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Suppose that G is a finite group, such that |G| = 27p, where p is prime. We show that if S is any
generating set ofG, then there is a Hamiltonian cycle in the corresponding Cayley graph Cay(G;S).

1. Introduction

Theorem 1.1. If |G| = 27p, where p is prime, then every connected Cayley graph on G has a
Hamiltonian cycle.

Combining this with results in [1–3] establishes that

Every Cayley graph on G has a hamiltonian cycle

if |G| = kp, where p is prime, 1 ≤ k < 32, and k /= 24.
(1.1)

The remainder of the paper provides a proof of the theorem. Here is an outline.
Section 2 recalls known results on hamiltonian cycles in Cayley graphs; Section 3 presents
the proof under the assumption that the Sylow p-subgroup of G is normal; Section 4 presents
the proof under the assumption that the Sylow p-subgroups of G are not normal.

2. Preliminaries: Known Results on Hamiltonian Cycles in
Cayley Graphs

For convenience, we record some known results that provide hamiltonian cycles in various
Cayley graphs, after fixing some notation.
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Notation 1 (see [4, Sections 1.1 and 5.1]). For any group G, we use the following notation:

(1) G′ denotes the commutator subgroup [G,G] of G,

(2) Z(G) denotes the center of G,

(3) Φ(G) denotes the Frattini subgroup of G.

For a, b ∈ G, we use ab to denote the conjugate b−1ab.

Notation 2. If (s1, s2, . . . , sn) is any sequence, we use (s1, s2, . . . , sn)# to denote the sequence
(s1, s2, . . . , sn−1) that is obtained by deleting the last term.

Theorem 2.1 (Marušič, Durnberger, Keating-Witte [5]). If G′ is a cyclic group of prime-power
order, then every connected Cayley graph on G has a hamiltonian cycle.

Lemma 2.2 (see [3, Lemma 2.27]). Let S generate the finite group G, and let s ∈ S. If

(i) 〈s〉 � G,

(ii) Cay(G/〈s〉;S) has a hamiltonian cycle, and

(iii) either

(1) s ∈ Z(G), or
(2) |s| is prime,

then Cay(G;S) has a hamiltonian cycle.

Lemma 2.3 (see [1, Lemma 2.7]). Let S generate the finite group G, and let s ∈ S. If

(i) 〈s〉 � G,

(ii) |s| is a divisor of pq, where p and q are distinct primes,

(iii) sp ∈ Z(G),

(iv) |G/〈s〉| is divisible by q, and

(v) Cay(G/〈s〉;S) has a hamiltonian cycle,

then there is a hamiltonian cycle in Cay(G;S).

The following results are well known (and easy to prove).

Lemma 2.4 (“Factor Group Lemma”). Suppose that

(i) S is a generating set of G,

(ii) N is a cyclic, normal subgroup of G,

(iii) (s1N, . . . , snN) is a hamiltonian cycle in Cay(G/N;S), and

(iv) the product s1s2 · · · sn generatesN.

Then (s1, . . . , sn)
|N| is a hamiltonian cycle in Cay(G;S).

Corollary 2.5. Suppose that

(i) S is a generating set of G,
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(ii) N is a normal subgroup of G, such that |N| is prime,

(iii) s ≡ t (modN) for some s, t ∈ S ∪ S−1 with s /= t, and

(iv) there is a hamiltonian cycle in Cay(G/N;S) that uses at least one edge labelled s.

Then there is a hamiltonian cycle in Cay(G;S).

Definition 2.6. IfH is any subgroup ofG, thenH \Cay(G;S) denotes the multigraph in which

(i) the vertices are the right cosets of H, and

(ii) there is an edge joining Hg1 and Hg2 for each s ∈ S ∪ S−1, such that g1s ∈ Hg2.

Thus, if there are two different elements s1 and s2 of S ∪ S−1, such that g1s1 and g1s2 are both
in Hg2, then the vertices Hg1 and Hg2 are joined by a double edge.

Lemma 2.7 (see [3, Corollary 2.9]). Suppose that

(i) S is a generating set of G,

(ii) H is a subgroup of G, such that |H| is prime,

(iii) the quotient multigraph H \ Cay(G;S) has a hamiltonian cycle C, and

(iv) C uses some double-edge of H \ Cay(G;S).

Then there is a hamiltonian cycle in Cay(G;S).

Theorem 2.8 (see [6, Corollary 3.3]). Suppose that

(i) S is a generating set of G,

(ii) N is a normal p-subgroup of G, and

(iii) st−1 ∈ N, for all s, t ∈ S.

