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Transcriptional and epigenetic control of early life
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Purpose of review

Global epigenetic reprogramming of the parental genomes after fertilization ensures the establishment of
genome organization permissive for cell specialization and differentiation during development. In this
review, we highlight selected, well-characterized relationships between epigenetic factors and
transcriptional cell fate regulators during the initial stages of mouse development.

Recent findings

Blastomeres of the mouse embryo are characterized by atypical and dynamic histone modification
arrangements, noncoding RNAs and DNA methylation profiles. Moreover, asymmetries in epigenomic
patterning between embryonic cells arise as early as the first cleavage, with potentially instructive roles
during the first lineage allocations in the mouse embryo. Although it is widely appreciated that transcription
factors and developmental signaling pathways play a crucial role in cell fate specification at the onset of
development, it is increasingly clear that their function is tightly connected to the underlying epigenetic

status of the embryonic cells in which they act.

Summary

Findings on the interplay between genetic, epigenetic and environmental factors during reprogramming
and differentiation in the embryo are crucial for understanding the molecular underpinnings of disease
processes, particularly tumorigenesis, which is characterized by global epigenetic rewiring and progressive

loss of cellular identity.
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Development starts at fertilization, when the sperm
and egg fuse to create the zygote, which will, through
subsequent cleavages and differentiation, give rise to
all cells in the new organism. Following fertilization,
the specialized and asymmetric epigenomic patterns
of the maternal and paternal genomes are largely
reset to provide a clean slate supporting the develop-
ment of the new animal. Embryo-specific organiza-
tion of the genome is then established with
patterning gradually becoming more restricted and
specialized, supporting lineage specification during
embryogenesis. The first cell differentiation event
during mouse development is the distinction of
extraembryonic trophectoderm from the pluripotent
inner cell mass (ICM) during the morula/blastocyst
stage, an event primarily driven by developmental
signaling pathways and transcriptional master regu-
lators of the two cell fates.

Generally considered as equipotent, the cells of
the early mouse embryo preceding lineage allocation
nevertheless harbor some functional differences. In
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certain cases, these arise as early as two-cell stage of
development, when blastomeres are considered toti-
potent (meaning that they can contribute to both
embryonic and extraembryonic tissues). For
instance, only a subset of mouse embryos contain
two totipotent cells at the two-cell stage, while the
majority constitute blastomere pairs in which only
one of the blastomeres has the ability to singularly
maintain development of a healthy blastocyst [1].
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KEY POINTS

e In the early mammalian embryo, global epigenetic
reprogramming followed by establishment of epigenetic
patterns influences the emergence of distinct cell
lineages from undifferentiated blastomeres.

e Specification of cell identity during early development
is guided by the inferaction of transcriptional master
regulators with epigenetic factors and
chromatin organization.

e Noncanonical distribution of histone and DNA
modifications, and asymmetries in epigenetic factor
localization are a hallmark of mouse preimplantation
blastomeres, with potential to instruct
lineage allocation.

e The extent to which parentally inherited epigenomic
differences contribute to early embryonic prepatterning
and blastomere plasticity, and influence downstream
development and differentiation remains to
be elucidated.

In this review, we focus on the different gene-
regulatory mechanisms influencing chromatin and
genome function preceding the first cell differenti-
ation events and discuss how their dynamics and
asymmetries influence lineage decisions in the
mouse embryo (Fig. 1).

Transcription factors (TFs) can bind DNA cis-regula-
tory elements in a sequence-specific manner and
modulate transcriptional output of their target
genes (reviewed in [2,3]). Recruitment and binding
of transcription factors to their cognate sites can be
facilitated by cooperative interactions among differ-
ent transcription factors and by interactions with
chromatin components (reviewed in [4]).

The first lineage segregation between the pluripo-
tent ICM and the trophectoderm, which will give rise
to the placenta, is guided by lineage-specific transcrip-
tion factors, resulting from a polarization of the outer
cells of the morula and a subsequent activation of the
Hippo signaling pathway (reviewed in [5]). Mechanis-
tically, this pathway results in the dephosphorylation
of YAP1, allowing for its nuclear translocation where it
acts as a co-activator for TEAD4, forming a complex
that induces expression of Cdx2 and Gata3, transcrip-
tional master regulators of the trophectoderm lineage
[6,7]. The activation of the Hippo pathway leads to
downregulation of the pluripotency factor SOX2 in
trophectoderm precursors, a mechanism dependent
on TEAD4 butnot CDX2 [8]. CDX2 itselfis dispensable
for establishment of the trophectoderm but necessary
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for the maintenance of its function [9]. CDX2 can be
co-expressed with OCT4, a core pluripotency tran-
scription factor, in a cross-antagonistic manner with
the transcription factors inhibiting each other’s activ-
ity [10,11]. Despite Cdx2 expression, morula blasto-
meres retain a high level of plasticity until the 32-cell
stage during which they can interconvert lineages
[12]. However, shortly thereafter, cells expressing high
CDX2 levels lose their ability to convert to the ICM
[13].

