
27

Mixed Iterated Revisions: Rationale, Algorithms, and

Complexity

PAOLO LIBERATORE, Sapienza University of Rome, Italy

Several forms of iterable belief change exist, differing in the kind of change and its strength: some operators

introduce formulae, others remove them; some add formulae unconditionally, others only as additions to the

previous beliefs; some only relative to the current situation, others in all possible cases. A sequence of changes

may involve several of them: for example, the first step is a revision, the second a contraction and the third a

refinement of the previous beliefs. The ten operators considered in this article are shown to be all reducible

to three: lexicographic revision, refinement, and severe withdrawal. In turn, these three can be expressed

in terms of lexicographic revision at the cost of restructuring the sequence. This restructuring needs not to

be done explicitly: an algorithm that works on the original sequence is shown. The complexity of mixed

sequences of belief change operators is also analyzed. Most of them require only a polynomial number of

calls to a satisfiability checker, some are even easier.

CCS Concepts: • Computing methodologies→Nonmonotonic, default reasoning and belief revision;

Additional Key Words and Phrases: Iterated belief revision, translation algorithm, computational complexity

ACM Reference format:

Paolo Liberatore. 2023. Mixed Iterated Revisions: Rationale, Algorithms, and Complexity. ACM Trans. Comput.

Logic 24, 3, Article 27 (May 2023), 49 pages.

https://doi.org/10.1145/3583071

1 INTRODUCTION

New information comes in different forms. At the one end of the spectrum, it is believed to be
always true (lexicographic revision [60, 76]); at the far opposite, it is unknown (contraction [1, 73]).
Middle cases exist: it may be believed only as long as the current situation is concerned (natural
revision [12, 47]), or it may be believed only as long as it does not contradict the previous beliefs
(refinement [10, 63]). Sequences of changes are hardly all of the same form, like someone who
embraces every single new theory with all of his heart or instead is so skeptical to refuse every
piece of information that contradicts what is known.

Example 1. An example against natural revision [12, 47] is that of the red bird [43]: An animal
looks like a bird (b) and upon coming close turns out to be red (r); finding out that the image is
not a bird (¬b) makes natural revision discard it being red in spite of no evidence to the contrary.

Why does “natural” revision make such a gross mistake? When revising by r , the most likely sce-
nario is that b and r are both true because of the previous revision by b. Natural revision increases

Author’s address: P. Liberatore, Sapienza University of Rome, DIAG, Via Ariosto 25, 00185, Rome, Italy; email: liber-

ato@diag.uniroma1.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1529-3785/2023/05-ART27 $15.00

https://doi.org/10.1145/3583071

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

https://orcid.org/0000-0001-5355-3766
https://doi.org/10.1145/3583071
mailto:permissions@acm.org
https://doi.org/10.1145/3583071
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583071&domain=pdf&date_stamp=2023-05-10

27:2 P. Liberatore

the credibility of this scenario, but leaves “b is false and r is true” unlikely because of the previous
revision by b. Instead, lexicographically revising by r increases the credibility of all scenarios that
are consistent with r , including “b is false and r is true.”

This is a situation where natural revision is not to be used. Yet, a small variant of the conditions
turns the very same formulae, with the very same meaning of variables, into a case for it.

A hunter meets a peasant friend in the countryside, who told him having seen a strange bird in
the thicket a couple of miles away (b). Lured by the unique trophy he could make out of it, and by
bragging about its hunting at the village fête that evening, the hunter rushes to there.

Midway, he encounters the village postman. In a hurry, the hunter explains he could not stop
and why. The postman answers he understands, as he actually saw something red in the thicket
(r). This would explain why the peasant friend told the bird was strange, because no red bird has
ever been seen around there.

Arrived at the thicket, the hunter checks for anything red but the bushes and trees are too thick
to see anything inside. Entering is out of discussion, as any bird would fly away upon hearing the
noise. Keeping ready with his rifle, the hunter throws a stone in the thicket, but nothing happens.
A second and third stone confirm that no bird is there. The peasant friend and the postman made
fun of him by having him run with no reason. No bird is there (¬b), nothing indicates something
red (r is no longer believed).

While the sequence of formulae is exactly the same (first b, then r , finally ¬b), with the same
meaning of the variables (b=bird, r=red), natural revision gives exactly the expected result: Since
the first piece of information was made up, there is no reason to believe the second.

Should hunters always use natural revisions?
Of course not.
Seeing the hunter throwing stones for no clear reason, the village policeman approaches the

hunter to ask why. Concealing how he was made a fool is useless, as the peasant friend and the
postman will tell the story to everyone at the village fête that evening; everyone will know even
before the parade. The policeman laughs, but to the hunter’s surprise it is not about the practical
joke. A red animal would be unique in the area. Even if one was there, and the hunter managed
to shot it, he would have been fined and confiscated the trophy. He could not have shown it in his
living room, and certainly not brag about it at the village fête. If it is red, then it cannot be hunted
(r → ¬h).

As it comes from a police officer while on duty, this information is totally reliable. It is also a
general rule, not specific to the current situation. No matter if it was a bird (b or ¬b), if it is red,
then it cannot be hunted (r → ¬h). The situation where a red bird that can be hunted was there (b,
r and h) is less likely than one where it cannot (b, r , ¬h), and the same if it is red but not a bird (¬b,
r and h is less likely than ¬b, r and ¬h). That hunting is forbidden is more likely in every situation,
even if a red animal that is not a bird later turns out to be there.

The hunter is better revising lexicographically (by ¬h) this time if he wants to avoid being fined,
after previously having revised naturally (by ¬b). A mixed sequence of revisions is the best course
of action.

A related question is why to apply a sequence of revisions in the first place. Why not just coming
back to where the hunter started, with no information about the thicket, rather than revising by
b, then r and then by ¬b? Once the bird is nowhere to be found, everything could be just canceled.
The epistemic state is the same as the beginning.

