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A B S T R A C T

Although there are many contributions in the time series clustering literature, few studies still deal with count
time series data. This paper aims to develop a fuzzy clustering procedure for count time series data. We propose
an Integer GARCH-based Fuzzy 𝐶-medoids (INGARCH-FCMd) method for clustering count time series based on
a Mahalanobis distance between the parameters estimated by an INGARCH model. We show how the proposed
clustering method works by clustering football teams according to the number of scored goals.
. Introduction

Clustering is an unsupervised learning technique used to find similar
tructures in a given dataset, so it is commonly implemented for
attern recognition. The clustering task becomes more arduous when
he dataset includes time series rather than cross-sectional objects.
s claimed by Liao (2005), most time series clustering methods try

o modify standard – hierarchical and non-hierarchical – clustering
ethods so that time series data can be appropriately handled. In
articular, how the dissimilarity among time series is computed is of
reat importance.

Following Maharaj et al. (2019), we can distinguish between three
pproaches: (a) observation-based, (b) feature-based, and (c) model-
ased. The observation-based approaches define the dissimilarities
mong time series considering actual data, whereas the future-based
nes compute them considering interesting features extracted from
he time series, such as the autocorrelation function (ACF) (D’Urso &
aharaj, 2009), periodogram (Caiado et al., 2006, 2020), cepstral co-

fficients (D’Urso et al., 2020; Savvides et al., 2008) or, more recently,
uantile autocovariance (Lafuente-Rego et al., 2020; Vilar et al., 2018)
nd quantile spectral cross-spectral density (López-Oriona & Vilar,
021; López-Oriona et al., 2022). The last approach, i.e. model-based
lustering, computes the dissimilarities among time series considering
he proximity among the fitted statistical models, for example, based
n the estimated parameters. Well known examples are given by
he ARIMA (Piccolo, 1990), GARCH (D’Urso et al., 2016; Otranto,
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2008) and, more recently, the GAS (Cerqueti et al., 2022, 2021). A
great advantage of the model-based approaches is that the time series
involved in the clustering process is not required to have the same
length. Furthermore, if the statistical model is correctly specified, there
is evidence showing that model-based approaches provide excellent
performances in correctly classifying the time series (Díaz & Vilar,
2010).

Although there are many contributions in the literature on time
series clustering, few studies still deal with count time series data.
Count time series arise in many real-life problems. Some examples
are the emergency call arrivals (Matteson et al., 2011), the number
of transactions in the stock market (Rydberg & Shephard, 2000), the
number of goals scored by a football team (Angelini & De Angelis,
2017) and so on. These time series are based on counts so that they
are integer-valued.

The most popular approaches for modelling count time series belong
to the class of observation-driven models (Cox et al., 1981), where the
observed counts are modelled considering lagged observations in the
conditional mean function and lagged counts. Assuming that counts
are conditionally Poisson distributed, a well-known statistical model
used for modelling and predicting count time series is the Integer
GARCH (INGARCH) (Ferland et al., 2006), also called Autoregressive
Conditional Poisson (ACP) model (Fokianos et al., 2009). Since the con-
ditional mean of a Poisson distribution equals the conditional variance,
the resulting statistical model mimics a GARCH process.
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In this paper, a new fuzzy clustering method is proposed for count
ime series data. Two main contributions can be highlighted. First,
ollowing a 𝑘-medoids approach, we propose a model-based clustering
ethod based on the INGARCH process, one of the most popular

pproaches for modelling this type of data. Second, we introduce
uzziness in the clustering method. The adoption of a fuzzy clustering
pproach introduces uncertainty in the clustering process. Indeed, fuzzy
lustering allows a time series to be allocated to two or more clusters
ith a given level of uncertainty represented by the so-called mem-
ership degree. Identifying a clear boundary between clusters is not
asy in many real-world problems, so the membership degree highlights
hether a second-best cluster is possible. Traditional clustering meth-
ds are not able to highlight such conclusions. As a result, we propose
n INGARCH-based Fuzzy 𝐶-medoids (INGARCH-FCMd) method for
lustering count time series based on a Mahalanobis distance computed
onsidering the parameters estimated by an INGARCH model.

We show how the proposed clustering method works by providing
n application to football data. In particular, we study the problem of
lustering football teams considering the number of scored goals. Ap-
lying quantitative methods to sports data raised the interest of statis-
ics and machine learning research communities. Statistical methods
re nowadays commonly used for predicting matches’ results (Angelini

De Angelis, 2017; Mattera, 2021), pricing players’ value (Behra-
an & Razavi, 2021) and for evaluating teams performances (Sarlis

Tjortjis, 2020). Clustering gives another significant application of
achine learning techniques for sports analytics (D’Urso et al., 2022;
arizuka & Yamazaki, 2019; Ulas, 2021).

Scored goals are integer-valued count data, and there is a long
radition in modelling such a variable through the Poisson process. For
xample, Maher (1982) proposed using Poisson distributions to model
he number of goals scored by teams in a football match. More recently,
any authors considered relaxing the hypothesis under which previous

utcomes, i.e. the goals scored in previous matches, do not affect
he current ones – that is, the hypothesis of independence over time.

ith this respect, recent studies (e.g. see Angelini & De Angelis, 2017;
oopman & Lit, 2015) modelled the scored goals by means of dynamic
oisson processes. Similarly, following this strand of literature, in this
aper we consider the number of scored goals in different matches as
ount time series data.

The number of scored goals is an important indicator for discrim-
nating against football teams since it is an important performance
ndicator. Furthermore, the final match outcome depends on the num-
er of goals scored by the teams. Hence, forecasting how many goals
ill be scored by the teams is crucial for predicting what will be the

inal match outcome. Scored goals are a count variable, so, using past
bservations, previous literature (e.g. see Angelini & De Angelis, 2017;
oopman & Lit, 2015) used count time series models for predicting

he scored goals that there will occur in the future matches. Since
he number of scored goals is a count time series following a Poisson
istribution, the developed INGARCH-based clustering approach is well
uited for clustering these kinds of time series data.

The paper structure is the following. In Section 2.1, we discuss the
NGARCH model, while in Section 2.2, we present the fuzzy clustering
rocedure adopted in the paper. In Section 3, we show the application
f the model to real data, and in the last Section 4, we conclude with
ome final remarks and future possible research directions.

