later retrieved in gastropods [8]. The ShK toxin
retrieved in Raphitoma had ~50 PID, with one from Cumia reticulata and ~27 from cnidarians.
Cardioactive peptides owe their name to the cardioacceleration function that they are
associated with in crustaceans, together with additional regulatory processes. ConoCAP
are conid neurotoxins with opposite effects compared to their arthropod counterparts, and
their function in venom is still not fully understood [113]. Raphitoma conoCAP peptide
had a ~55 PID similarity match with a Conus villepinii precursor. Two pentraxins were re-
trieved with a triple N-terminal chitin-binding domain. Pentraxins are pattern-recognition
molecules that play an important role in immunity and neural activity in snake venom [114].
Three additional transcripts were retrieved in the salivary glands: a large peptide with a
tumour necrosis factor, a peptide with a low-quality match for insulin-like growth factor,
and a peptide with a low-quality match for an FMRFamide—also retrieved among wasp
neurotoxic components [115].

Finally, several transcripts that were more highly expressed in the carcase samples
were retrieved, including conotoxin precursors and conotoxin with Kunitz/BPTI domains,
a hormone, a large Kunitz/BPTI and WAP domain protein, and a CRISP protein. Two
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conotoxin precursors had good similarity matches (PID~50) with the Conus arenatus Hwsass
1792 conotoxins of the family DivMKVAVVLLVS, but their expression was outstandingly
high in the carcase samples (TMP > 15000), and only low in the salivary glands and venom
duct (additional information in Section 2.3). The Kunitz/BPTI conotoxin had BLAST
matches with turritoxin (PID~60) from Gemmula and Profundiconus (additional information
in Section 2.3). The hormone matched both the insulin-binding domain and thyroglobulin.
The Kunitz/BPTI protein with a triple WAP domain had a similarity match with both the
gastropod (PID~30) and the sea anemone (PID~54).

2.3. Venom Evolutionary Patterns in Conoidea

The largest number of matches with the homebuilt gastropod dataset was retrieved
with Profundiconus spp., followed by Conus magus, Charonia tritonis, and Hemifusus tuba,
whereas the UniProtKB toxin database had matches mostly with snakes, gastropods, and
spiders.

Remarkable evolutionary results were retrieved from the alignments of the following
PVC: the two isomers of disulfide isomerase (PVC-09 and PVC-10), the two isomers of
elevenin (PVC-18 and PVC-21), the turritoxin-like peptide (PVC-100), the conotoxin-like
precursors from the venom duct and salivary glands (PVC-76, PVC-79, and PVC-81), the
conotoxin-like precursors from the carcases (PVC-97 and PVC-98), and the conkunitzins (see
below). The two disulfide isomerases (DI) are clustered separately (Figure 3a). Following
the results of previous studies on the evolution of DI [23], they correspond to the common
gastropod DI and to a venom-related DI family discovered in Conidae, respectively. A
similar pattern was observed for the two isomers of elevenin (Figure 3b), although very few
conoidean peptides were available. The raphitomid turritoxin-like transcript (Figure 4a)
had high similarity in the signal, propeptide, and mature peptide regions with the peptides
retrieved in Turridae (genera Iotyrris, Gemmula, Lophiotoma, and Polystira) and Conidae
(genus Conus). The conotoxin-like precursor (Figure 4b) from the salivary glands and the
venom duct was successfully aligned with the Pmag02 conotoxins [80], also retrieved from
the salivary secretions of Conus virgo [116], whose function has not yet been determined.
The conotoxin-like precursor retrieved in the carcase samples (Figure 4c) matched with the
conotoxin hyaluronidase of superfamily Cerm06 [117], as well as a number of unidentified
proteins from the non-conoidean gastropods Littorina saxatilis (Olivi, 1792) and Elysia spp.
Remarkably, the propeptide region of the Raphitoma sequences was similar to that of cone
snails, whereas the propeptide region of Californiconus californicus (Figure 4c), disregarding
the closer phylogenetic relationship, was more similar to non-conid sequences.