Then Cay(G;S) has a hamiltonian cycle.

Remark 2.9. In the proof of our main result, we may assume p ≥ 5, for otherwise either

(i) |G| = 54 is of the form 18q, where q is prime, and so [3, Propostion 9.1] applies, or

(ii) |G| = 34 is a prime power, and so the main theorem of [7] applies.

3. Assume the Sylow p-Subgroup of G Is Normal

Notation 3. Let

(i) G be a group of order 27p, where p is prime, and p ≥ 5 (see Remark 2.9),

(ii) S be a minimal generating set for G,

(iii) P ∼= Zp be a Sylow p-subgroup of G,

(iv) w be a generator of P , and

(v) Q be a Sylow 3-subgroup of G.
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Assumption 3.1. In this section, we assume that P is a normal subgroup of G.

Therefore G is a semidirect product:

G = Q � P. (3.1)

Wemay assume that G′ is not cyclic of prime order (for otherwise Theorem 2.1 applies). This
implies that Q is nonabelian and acts nontrivially on P ; so

G′ = Q′ × P is cyclic of order 3p. (3.2)

Notation 4. SinceQ is a 3-group and acts nontrivially on P ∼= Zp, we must have p ≡ 1 (mod 3).
Thus, one may choose r ∈ Z, such that

r3 ≡ 1
(
mod p

)
, but r /≡ 1

(
mod p

)
. (3.3)

Dividing r3 − 1 by r − 1, we see that

r2 + r + 1 ≡ 0
(
mod p

)
. (3.4)

3.1. A Lemma That Applies to Both of the Possible Sylow 3-Subgroups

There are only 2 nonabelian groups of order 27, and we will consider them as separate cases,
but, first, we cover some common ground.

Note

Since Q is a nonabelian group of order 27, and G = Q � P ∼= Q � Zp, it is easy to see that

Q′ = Φ(Q) = Z(Q) = Z(G) = Φ(G). (3.5)

Lemma 3.2. Assume that

(i) s ∈ (S ∪ S−1) ∩Q, such that s does not centralize P , and

(ii) c ∈ CQ(P) \Φ(Q).

Then we may assume that S is either {s, cw} or {s, c2w} or {s, scw} or {s, sc2w}.

Proof. Since G/P ∼= Q is a 2-generated group of prime-power order, there must be an element
a of S, such that {s, a} generates G/P . We may write

a = sicjzwk, with 0 ≤ i ≤ 2, 1 ≤ j ≤ 2, z ∈ Z(Q), and 0 ≤ k < p. (3.6)

Note the following.

(i) By replacing a with its inverse if necessary, we may assume i ∈ {0, 1}.



International Journal of Combinatorics 5

(ii) By applying an automorphism of G that fixes s and maps c to czj , we may assume
that z is trivial (since (czj)j = cjzj

2
= cjz).

(iii) By replacing w with wk if k /= 0, we may assume k ∈ {0, 1}.
Thus,

a = sicjwk with i, k ∈ {0, 1}, and j ∈ {1, 2}. (3.7)

Case 1 (Assume k = 1). Then 〈s, a〉 = G, and so S = {s, a}. This yields the four listed
generating sets.

Case 2 (Assume k = 0). Then 〈s, a〉 = Q, and there must be a third element b of S, with b /∈ Q;
after replacingw with an appropriate power, we may write b = tw with t ∈ Q. We must have
t ∈ 〈s,Φ(Q)〉, for otherwise 〈s, b〉 = G (which contradicts the minimality of S). Therefore

t = si′z′ with 0 ≤ i′ ≤ 2, and z′ ∈ Φ(Q) = Z(G). (3.8)

We may assume the following.

(i) i′ /= 0, for otherwise b = z′w ∈ S ∩ (Z(G) × P); so Lemma 2.3 applies.

(ii) i′ = 1, by replacing b with its inverse if necessary.

(iii) z′ /= e, for otherwise s and b provide a double edge in Cay(G/P ;S); so Corollary 2.5
applies.

Then s−1b = z′w generates Z(G) × P .

Consider the hamiltonian cycles

(
a−1, s2

)3
,

((
a−1, s2

)3
#, b

)
,

((
a−1, s2

)3
##, b2

)
(3.9)

in Cay(G/〈z,w〉;S). Letting z′′ = (a−1s2)3 ∈ 〈z〉, we see that their endpoints in G are (resp.)

z′′, z′′
(
s−1b

)
= z′′z′ w, z′′

(
s−1b

)s(
s−1b

)
= z′′

(
z′
)2

wsw. (3.10)

The final two endpoints both have a nontrivial projection to P (since s, being a 3-element,
cannot invert w), and at least one of these two endpoints also has a nontrivial projection to
Z(G). Such an endpoint generates Z(G) × P = 〈z,w〉, and so the Factor Group Lemma 2.4
provides a hamiltonian cycle in Cay(G;S).