While talking with the policeman, the hunter hears a sound of feathers from the thicket. Feathers
mean bird (b). Maybe one that does not fly, or is wounded and unable to fly. The peasant and the
postman might have been truthful, after all. Nothing indicates they joked any longer. None of

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:3

them, including the postman. The bird might be red (r) after all. This would not be the case if the
hunter just forgot everything he was told.

Natural revision, then lexicographic revision. Not two lexicographic revisions, not two natural
revisions. A mixed sequence of revisions is what to do in this example. As Booth and Meyer [8]
put it: “It is clear that an agent need not, and in most cases, ought not to stick to the same revision
operator every time that it has to perform a revision.”

Other forms of revisions exist. They may mix in any order. A lexicographic revision may be
followed by a natural revision, a restrained revision and a radical revision. Such a sequence is used
as a running example:

∅lex(y)nat(¬x)res(x ∧ z)rad(¬z).

The sequence begins with ∅, the complete lack of knowledge. The first information acquired is
y, and is considered valid in all possible situations; it is a lexicographic revision. The next is ¬x ,
but is deemed valid only in the current conditions; this is a natural revision. The next is x ∧ z,
but is only accepted as long as it does not contradict what is currently known; it is a refinement.
Finally, ¬z is so firmly believed that all cases where it does not hold are excluded; this is a radical
revision.

No kind of revision is better than the others. Natural revision has its place. As well as lexico-
graphic revision. As well as refinement, radical revision, severe antiwithdrawals and severe revi-
sion. None of them is the best. Each is right in the appropriate conditions and wrong in the others.
For example, a sequence of severe revisions is problematic, because it coarsens the plausibility
degree of different scenarios [28, 67]; yet, it is a common experience that sometimes new informa-
tion makes unlikely conditions as likely as others. A truck full of parrots to be sold as pets crushed
nearby, freeing thousands of exotic animals; a red bird is now as likely to be stumbled upon as a
local wild animal. New information may raise the plausibility of a situation to the level of another,
making them equally likely. This is a consequence of the new information, not a fault of the revi-
sion operator. The problem comes when using severe revisions only, without other revisions that
separate the likeliness of different conditions [28, 67].

The solution is not a new framework that encompasses all possible cases, but to deal with mixes
of different revision kinds.

Which form of revision is used at each step is assumed known in this article. As in the example,
it comes together with the revising formula itself: that there is a red bird is only believed in the
current situation, making it a natural revision; that hunting red animals is forbidden is always
the case, calling for lexicographic revision. In other scenarios, the form of revision to use may
depend on the time point or the sequence of previous revisions. The first approach is exemplified
by the alternating sequences of actions and observations by Hunter and Delgrande [40, 41]. The
second by reconstructing the epistemic states from the outcome of past revisions [9, 56]. The issue
is outside the scope of the present article.

The problem considered here is to determine the outcome of a sequence of mixed revisions.
Ten belief change operators are considered: lexicographic revision, refinement, severe withdrawal,
natural revision, restrained revision, plain severe revision, severe revision, moderate severe revi-
sion, very radical revision, and full meet revision. They all change the plausibility of the possible
situations, each in its own way. The possible situations are formalized by propositional models,
their plausibility by an ordering among propositional models. Other approaches not considered
here involve action histories [9, 56], fixed orderings [2], simultaneous revisions [45], revisions by
orderings [60], and bidimensional revisions [69].

The ten considered change operators modify the order of plausibility of the models. Each does
it in its own way. For example, natural revision promotes some models to the maximal plausibility;

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:4 P. Liberatore

lexicographic revision makes some models being more plausible than others. Keeping in memory a
complete description of these orderings is unfeasible even in the propositional case, as the number
of models is exponential in the number of variables. Several operators such as lexicographic revi-
sion, refinement, and restrained revision can generate orderings that compare equal no two models,
making exponentially large every representation that is linear in the number of equivalence classes
of the ordering, such as the ordered sequence of formulae by Rott [68] and the partitions by Meyer,
Ghose, and Chopra [59]. Many distance-based one-step revisions suffer from a similar problem:
the result of even a single revision may be exponential in the size of the involved formulae [14].
Iterated revisions typically do not employ distances, and the problem can be overcome:

• the ten belief change operators considered in this article (lexicographic revision, refinement,
severe withdrawal, natural revision, restrained revision, plain severe revision, severe revi-
sion, moderate severe revision, very radical revision, full meet revision) can be reduced to
three: lexicographic revision, refinement, and severe withdrawal; these reductions are local:
they replace an operator without changing the rest of the sequence before and after it;
• refinement and severe withdrawal can be reduced to lexicographic revision; this however re-

quires structuring the sequence of belief change operators; however, the result is a sequence
that behave like the original on subsequent changes;
• this restructuring needs not to be done explicitly; an algorithm that works on the original

sequence is shown; it does not change the sequence, but behaves as if it were restructured;
apart from the calls to a satisfiability checker, the running time is polynomial.

This mechanism determines the result of an arbitrary sequence of these revisions from an ini-
tial ordering that reflects a total lack of information. This is not a limitation when using the ten
considered revision forms, as an arbitrary ordering can be created by a sequence of lexicographic
revisions [9].

During its execution, the algorithm calculates some partial results called underformulae, which
can be used when the sequence is extended by further revisions. The need for a satisfiability
checker is unavoidable, given that belief change operates on propositional formulae. However,
efficient solvers have been developed [3, 5]. Restricting to a less expressive language [16] such as
Horn logic may also reduce the complexity of the problem, as it is generally the case for one-step
revisions [21, 52, 58, 62], since satisfiability in this case can be solved efficiently.