. Clustering of count time series

The following section presents the proposed clustering method.
irst, the INGARCH process is introduced in Section 2.1; then, the
lustering method is presented and discussed in detail in Section 2.2.
2

2.1. The INGARCH process

Let use denote
{

𝑥𝑡 ∶ 𝑡 = 1,… , 𝑇
}

as a count time series. By assuming
that 𝑥𝑡 follows a Poisson distribution, we have that E

(

𝑥𝑡 ∣ 𝑡−1
)

= 𝜆𝑡
s the conditional mean of the count time series process, with 𝑡−1
efined as a combination of the lagged values of both 𝑥𝑡 and 𝜆𝑡. In the
ase of Poisson distribution the conditional mean equals the conditional
ariance, i.e. E

(

𝑥𝑡 ∣ 𝑡−1
)

= Var
(

𝑥𝑡 ∣ 𝑡−1
)

= 𝜆𝑡, so the following count
time series process:

⎧

⎪

⎨

⎪

⎩

𝑥𝑡 ∣ 𝑡−1 ∶ 
(

𝜆𝑡
)

𝜆𝑡 = 𝛾0 +
𝑞
∑

𝑖=1
𝛾𝑖𝑥𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛿𝑗𝜆𝑡−𝑗

(1)

is commonly called INGARCH(𝑝, 𝑞) (Ferland et al., 2006) with param-
eters 𝛾0 > 0, 𝛾𝑖 ⩾ 0, 𝑖 = 1,… , 𝑞, 𝛿𝑗 ⩾ 0, 𝑗 = 1,… , 𝑝, because its
structure parallels the one of the GARCH(𝑝, 𝑞) model (Bollerslev, 1986).
The (unconditional) long-run mean of the process

{

𝑥𝑡 ∶ 𝑡 = 1,… , 𝑇
}

is
(see Ferland et al., 2006):

𝜆 =
𝛾0

1 −
∑𝑞

𝑖=1 𝛾𝑖 −
∑𝑝

𝑗=1 𝛿𝑗
(2)

the parameters 𝛾𝑖, 𝛿𝑗 and 𝛾0 have to be non-negative, while the model
is stationary if the sum of the 𝛾𝑖 and 𝛿𝑗 parameters is less than 1. The
INGARCH model is structurally equivalent to the Autoregressive Condi-
tional Poisson (ACP) model (Fokianos et al., 2009). The INGARCH(𝑝, 𝑞)
process can also be estimated by a procedure that resembles the one
used for the traditional GARCH models, i.e. based on Maximum Likeli-
hood Estimation (MLE). The likelihood function of the 𝑇 observations
𝑥1,… , 𝑥𝑇 is given by:

𝐿(𝛩) =
𝑇
∏

𝑡=1

e−𝜆𝑡𝜆𝑥𝑡𝑡
𝑥𝑡!

(3)

with:

𝛩 =
(

𝛾0, 𝛾1,… , 𝛾𝑝, 𝛿1,… , 𝛿𝑞
)′ (4)

In other words, 𝛩 is the vector containing the static parameters in
(1). According to (1), the associated log-likelihood function equals to:

(𝛩) =
𝑇
∑

𝑡=1
𝓁𝑡(𝛩) =

𝑇
∑

𝑡=1

[

𝑥𝑡 log 𝜆𝑡 − 𝜆𝑡
]

(5)

Additional details about solutions can be found in Ferland et al.
(2006) and Fokianos et al. (2009). Given a large enough 𝑇 , the maxi-
mum likelihood estimator �̂� follows the following Normal distribution:

�̂� ∼ 
(

𝛩0, 𝑇
−1ℑ

(

𝛩0
)−1

)

(6)

where 𝐸 [𝛩] = 𝛩0 and ℑ
(

𝛩0
)

is the information matrix evaluated at 𝛩0.
The inverse of information matrix equals the parameters’ covariance
matrix. Therefore, the standard errors can be calculated and param-
eters’ inference is possible (see Ferland et al., 2006; Fokianos et al.,
2009). Despite the generality of the INGARCH(𝑝, 𝑞) model, we have to
note that important empirical evidence shows that very parsimonious
models can achieve an adequate modelling of many real count time
series. Among them, a relevant role is played by the case 𝑝 = 𝑞 =
1 (e.g. see Agosto et al., 2016; Agosto & Giudici, 2020; Aknouche
et al., 2021; Chen & Lee, 2017; Lee & Lee, 2019; Xiong & Zhu, 2019).
The INGARCH(1, 1) model has a simple structure, a parsimonious
parametrization and is faster to be estimated. Moreover, its statistical
properties have a clear interpretation. For all these reasons, it is widely
studied in literature. The INGARCH(1, 1) can be written as follows:
{

𝑥𝑡 ∣ 𝑡−1 ∶ 
(

𝜆𝑡
)

𝜆𝑡 = 𝛾0 + 𝛾1𝑥𝑡−1 + 𝛿1𝜆𝑡−1
(7)

for which many proprieties are well understood (Ferland et al., 2006).
For example, the autocovariance function is given by:

𝛾(𝑟) =
𝛾1

(

1 − 𝛿1
(

𝛾1 + 𝛿1
)) (

𝛾1 + 𝛿1
)𝑟−1 𝜇

( )2
, ∀𝑟 ⩾ 1 (8)
1 − 𝛾1 + 𝛿1
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The autocovariance function (8) indicates that INGARCH(1, 1) is also
n ARMA(1, 1) process. In particular, a generic INGARCH(1, 1) process
an be written as the following ARMA(1, 1) (Ferland et al., 2006):

𝑥𝑡 − 𝜆
)

−
(

𝛾1 + 𝛿1
) (

𝑥𝑡−1 − 𝜆
)

= 𝑒𝑡 − 𝛿1𝑒𝑡−1, (9)

with 𝑒𝑡 a white noise process of variance 𝜎2 = 𝜆 = 𝛾0∕
(

1 − 𝛾1 − 𝛿1
)

.
This feature is important for two reasons. First of all, it suggests that

the INGARCH model admits an 𝐴𝑅(∞) representation. Second, it means
that the parameters can be easily estimated with the usual Conditional
Least Square (CLS) approach (Ferland et al., 2006; Fokianos et al.,
2009). However, Fokianos et al. (2009) demonstrated with simulations
that CLS provides larger MSE than MLE, thus representing a less attrac-
tive option for estimation. For this reason, we adopt MLE estimation
strategy also in the case of the INGARCH(1, 1).