3.2. Sylow 3-Subgroup of Exponent 3

Lemma 3.3. Assume that Q is of exponent 3; so

Q =
〈
x, y, z | x3 = y3 = z3 = e,

[
x, y

]
= z, [x, z] =

[
y, z

]
= e

〉
. (3.11)



6 International Journal of Combinatorics

Then one may assume the following:

(1) wx = wr , but y and z centralize P , and

(2) either

(a) S = {x, yw}, or
(b) S = {x, xyw}.

Proof. (1) SinceQ acts nontrivially on P , and Aut(P) is cyclic, butQ/Φ(Q) is not cyclic, there
must be elements a and b of Q \Φ(Q), such that a centralizes P , but b does not. (And zmust
centralize P , because it is in Q′.) By applying an automorphism of Q, we may assume a = y
and b = x. Furthermore, we may assumewx = wr by replacing xwith its inverse if necessary.

(2) Smust contain an element that does not centralize P ; so we may assume x ∈ S. By
applying Lemma 3.2 with s = x and c = y, we see that we may assume that S is

{
x, yw

}
or

{
x, y2w

}
or

{
x, xyw

}
or

{
x, xy2w

}
. (3.12)

But there is an automorphism of G that fixes x and w and sends y to y2; so we need only
consider two of these possibilities.

Proposition 3.4. Assume, as usual, that |G| = 27p, where p is prime, and that G has a normal Sylow
p-subgroup. If the Sylow 3-subgroup Q is of exponent 3, then Cay(G;S) has a hamiltonian cycle.

Proof. We write for the natural homomorphism from G to G = G/P . From Lemma 3.3(2),
we see that we need only consider two possibilities for S.

Case 1 (Assume S = {x, yw}). For a = x and b = yw, we have the following hamiltonian cycle
in Cay(G/P ;S):

e
a−→ x

a−→ x2 b−→ x2y
a−1−→ xyz

a−1−→ yz2

b−→ y2z2
b−→ z2

a−→ xz2
a−→ x2z2

b−→ x2yz2
a−→ yz

a−→ xy
b−→ xy2 a−→ x2y2z

b−→ x2z
b−→ x2yz

a−1−→ xyz2

b−→ xy2z2
a−→ x2y2 a−→ y2z

b−→ z
a−→ xz

b−1−→ xy2z

a−→ x2y2z2
a−→ y2 b−1−→ y

b−1−→ e.

(3.13)

Its endpoint in G is

a2ba−2b2a2ba2bab2a−1ba2bab−1a2b−2

= x2ywx−2(yw
)2
x2ywx2ywx

(
yw

)2
x−1ywx2ywx

(
yw

)−1
x2(yw

)−2

= x2ywxy2w2x2ywx2ywxy2w2x2ywx2ywxy2w−1x2yw−2.

(3.14)
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Since the walk is a hamiltonian cycle in G/P , we know that this endpoint is in P = 〈w〉. So
all terms except powers ofwmust cancel. Thus, we need only calculate the contribution from
each appearance ofw in this expression. To do this, note that if a termwi is followed by a net
total of j appearances of x, then the term contributes a factor of wirj to the product. So the
endpoint in G is

wr13w2r12wr10wr8w2r7wr5wr3w−r2w−2. (3.15)

Since r3 ≡ 1 (modp), this simplifies to

wrw2wrwr2w2rwr2ww−r2w−2 = wr+2+r+r2+2r+r2+1−r2−2

= wr2+4r+1 = wr2+r+1w3r = w0w3r = w3r .
(3.16)

Since p � 3r, this endpoint generates P ; so the Factor Group Lemma 2.4 provides a
hamiltonian cycle in Cay(G;S).

Case 2 (Assume S = {x, xyw}). For a = x and b = xyw, we have the hamiltonian cycle

((
a, b2

)3
#, a

)3

(3.17)

in Cay(G/P ;S). Its endpoint in G is

((
ab2

)3
b−1a

)3

=
((

x
(
xyw

)2)3 (
xyw

)−1
x

)3

=
((

x
(
x2y2wr+1

))3 (
w−1y−1x−1

)
x

)3

=
((

y2wr+1
)3 (

w−1y−1
))3

=
(
w3(r+1)

(
w−1y−1

))3
=
(
y−1w3r+2

)3

= w3(3r+2).