Some complexity results are proved: some imply the ones announced without proofs in a pre-
vious article [55], but extend them to the case of mixed sequences of revisions. Entailment from
a sequence of lexicographic, natural, restrained, very radical and severe revisions, refinements,

and severe antiwithdrawals is Δ
p

2 -complete. Two groups of belief change operators are relevant
to complexity. The first is called lexicographic-finding and comprises the ones that behave like
lexicographic revision on consistent sequences of formulae; lexicographic and moderate severe
revisions are in this group. The second is called bottom-refining, as it includes the revisions that
separate the most likely scenarios when some are consistent with the new information; natural
revision, restrained revision, and severe revision are in this group. Entailment from a sequence of

operators all of the first kind or all of the second is Δ
p

2 -complete. Three revision operators require

a separate analysis. Entailment from a sequence of very radical revision is Δ
p

2 [logn]-complete.
The same complexity comes from sequences of plain severe and full meet revisions only. Inter-

mixing these operators with the others is Δ
p

2 [logn]-complete in one case and Δ
p

2 -complete in the
others.

The rest of this article is organized as follows: Section 2 introduces the main concepts of to-
tal preorder, lexicographic revision, refinement, and severe withdrawal; Section 3 shows how to
reduce the other change operators to these three; Section 4 shows an algorithm for computing

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:5

the result of a sequence of revisions; Section 5 presents the computational complexity results;
Section 6 investigates the properties of severe antiwithdrawal, especially in light of its central role
in iterated belief changes; Section 7 discusses the results in this article, compares them with other
work in the literature, and presents the open problems.

2 PRELIMINARIES

A propositional language over a finite alphabet is assumed. Given a formula F , its set of models is
denoted Mod (F), while a formula having S as its set of models is denoted Form(S). The symbol �
denotes a tautology, a formula satisfied by all models over the given alphabet.

A base is a propositional formula denoting what is believed in certain moment. Historically, re-
vision was defined as an operator that modifies a base in front of new information; an ordering
was employed to take choices when this integration may be done in multiple ways, which is usu-
ally the case. Assuming this ordering as fixed or depending on the base only is the AGM model or
revision [1, 30]. Iterated revision is problematic using this approach; the solution is to reverse the
role of the base and the ordering. Instead of being a supporting element, the ordering becomes the
protagonist. The base derives from it as the set of most plausible formulae [18, 50]. Such plausi-
bility information can be formalized in several equivalent ways: epistemic entrenchments [26, 31],
systems of spheres [32, 35], rankings [46, 77, 80], and KM preorders [44, 64].

2.1 Total Preorders

Katsuno and Mendelzon [44] proved that AGM revision can be reformulated in terms of a total pre-
order over the set of models, where the models of the base are exactly the minimal ones according
to the ordering. Iterated revision can be defined by demoting the base from primary information to
derived one. Instead of revising a base using the ordering as a guide, the ordering itself is modified.
The base is taken to be just the set of formulae implied by all most plausible models.

Definition 1. A total preorder C is a partition of the models into a finite sequence of classes
[C (0),C (1),C (2), . . . ,C (m)].

Such an ordering can be depicted as a stack, the top boxes containing the most plausible models.
This is equivalent to a reflexive, transitive, and total relation, but it makes for simpler definitions
and proofs about iterated revisions.

A KM total preorder is the same as a partition by Mayer, Ghose, and Chopra [59], who use a
formula for each class in place of its set of models. In turns, such a partition is similar to the system
for expressing such orderings in possibilistic logic [4], and correspond to a sequence of formulae
by Rott [68], h1 ≺ · · · ≺ hm via C (0) ∪ . . . ∪ C (i) = Mod (hi+1 ∧ · · · ∧ hm), and to an epistemic
entrenchment [1].

Being a partition,C = [C (0), . . . ,C (m)] contains all models. As a result, every model is in a class.
No model is “inaccessible,” or excluded from consideration when performing revision. Revisions

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:6 P. Liberatore

producing such models could still be formalized by giving a special status to the last class C (m),
as the set of such inaccessible models, but they are not studied in this article. Their analysis is left
as an open problem.

Classes are allowed to be empty, even class zero C (0). The base represented by a total preorder
C = [C (0), . . . ,C (m)] cannot therefore being defined as Form(C (0)) but as the minimal models
according to C , denoted by Mod (C,�).

More generally, given a formula P the notation min(C, P) indicates the set of minimal models
of P according to the ordering C . Formally, if i is the lowest index such that C (i) ∩Mod (P) is not
empty, then min(C, P) = C (i) ∩Mod (P). Several iterated revision depends on such an index i and
its corresponding set of models C (i) ∩Mod (P).

Another consequence of allowing empty classes is that two total preorder may be different yet
comparing models in the same way. For example, [Mod (�)] and [∅,Mod (�)] both place all models
in the same class, which is class zero for the former and class one for the latter. They are in this
sense equivalent. They coincide when removing the empty classes. The minimal models of every
formula are the same [63].

Definition 2. Two total preorder C and C ′ are revision-equivalent if min(C, P) = min(C, P ′) for
every formula P .

Since no other kind of equivalence between preorders is considered in this article, revision-
equivalence is shortened to equivalence.

Revising by the same formula changes revision-equivalent orderings into revision-equivalent
orderings. This holds for all revision semantics considered in this article.

The amount of information an ordering carries can be informally identified with its ability of
telling the relative plausibility of two models. Ideally, an ordering should have a single minimal
model, representing what is believed to be the state of the world, and a single model in each class,
allowing to unambiguously decide which among two possible states of the world is the most likely.
Most revision indeed refine the ordering by splitting its classes. At the other end of the spectrum,
the total order ∅ = [Mod (�)] carries no information: not only its base comprises all models and is
therefore tautological, but all models are also considered equally plausible. Studies on the practical
use of revision [9, 55] assume an initial empty ordering that is then revised to obtain a more
discriminating one. Equivalently, an ordering can be expressed as a suitable sequence of revisions
applied to the empty total preorder.

Not all operators considered in this article are revisions, only the ones that produce an ordering
whose base implies the revising formula. Some other operators just split classes (like refinement)
or merge them (like severe withdrawal). The result of an operator ope modifying a total preorder
C by a formula P is defined by the infix notationCope(P). This is a new total preorder whose base
entails P if ope is a revision operator. More specifically, AGM revisions produce a base out of the
minimal models of P in C:

min(Cope(P),�) = min(C, P).