2.2. The fuzzy clustering method

In what follows we discuss the problem of measuring the dissimilar-
ity among count time series data and the clustering method adopted.
Let:

𝐗 = {𝑥𝑖,𝑡 ∶ 𝑖 = 1,… , 𝑁 ; 𝑡 = 1,… , 𝑇 } (10)

be the matrix containing the 𝑁(𝑖 = 1,… , 𝑁) count time series of length
𝑇 (𝑡 = 1,… , 𝑇 ). Following a model-based approach, we assume that the
time series are conditionally Poisson distributed, so they are generated
by distinct INGARCH processes that differentiate for their estimated
parameters. Since the INGARCH resembles a standard GARCH model,
it is reasonable to adopt a GARCH-type distance for measuring the
dissimilarity among count time series.

Let 𝐱𝑖 and 𝐱𝑗 be generic count time series belonging to 𝐗. Suppose
we fit an INGARCH(1, 1) model (7) to both time series, storing the
estimated parameters in two vectors 𝐓𝑖 =

(

�̂�0,𝑖, �̂�1,𝑖, 𝛿1,𝑖
)′

and 𝐓𝑗 =
(

�̂�0,𝑗 , �̂�1,𝑗 , 𝛿1,𝑗
)′

. Arguments justifying the use of a INGARCH(1, 1) model
are given by its parsimonious parametrization and good performances
in many real-world examples. Following the (Caiado & Crato, 2010)
approach, we propose a Mahalanobis distance between the features of
the count time series 𝑥𝑖,𝑡 and 𝑥𝑗,𝑡, called the INGARCH-based distance,
which is defined as follows:

𝑑INGARCH
(

𝐱𝑖, 𝐱𝑗
)

=
√

(

𝐓𝑖 − 𝐓𝑗
)′
Ω−1

𝑖,𝑗
(

𝐓𝑖 − 𝐓𝑗
)

, (11)

where Ω𝑖,𝑗 = �̂�𝑖 + �̂�𝑗 is a weighting matrix, with �̂�𝑖 and �̂�𝑗 be-
ing associated to the variability of the estimated parameters for the
time series 𝑖 and 𝑗. In this paper, we consider �̂�𝑖 and �̂�𝑗 as two
diagonal matrices containing the standard errors associated with the
estimated parameters on the main diagonal. In this way, the matrix Ω−1

𝑖,𝑗
weights the parameters by taking into account the uncertainty in their
estimation. More in detail, the Mahalanobis distance (11) implicitly
assigns lower weight to the parameters showing higher variability and
higher weights for those with lower variability. Moreover, an important
property of the distance (11) is that it does not require that the two time
series are of equal length since it is based on estimated parameters.

Following a Partition Around Medoids (PAM) approach, we propose
a clustering method called INGARCH-Fuzzy C-medoids (INGARCH-
FCMd), that is based on the fuzzy 𝐶-medoids (FCMd) (Krishnapuram
et al., 2001, 1999). The proposed clustering model can be formalized
as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

min ∶
𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐𝑑

2
INGARCH

(

𝐱𝑖, 𝐱𝑐𝑗
)

=
𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐

[

(

𝐓𝑖 − 𝐓𝑐
)′
Ω−1

𝑖,𝑐
(

𝐓𝑖 − 𝐓𝑐
)

]

s.t.
𝐶
∑

𝑢𝑖,𝑐 = 1 and 𝑢𝑖,𝑐 ≥ 0, ∀𝑖,∀𝑐

(12)
⎩ 𝑐=1

3

where 𝑑2INGARCH
(

𝐱𝑖, 𝐱𝑐
)

is the squared Mahalanobis distance, as defined
in (11), between the 𝑖th time series and the medoid time series of the
𝑐th cluster; 𝑢𝑖,𝑐 denotes the membership degree of the 𝑖th time series
to the 𝑐th cluster, the parameter 𝑚 > 1 controls for the fuzziness of the
partition. The optimal solution for the membership degree of the model
(12) is given by Maharaj et al. (2019):

𝑢𝑖,𝑐 =
1

∑𝐶
𝑐′=1

[ [

(𝐓𝑖−𝐓𝑐)′Ω−1
𝑖,𝑐 (𝐓𝑖−𝐓𝑐)

]

[

(𝐓𝑖−𝐓𝑐′)′Ω−1
𝑖,𝑐′(𝐓𝑖−𝐓𝑐′)

]

]
1

𝑚−1

(13)

Differently from the 𝐶-means clustering technique, the prototype
of each cluster in the Fuzzy 𝐶-Medoids-based method is a real time
series. Indeed, in the 𝐶−means algorithm, the 𝑐th cluster prototype is
a fictitious time series, equal to the average of the real time series in-
cluded in the 𝑐th cluster. This feature makes the partition obtained with
the PAM algorithm more interpretable. Moreover, the same property
makes the partition obtained with the PAM timid robust than 𝑐−means
algorithm (D’Urso et al., 2018, 2021; Garcia-Escudero & Gordaliza,
2005; García-Escudero et al., 2003) because the real time series, i.e. the
𝑐th cluster medoid, is less influenced by outliers.

The main drawback of the non-hierarchical clustering algorithms
lies in the prior selection of the number of clusters 𝐶. To overcome this
imitation, following previous literature, we consider the use of cluster
alidity indices. Indeed, the cluster validity indices guide the users in
electing the number of clusters. Because of its particularly satisfactory
esults in recognizing the true number of clusters (for a reference, see
he extensive simulations carried out in Arbelaitz et al., 2013), we select
he optimal 𝐶 according to the Fuzzy Silhouette criterion of Campello
nd Hruschka (2006), that is a fuzzy version of the Average Silhouette
idth (ASW) criterion (Kaufman & Rousseeuw, 1990). The Silhouette
easures the cohesion and separation of a partition, and it is computed

s follows:

𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max{𝑏𝑖, 𝑎𝑖}
(14)

The value 𝑎𝑖 is the average distance of the 𝑖th unit to the other units
elonging to the same cluster. Then, letting 𝑑𝑖,𝑐′ be the average distance
f 𝑖 to all objects belonging to another cluster 𝑐′ ≠ 𝑐, we can define 𝑏𝑖
s the minimum of the 𝑑𝑖,𝑐′ computed over 𝑐′ = 1,… , 𝐶; 𝑐′ ≠ 𝑐, which
epresents the distance of 𝑖 to others units belonging to the closest
ifferent cluster.