(3.18)

Since we are free to choose r to be either of the two primitive cube roots of 1 in Zp, and the
equation 3r + 2 = 0 has only one solution in Zp, we may assume that r has been selected to
make the exponent nonzero. Then the Factor Group Lemma 2.4 provides a hamiltonian cycle
in Cay(G;S).

3.3. Sylow 3-Subgroup of Exponent 9

Lemma 3.5. Assume that Q is of exponent 9; so

Q =
〈
x, y | x9 = y3 = e,

[
x, y

]
= x3

〉
. (3.19)
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There are two possibilities for G, depending on whether CQ(P) contains an element of order 9 or not.

(1) Assume that CQ(P) does not contain an element of order 9. Then we may assume that y
centralizes P , but wx = wr . Furthermore, we may assume that:

(a) S = {x, yw}, or
(b) S = {x, xyw}.

(2) Assume that CQ(P) contains an element of order 9. Then we may assume x centralizes P ,
but wy = wr . Furthermore, we may assume that:

(a) S = {xw, y},
(b) S = {xyw, y},
(c) S = {xy, xw}, or
(d) S = {xy, x2yw}.

Proof. (1) Since x has order 9, we know that it does not centralize P . But x3 must centralize
P (since x3 is in G′). Therefore, we may assume wx = xr (by replacing x with its inverse if
necessary). Also, since Q/CQ(P) must be cyclic (because Aut(P) is cyclic), but CG(P) does
not contain an element of order 9, we see that CQ(P) contains every element of order 3; so y
must be in CQ(P).

Since S must contain an element that does not centralize P , we may assume x ∈ S. By
applying Lemma 3.2 with s = x and c = y, we see that we may assume that S is:

{
x, yw

}
or

{
x, y2w

}
or

{
x, xyw

}
or

{
x, xy2w

}
. (3.20)

The second generating set need not be considered, because (y2w)−1 = yw−1 = yw′; so it is
equivalent to the first. Also, the fourth generating set can be converted into the third, since
there is an automorphism of G that fixes y, but takes x to xyw and w to w−1.

(2) We may assume x ∈ CQ(P); so CQ(P) = 〈x〉.
We know that S must contain an element s that does not centralize P , and there are

two possibilities: either

(I) s has order 3, or

(II) s has order 9.

We consider these two possibilities as separate cases.

Case I (Assume that s has order 3). We may assume s = y. Letting c = x, we see from
Lemma 3.2 that we may assume S is either

{
y, xw

}
or

{
y, x2w

}
or

{
y, yxw

}
or

{
y, yx2w

}
. (3.21)

The second and fourth generating sets need not be considered, because there is an
automorphism of G that fixes y and w, but takes x to x2. Also, the third generating set may
be replaced with {y, xyw}, since there is an automorphism of G that fixes y andw, but takes
x to y−1xy.
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Case II (Assume that s has order 9). We may assume s = xy. Letting c = x, we see from
Lemma 3.2 that we may assume that S is either

{
xy, xw

}
or

{
xy, x2w

}
or

{
xy, xyxw

}
or

{
xy, xyx2w

}
. (3.22)

The second generating set is equivalent to {xy, xw}, since the automorphism of G that sends
x to x4, y to x−3y, and w to w−1 maps it to {xy, (xw)−1}. The third generating set is mapped
to {xy, x2yw} by the automorphism that sends x to x[x, y] and y to [x, y]−1y. The fourth
generating set need not be considered, because xyx2w is an element of order 3 that does not
centralize P , which puts it in the previous case.

Proposition 3.6. Assume, as usual, that |G| = 27p, where p is prime, and that G has a normal Sylow
p-subgroup. If the Sylow 3-subgroup Q is of exponent 9, then Cay(G;S) has a hamiltonian cycle.

Proof. We will show that, for an appropriate choice of a and b in S ∪ S−1, the walk

(
a3, b−1, a, b−1, a4, b2, a−2, b, a2, b, a3, b, a−1, b−1, a−1, b−2

)
(3.23)

provides a hamiltonian cycle in Cay(G/P ;S)whose endpoint in G generates P (so the Factor
Group Lemma 2.4 applies).

We begin by verifying two situations in which (3.23) is a hamiltonian cycle.