2.2 Iterated Revisions

Several iterated belief revision operators are considered. These can be all expressed in terms of
three of them: lexicographic revision, refinement, and severe withdrawal. Intuitively, this is be-
cause each of these three includes a basic operation that can be performed over an ordering: mov-
ing, splitting, and merging classes. The correspondence is not exact, as the lexicographic revision
perform both moving and splitting but can be made to move a single class from a position of the
sequence to another.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:7

These three operators are defined in this section. The others will be then introduced in the
next, and immediately proved to be reducible to these three. This allows to concentrate on the
computational aspects only on the three basic ones.

2.2.1 Lexicographic Revision. Lexicographic revision is one of the two earliest iterated belief
revision operator [76]. While its authors initially rejected it, later research have reconsidered
it [55, 60, 61, 66]. The tenant of this operator can be summarized as: revising by P means that P
is true no matter of everything else. Technically, all models satisfying P are more plausible that
every other one.

Definition 3. The lexicographic revision of a total preorder C by a formula P is defined as the
following total preorder, where i and j are, respectively, the indexes of the minimal and maximal
classes of C containing models of P :

Clex(P) (k) =

{
C (k + i) ∩Mod (P) if k ≤ j − i,
C (k − j + i − 1)\Mod (P) otherwise.

Alternatively, a formula directly based on sequences can be taken as the definition of lexico-
graphic revision:

[C (0), . . . ,C (m)]lex(P)

= [C (0) ∩Mod (P), . . . ,C (m) ∩Mod (P),C (0)\Mod (P), . . . ,C (m)\Mod (P)].

This definition does not exactly coincide with the previous one because of some empty classes,
which means that the two produce equivalent total preorders. A graphical representation of
revising a total preorder by a formula P is the following one:

In words, the models of P are “cut out” from the ordering and shifted together to the top. Their
relative ordering is not changed, but they are made more plausible than every model of ¬P . By
construction, min(Clex(P),�) is equal to min(C, P), making this operator a revision.

2.2.2 Refinement. Contrary to lexicographic revision, refinement [10, 63] is not a revision. It is
still a basic form of belief revision in which belief in a formula P is strengthened, but never so much

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:8 P. Liberatore

to contradict previous information. Technically, the models of every class are split depending on
whether they satisfy P or not. This way, two models are separated only if they were previously
considered equally plausible, and only if one satisfies P and the other does not.

Definition 4. The refinement of a total preorder C by formula P is the following total preorder:

C ref (P) (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

C (0) ∩Mod (P) if k = 0 and C (0) ∩Mod (P) � ∅,
C (0)\Mod (P) if k = 0 and C (0) ∩Mod (P) = ∅,
C (k/2) ∩Mod (P) if k > 0 even,
C (k/2)\C ref (P) (k − 1)) if k > 0 odd.

Alternatively, refinement can be defined directly on partitions:

[C (0), . . . ,C (m)] ref (P)

= [C (0) ∩Mod (P),C (0)\Mod (P), . . . ,C (m) ∩Mod (P),C (m)\Mod (P)].

Some of these classes may be empty, and can therefore be removed respecting preorder
equivalence. Graphically, refining a total preorder C by a formula P can be seen as follows:

2.2.3 Severe Antiwithdrawal. While this operator was defined [27, 70] as a form of contraction,
it is technically cleaner to use it in reverse, with the negated formula. Removing a formula ¬P is
the same of creating the consistency with P , but the second definition has been advocated has a
most direct formalization of the actual process of belief change [34].

In the specific case of severe antiwithdrawal, creating consistency with P is obtained by
merging all classes of the ordering that are in the same class or one of lower index with the
minimal models of P . This is motivated by the principle of equal-treated-equally when applied to
the plausibility of models: To make P consistent some models of P have to become minimal; but
the models of ¬P that are in lower classes have the same plausibility or greater, so they should not
be excluded.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:9

Definition 5. The severe antiwithdrawal of the total preorder C by formula P is the following
total preorder, where i is the minimal index such that C (i) ∩Mod (P) � ∅:

Csev(P) (k) =

{
C (0) ∪ · · · ∪C (i) if k = 0,
C (k + i) if k > 0.

Lexicographic antiwithdrawal can also be defined in terms of sequences. If i is the lowest index
such that C (i) ∩Mod (P) � ∅, then

[C (0), . . . ,C (i),C (i + 1), . . . ,C (m)]sev(P)

= [C (0) ∪ · · · ∪C (i),C (i + 1), . . .C (m)].

Graphically, severe antiwithdrawal merges all classes of index lower or equal to the minimal
class intersecting Mod (P):

This way, the base of the revised preorder min(Csev(P),�) is guaranteed to contain some mod-
els of P , which means that it has been made consistent with P . At the same time, the relative
plausibility of two models is never reversed: a model that is more plausible that another according
to C is never made less plausible than that according to Csev(P).

3 REDUCTIONS

Many belief change operators exist. Many of them are expressible in terms of the three presented
in the previous section: lexicographic revision, refinement, and severe antiwithdrawal. The reduc-
tions do not affect what is before or after then replaced operator applications, which is not the
case for the transformations shown in the next section.

Example 2. The following sequence of revisions is used as a running example. The following
sections show how to make it into a sequence that only contains lex, ref, and sev:

∅lex(y)nat(¬x)res(x ∧ z)rad(¬z).

3.1 Natural Revision

This revision was first considered and discarded by Spohn [76], and later independently reintro-
duced by Boutilier [12]. Among revisions, it can be considered at further opposite to lexicographic
revision, in that a formula P is made true by a minimal change to the ordering. This amounts to
making the minimal models of P the new class zero of the ordering and changing nothing else.

Formally, if min(C, P) = C (i) ∩Mod (P), then

[C (0), . . . ,C (m)]nat(P)

= [C (i) ∩Mod (P),C (0), . . .C (i − 1),C (i)\Mod (P),C (i + 1), . . . ,C (m)].

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:10 P. Liberatore

Graphically, min(C, P) is “cut out” from the total preorderC and moved to the beginning of the
sequence, making it the new class zero Cnat(P) (0).