The only putative raphitoxin families that produced significant alignments were
PRF-02 and PRF-03 (Supplementary Figure S1). PRF-03 conkunitzin had a 77 aa long
highly conserved N-region (PID~99), which was not retrieved for PRF-02 or any conid
sequence. PRF-02 and PRF-03, including PVC-56, PVC-77, PVC-80, and PVC-84, had
a double Kunitz/BPTI domain, which matched well (PID~40, including two cysteine
residues) with four peptides retrieved in Conus ermineus and C. magus. Two additional
raphitomid conkunitzins, PVC-54 and PVC-69, had a single Kunitz/BPTI domain, and their
sequences were significantly shorter than those of the rest of the raphitomid conkunitzins,
similar to most of the Conus peptides. The remaining PRF did not match with any known
conotoxin of the corresponding predicted superfamily or cysteine framework.
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3. Discussion

Our approach to the transcriptomic data analysis of Raphitoma purpurea was rather
conservative: we adopted a recently developed pipeline that scores transcripts taking
into account sequence and structural homology and expression levels. This allowed us
to limit our search to the transcripts more likely involved in envenomation while at the
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same time focusing not only on toxins but on a broader set of secreted proteins and
peptides possibly related to venom functions. Notably, the highest number of matches was
retrieved with studies that performed a broader characterisation [8,57,80,118], regardless of
the evolutionary relatedness of the studied taxa. During the manual annotation process,
several transcripts were discarded, indicating that a manually curated assessment is still
recommended to validate the results of the automated pipelines [42,119]. Compared to
methods that rely on a single detection strategy or lenient filter parameters, our analysis
is less likely to generate false positives; however, there could be a higher number of false
negatives, affecting the completeness of the venom cocktail characterisation [42]. Although
a stringent approach was adopted to ascertain the function of R. purpurea PVC, all toxins
described in this study still need to be considered as strictly “putative”, as further functional
assessment is always required to corroborate transcriptomic results.

The strictest requirement applied during filtering was the expression level. We
assumed that putative venom components (PVC) that provide the highest advantage
(e.g., in terms of efficacy, lethality, and fitness) would have the highest expression in the
envenomation-related tissues while being absent or lowly expressed in the carcases. This
led to the discarding of most of the toxin candidates (~99%). Additionally, some PVCs were
also expressed in the carcases, raising questions about the validity of the results. In fact, the
transcriptome from carcase samples necessary for tissue-specific expression comparison
is not always available in venom profile studies [80,117,118]. The conotoxin-like peptides
of the Cerm06 superfamily are an example of a dubious result: in Raphitoma they were
retrieved mainly from the carcases (TPM > 15,000), and the sequences were similar to
unidentified proteins from non-conoidean taxa. It is difficult to determine if transcripts
with these characteristics are false positives; the expression in envenomation-related tissues
alone does not exclude a metabolic housekeeping function [44]. On the other hand, expres-
sion in non-venom-related organs could be explained by the acquisition of a novel function
and does not exclude the venomous role of a transcript [90]. Furthermore, the presence of
similar peptides in distantly related taxa could be explained by evolutionary convergence
or gene neofunctionalisation events. The quantification of expression is helpful in limiting
the enquiry to the most relevant venom components, but it cannot prove or disprove a
transcript involvement in envenomation. This uncertainty determines the possibility of
introducing false positives in toxin reference databases, affecting the results of future venom
assessment studies and highlighting the need for bioactive assays to confirm transcriptomic
study results.