(HC1) If |a| = 9, |b| = 3, and ab = a4 in G = G/P , then we have the hamiltonian cycle:

e
a−→ a

a−→ a2 a−→ a3 b−1−→ a3b2
a−→ a7b2

b−1−→ a7b

a−→ a5b
a−→ a3b

a−→ ab
a−→ a8b

b−→ a8b2
b−→ a8 a−1−→ a7

a−1−→ a6 b−→ a6b
a−→ a4b

a−→ a2b
b−→ a2b2

a−→ a6b2
a−→ ab2

a−→ a5b2
b−→ a5 a−1−→ a4 b−1−→ a4b2

a−1−→ b2
b−1−→ b

b−1−→ e.

(3.24)

(HC2) If |a| = 9, |b| = 9, ab = a7, and b3 = a6 in G = G/P , then we have the hamiltonian
cycle:

e
a−→ a

a−→ a2 a−→ a3 b−1−→ a6b2
a−→ a4b2

b−1−→ a4b

a−→ a8b
a−→ a3b

a−→ a7b
a−→ a2b

b−→ a2b2
b−→ a8 a−1−→ a7

a−1−→ a6 b−→ a6b
a−→ ab

a−→ a5b
b−→ a5b2

a−→ a3b2
a−→ ab2

a−→ a8b2
b−→ a5 a−1−→ a4 b−1−→ a7b2

a−1−→ b2
b−1−→ b

b−1−→ e.

(3.25)
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To calculate the endpoint in G, fix r1, r2 ∈ Zp, with

wa = wr1 , wb = wr2 , (3.26)

and write

a = aw1, b = bw2, where a, b ∈ Q, w1, w2 ∈ P. (3.27)

Note that if an occurrence of wi in the product is followed by a net total of j1 appearances of

a and a net total of j2 appearances of b, then it contributes a factor ofw
r
j1
1 r

j2
2

i to the product. (A

similar occurrence of w−1
i contributes a factor of w

−rj11 r
j2
2

i to the product.) Furthermore, since
r31 ≡ r32 ≡ 1 (modp), there is no harm in reducing j1 and j2 modulo 3.

We will apply these considerations only in a few particular situations.

(E1) Assume w1 = e (so a ∈ Q and a = a). Then the endpoint of the path in G is

a3b−1ab−1a4b2a−2ba2ba3ba−1b−1a−1b−2

= a3(bw2
)−1

a
(
bw2

)−1
a4(bw2

)2
a−2(bw2

)
a2

× (
bw2

)
a3(bw2

)
a−1(bw2

)−1
a−1(bw2

)−2

= a3
(
w−1

2 b−1
)
a
(
w−1

2 b−1
)
a4(bw2bw2

)
a−2(bw2

)
a2

× (
bw2

)
a3(bw2

)
a−1

(
w−1

2 b−1
)
a−1

(
w−1

2 b−1w−1
2 b−1

)
.

(3.28)

By the above considerations, this simplifies to wm
2 , where

m = −1 − r21r2 + r1r2 + r1 + r22 + r1r2 + r1 − r21 − r2 − r22

= −r21r2 − r21 + 2r1r2 + 2r1 − r2 − 1.
(3.29)

Note the following.

(a) If r1 /= 1 and r2 = 1, then m simplifies to 6r1, because r21 + r1 + 1 ≡ 0 (modp) in
this case.

(b) If r1 /= 1 and r2 /= 1, thenm simplifies to 3r1(r2+1), because r21+r1+1 ≡ r22+r2+1 ≡
0 (modp) in this case.
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(E2) Assume w2 = e (so b ∈ Q and b = b). Then the endpoint of the path in G is

a3b−1ab−1a4b2a−2ba2ba3ba−1b−1a−1b−2

=
(
aw1

)3
b−1

(
aw1

)
b−1

(
aw1

)4
b2
(
aw1

)−2
b
(
aw1

)2
b
(
aw1

)3
b
(
aw1

)−1
b−1

(
aw1

)−1
b−2

=
(
aw1aw1aw1

)
b−1

(
aw1

)
b−1

(
aw1aw1aw1aw1

)
b2
(
w−1

1 a−1w−1
1 a−1

)

× b
(
aw1aw1

)
b
(
aw1aw1aw1

)
b
(
w−1

1 a−1
)
b−1

(
w−1

1 a−1
)
b−2.

(3.30)

By the above considerations, this simplifies to wm
1 , where

m = r21 + r1 + 1 + r21r2 + r1r
2
2 + r22 + r21r

2
2 + r1r

2
2 − r1

− r21 + r21r
2
2 + r1r

2
2 + r2 + r21r2 + r1r2 − r1 − r21r2

= 2r21r
2
2 + 3r1r22 + r22 + r21r2 + r1r2 + r2 − r1 + 1.

(3.31)

Note the following.