Since by definition min(C, P) is not empty, it holds min(Cnat(P),�) = Cnat(P) (0) = min(C, P),
meaning that it is an AGM revision operator.

Theorem 1. For every total preorder C and formula P , it holds Cnat(P) ≡ Clex(K) where K =
Form(min(C, P)).

Proof. Let K = Form(min(C, P)) and i the index such that min(C, P) = C (i) ∩Mod (P). By the
properties of set difference, it holds C (i)\Mod (P) = C (i)\(C (i) ∩ Mod (P)) = C (i)\Mod (K). Since
classes do not share variable and Mod (K) ⊆ C (i), it holds C (j) = C (j)\Mod (K) for every j � i .
Natural revision can therefore be recast as

[C (0), . . . ,C (m)]nat(P)

= [C (i) ∩Mod (M),C (0), . . .C (i − 1),C (i)\Mod (P),C (i + 1), . . . ,C (m)]

≡ [Mod (K),

C (0)\Mod (K), . . .C (i − 1)\Mod (K),C (i)\Mod (K),

C (i + 1)\Mod (K), . . . ,C (m)\Mod (K)]

≡ [Mod (K), ∅, . . . , ∅,
C (0)\Mod (K), . . . ,C (m)\Mod (K)]

≡ [C (0) ∩Mod (K),C (1) ∩Mod (K), . . .C (m) ∩Mod (K),

C (0)\Mod (K), . . .C (m)\Mod (K)].

The equivalences are correct, because: first, C (i) ∩ Mod (K) = Mod (K), since Mod (K) ⊆ C (i);
second, empty classes can be introduced at every point of every ordering, and C (j) ∩Mod (K) = ∅
for every j � i . The resulting total preorder is Clex(K). �

This transformation does not just tell how to compute the propositional result of natural re-
vision, that is, the base Form(Cnat(P) (0)) of the revised ordering. To the contrary, it requires it,
as Mod (K) = min(C, P) = Cnat(P) (0). After K has been calculated, lex(K) produces the same
exact preorder as nat(P) when applied to the same preorder, not just two preorders having the
same base. This means that all subsequent revisions are unaffected by the replacement. In other
words, for every initial preorder C and every sequence of previous and future belief changes, it

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:11

holds

Cope1 (P1) . . . open−1 (Pn−1)nat(P)open+1 (Pn+1) . . . open′ (Pn′)

≡ Cope1 (P1) . . . open−1 (Pn−1)lex(K)open+1 (Pn+1) . . . open′ (Pn′).

The other reductions in this section have all this property, that an operator application in
whichever position of a sequence can be replaced without affecting the final ordering. Natural
revision requires the minimal models of P to be calculated, some other operators do not. Natural
revision is replaced by a single lexicographic revision, the others may require some lexicographic
revisions, refinements and severe antiwithdrawals.

Example 3. The second operation in the running example is a natural revision:

∅lex(y)nat(¬x)res(x ∧ z)rad(¬z).

Since ∅lex (y) is [Mod (y),Mod (¬y)], and class zero of this ordering contains models of ¬x , then
min(∅,¬x) = Mod (¬x ∧ y). As a result, the sequence can be simplified into

∅lex(y)lex(¬x ∧ y)res(x ∧ z)rad(¬z).

Some other operators are reduced to natural revision, which can in turn be reduced to lexico-
graphic revision. For example, restrained revision is a refinement followed by natural revision (or
vice versa). The above theorem shows that it can be further reformulated as a refinement and a
lexicographic revision.

3.2 Restrained Revision

Restrained revision [8] can be seen as a minimal modification of refinement to turn it into a form
of revision. Indeed, refining a total preorder by a formula P does not generally makes P entailed
by the refined total preorder. This is indeed the case only if min(C,�) contains some models
of P .

Restrained revision can be seen as an intermediate form of revision: while natural revision
changes the preorder in a minimal way to make the revising formula entailed and lexicographic
revision makes the formula to be preferred in all possible cases, restrained revision makes it to be
preferred only when this is consistent with previous beliefs, and makes it entailed by a minimal
change in the ordering.

Restrained revision is defined as follows, where min(C, P) = C (i) ∩Mod (P):

[C (0), . . . ,C (m)]res(P)

= [C (i) ∩Mod (P),

C (0) ∩Mod (P),C (0)\Mod (P), . . . ,C (i − 1) ∩Mod (P),C (i − 1)\Mod (P),

C (i)\Mod (P),

C (i + 1) ∩Mod (P),C (i + 1)\Mod (P), . . .C (m) ∩Mod (P),C (m)\Mod (P)].

Graphically, each intersection C (i) ∩ Mod (P) is lifted just above C (i)\C (i), except for i = 0,
where it is lifted to the top.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:12 P. Liberatore

The following quite obvious theorem is proved only for the sake of completeness, its statement
being almost a direct consequence of the definition.

Theorem 2. For every total preorder C and formula P , it holds Cres(P) ≡ C ref (P)nat(P)

Proof. Let min(C, P) = C (i) ∩Mod (P). The ordering C ref (P)nat(P) is

[C (0), . . . ,C (m)] ref (P)nat(P)

= [C (0) ∩Mod (P),C (0)\Mod (P), . . .C (m) ∩Mod (P),C (m)\Mod (P)]nat(P)

= [C (i) ∩Mod (P),

C (0) ∩Mod (P),C (0)\Mod (P), . . .C (i − 1) ∩Mod (P),C (i − 1)\Mod (P),

∅,C (i)\Mod (P),

C (i + 1) ∩Mod (P),C (i + 1)\Mod (P), . . .C (m) ∩Mod (P),C (m)\Mod (P)]

= [min(C ref (P), P),C (0) ∩Mod (P),C (0)\Mod (P), . . . ∅,
C (i)\Mod (P), . . .C (m) ∩Mod (P),C (m)\Mod (P)].