Among the thousands of transcripts initially identified as candidate putative toxins,
only 353 had a good BLAST match (PID > 60) with the reference toxin databases. After
filtering, only 14 of them were retained as PVC. Therefore, most of the putative toxins
retrieved, including ~80% of venom duct toxins, lacked a good similarity match and
were retained solely for their expression level and structural features. The scarce number
of matches in the Raphitoma purpurea secretome revealed a set of venom components
completely new to science, including a large number of conotoxin-like peptides, raphitoxins,
and several regulation and maturation factors. Assessing more species is necessary to
understand how raphitomid venom complexity influenced the evolution of this family.
This result also highlights an issue with several transcriptomic analysis steps, including
filtering and annotation, which rely on reference databases and are therefore biassed toward
the more studied venomous groups (e.g., snakes). Large-scale venom characterisation,
especially for gastropods, is lacking, and transcriptomic studies are often focused on specific
research questions (e.g., the retrieval of conotoxins). As such, a large number of secretome
peptides are never uploaded in the reference databases or provided as Supplementary Data
with the publication and remain available only in the raw sequencing data, requiring great
effort for comparative analyses. Ironically, this study revealed that this overlooked portion
of the venom secretome could be most interesting from a macroevolutionary perspective
(see below).
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The analyses of the secretome of salivary glands and venom duct of Raphitoma purpurea
revealed a cocktail of peptides and proteins, including maturation enzymes, regulation
factors, and toxins, some of which are similar to those retrieved in the venoms of gastropods,
snakes, scorpions, spiders, bees, ticks, leeches, and cnidarians. Most of the putative venom
components retrieved were short conotoxin-like peptides, for which 20 different families
were identified based on the signal sequence. The software for conotoxin identification
failed to predict the superfamily for many raphitoxins, reflecting their diversity from
conotoxins. Most of the successful predictions were with the conotoxin superfamilies
A, O1, M, and conkunitzin. Four putative raphitoxin families (PRF) showed signs of
expansion, including those with the highest expression in the salivary glands (PRF-04,
n = 23) and in the venom ducts (PRF-01, n = 20; PRF-07, n = 16; PRF-08, n = 10). The high
number of duplication events could underlie the process of adaptive evolution, which
may be linked to an expansion of the trophic niche [120]. Considering that the radiation in
Conidae is believed to be linked to the great diversification of their toxins [121,122], the
exceptional diversity in Raphitomidae in terms of species richness, morphology, anatomy,
and distribution could disclose an even more surprising toxin diversity.

The molecular identification of polychaetes in the gut content of R. purpurea (NCBI
accession number: PQ149932–PQ149934) confirmed a vermivore diet for the genus, in
agreement with the retrieval of Polycirrus sp. remains in the gut of R. bicolor (NCBI accession
number: PP913530), but the low identity scores of the R. purpurea gut barcodes do not
allow precise identification of the target prey species or genera. In addition, the primers
adopted were specific to polychaetes; therefore, the possibility of a generalist diet cannot be
excluded. The toxins retrieved in Raphitoma are linked to predatory behaviour: they might
inhibit muscular and neural response [110] through neural receptor impairing (conotoxin
A, conotoxin M, nAChR antagonist, neuropeptide F, EF-hand proteins, agatoxins), or
ion-channel clocking (conotoxin O1, conkunitzins, ShK proteins), and disrupt the prey’s
defensive mechanisms (hydrolases, peptidase inhibitors). The conotoxins that matched
the Raphitoma PVC were all produced by worm-hunting Conus species [122,123], and the
conotoxin families A, M, O1, and conkunitzin identified among the PRF were also all
retrieved in vermivorous cone snails [5]. This result could corroborate a vermivorous diet
for Raphitomidae, although toxin profiles do not directly correlate with trophic ecology [5].
Although the composition of the venom of R. purpurea could be an adaptation to predation,
we cannot exclude a role for adaptive processes related to defence or competition. In order
to answer these ecological questions, more species of Raphitomidae should be assessed
from both a venomous and a dietary perspective.

In cone snails, venom secretions in the proximal and distal portions of the venom
duct can differ at the ecological (defensive vs. predatory response), histological (secretion
vs. transport tissue), or toxin maturation levels [124]. This has been corroborated in
many species by transcriptomic and proteomic data [125–127], whereas some species
do not exhibit venom duct compartmentalisation [128]. Our study did not retrieve a
pattern of differential toxin secretion between different regions of the venom duct, with the
exception of a higher number of proteins involved in muscular contraction retrieved in the
proximal portion, reflecting a functional affinity of that specific region with the contiguous
venom bulb, whose muscular action pushes the venom towards the foregut. This result
suggests that differential secretion of the proximal and distal venom ducts could be an
apomorphic trait of cone snails. However, our analysis also pinpointed a certain degree of
interindividual variation in venom cocktail composition, which calls for an extension to a
larger number of samples to confirm this hypothesis.