Therefore, a considerable Silhouette value 𝑆𝑖 means that the 𝑖th unit
s closer to those belonging to its cluster than the others belonging to
he nearest different cluster. By averaging the 𝑆𝑖, we obtain the Average
ilhouette Width (ASW), a synthetic value used to choose the best
artition. The Fuzzy Silhouette proposed by Campello and Hruschka
2006) is a fuzzy version of the ASW, which considers a weighted
verage for the Silhouettes 𝑆𝑖 with the membership degrees 𝑢𝑖,𝑐 used
s weights:

𝑆 =
∑𝑁

𝑖=1(𝑢𝑖,𝑐 − 𝑢𝑖,𝑐′ )𝛼𝑆𝑖
∑𝑁

𝑖=1(𝑢𝑖,𝑐 − 𝑢𝑖,𝑐′ )𝛼
(15)

where 𝑆𝑖 is the Silhouette computed as in (14), 𝑢𝑖,𝑐 and 𝑢𝑖,𝑐′ are the first
and second-largest elements of the 𝑖th row of the fuzzy partition matrix,
respectively, and 𝛼 ≥ 1 a positive constant. The higher the value of the
FS, the better the partition. Therefore, following common practice, we
use the FS for choosing the optimal number of clusters 𝐶.

3. Application to Italian football data

In this section we present an empirical experiment with football
data. In particular, we aim at clustering football clubs in the Italian Se-
rie A on the basis of the scored goals’ time series. Section 3.1 describes
the data, Section 3.2 presents two benchmark clustering algorithms,
while Section 3.3 discusses the results.
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Table 1
Sample of Italian football teams.

Team Number of matches

Fiorentina 380
Juventus 380
Atalanta 380
Chievo 266
Genoa 380
Milan 380
Roma 380
Bologna 342
Torino 380
Cagliari 342
Inter 380
Lazio 380
Napoli 380
Parma 228
Sampdoria 380
Udinese 380
Verona 266
Sassuolo 342

3.1. Data

The number of scored goals is an essential variable in football as it
is a proxy for the football team’s performance over time and offencive
power. In this context, clustering allows us to deeply understand the
similarities of the football teams in terms of performances over time.
Moreover, identifying similarities in terms of scored goals could also be
exploited regarding betting strategies.

As highlighted by previous studies (e.g. see Greenhough et al., 2002;
Groll et al., 2018; Maher, 1982) the number of scored goals can be
modelled as Poisson distribution. The main problem of using static
approaches is that we do not take into account the serial dependence,
which is present when modelling the number of scored goals in a foot-
ball match (e.g. Angelini & De Angelis, 2017; Koopman & Lit, 2015).
Time dependence in the number of scored goals can be explained by
the periods characterized by high team performances and vice-versa
(e.g. phases of the team’s sporting cycle Mourao, 2016).

As an empirical experiment, we consider the number of goals scored
by the football teams that participated in the last 10 Serie A seasons.2
urthermore, we excluded the sample teams relegated or promoted
ultiple times during the previous ten years. Indeed, teams that are

bsent from the championship for many years show missing values
hich cannot be reasonably imputed or estimated. The final sample

s shown in Table 1.
As an example of the collected time series, Fig. 1 shows the Roma

alcio time series of scored goals.
As shown in Fig. 1, the time series is characterized by serial depen-

ence in the mean, which is reasonably not constant. Note also that
he number of observed matches is not the same among the considered
ootball teams (see Table 1). For this reason, we should find a suitable
pproach that allows clustering count time series with different lengths.
he INGARCH-based clustering approach proposed so far fits well with
his scope since, as already said, it does not require the time series to
e of the same length.

.2. Benchmark clustering methods

Many conventional approaches (e.g. raw-data based, such as the
imple Euclidean distance or correlation-based) require the time series
o have the same lengths. The model-based clustering approaches,
ased on the estimated parameters, overcome this issue. To the best
f our knowledge, no fuzzy clustering algorithms are explicitly taught

2 Data used in our empirical study can be found at http://www.football-
ata.co.uk.
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to deal with count time series data. None particularly deal with un-
equally sized count time series. However, some existing fuzzy clustering
methods could be adopted for this aim.

First of all, considering the class of observation-based approaches,
the standard FCMd algorithm (Krishnapuram et al., 2001) with Eu-
clidean distance among the counts can be used in principle. However,
the simple Euclidean distance is not feasible for studying the football
dataset of this empirical experiment because the time series have differ-
ent lengths. Therefore, a feasible observational-based fuzzy clustering
method has to be based on the Dynamic Time Warping distance (DTW,
see Berndt & Clifford, 1994).

The DTW distance allows considering similar two time series show-
ing similar behaviour in different periods. Let 𝐱𝑖 (𝑡𝑖 = 1,… , 𝑇𝑖) and 𝐱𝑗
(𝑡𝑗 = 1,… , 𝑇𝑗 ) be two sequences with 𝑇𝑖 ⋛ 𝑇𝑗 . A so-called warping path
is used to align the elements of the sequences such that their distance is
minimized. Let 𝑑(𝑥𝑖,𝑟, 𝑥𝑗,𝑠) be the Euclidean distance between two points
𝑟 and 𝑠 of the sequences 𝐱𝑖 and 𝐱𝑗 , the DTW distance is given by the
optimal alignment obtained with the minimization of the following the
cumulative distance:

𝛥(𝑟, 𝑠) = 𝑑(𝑥𝑖,𝑟, 𝑥𝑗,𝑠) + min [𝛥(𝑟 − 1, 𝑠 − 1), 𝛥(𝑟 − 1, 𝑠), 𝛥(𝑟, 𝑠 − 1)] (16)

Thus, the first benchmark that we consider is the Fuzzy DTW-
FMCd method (see Izakian et al., 2015). The clustering problem can
be defined as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

min ∶
𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐𝐷

2
DTW

(

𝐱𝑖, 𝐱𝑐
)

s.t.
𝐶
∑

𝑐=1
𝑢𝑖,𝑐 = 1 and 𝑢𝑖,𝑐 ≥ 0, ∀𝑖,∀𝑐

(17)

with 𝐷2
DTW

(

𝐱𝑖, 𝐱𝑐
)

be the squared DTW distance between the 𝑖th time
series and the 𝑐th cluster medoid. The main problem of DTW-based
partitional clustering methods is that averaging – which is required for
the definition of clusters’ prototypes – is not straightforward (Petitjean
et al., 2011) because it has to be consistent with temporal alignment
provided by DTW distance. However, the DTW-FMCd overcomes this
problem being the 𝑐th time series prototype a time-varying unit really
observed in the dataset, so that averaging is not required (Izakian et al.,
2015).