By assumption, the minimal class of C containing models of P is C (i). As a result, the minimal
class ofC ref (P) containing models of P isC (i)∩Mod (P). As a result, min(C ref (P), P) = min(C, P).
The total preorder above is therefore equivalent to C ref (P), since empty classes do not affect
equivalence. �

This reduction is applied to the running example.

Example 4. Restrained revision can be replaced by a refinement followed by natural revision:

∅lex(y)lex(¬x ∧ y)res(x ∧ z)rad(¬z).

This operation results into the following sequence:

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)nat(x ∧ z)rad(¬z).

The resulting natural revision can be then replaced by lexicographic revision. It can be seen that
the minimal models of x ∧ z in the ordering just before the natural revision are these of x ∧y ∧ z:

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)lex(x ∧ y ∧ z)rad(¬z).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:13

3.3 Very Radical Revision

Irrevocable revision [75] formalizes hypothetical reasoning by excluding from consideration all
models that do not satisfy the assumption. Formally, these models are made inaccessible to revision,
which cannot therefore recover them (hence the name). The scope of this article is limited to
revisions that consider all models. While irrevocable revision excludes some model, the very radical
revision variant by Rott [68] does not. Formally, it is defined as follows:

[C (0), . . . ,C (m)]rad(P)

= [C (0) ∩Mod (P), . . .C (m) ∩Mod (P), (C (0) ∪ · · · ∪C (m))\Mod (P)].

The original definition has the first partC (0) ∩Mod (P), . . . ,C (m) ∩Mod (P) only for the classes
that intersect Mod (P). The difference is inessential, since the other classes are empty and empty
classes are irrelevant.

Graphically, the models of P maintain the same relative order, the others are merged in a single
class at the end of the sequence.

Very radical revision can be expressed in terms of a sequence of a lexicographic revision, a se-
vere antiwithdrawal and a second lexicographic revision. Intuitively, this is because very radical
revision merges the classes not satisfying P , which is equivalent to make them minimal by a lexico-
graphic revision by ¬P and then by a severe antiwithdrawal by P ; a further lexicographic revision
is needed to restore the correct ordering.

Theorem 3. For every total preorder C and formula P , it holds Crad(P) ≡ Clex(¬P)sev(P)lex(P).

Proof. By definition, Clex(¬P)sev(P)lex(P) is the following total preorder:

[C (0), . . . ,C (m)]lex(¬P)sev(P)lex(P)

= [C (0) ∩Mod (¬P), . . . ,C (m) ∩Mod (¬P),

C (0)\Mod (¬P), . . . ,C (m)\Mod (¬P)]sev(P)lex(P)

= [C (0)\Mod (P), . . . ,C (m)\Mod (P),

C (0) ∩Mod (P), . . . ,C (m) ∩Mod (P)]sev(P)lex(P)

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:14 P. Liberatore

= [C (0)\Mod (P) ∪ · · · ∪C (m)\Mod (P) ∪C (0) ∩Mod (P),

C (1) ∩Mod (P), . . . ,C (m) ∩Mod (P)]lex(P)

= [(C (0) ∪ · · · ∪C (m))\Mod (P) ∪C (0) ∩Mod (P),

C (1) ∩Mod (P), . . . ,C (m) ∩Mod (P)]lex(P)

= [((C (0) ∪ · · · ∪C (m))\Mod (P) ∪C (0) ∩Mod (P)) ∩Mod (P),

C (1) ∩Mod (P) ∩Mod (P), . . . ,C (m) ∩Mod (P) ∩Mod (P),

((C (0) ∪ · · · ∪C (m))\Mod (P) ∪C (0) ∩Mod (P))\Mod (P),

C (1) ∩Mod (P)\Mod (P), . . . ,C (m) ∩Mod (P)\Mod (P)]

= [C (0) ∩Mod (P),

C (1) ∩Mod (P), . . . ,C (m) ∩Mod (P),

(C (0) ∪ · · · ∪C (m)\Mod (P), ∅, . . . , ∅].

Apart from the empty classes, this total preorder is Crad(P). �

The reduction is applied to the running example.

Example 5. The previous replacements turned the sequence of revisions of the running example
into the following:

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)lex(x ∧ y ∧ z)rad(¬z).

The last revision of the sequence rad(¬z) is replaced by lex(¬¬z)sev(¬z)lex(¬z):

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)lex(x ∧ y ∧ z)lex(z)sev(¬z)lex(¬z).

This sequence contains only lexicographic revisions, a refinement and a severe antiwithdrawal.

3.4 Severe Revisions

The Levi identity [36] allows constructing a revision operator from a contraction. This can be ap-
plied to severe withdrawal, leading to the definition of severe revision. However, the Levy identity
only specifies the base of the revised ordering, the set of its minimal models. The rest of the order-
ing can be obtained in at least three different ways, leading to different revision operators [68].

The first definition is called just “severe revision.” Since the symbol sev is already taken for
severe antiwithdrawal, sevr is used for this revision.

Definition 6. If min(C, P) = C (i)∩Mod (P), then the severe revision sevr revises the total preorder
C by formula P as follows:

[C (0), . . . ,C (m)]sevr(P)

= [C (i) ∩Mod (P), (C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1), . . . ,C (m)].

Graphically, the part of the first class that intersects Mod (P) is moved at the beginning of the
sequence; the rest of that class is merged with the previous ones.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:15

This operator can be shown to be reducible to a severe antiwithdrawal followed by a natural
revision, the latter being reducible to lexicographic revision as proved above.

Theorem 4. For every total preorder C and formula P , it holds Csevr(P) ≡ Csev(P)nat(P).

Proof. Let C = [C (0), . . . ,C (m)] and i be the minimal index such that C (i) ∩ Mod (P) � ∅.
Revising C by sev(P) and then nat(P) produces:

[C (0), . . . ,C (m)]sev(P)nat(P)

= [C (0) ∪ · · · ∪C (i),C (i + 1), . . .C (m)]nat(P).