The venom duct contained the largest number of PVC, but many were also retrieved
from the salivary glands, including conotoxins. The involvement of salivary gland se-
cretions in the envenomation process is discussed in [116]. While the toxins exclusively
expressed in the venom duct of R. purpurea had high expression levels and did not match
with any known venom toxins, the ones also expressed in the salivary glands had lower
expression levels and were similar to other conoidean toxins. This set of toxins might
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thus represent early adaptations towards toxicity in Conoidea. The gene expansion of
the conotoxin folding disulfide isomerases was fundamental for the evolution of cone
snails’ venom [23], and the results of this study show that this process may have origi-
nated before the radiation of Conidae. Similarly, the two elevenins retrieved could be the
result of a duplication event of a regulatory factor followed by its neofunctionalisation as
a toxin, although only a small number of gastropod elevenins are available in reference
databases to adequately support this claim. Furthermore, turritoxins, Pmag02 conotoxins,
and conkunitzins in Raphitoma could also represent ancestral adaptations of the conoidean
venom. If this hypothesis is correct—and excluding a secondary loss of functions—most
conoideans families could share these traits [31]. Alternatively, the presence of these venom
components in Raphitoma would represent instances of convergent evolution.

Overall, our results might indicate that ancestral venom elements were originally
produced in the salivary glands, possibly before the development of the venom duct.
Subsequently, these gene families expanded following the evolution of the venom duct,
where a larger number of toxins could be secreted at a higher concentration. The histological
origin of the venom duct is the mid-oesophageal gland, while the salivary glands are strictly
related to the radular sac [122,124,129], representing a more isolated, safe environment for
the secretion of toxins. This would suggest that at least part of the venom evolution may
have started in the salivary glands, where early venom components were employed. If this
hypothesis is correct, evidence of venom evolution in Conoidea is more likely to be found
in toxin maturation and regulation factors and venom components of the salivary glands
rather than in venom duct conotoxin-like peptides, which probably had their evolutionary
burst during the radiation of the family Conidae.

4. Materials and Methods
4.1. Dataset

Fifteen specimens of Raphitoma purpurea were collected in Pointe de l’Arcouest, Plouba-
zlanec (Brittany, France) from 24 May to 16 June 2023. Upon collection, each shell was
cracked, specimens were fixated in cold NucleoProtect® RNA (Macherey-Nagel, Düren,
Gernamy), and kept at room temperature (3 to 12 days) before storage at 4 ◦C. Shortly
after, the salivary glands and the venom duct were dissected on ice, dried with paper,
snapped into small pieces, and dissolved in TRI Reagent™ solution (ThermoFisher Sci-
entific, Waltham, MA, USA). The entire digestive tract was also dissected and preserved
in ethanol. Eleven carcases, three whole bodies, six salivary glands, and twelve venom
ducts were successfully processed for transcriptome analyses. Two of the venom ducts
were dissected into their most proximal and distal sections, removing the middle portion
to be processed separately. RNA extraction, quality check, and sequencing were performed
by BGI (Hong Kong, China). Taxonomic identification of all samples was confirmed by
cox1 amplification from a tissue clip of the foot.

After assessment of the concentration and quality of extracted RNA, three salivary
glands (SG), three whole venom ducts (VD), two distal fragments of venom duct (dVD), and
two proximal fragments of venom ducts (pVD) were sequenced using DNBSEQ technology
in 100 Paired-End with the Smart-Seq2 kit (BGI Genomics, Hong Kong, China). The three
carcases that yielded higher concentration values were sequenced in 150PE with the Poly-A
kit (Table 2).
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Table 2. List of carcases (C), salivary glands (SG), whole venom duct (VD), distal venom duct (dVD),
and proximal venom duct (pVD) processed for NGS transcriptome sequencing and gut contents
Sanger sequencing (GC).

Sample ID Sampling Data Date C SG VD pVD dVD GC

BAU 4602
France, Brittany,
Ploubazlanec,
Pointe de l’Arcouest
48.8209, −3.0100

1 June x
BAU 4604 1 June x x
BAU 4605 1 June x
BAU 4607 6 June x x x x
BAU 4609 14 June x x
BAU 4611 16 June x x x x x

4.2. Bioinformatic Analyses

All bioinformatics analyses were performed on the Terastat2 supercomputing cluster
of Sapienza University of Rome [130]. Raw reads were trimmed and assembled using
Trinity v2.8.6 [131] with a 31 k-mer size and the following TRIMMOMATIC parameters
for quality trimming: “SLIDINGWINDOW:4:15 MINLEN:36 LEADING:3 TRAILING:3”.
The abundance of transcripts was estimated using the RSEM method using bowtie2 and
normalised using the TMM method [132]. Differential expression analysis among different
tissues was performed using DESeq2 [133] with the p-value set to 0.01.