(a) If r1 = 1 and r2 /= 1, thenm simplifies to −3(r2+2), because r22 +r2+1 ≡ 0 (modp)
in this case.

(b) If r1 /= 1 and r2 /= 1, thenm simplifies to −r1r2 − 2r1 + r2 + 2, because r21 + r1 + 1 ≡
r22 + r2 + 1 ≡ 0 (modp) in this case.

Now we provide a hamiltonian cycle for each of the generating sets listed in
Lemma 3.5.

(1a) If CQ(P) has exponent 3, and S = {x, yw}, we let a = x and b = yw in (HC1). In
this case, we have w1 = e, r1 = r, and r2 = 1; so (E1(a)) tells us that the endpoint in
G is w6r

2 .

(1b) If CQ(P) has exponent 3, and S = {x, xyw}, we let a = x and b = (xyw)−1 in (HC2).
In this case, we have w1 = e, r1 = r, and r2 = r−1 = r2; so (E1(b)) tells us that the
endpoint in G is wm

2 , where

m = 3r1(r2 + 1) = 3r
(
r2 + 1

)
= 3

(
r3 + r

)
≡ 3(1 + r) = 3(r + 1)

(
mod p

)
. (3.32)

(2a) If CQ(P) has exponent 9, and S = {xw, y}, we let a = xw and b = y in (HC1). In
this case, we have w2 = e, r1 = 1, and r2 = r; so (E2(a)) tells us that the endpoint in
G is w−3(r+2)

1 .

(2b) If CQ(P) has exponent 9, and S = {xyw, y}, we let a = xyw and b = y in (HC1). In
this case, we have w2 = e and r1 = r2 = r; so (E2(b)) tells us that the endpoint in G
is wm

2 , where

m = −r1r2 − 2r1 + r2 + 2 = −r2 − 2r + r + 2 = −
(
r2 + r + 1

)
+ 3 ≡ 3

(
mod p

)
. (3.33)
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(2c) If CQ(P) has exponent 9, and S = {xy, xw}, we let a = xw and b = (xy)−1 in (HC2).
In this case, we have w2 = e, r1 = 1, and r2 = r−1 = r2; so (E2(a)) tells us that the
endpoint in G is wm

1 , where

m = −3(r2 + 2) = −3
(
r2 + 2

)
≡ −3(−(r + 1) + 2) = 3(r − 1)

(
mod p

)
. (3.34)

(2d) IfCQ(P) has exponent 9, and S = {xy, x2yw}, we let a = xy and b = x2yw in (HC2).
In this case, we have w1 = e and r1 = r2 = r; so (E1(b)) tells us that the endpoint in
G is wm

2 , where

m = 3r1(r2 + 1) = 3r(r + 1) = 3
(
r2 + r

)
≡ 3(−1) = −3(mod p

)
. (3.35)

In all cases, there is at most one nonzero value of r (modulo p) for which the exponent of wi

is 0. Since we are free to choose r to be either of the two primitive cube roots of 1 in Zp, we
may assume that r has been selected to make the exponent nonzero. Then the Factor Group
Lemma 2.4 provides a hamiltonian cycle in Cay(G;S).

4. Assume the Sylow p-Subgroups of G Are Not Normal

Lemma 4.1. Assume that

(i) |G| = 27p, where p is an odd prime, and

(ii) the Sylow p-subgroups of G are not normal.

Then p = 13, and G = Z13 � (Z3)
3, where a generator w of Z13 acts on (Z3)

3 via multiplication on
the right by the matrix

W =

⎡

⎢⎢
⎣

0 1 0

0 0 1

1 1 0

⎤

⎥⎥
⎦. (4.1)

Furthermore, we may assume that

S is of the form
{
wi,wjv

}
, (4.2)

where v = (1, 0, 0) ∈ (Z3)
3, and

(
i, j

) ∈ {(1, 0), (2, 0), (1, 2), (1, 3), (1, 5), (1, 6), (2, 5)}. (4.3)

Proof. Let P be a Sylow p-subgroup of G, and letQ be a Sylow 3-subgroup of G. Since no odd
prime divides 3−1 or 32−1, and 13 is the only odd prime that divides 33−1, Sylow’s Theorem
[8, Theorem 15.7, page 230] implies that p = 13, and thatNG(P) = P ; soGmust have a normal
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p-complement [4, Theorem 7.4.3]; that is, G = P � Q. Since P must act nontrivially on Q

(since P is not normal), we know that it must act nontrivially on Q/Φ(Q) [4, Theorem 5.3.5,
page 180]. However, P cannot act nontrivially on an elementary abelian group of order 3 or
32, because |P | = 13 is not a divisor of 3 − 1 or 32 − 1. Therefore, we must have |Q/Φ(Q)| = 33;
so Q must be elementary abelian (and the action of P is irreducible).