After blastocyst formation, the ICM further seg-
regates into the epiblast (Epi), which will give rise to
the embryo proper and differentiate into the three
germ layers, and the extraembryonic primitive
endoderm (PrE), which will contribute to the yolk
sac (reviewed in [5]). Initially co-expressed in the
early ICM [14,15], the classic Epi specifier NANOG,
and PrE-specific transcription factor GATA6 adopt a
mutually exclusive ‘salt-and-pepper’ expression pat-
tern around embryonic day (E) 3.5 [16]. Lack of
either factor results in the loss of the cell lineage
it specifies [17-20]. During the resolution of the
ICM, there is an antagonistic relationship between
NANOG and GATA6 [21,23]. Nevertheless, ICM
plasticity is retained beyond the bifurcation of
NANOG and GATAG6 expression patterns, and cells
can interconvert between Epi and PrE fates until
E4.5 [22,23]. The PrE/Epi divergence is guided by
differential Fibroblast Growth Factor (FGF) signaling
and activation of the mitogen-activated protein
kinase (MAPK) pathway, the action of which causes
specification towards PrE [16,24,25]. Phosphoryla-
tion of MAPK-effector ERK triggers an initially
reversible priming towards PrE through a redistribu-
tion of cofactors of the transcriptional machinery,
leading to the suppression of pluripotency genes
and allowing for the activation of PrE genes
[26,27"]. Expression patterns of MAPK signaling
components in the early ICM are heterogeneous
with Epi-precursors expressing FGF4 ligand and PrE-
precursors expressing FGFR2 receptor [19,28,29].
Modulating the MAPK pathway in embryos shifts
the PrE-to-Epi ratio, with Fgf4-null embryos unable
to maintain Gata6 expression [25,30,31]. In addi-
tion to FGFR2, FGFR1 is expressed throughout the
ICM, and its activity is involved in PrE specification,
as well as allowing Epi cells to exit the earlier, naive
pluripotent state and progress towards a later,
primed state [32,33].

As transcription factors function within the chro-
matin context, it is logical to hypothesize that the
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Epigenetic and transcription factors regulating cell fate allocation during mouse preimplantation development. (a)
Stages of embryonic development from fertilization until implantation and (b) their respective lineage trajectories arising during
early differentiation. At the morula stage, the blastomeres adopt either trophectoderm or ICM fate. The ICM subsequently
differentiates into the PrE and Epi. ExEm stands for extraembryonic, Em stands for embryonic. (c) Effectors with ascribed
instructive roles in the first cell fate decisions depicted below the corresponding developmental stage where they act. Initial
heterogeneities are dependent on the distribution of maternally inherited factors, such as IncRNAs (zygote stage), which can
impact the tethering of chromatin regulator CARM1 (two-cell stage). CARMT is in turn associated with an increased level of
pluripotency factor expression and chromatin mobility, and higher contribution of cells to the ICM (morula stage). Later,
transcription factors ensure proper lineage segregation during the first (trophectoderm/ICM) and second (Epi/PrE) cell fate
decisions. Around the time of implantation, DNA methylation (DNAme) and Polycomb Repressive Complexes (PRC) help guide
lineage restriction. (d) Loss of DNA methylation levels during reprogramming occurs between the zygote and blastocyst stages,
after which the DNA methylation levels are rapidly increased. Figure was made using Biorender.com.

interplay between genome organization and tran-
scription factor action cumulatively contribute to
cell plasticity and lineage allocation. In 2011, it was
shown that the kinetics of OCT4 on chromatin in
four-cell and eight-cell stage embryos differ between
individual blastomeres and that differential OCT4
dynamics are predictive of lineage patterning and
cell position within the embryo: cells displaying
slower OCT4 kinetics are more likely to contribute
to inner cells of the morula at compaction [34]. A
follow-up study using photo-activatable fluores-
cence correlation spectroscopy in four-cell embryos
found similar results for SOX2: blastomeres with
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long-lived SOX2 chromatin association contribute
more readily towards the pluripotent lineage, in a
manner regulated by H3R26 dimethylation [35].
This histone modification, deposited by arginine
methyltransferase CARM1, is found to be naturally
asymmetrically distributed between cells already at
the four-cell stage, depending on the cleavage plane
of the two-cell stage blastomeres. Lower levels of
H3R26me?2 in four-cell stage blastomeres are associ-
ated with a subsequent higher propensity of these
cells to contribute to trophectoderm compared with
ICM [36]. Conversely, increasing H3R26me2 levels
through the overexpression of CARM1 in one of the
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two-cell stage blastomeres leads to an upregulation
of NANOG and SOX2 expression, as well as an
increase in histone H3.1 mobility in its progeny
[37], and results in higher contribution of these cells
to the pluripotent ICM [36]. Presumably, higher
accessibility of underlying DNA in ICM-destined
cells, caused at least partly by faster histone
exchange, facilitates longer and/or more stable asso-
ciation of pluripotency factors with embryonic
chromatin.