A reference dataset was built, including all toxins from UniprotKB server (https://
www.uniprot.org search keyword: KW-0800, accessed on 22 January 2024) and Conoserver
(https://www.conoserver.org, accessed on 22 January 2024), and the published toxins of
33 gastropod species of the genera Charonia Gistel, 1847, Conasprella Thiele, 1929, Conus
Linnaeus, 1758, Cumia Bivona, 1838, Hemifusus Swainson, 1840, Profundiconus Kuroda, 1956,
Pygmaeconus Puillandre and Tenorio, 2017, Purpuraturris K. Chase, Watkins, Safavi-Hemami
and B. M. Olivera, 2022, and Turris Batsch, 1789 [5,8,47,57,80,117–119,122,134–138].

Candidate venom components were identified using DeTox (https://github.com/
Hyperdiverseproject/DeTox, accessed on 12 March 2024), a user-friendly pipeline that
combines several software for sequencing data preprocessing and toxins detection [42]. All
parameters were set to default. In this pipeline, transcripts were translated using orfipy
v0.0.4 [139] and clustered with CD-HIT v4.8.1 [140] to reduce redundancy. Then, putative
toxins of at least 35 amino acids were scored considering four features: (i) peptide sequence
similarity with the reference database (B) using diamond v2.1.8 [141], (ii) detection of
functional domains against the Pfam database (D) using HMMER v3.3.2, (iii) detection
of a signal sequence and no transmembrane domain (S)—features typical of secretion
components—using SignalP 5.0b [142] and Phobius v1.01 [143,144], and (iv) presence of
a cysteine framework (C). The output contained all transcripts with at least one positive
score. WoLF PSORT was also implemented to predict the subcellular localisation [145].

In order to reduce the number of non-venom-related genes and contaminations, a
BUSCO [146] search of the transcriptome was conducted with several reference databases
(Metazoa, Eukaryota, Bacteria, Archaea, Fungi, and Mollusca). All matching transcripts
were filtered from the DeTox output.

4.3. Venom Cocktail Characterisation

Two subsets were extracted from the DeTox output: the first included the most relevant
putative venom components (PVCs) based on the DeTox score and expression levels, and
the second comprised potential conotoxin-like families in Raphitoma (raphitoxins) referred
to as putative raphitoxin families (PRFs) retrieved using ConoDictor v2.3.5 [147] and a
modified pipeline from [116] (see below).

PVCs were selected based on the following criteria: at least 10 TPM in the salivary
glands or venom duct, a positive DeTox score for reference match (B or D), and toxin-
like structural features (S or C). Additionally, all peptides with high expression levels
(>1000 TPM) were retained, regardless of their DeTox scores. All surviving transcripts

https://www.uniprot.org
https://www.uniprot.org
https://www.conoserver.org
https://github.com/Hyperdiverseproject/DeTox
https://github.com/Hyperdiverseproject/DeTox
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were annotated integrating all the information derived from HMMER v3.3.2 [148] with the
Pfam database and the e-value cut-off set at 0.01, eggNOG Mapper 2.1.12 [149,150] run on
the GalaxyEU server (https://usegalaxy.eu, accessed on 22 March 2024), HHpred (https:
//toolkit.tuebingen.mpg.de/tools/hhpred, accessed on 4 April 2024) with the Pfam, NCBI
CD v3.19, SMART v6.0, and proteasome homologs Jun 21 databases [151–153], UniProtKB
align tool (https://www.uniprot.org/align, accessed on 4 April 2024) and BLAST of both
peptide and nucleotide sequence against the non-redundant (nr) database [154,155]. The
3D structure of PVCs was predicted using alphafold2 on the GalaxyEU server [156,157] or
ColabFold v1.5.5 [158]. During the annotation process, the level of expression in the carcase
samples was taken into account and compared with the expression in the salivary glands
or venom duct. Given the possibility of intraspecific (or even intraindividual) variation in
venom composition [4,43] and the reduced number of replicates in our dataset, the highest
TPM among samples in each tissue was taken into consideration instead of the average.
The expression levels were defined as low (TPM > 10), medium (TPM > 100), and high
(TPM > 1000). All annotated PVC are listed in Section 2.1 (Table 1).