Among the class of feature-based clustering methods, two com-
monly employed approaches are those based on the pairwise corre-
lation coefficient (e.g. Mantegna, 1999) or on the Auto Correlation
Function (ACF, e.g. see D’Urso & Maharaj, 2009). In our empirical
setting, the approach based on the pairwise correlation coefficient is
not feasible due to the difference in the time series lengths. Therefore,
we consider the ACF-based clustering method (D’Urso & Maharaj,
2009) as the second benchmark of our application with real data. The
autocorrelation at 𝑙th lag (𝑙 = 1,… , 𝐿) of a time series 𝑥𝑖,𝑡 (𝑡 = 1,… , 𝑇 )
s computed as:

̂𝑖,𝑙 =
∑𝑇

𝑡=𝑙+1
(

𝑥𝑖,𝑡 − �̄�𝑖)(𝑥𝑖,𝑡−𝑙 − �̄�𝑖
)

∑𝑇
𝑡=1

(

𝑥𝑖,𝑡 − �̄�𝑖
)2

(18)

The ACF-based distance among two time series 𝑥𝑖,𝑡𝑖 and 𝑥𝑗,𝑡𝑗 of
different lengths can be defined as the Euclidean distance among the 𝐿
estimated auto-correlations. Therefore, the ACF-FMCd method can be
written as the solution of the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min ∶
𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐

𝐿
∑

𝑙=1

(

�̂�𝑖,𝑙 − �̂�𝑐,𝑙
)2

s.t.
𝐶
∑

𝑐=1
𝑢𝑖,𝑐 = 1 and 𝑢𝑖,𝑐 ≥ 0, ∀𝑖,∀𝑐

(19)

This distance can be computed for time series of different lengths
as long as they have enough 𝐿 auto-correlations. As the simulations
showed in Díaz and Vilar (2010) suggests, 𝐿 = 50 is a standard choice
in this setting.

http://www.football-data.co.uk
http://www.football-data.co.uk
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Fig. 1. Roma Calcio: number of scored goals’ time series. The representation of the discrete scores through lines leads to an intuitive visualization of the plot.
3.3. Clustering results

For clustering count time series with the proposed INGARCH-based
FCMd method, following the GARCH-based approach proposed in Ca-
iado and Crato (2010), we have to estimate first the parameters of
the INGARCH(1, 1) processes. To further justify our modelling choice,
we evaluated for each football team 25 INGARCH(𝑝, 𝑞) of different
orders in terms of Bayesian Information Criteria (BIC). The model with
the lowest BIC provides the best fit. Tables 2 and 3 show that the
INGARCH(1, 1) model has the best fit for all the football teams since
it has the lowest BIC among the alternative orders.

The estimation results are shown in Table 4.
From Table 4 we note that the mean autoregressive often deviates

from zero for most teams. In contrast, the component related to the past
observed process is tiny for many teams. Moreover, some football teams
(e.g. Fiorentina, Juventus, Bologna) are characterized by constant terms
larger than one, while only a few (e.g. Inter, Verona, Genoa) show
a very small value of the constant term. Then, it is interesting to
highlight that some teams have a very persistent mean (e.g. Atalanta,
Inter, Verona) while others (e.g. Juventus, Bologna, Torino) show
the opposite characteristic. Therefore, exploring similarities by simply
looking at the results shown in Table 1 is not easy. For this reason,
we employ the proposed INGARCH-FCMd clustering. In defining the
dissimilarity (11), it is important the estimation of the matrix Ω𝑖,𝑗 =
�̂�𝑖 + �̂�𝑗 . We consider the standard errors to include the uncertainty in
the parameters estimation step. The standard errors are shown in the
parenthesis of Table 4. The models are all overall significant – not all
the parameters are statistically equal to zero – but some differences
can be highlighted. For example, some football teams with very small
estimated parameters 𝛿1 or 𝛾1 show no statistically significant values
(e.g. Fiorentina, Bologna, Cagliari), but an important difference can still
be highlighted in terms of their magnitude and parameter 𝛾0. With the
INGARCH-FCMd method, we explore such differences to identify the
clusters’ composition.

The INGARCH-FCMd clustering method requires the a-priori se-
lection of the number of clusters 𝐶. As explained in Section 2.2,
following previous studies, we choose the optimal number of clusters
by maximizing the Fuzzy Silhouette (Campello & Hruschka, 2006). The
values of the Fuzzy Silhouette for a different number of clusters are
shown in Fig. 2.

Accordingly, we choose 𝐶 = 4 groups. The Silhouette value is also
entirely satisfactory – suggesting that the partition well explains the
differences in the dataset – since with 𝐶 = 4 we obtain a value of
𝐹𝑆𝐶=4 = 0.864. The Silhouette value is satisfactory. Then, we com-
pare the partitions obtained with the benchmark clustering methods
previously discussed, i.e. the DTW-FMCd and the ACF-FMCd. The Fuzzy

Silhouette associated with the benchmarks are shown in Fig. 3.

5

In both the cases the Silhouette is maximized with 𝐶 = 2 clus-
ters. However, we should note that the Silhouette values are shallow,
meaning that the partitions are of low quality. Indeed, the Fuzzy
Silhouette is close to zero for both the alternative clustering methods. In
particular, the value obtained with the DTW-FCMd with 𝐶 = 2 clusters
is 0.015, while the one obtained with the ACF-FCMd is 0.056. These
results confirm that the considered benchmarks are not well suited for
clustering count time series as those included in this dataset.

The partition resulting from using the INGARCH-based FCMd with
𝐶 = 4 clusters is shown in Table 5. The clusters’ medoids are high-
lighted in bold font.

First of all, we note that the clusters are quite balanced. The most
numerous is cluster 3 (Milan medoid), with six teams, while cluster 1
(Parma medoid) and cluster 2 (Lazio medoid) both include four teams.
The cluster with fewer teams is cluster 4 (Udinese medoid) with three
teams.

For a deeper understanding of the differences in the clusters, we
first analyse the time series of clusters’ prototypes (see Figs. 4 and 5).