Since class zero of this ordering isC (0)∪· · ·∪C (i) andC (i) intersects Mod (P), it follows that the
minimal index of a class of this ordering interesting Mod (P) is zero. As a result, natural revision
produces:

[C (0) ∪ · · · ∪C (i),C (i + 1), . . .C (m)]nat(P)

= [(C (0) ∪ · · · ∪C (i)) ∩Mod (P), (C (0) ∪ · · · ∪C (i))\Mod (P),

C (i + 1), . . .C (m)]nat(P)

= [C (i) ∩Mod (P), (C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1), . . .C (m)]nat(P)

The last step follows from C (i) being the minimal-index class of C intersecting Mod (P), which
implies C (j) ∩Mod (P) = ∅ for every j < i . The last total preorder is Csevr(P). �

Moderate severe revision mixes a severe withdrawal with the changes lexicographic revision
makes to a preorder. It will indeed be proved to be equivalent as a sequence of a severe antiwith-
drawal and a lexicographic revision.

Definition 7. If min(C, P) = C (i) ∩Mod (P), then the moderate severe revision msev revises the
total preorder C by formula P as follows:

[C (0), . . . ,C (m)]msev(P)

= [C (0) ∩Mod (P), . . . ,C (m) ∩Mod (P),

(C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1)\Mod (P), . . . ,C (m)\Mod (P)].

The difference with severe revision is that all of Mod (P) is shifted at the beginning of the
sequence.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:16 P. Liberatore

Moderate severe revision can be proved to be equivalent to a severe antiwithdrawal followed
by a lexicographic revision.

Theorem 5. For every total preorder C and formula P , it holds Cmsev(P) ≡ sev(P)lex(P).

Proof. Let C = [C (0), . . . ,C (m)] and i be the index such that min(C, P) = C (i) ∩ Mod (P).
Revising C by sev(P) and then lex(P) produces:

[C (0), . . . ,C (m)]sev(P)lex(P)

= [C (0) ∪ · · · ∪C (i),C (i + 1), . . .C (m)]lex(P)

= [(C (0) ∪ · · · ∪C (i)) ∩Mod (P),C (i + 1) ∩Mod (P), . . .C (m) ∩Mod (P),

(C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1)\Mod (P), . . .C (m)\Mod (P)]

= [C (i) ∩Mod (P),C (i + 1) ∩Mod (P), . . .C (m) ∩Mod (P),

(C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1)\Mod (P), . . .C (m)\Mod (P)]

≡ [C (0) ∩Mod (P), . . .C (i − 1) ∩Mod (P),

C (i) ∩Mod (P),C (i + 1) ∩Mod (P), . . .C (m) ∩Mod (P),

(C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1)\Mod (P), . . .C (m)\Mod (P)].

Equivalence (C (0)∪· · ·∪C (i))∩Mod (P) = C (i)∩Mod (P) holds, becauseC (i) is by assumption the
lowest-index class intersecting Mod (P). For the same reason,C (0)∩Mod (P), . . . ,C (i − 1)∩Mod (P)
are all empty; therefore, their introduction leads to an equivalent preorder. The preorder obtained
this way is Cmsev(P). �

The last variant of severe revision is plain severe revision.

Definition 8. If min(C, P) = C (i)∩Mod (P) and j is the minimal index such that i < j andC (j) � ∅
if any, otherwise j = i + 1, then plain severe revision psev revises the total preorder C by formula
P as follows:

[C (0), . . . ,C (m)]psev(P)

= [C (i) ∩Mod (P),C (0) ∪ · · · ∪ (C (i)\Mod (P)) ∪C (j),C (j + 1), . . . ,C (m)].

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:17

Moderate severe revision differs from severe revision in that it also merges the first non-empty
class following the first that intersects Mod (P).

Plain severe revision can be reformulated in terms of severe antiwithdrawal and lexicographic
revision.

Theorem 6. For every total preorder C and formula P , it holds Cpsev(P) ≡ Csev(¬K ′)lex(K)
where K = Form(min(C, P)) and K ′ = Form(min(Csev(P),�).

[C (0), . . . ,C (i),C (i + 1), . . . ,C (m)]sev(P)

= [C (0) ∪ · · · ∪C (i),C (i + 1), . . . ,C (m)].

Proof. Let i and j be the indexes as in the definition of plain severe revision. The models of K ′

are the first non-empty class of the ordering Csev(P), where C = [C (0), . . . ,C (m)]:

[C (0), . . . ,C (i),C (i + 1), . . . ,C (m)]sev(P)

= [C (0) ∪ · · · ∪C (i),C (i + 1), . . . ,C (m)].

By definition i is such that C (i) ∩ Mod (P) � ∅. As a result, C (0) ∪ · · · ∪ C (i) is not empty and
therefore defines the set of models of K ′. The models of ¬K ′ are the other ones:

Mod (¬K ′) = C (i + 1) ∪ · · · ∪C (m).

The ordering Csev(¬K ′)lex(K) can now be determined. By construction, none of the classes
C (0), . . . ,C (i) intersect Mod (¬K ′). The next class C (i + 1) may, but only if it is not empty. In
particular, the lowest index class intersecting Mod (K ′) is C (j):

[C (0), . . . ,C (m)]sev(¬K ′)lex(K)

= [C (0) ∪ · · · ∪C (i) ∪ · · · ∪C (j),C (j + 1), . . . ,C (m)]lex(K)

= [C (i) ∩Mod (P),C (0) ∪ · · · (C (i)\Mod (P)) ∪ · · · ∪C (j),C (j + 1), . . . ,C (m)]

≡ [C (i) ∩Mod (P),C (0) ∪ · · · (C (i)\Mod (P)) ∪C (j),C (j + 1), . . . ,C (m)].

The last simplification can be done, because all classes between C (i) and C (j) are by definition
empty. What results coincides with the definition of Cpsev(P). �

The following theorem shows that plain severe revision is not able to increase the number of
levels over two. It also links it with full meet revision, to be defined in the next section.