In order to retrieve conotoxin-like peptide families, the candidate venom components
were filtered using ConoDictor v2.3.5 [147] and clustered by their signal sequence using
CD-HIT v4.8.1 [140] with a 0.65 threshold. Clusters with fewer than three transcripts, long
stretches of amino acid repeats in the sequence, less than 10 TPM, and mature regions <
20 aa were discarded. All retained transcripts were checked using BLAST against the non-
redundant (nr) database to ensure no match with non-toxic components. The remaining
clusters constituted the PRF, which were separately aligned using MAFFT (https://mafft.
cbrc.jp/alignment/server/, accessed on 29 May 2024) with the G-ins-l iterative refinement
method and 0.2 align level. Alignments were checked and manually edited using Geneious
Pro 4.8.5. The peptide regions, cysteine framework, conotoxin class, and superfamily
of each transcript were retrieved from the ConoPrec tool (https://www.conoserver.org/
?page=conoprec, accessed on 29 May 2024; [159,160], and ConoDictor v2.3.5 [147]. Each
PRF was assigned to a conotoxin superfamily following the attribution of the majority of
transcripts. Previously retrieved PVCs were assigned to the retrieved PRF using CD-HIT
v4.8 with a 0.65 threshold on the signal sequence.

4.4. Venom Evolutionary Patterns in Conoidea

The number of similarity matches (PID > 60) in the Raphitoma purpurea secretome
(DeTox raw output) with the homebuilt dataset and the UniProtKB toxin dataset was inves-
tigated. PVCs with good BLAST results were aligned with similar gastropod sequences
retrieved from NCBI and UniProtKB, with a focus on transcripts showing hints of dupli-
cation (e.g., isomers with differential expression in tissues). Each PRF was aligned with
conotoxins from the same predicted superfamily or shared the same cysteine framework.
Maximum Likelihood trees were generated on IQTree (http://iqtree.cibiv.univie.ac.at/,
accessed on 12 June 2024) [161] using the amino acid alignments with an automatic substi-
tution model and 1000 Ultrafast bootstrap. Trees were modified in FigTree 1.4.4 [162] and
Adobe Illustrator 1.0. Node values were considered supported when higher than 95.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins16080348/s1, Table S1: Detox output; Table S2: list of PVC;
Table S3: list of PRF; Figure S1: Conkunitzin and PRF alignment.
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33. Prkić, J.; Giannuzzi-Savelli, R.; Pusateri, F.; Russini, V.; Fassio, G.; Oliverio, M. Three New Species of Raphitoma Bellardi 1847
(Mollusca, Gastropoda, Raphitomidae) from Croatian Waters (NE Adriatic Sea). Zoosystema 2020, 42, 215–238. [CrossRef]

34. Giannuzzi-Savelli, R.; Pusateri, F.; Bartolini, S. A Revision of the Mediterranean Raphitomidae (Gastropoda, Conoidea), 7: On the
Sibling Species Raphitoma densa (Monterosato, 1884) and R. Griseomaculata n. sp. Biodivers. J. 2018, 9, 429–440. [CrossRef]

35. Kontadakis, C.; Ovalis, P.; Zaminos, G.; Manousis, T. Description of Raphitoma minae sp. Nov. (Mollusca, Gastropoda, Raphitomi-
dae) from the Mediterranean (Aegean Sea, Greece). Xenophora Taxon. 2024, 43, 23–26.

36. Giannuzzi-Savelli, R.; Pusateri, F.; Bartolini, S. A Revision of the Mediterranean Raphitomidae (Gastropoda: Conoidea) 5: Loss of
Planktotrophy and Pairs of Species, with the Description of Four New Species. Boll. Malacol. 2018, 54, 1–77.

37. Pusateri, F.; Giannuzzi-Savelli, R.; Bartolini, S. A Revision of the Mediterranean Raphitomidae, 3: On the Raphitoma pupoides
(Monterosato, 1884) Complex, with the Description of a New Species (Mollusca Gastropoda). Biodivers. J. 2016, 7, 103–115.
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