From Figs. 4 and 5 we observe that the Parma and Udinese, the
Cluster 1 and Cluster 4 prototypes, are two teams scoring a lower
amount of goals in a match. Indeed, both Parma and Udinese never
scored more than five goals, even if Parma scored three or four goals
more frequently than Udinese. Conversely, Lazio – i.e. the prototypes
of Cluster 2 – scored many times more than five goals, with six matches
scoring six goals and one match with seven goals. In the end, Milan –
the Cluster 3 prototype – scored only in one match more than 5 goals,
but the number of matches with four or five goals is much larger than
those of Parma and Udinese. Hence, we argue that Cluster 2 and Cluster
3 include the teams scoring more goals in a single match than the other
two clusters.

To further validate these arguments, Table 6 shows the uncondi-
tional mean of the processes, calculated according to Eq. (2).

Indeed, from Table 6 we notice that the mean of Cluster 1 (Parma
prototype) equals 1.22, the mean of Cluster 2 (Lazio prototype) is 1.81,
the mean of Cluster 3 (Milan prototype) is 1.44, and the mean of
Cluster 4 (Udinese prototype) is 1.17. More in detail, Cluster 2 includes
three teams with very high offencive performance – i.e. scoring a large
number of goals per match – such as Lazio (1.75 goals), Napoli (2
goals) and Juventus (1.95 goals). In contrast, cluster 4 includes the
Chievo, which is the one with the lowest average number of goals
per match (0.92). These arguments allow a clear ranking in terms of
offencive performances, which can be outlined as follows: (1) Cluster
2, (2) Cluster 3, (3) Cluster 1, (4) Cluster 4. In other words, Cluster
2 represents the superior set of football teams in terms of offencive

performance.
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Fig. 2. INGARCH-FCMd: Fuzzy Silhouette.

Fig. 3. Benchmark clustering methods: Fuzzy Silhouette.

Fig. 4. Number of scored goals’ time series: prototypes Cluster 1 and Cluster 2. The representation of the dots of the point process through lines goes in the direction of an easy
reading of the plot.

6
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Table 2
BIC for alternative INGARCH(𝑝, 𝑞) models – I.
Fiorentina p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5

𝑞 = 1 1205.12634 1211.066517 1217.006682 1222.946853 1228.887025
𝑞 = 2 1211.066511 1217.006728 1222.946856 1228.887036 1234.827196
𝑞 = 3 1217.006683 1222.946855 1228.887025 1234.827196 1240.767367
𝑞 = 4 1215.519735 1222.318805 1229.399837 1235.323987 1240.818663
𝑞 = 5 1226.897521 1233.12359 1239.028139 1244.941894 1250.944122

Juventus p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1216.012488 1221.952659 1227.89283 1233.833002 1239.773173
𝑞 = 2 1221.0382 1227.888597 1231.383248 1237.631807 1245.709124
𝑞 = 3 1226.60943 1233.131651 1239.479659 1245.482996 1248.831168
𝑞 = 4 1232.661139 1238.413143 1245.712282 1251.206361 1257.593687
𝑞 = 5 1236.825902 1243.234527 1246.576684 1255.114805 1261.054945

Atalanta p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1221.253702 1235.756572 1250.473749 1259.090317 1262.473558
𝑞 = 2 1227.27417 1238.751205 1244.656393 1259.659219 1259.413495
𝑞 = 3 1234.010356 1247.956953 1254.422938 1261.06524 1265.610191
𝑞 = 4 1239.562421 1251.835582 1270.424789 1270.065528 1274.398914
𝑞 = 5 1245.16602 1259.261117 1264.265269 1284.413117 1290.707092

Chievo p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 674.0309837 679.6155871 685.197973 690.7814694 696.3649657
𝑞 = 2 679.6144768 685.197973 690.7814758 696.3650036 701.9484732
𝑞 = 3 685.197973 689.6638416 696.3649656 701.9484631 707.1155622
𝑞 = 4 690.7814693 696.3649673 701.9484631 707.5319648 713.1154547
𝑞 = 5 695.7252252 701.6694112 706.4353003 712.0152645 718.4199005

Genoa p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1042.670296 1050.821696 1055.461137 1061.920625 1060.834907
𝑞 = 2 1048.539198 1057.01183 1062.951998 1068.89217 1074.832341
𝑞 = 3 1057.011832 1062.952011 1068.89217 1074.832341 1080.718779
𝑞 = 4 1057.081277 1064.612543 1073.536665 1079.45845 1085.417007
𝑞 = 5 1063.76988 1073.447328 1078.108344 1085.32813 1090.131392

Milan p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1178.778536 1184.421419 1191.786696 1197.885541 1199.815142
𝑞 = 2 1184.519114 1191.091595 1197.111426 1202.032724 1208.746792
𝑞 = 3 1191.151615 1196.452868 1203.854386 1207.795496 1217.388172
𝑞 = 4 1195.932671 1203.323498 1210.511038 1216.594449 1222.277004
𝑞 = 5 1201.332482 1208.152618 1216.075552 1221.610799 1227.955886

Roma p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1258.304123 1264.970041 1270.265691 1277.168938 1281.258509
𝑞 = 2 1265.095575 1271.229744 1277.53674 1283.402973 1289.427331
𝑞 = 3 1271.454966 1277.561311 1283.867768 1289.139963 1295.780317
𝑞 = 4 1277.67811 1283.608791 1289.101119 1295.532853 1301.473025
𝑞 = 5 1283.792635 1289.598083 1295.951046 1301.891217 1307.596612

Bologna p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 959.9776279 965.8124387 971.6472505 977.4820601 983.3168709
𝑞 = 2 962.253917 964.8594815 970.5143862 978.4733953 983.8478885
𝑞 = 3 960.4638301 972.8429106 980.6411529 983.2673475 991.9936658
𝑞 = 4 967.6692306 976.5700522 979.3790299 989.1279808 995.3996041
𝑞 = 5 978.0182296 986.0590947 989.2432864 999.1743291 1004.38162

Torino p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1146.379532 1152.319703 1158.259874 1164.200045 1170.140273
𝑞 = 2 1152.25065 1157.502203 1164.130987 1168.978334 1176.011321
𝑞 = 3 1158.259874 1164.200046 1170.140222 1176.080388 1182.020559
𝑞 = 4 1162.122857 1168.063026 1174.003193 1179.943369 1185.883542
𝑞 = 5 1170.140217 1176.080388 1182.020559 1187.960731 1193.900902
4. Conclusions

Clustering time series is essential for pattern recognition. Although
there have been many contributions on the topic, the problem of clus-
tering count time series is still poorly explored. Count time series arise
in many scientific areas, from medicine to epidemiology, engineering,
business, and finance.