Additionally, CARM1 has been reported to phys-
ically interact with PRDM14 and long non-coding
(Inc) RNAs LincGET and Neatl, all of which have
been proposed to anchor CARM1 to its cognate sites
on chromatin [38,39%,40%]. LincGET itself is differ-
entially expressed between the sister blastomeres
already at the two-cell stage but only through inter-
action with CARM1 is it able to induce SOX2 and
NANOG expression [40%]. Similarly, it was found
that depletion of Neat1 causes developmental arrest
at the morula/early blastocyst stage, possibly due to
increased expression of CDX2 [39%]. Cumulatively,
these data point to a dynamic interplay between
different epigenetic players, transcription factor lev-
els and underlying genomic context in guiding cell
fate allocation during development.

The first of two genome-wide waves of epigenetic
reprogramming in the animal’s life cycle takes place
immediately after fertilization, with the presump-
tive aim of ‘resetting’ the chromatin landscape
inherited from the highly specialized gametes. This
establishes a clean slate of the embryonic epige-
nome preceding (and allowing for) cell differentia-
tion. Below, we outline the best characterized
chromatin modifications associated with regulation
of embryogenesis and differentiation.

DNA methylation

DNA methylation occurs directly on the DNA mol-
ecule in a CpG dinucleotide context and is tradi-
tionally associated with transcriptional silencing
(reviewed in [41]). Although overall stable in
somatic tissues, DNA methylation patterns are glob-
ally reprogrammed following fertilization and dur-
ing the specification of the germline.

In the early embryo, progressive loss of DNA
methylation takes place, ultimately resulting in a
hypomethylated genome at the blastocyst stage
(Figure 1d) [42,43]. This occurs as a consequence
of the absence of DNA methylation maintenance
normally carried out by DNMT1 [42,43], as well as
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active removal through the action of Ten-eleven
Translocation (TET) enzymes. In the zygote, the
paternal genome is demethylated more rapidly than
the maternal one, through the action of TET3 [44-
48]. Maternal chromosomes are protected from this
mechanism by STELLA/Dppa3, which recognizes
H3K9me2, deposited during oogenesis [49]. This
distinction is not clear-cut: TET3 has been reported
to demethylate parts of the maternal genome, blur-
ring the segregation of demethylation mechanisms
between the parental genomes [50-52]. Although
pervasive, it is important to note that DNA demeth-
ylation in preimplantation embryos is not absolute,
with imprinting control regions and some transpos-
able elements (in particular IAPs) escaping the
reprogramming process [53]. From the blastocyst
stage, DNA methylation levels increase through
the action of de novo DNA methyltransferases
DNMT3A and DNMT3B [54]. DNA methylation is
dispensable for the formation of extra-embryonic
lineages [55], consistent with the reported hypome-
thylated states in extraembryonic tissues and the
higher expression levels of DNMT3A/B in the post-
implantation epiblast [56]. Despite the differential
requirements and levels of DNA methylation
between cell types of the blastocyst, DNA methyla-
tion asymmetries in cleavage stage blastomeres have
thus far not been implicated as early regulators of
the first lineage decision event as they chiefly arise
following cell fate allocation.

H3K27me3 and H2AK119Ub1

Polycomb repressive complexes 1 and 2 (PRC1&2)
deposit histone modifications H2A monoubiquity-
lation (H2AUbl) and H3K27 trimethylation
(H3K27me3), respectively, which correlate with
repression of gene activity and the restriction of cell
fate during development in various animal model
organisms [57-61]. PRC1 can be recruited to chro-
matin by its interaction with H3K27me3, suggesting
a temporal order of PRC function on chromatin
(PRC2 precedes PRC1) [62,63]. However, during
preimplantation development, an asymmetric dis-
tribution exists between H3K27me3 and
H2AK119Ub1l across the genome [64™,65",66].
After fertilization, global erasure of H3K27me3
and targeted depletion at promoter regions occur
at the paternal and maternal genomes, respectively
[66-68]. A gradual gain of H3K27me3 follows
between the two-cell and morula-to-blastocyst tran-
sition and in the postimplantation epiblast [71],
concomitantly with the initial cell fate specifica-
tions in the embryo. Genetic studies have revealed
PRC2 to be dispensable during preimplantation
development but essential at the onset of
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gastrulation, when cells set a course towards distinct
developmental trajectories [69,70]. Interestingly,
PRC2 KO has almost no effect on H2AK119Ub1
distribution in the embryo, which is expected in a
somatic context [64™,65",71] after a near-complete
loss of H3K27me3. Conversely, in embryos, PRC1
loss-of-function phenotypes are embryonic lethal,
causing developmental arrest at the two-cell stage
[75]. Recently, variants of PRC1 have been impli-
cated in mediating the noncanonical pattern of
H3K27me3. PRC1 variants can mediate the recruit-
ment of PRC2 independently of preexisting
H3K27me3. PRC2 can bind H2AK119Ub1l, which
in turn stimulates its catalytic activity and deposi-
tion of H3K27me3 (PRC1 precedes PRC2)
[64™",65%",72]. Thus, contrary to the dogma, preim-
plantation embryos are characterized by a PRC1-
mediated regulation of PRC2.