Let W be the matrix representing the action of w on (Z3)
3 (with respect to some basis

that will be specified later). In the polynomial ring Z3[X], we have the factorization:

X13 − 1
X − 1

=
(
X3 −X − 1

)
·
(
X3 +X2 − 1

)
·
(
X3 +X2 +X − 1

)
·
(
X3 −X2 −X − 1

)
. (4.4)

Since w13 = e, the minimal polynomial of W must be one of the factors on the right-hand
side. By replacing w with an appropriate power, we may assume that it is the first factor.
Then, choosing any nonzero v ∈ (Z3)

3, the matrix representation of w with respect to the
basis {v, vw, vw2} isW (the Rational Canonical Form).

Now, let ζ be a primitive 13th root of unity in the finite field GF(27). Then any Galois
automorphism of GF(27) over GF(3) must raise ζ to a power. Since the subgroup of order 3
in Z

×
13 is generated by the number 3, we conclude that the orbit of ζ under the Galois group

is {ζ, ζ3, ζ9}. These must be the 3 roots of one of the irreducible factors on the right-hand side
of (4.4). Thus, for any k ∈ Z

×
13, the matrices Wk, W3k, and W9k all have the same minimal

polynomial; so they are conjugate under GL3(3). That is,

powers of W in the same row of the

following array are conjugate under GL3(3) :

W,W3,W9

W2,W5,W6

W4,W12,W10

W7,W8,W11.

(4.5)

There is an element a of S that generates G/Q ∼= P . Then a has order p; so, replacing it
by a conjugate, we may assume a ∈ P = 〈w〉, and so a = wi for some i ∈ Z

×
13. From (4.5), we

see that we may assume i ∈ {1, 2} (perhaps after replacing a by its inverse).
Now let b be the second element of S; so we may assume b = wjv for some j. We may

assume 0 ≤ j ≤ 6 (by replacing b with its inverse, if necessary). We may also assume j /= i, for
otherwise S ⊂ aQ, and so Theorem 2.8 applies.

If j = 0, then (i, j) is either (1, 0) or (2, 0), both of which appear in the list; henceforth,
let us assume j /= 0.

Case 1 (Assume i = 1). Since j /= i, we must have j ∈ {2, 3, 4, 5, 6}.
Note that since W3 is conjugate to W under GL3(3) (since they are in the same row

of (4.5)), we know that the pair (w,w4) is isomorphic to the pair (w3, (w3)4) = (w3, w−1). By
replacing b with its inverse, and then interchanging a and b, this is transformed to (w,w3).
So we may assume j /= 4.

Case 2 (Assume i = 2). We may assume that Wj is in the second or fourth row of the table
(for otherwise we could interchange awith b to enter the previous case. So j ∈ {2, 5, 6}. Since
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j /= i, this implies j ∈ {5, 6}. However, since W5 is conjugate to W2 (since they are in the
same row of (4.5)), and we have (w2)3 = w6 and (w5)3 = w2, we see that the pair (w2, w6) is
isomorphic to (w2, w5). So we may assume j /= 6.

Proposition 4.2. If |G| = 27p, where p is prime, and the Sylow p-subgroups of G are not normal,
then Cay(G;S) has a hamiltonian cycle.

Proof. From Lemma 4.1 (and Remark 2.9), we may assume G = Z13 � (Z3)
3. For each of the

generating sets listed in Lemma 4.1, we provide an explicit hamiltonian cycle in the quotient
multigraph P \ Cay(G;S) that uses at least one double edge. So Lemma 2.7 applies.

To save space, we use i1i2i3 to denote the vertex P(i1, i2, i3).

(i, j) = (1, 0) a = w, a−1 = w12, b = (1, 0, 0), and b−1 = (−1, 0, 0)
Double edge: 222 → 022 with a−1 and b:

000 b−1−→ 200 a−→ 020 a−→ 002 a−→ 220 b−1−→ 120 a−→ 012

a−→ 221 a−→ 102 b−→ 202 a−→ 210 a−→ 021 a−→ 112 a−→ 201

b−1−→ 101 a−1−→ 211 a−1−→ 212 a−1−→ 222 b−→ 022 b−→ 122 a−1−→ 121

a−1−→ 111 b−1−→ 011 a−1−→ 110 a−1−→ 001 a−1−→ 010 a−1−→ 100 b−1−→ 000.