The main contribution of this paper is the proposal of a new
fuzzy clustering method for count time series data. Assuming that the
observed time series processes are conditionally Poisson distributed, we
developed a model-based fuzzy clustering method based on the param-
eters estimated by the INGARCH processes. A Mahalanobis distance is
proposed to account for uncertainty in the estimation process, such that
the parameters with high variability are weighted less than those with
7

low variability. To the best of our knowledge, the so-called INGARCH-
based fuzzy 𝐶-medoids (INGARCH-FCMd) method is the first attempt
to develop partitional clustering methods for count time series data.

An essential property of the proposed clustering method is that, as
most model-based clustering methods (e.g. D’Urso et al., 2016; Otranto,
2008; Piccolo, 1990), it does not require the time series to have the
same lengths. However, we should note that the time series length
affects the quality of the parameter estimates. In other words, if the
length is too short, the estimated parameters would be inflated, and
the resulting clustering would be wrong or less accurate. Although the
relevance of this problem, in the proposed application to football data,
the time series lengths are enough to get reasonably good estimates.
Such a claim is confirmed by the obtained clustering results, which are
easily explainable.
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Table 3
BIC for alternative INGARCH(𝑝, 𝑞) models — II.
Cagliari p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 948.5274456 954.3622555 960.1970662 966.031877 971.8666877
𝑞 = 2 948.0152007 953.1419301 959.6848625 965.5196483 971.3544346
𝑞 = 3 960.1970663 966.031877 971.8666877 977.7015037 983.5363094
𝑞 = 4 964.7036387 970.5322353 976.3732023 982.2080614 988.042824
𝑞 = 5 971.8666877 977.7014991 983.5363092 989.3711199 995.2059346

Inter p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1255.704549 1261.283298 1268.218688 1274.885665 1285.229461
𝑞 = 2 1262.079181 1273.726364 1277.75341 1285.838192 1291.391725
𝑞 = 3 1268.341881 1273.985701 1282.491349 1289.457557 1298.702953
𝑞 = 4 1273.927957 1286.200848 1286.90349 1298.081014 1297.514239
𝑞 = 5 1285.105285 1284.708401 1296.985626 1299.566353 1308.865968

Lazio p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1277.733 1283.67317 1289.613342 1295.553513 1301.493684
𝑞 = 2 1283.673171 1289.613342 1295.553513 1301.493684 1307.433855
𝑞 = 3 1285.564813 1295.515173 1301.455247 1307.289682 1312.040099
𝑞 = 4 1293.225135 1299.165306 1298.001482 1308.337403 1313.001856
𝑞 = 5 1301.493684 1307.433855 1313.374028 1319.314198 1325.254369

Napoli p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1314.709295 1320.664937 1324.465048 1332.545277 1338.316678
𝑞 = 2 1322.032183 1326.782 1333.912526 1339.490499 1345.74476
𝑞 = 3 1328.065712 1334.005883 1339.946062 1345.886225 1351.826772
𝑞 = 4 1331.995495 1337.481807 1343.653016 1349.79681 1355.75618
𝑞 = 5 1339.946054 1345.886225 1351.826396 1357.766568 1363.706739

Parma p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 656.6918123 662.1211587 667.5505033 672.9801667 678.4091945
𝑞 = 2 660.0743654 665.1321421 670.7273248 677.2843472 682.7056238
𝑞 = 3 666.6270086 672.6187616 678.3955424 683.7164785 686.8908731
𝑞 = 4 671.7193097 676.8282829 682.5659827 687.3377689 693.4304615
𝑞 = 5 678.4091946 683.4466038 688.1752756 694.0292924 700.1265771

Sampdoria p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1124.51423 1130.454401 1136.394572 1142.334745 1148.274914
𝑞 = 2 1130.4544 1136.394572 1142.334743 1148.274915 1154.215085
𝑞 = 3 1136.392379 1142.334743 1148.274914 1153.59899 1158.079296
𝑞 = 4 1142.21947 1148.159642 1153.539125 1159.994163 1165.21376
𝑞 = 5 1148.274914 1154.215104 1160.155257 1166.095428 1172.035601

Udinese p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1082.092294 1087.340427 1094.304004 1099.274857 1106.184342
𝑞 = 2 1088.726001 1094.69178 1100.080052 1106.572122 1110.505032
𝑞 = 3 1095.192307 1100.124012 1106.979875 1112.785653 1118.860225
𝑞 = 4 1101.132488 1107.072649 1113.012821 1118.952993 1124.893164
𝑞 = 5 1105.483619 1111.270386 1117.363987 1123.304133 1129.244306

Verona p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 760.6692811 767.7627475 776.5753058 779.9606719 786.9314912
𝑞 = 2 766.0128276 773.4627754 776.7878021 783.709982 791.784007
𝑞 = 3 770.408404 775.9768816 781.6217238 787.204346 790.3805757
𝑞 = 4 780.1695401 785.5885431 793.6503286 798.3617633 802.8750701
𝑞 = 5 787.872534 792.9135303 794.9359317 802.5115581 809.9182815

Sassuolo p=1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5
𝑞 = 1 1029.76582 1036.767953 1042.655495 1048.490307 1054.325133
𝑞 = 2 1036.211227 1042.147149 1047.981935 1053.816751 1059.651554
𝑞 = 3 1042.644114 1050.226612 1056.061426 1061.896246 1067.731043
𝑞 = 4 1050.454091 1056.288901 1062.123712 1067.958523 1073.793334
𝑞 = 5 1056.288901 1062.123712 1067.958523 1070.22793 1079.628144
In particular, for the experiment with real data we compared the
roposed INGARCH-based clustering algorithm (INGARCH-FCMd) with
wo observation- and feature-based benchmarks, namely the DTW-
CMd (Izakian et al., 2015) and the ACF-FCMd (D’Urso & Maharaj,
009). Both benchmark approaches can deal with time series of dif-
erent lengths. The results show that the proposed INGARCH-FCMd
ethod provides a much better clustering quality – measured in terms

f Fuzzy Silhouette (Campello & Hruschka, 2006) – with respect the
enchmarks.

Because of the novelty of the problem, there are many future possi-
le research directions. First of all, we should note that distance (11) is
ased on INGARCH models of the same order. Although this choice can
e reasonably justified – parsimony, fast estimation, well-understood
tatistical properties, substantial empirical evidence – it is interesting
xtending the proposed clustering framework to account for INGARCH

odels of different orders. It is known that the INGARCH process, as

8

happens for the standard GARCH, is also an ARMA process. Therefore,
it admits an 𝐴𝑅(∞) representation. A Euclidean distance based on the
𝐴𝑅(∞) representation can be considered for clustering count time series
with different INGARCH orders. In other words, this alternative method
should mimic the ARMA-based one proposed by Piccolo (1990).