H3K4me3

H3K4me3 is deposited by MLL1 and MLL2 methyl-
transferases (reviewed in [57]), and generally associ-
ated with promoters of actively transcribed genes. In
oocytes, H3K4me3 exhibits a noncanonical pattern,
which is established gradually during oogenesis
through the action of MLL2 [73-75]. These nonca-
nonical domains are broad and abundant (covering
promoters, intergenic regions, distal regions and
transposable elements), and found on a subset of
CpG islands, regardless of their transcriptional sta-
tus [73,74,76"]. After fertilization, the pattern of
H3K4me3 inherited from the oocyte is reprog-
rammed through the action of histone demethy-
lases KDMSA and KDMSB [73]. Disruptions of
KDMSA/B cause defects in preimplantation devel-
opment and aberrant resolution of noncanonical
H3K4me3 patterning in a transcription-dependent
manner [74]. The paternal genome acquires broad,
weak regions of H3K4me3, which are replaced by a
canonical H3K4me3 pattern at the two-cell stage
[74]. Interestingly, H3K4me3 is found over trans-
posable elements at the two-cell stage, which in turn
correlates with their transient developmental
expression [77]. Both H3K27me3 and H3K4me3
display noncanonical patterning in the oocyte,
which is rapidly erased after fertilization. What role
could these unique chromatin markings play during
oogenesis and are they necessary for proper progres-
sion through the earliest developmental stages?
The broad distribution of these histone post-
translational modifications over large genomic
regions argues against their role in fine-tuned regu-
lation of specific genes they decorate and rather
points to a more general function prior to transcrip-
tional activation of the genome.
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Interestingly, a subset of developmental pro-
moters in the embryonic epiblast harbor both
H3K4me3 and the seemingly antagonistic
H3K27me3 histone mark. These genomic regions
are termed bivalent. Bivalency has been proposed
to function as a ‘poising’ mechanism, pausing genes
in an inactive or lowly expressed state, while main-
taining the potential for rapid activation upon
developmental cues [78-80]. The embryo contains
low levels of bivalent chromatin around implanta-
tion, which increases in the Epi at peri-implanta-
tion. Whether the acquisition and/or resolution of
dually marked chromatin domains can play an
instructive role in the first cell fate decisions or
reflects the transcriptional status of different cell
types in the blastocyst remains to be elucidated.

Despite rapid and pervasive changes in genome orga-
nization and function, cell morphology and signaling
pathways, early embryogenesis is an incredibly robust
and concerted process resulting in the emergence of
specialized cell lineages from the same DNA content.
Following the principles of regulative development
[81], the fate of the cleavage-stage mouse blastomeres
is not predetermined by a gradient of maternally
provided factors. Nevertheless, differences in chroma-
tin markings, transcription factor dynamics and non-
coding RNA species can be detected between cells as
early as the two-cell stage. Here, we discussed some of
the most-understood gene-regulatory factors influ-
encing early cell fate decisions, and while many more
are being continuously uncovered and characterized
(such as RNA-binding proteins and metabolites), open
questions remain. How are functional asymmetries
established and propagated in the near-identical cells
of early embryos, and do they play a role in lineage
allocation? Are distinct epigenomic patterns between
blastomeres a result of differences in local concentra-
tions of epigenetic factors found already in the zygote?
How prominent is the role of stochasticity and tran-
scriptional noise in the eventual establishment of
regulatory feedback loops and downstream signal
amplification? When and how do heterogeneities at
the transcription factor level become sufficiently sta-
ble to induce lineage allocation, and is chromatin
organization instructive during this process? Does
the simultaneous expression of different lineage-spec-
ifying transcription factors prolong the developmen-
tal time window before final lineage commitment?
Finally, the extent to which internal and external
signals (such as environmental stress or nutrient com-
position) have the ability to influence the embryonic
epigenome and ‘nudge’ lineage allocation at the onset
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of development remains poorly understood. With our
increasing ability to molecularly probe early develop-
mental events at unprecedented spatial and temporal
resolution, these exciting biological questions will
undoubtedly keep developmental biology aficionados
busy in the coming years.
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