(4.6)

(i, j) = (2, 0) a = w2, a−1 = w11, b = (1, 0, 0), and b−1 = (−1, 0, 0)
Double edge: 020 → 220 with a and b−1:

000 b−1−→ 200 a−→ 002 a−→ 022 a−→ 212 b−1−→ 112 a−1−→ 210

a−1−→ 122 a−1−→ 111 a−1−→ 110 b−1−→ 010 a−1−→ 201 b−1−→ 101 a−→ 012

a−→ 102 a−→ 020 b−1−→ 220 a−→ 222 a−→ 211 a−→ 120 a−→ 221

b−→ 021 a−1−→ 202 a−1−→ 121 a−1−→ 011 a−1−→ 001 a−1−→ 100 b−1−→ 000.

(4.7)

(i, j) = (1, 2) a = w, a−1 = w12, b = w2(1, 0, 0), and b−1 = w11(−1,−1, 1)
Double edge: 220 → 022 with a and b:

000 b−1−→ 221 a−1−→ 012 a−1−→ 120 b−1−→ 102 b−1−→ 200 a−→ 020
a−→ 002 a−→ 220 b−→ 022 a−→ 222 b−→ 011 a−→ 111 a−→ 121

a−→ 122 a−→ 202 a−→ 210 a−→ 021 a−→ 112 b−1−→ 101 a−1−→ 211

a−1−→ 212 b−→ 201 b−→ 110 a−1−→ 001 a−1−→ 010 a−1−→ 100 b−1−→ 000.

(4.8)



International Journal of Combinatorics 15

(i, j) = (1, 3) a = w, a−1 = w12, b = w3(1, 0, 0), and b−1 = w10(0, 1,−1)
Double edge: 200 → 020 with a and b:

000 b−1−→ 012 a−1−→ 120 b−1−→ 221 a−→ 102 a−→ 200 b−→ 020
a−→ 002 a−→ 220 a−→ 022 a−→ 222 a−→ 212 a−→ 211 a−→ 101
b−1−→ 201 a−1−→ 112 a−1−→ 021 a−1−→ 210 a−1−→ 202 a−1−→ 122 b−→ 121
a−1−→ 111 a−1−→ 011 a−1−→ 110 a−1−→ 001 a−1−→ 010 a−1−→ 100 b−1−→ 000.

(4.9)

(i, j) = (1, 5) a = w, a−1 = w12, b = w5(1, 0, 0), and b−1 = w8(1, 0, 1)
Double edge: 220 → 022 with a and b−1:

000 b−1−→ 101 a−→ 120 a−→ 012 a−→ 221 b−1−→ 010 a−→ 001
a−→ 110 a−→ 011 a−→ 111 b−→ 121 a−→ 122 b−1−→ 102 a−→ 200
a−→ 020 a−→ 002 a−→ 220 b−1−→ 022 a−→ 222 a−→ 212 a−→ 211
b−→ 202 a−→ 210 a−→ 021 a−→ 112 a−→ 201 a−→ 100 b−1−→ 000.

(4.10)

(i, j) = (1, 6) a = w, a−1 = w12, b = w6(1, 0, 0), and b−1 = w7(−1, 1, 1)
Double edge: 021 → 210 with a−1 and b:

000 b−1−→ 211 b−1−→ 201 a−1−→ 112 a−1−→ 021 b−→ 210 b−→ 101
b−→ 120 a−→ 012 a−→ 221 a−→ 102 a−→ 200 a−→ 020 a−→ 002

a−→ 220 a−→ 022 a−→ 222 a−→ 212 b−→ 202 a−1−→ 122 a−1−→ 121

a−1−→ 111 a−1−→ 011 a−1−→ 110 a−1−→ 001 a−1−→ 010 a−1−→ 100 b−1−→ 000.

(4.11)

(i, j) = (2, 5) a = w2 , a−1 = w11, b = w5(1, 0, 0), and b−1 = w8(1, 0, 1)
Double edge: 112 → 210 with a−1 and b:

000 b−1−→ 101 a−→ 012 b−→ 102 a−→ 020 a−→ 220 a−→ 222

b−→ 112 b−→ 210 a−1−→ 122 a−1−→ 111 a−1−→ 110 a−1−→ 010 a−1−→ 201

a−1−→ 021 a−1−→ 202 b−1−→ 211 a−→ 120 a−→ 221 a−→ 200 a−→ 002

a−→ 022 a−→ 212 b−1−→ 121 a−1−→ 011 a−1−→ 001 a−1−→ 100 b−1−→ 000.

(4.12)
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