The second aspect of improvement is that the proposed cluster-
ing method, as the classical model-based clustering methods such as
ARIMA-based or GARCH-based, assumes that the football teams’ time
series are independent of each other. This assumption does not hold
in all real-world examples. A way of alleviating the independence
problem, especially in the contexts of sports data applications as the
one presented in this paper, can be the inclusion of covariates in the
statistical model. With this respect, we have to note that the INGARCH-
FCMd method can be extended to include additional variables because
the INGARCH model allows for exogenous covariates (INGARCH-X or
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Fig. 5. Number of scored goals’ time series: prototypes Cluster 3 and Cluster 4. The representation of the dots of the point process through lines allows an easy reading of the
plot.
Table 4
INGARCH(1, 1) estimates for Italian football teams.

Team (𝑗) �̂�0,𝑗 �̂�1,𝑗 𝛿1,𝑗
Fiorentina 1.5236∗∗∗ 0.0000 0.0001

(0.0633) (0.0319) (0.0416)
Juventus 1.8752∗∗∗ 0.0000 0.0384

(0.0689) (0.0305) (0.0353)
Atalanta 0.0000∗∗ 0.0356∗∗∗ 0.9643∗∗∗

(0.0000) (0.0000) (0.0000)
Chievo 0.6896∗∗∗ 0.0000 0.2543∗∗∗

(0.0440) (0.0377) (0.0475)
Genoa 0.0643∗∗∗ 0.0308∗∗∗ 0.9102∗∗∗

(0.0047) (0.0042) (0.0043)
Milan 0.1386∗∗∗ 0.0366∗∗∗ 0.8761∗∗∗

(0.0079) (0.0050) (0.0050)
Roma 0.3483∗∗∗ 0.0453∗∗∗ 0.7659∗∗∗

(0.0163) (0.0086) (0.0088)
Bologna 1.1138∗∗∗ 0.0000 0.0029

(0.0570) (0.0368) (0.0510)
Torino 1.3692∗∗∗ 0.0000 0.0051

(0.0599) (0.0331) (0.0435)
Cagliari 1.1050∗∗∗ 0.0000 0.0002

(0.0568) (0.0370) (0.0514)
Inter 0.0161∗∗∗ 0.0202∗∗∗ 0.9707∗∗∗

(0.0016) (0.0009) (0.0009)
Lazio 1.7455∗∗∗ 0.0000 0.0011

(0.0677) (0.0304) (0.0388)
Napoli 1.7420∗∗∗ 0.0616 0.0743

(0.0674) (0.0286) (0.0334)
Parma 1.1900∗∗∗ 0.0000 0.0025

(0.0722) (0.0444) (0.0605)
Sampdoria 0.9981∗∗∗ 0.0000 0.2383∗∗∗

(0.0447) (0.0282) (0.0341)
Udinese 0.6092∗∗∗ 0.0474 0.4464∗∗∗

(0.0311) (0.0231) (0.0259)
Verona 0.0345∗∗∗ 0.0392∗∗∗ 0.9344∗∗∗

(0.0041) (0.0033) (0.0033)
Sassuolo 0.6452∗∗∗ 0.0800∗∗ 0.4581∗∗∗

(0.0345) (0.0225) (0.0247)

Note: Parameters are estimated with MLE and the associated standard errors are
reported in parenthesis under the estimates. ∗∗∗, ∗∗ and ∗ indicate significance at 1%,
5% and 10% confidence levels, respectively.

PARX model, e.g. see Agosto et al., 2016; Angelini & De Angelis, 2017;
Lee & Lee, 2019).

A third interesting future direction is the development of a cluster-
ing method which handles count series characterized by overdispersion,
9

Table 5
INGARCH-FCMd clustering: membership degrees.

Team Cluster 1 Cluster 2 Cluster 3 Cluster 4

Fiorentina 0.1540 0.8408 0.0012 0.0041
Juventus 0.0013 0.9984 0.0001 0.0002
Atalanta 0.0000 0.0000 0.9999 0.0001
Chievo 0.0084 0.0006 0.0084 0.9826
Genoa 0.0000 0.0000 1.0000 0.0000
Milan 0.0000 0.0000 1.0000 0.0000
Roma 0.0001 0.0000 0.9678 0.0320
Bologna 0.9993 0.0002 0.0001 0.0004
Torino 0.9433 0.0520 0.0009 0.0039
Cagliari 0.9990 0.0003 0.0001 0.0006
Inter 0.0000 0.0000 0.9999 0.0001
Lazio 0.0000 1.0000 0.0000 0.0000
Napoli 0.0002 0.9998 0.0000 0.0000
Parma 1.0000 0.0000 0.0000 0.0000
Sampdoria 0.6640 0.0136 0.0202 0.3022
Udinese 0.0000 0.0000 0.0000 1.0000
Verona 0.0000 0.0000 0.9999 0.0001
Sassuolo 0.0000 0.0000 0.0001 0.9999

Table 6
Unconditional mean of the process.

Team Unconditional mean Crisp assignment

Fiorentina 1.5237 2
Juventus 1.9500 2
Atalanta 1.0360 3
Chievo 0.9247 4
Genoa 1.0889 3
Milan 1.5870 3
Roma 1.8445 3
Bologna 1.1170 1
Torino 1.3763 1
Cagliari 1.1053 1
Inter 1.7771 3
Lazio 1.7474 2
Napoli 2.0160 2
Parma 1.1929 1
Sampdoria 1.3105 1
Udinese 1.2034 4
Verona 1.3083 3
Sassuolo 1.3966 4

i.e. the variance of the process is greater than the mean. A simple
way to deal with overdispersion is to consider conditionally Negative
Binomial distributed time series.
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Ultimately, it is interesting to highlight that the INGARCH model
elongs to the more comprehensive Generalized Linear Model (GLM)
lass for time series data. GLM have great potential in developing count
ime series clustering methods since GLM represents a general way for
ntroducing alternative conditional distributions, nonlinear models and
xogenous covariates. With this respect, we are currently working on
eveloping a clustering method based on nonlinear time series models,
hich possibly include the information of some exogenous covari-
tes, and that can generalize the INGARCH-based clustering approach
resented in this paper in the directions suggested above.
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