Theorem 7. If C has at most two non-empty classes, then Cpsev(P) ≡ [C (i) ∩
Mod (P),Mod (�)\(C (i) ∩Mod (P))] holds for every formula P , where min(C, P) = C (i) ∩Mod (P).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:18 P. Liberatore

Proof. Since C has at most two non-empty classes, and removing empty classes produces an
equivalent preorder, it can be assumedC = [C (0),C (1)] whereC (0) � ∅ whileC (1) may be empty.
The definition of the plain severe revision depends on the minimal class i intersecting Mod (P)
and the minimal non-empty class of index greater than i . Since C has only two classes, i can
only be 0 or 1. In the first case, j can only be 1, regardless of whether C (1) is empty or not. As a
result:

[C (0),C (1)]psev(P)

= [C (0) ∩Mod (P), (C (0)\Mod (P)) ∪C (1)]

= [C (0) ∩Mod (P),Mod (�)\(C (0) ∩Mod (P))]

= [C (0) ∩Mod (P),Mod (�)\(C (i) ∩Mod (P))].

If C (0) ∩Mod (P) = ∅, then i = 1 and j = i + 1 = 2, since no class of index greater than i exists,
therefore none is different from the empty set. As a result:

[C (0),C (1)]psev(P)

= [C (1) ∩Mod (P),C (0) ∪ (C (1)\Mod (P)) ∪C (2)]

= [C (1) ∩Mod (P),Mod (�)\(C (1) ∩Mod (P))]

= [C (1) ∩Mod (P),Mod (�)\(C (i) ∩Mod (P))].

Since C has only two classes, C (2) is empty and can be removed. Since C (0) ∩Mod (P) = ∅, the
set C (0) ∪ (C (1)\Mod (P)) is equal to (C (0) ∪ C (1))\Mod (P), in turn equal to Mod (�)\(C (1) ∩
Mod (P)). �

3.5 Full Meet Revision

Full meet revision was created for a single step of revision [1, 30] and then considered in iteration [2,
37, 54]. It was originally defined as the result of disjoining all possible ways of minimally revising
a propositional theory, formalizing both the assumption of minimal change and that of a complete
lack of knowledge about the plausibility of the various choices. The initial plausibility ordering is
not used other than for its set of minimal models. The resulting ordering only distinguish models
in two classes: the base and the others.

Definition 9. The full meet revision full revises an ordering C by a formula P as follows, where
min(C, P) = C (i) ∩Mod (P):

[C (0), . . . ,C (m)]full(P)

= [C (i) ∩Mod (P),Mod (�)\(C (i) ∩Mod (P))].

The models of the first class that intersects Mod (P) are moved at the beginning of the sequences;
all others are merged in a single, giant class.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:19

Due to its simplicity, full meet revision can be expressed in a number of ways in terms of the
other operators. For example, it is equivalent to a sequence made of a lexicographic revision fol-
lowed by a severe antiwithdrawal and another lexicographic revision.

Theorem 8. For every total preorderC and formula P , it holdsCfull(P) ≡ Clex(¬K)sev(K)lex(K),
where K = Form(min(C, P)).

Proof. Let C = [C (0), . . . ,C (m)] and i be the lowest index such that C (i) ∩ Mod (P) � ∅. By
definition, Mod (K) = C (i) ∩ Mod (P). Since Mod (K) ⊆ C (i), it holds Mod (K) ∩ C (j) = ∅ for every
j � i:

[C (0), . . . ,C (m)]lex(¬K)sev(K)lex(K)

= [C (0) ∩Mod (¬K), . . . ,C (m) ∩Mod (¬K),

C (0)\Mod (¬K), . . . ,C (m)\Mod (¬K)]sev(K)lex(K)

= [C (0)\Mod (K), . . . ,C (m)\Mod (K),

C (0) ∩Mod (K), . . . ,C (m) ∩Mod (K)]sev(K)lex(K)

= [C (0)\Mod (K), . . . ,C (m)\Mod (K),Mod (K)]sev(K)lex(K),

since Mod (K) ∩C (j) = ∅ if j � i and Mod (K) ∩C (i) = Mod (K)

= [Mod (�), ∅]lex(K)

≡ [Mod (�)]lex(K)

= [Mod (K),Mod (¬K)].

Since Mod (K) = C (i) ∩Mod (P), the final total preorder is Cfull(P). �

An alternative reduction is Cfull(P) = Clex(¬Form({I }))sev(Form({I }))lex(K), where I is an
arbitrary propositional interpretation. Indeed, the proof relies on Clex(¬F)sev(F) = [Mod (�)],
which holds for every formula F such that Mod (F) is contained in a single class of C . This is the
case for min(C, P) but also for every formula having only one model.

Yet another reduction is Cfull(P) = ∅lex(K) dove K = Form(min(C, P)). This is, however, not
used, because contrary to the other reductions it affects the previous sequence of revisions. For
example, Cnat(N)full(P) is turned into ∅lex(K), therefore making the initial natural revision
disappear.

The previous revisions are instead preserved by the reduction Cfull(P) ≡ Crad(K) where K =
Form(min(C, P)), which however requires the calculation of the minimal models of P in the total
preorder C before being applied. The very radical revision can be then expressed in terms of two
lexicographic revisions and a severe antiwithdrawal.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:20 P. Liberatore

Starting from an empty ordering, full meet revision and plain severe revision behave in exactly
the same way. Formally, for every sequence of formulae P1, . . . , Pn , it holds

∅full(P1) . . . full(Pn) ≡ ∅psev(P1) . . . psev(Pn).

This means that a sequence of mixed plain severe and full meet revisions can be turned into one
containing only one type of revisions. This fact is a consequence of how they change an ordering
comprising one or two classes: they both produce an ordering containing the class min(C, P) and
the class containing all other models. For full meet revision, this is the definition and holds in all
cases. For plain severe revision this is proved in Theorem 7.

4 THE ALGORITHM

The previous section shows that every considered belief change operator can be reduced to a
sequence of lexicographic revisions, refinements, and severe antiwithdrawals. As a result, every
sequence of operators can be turned into one made of these three only. This section presents an
algorithm for computing the base of the ordering at every time step of such a sequence.

This is done by first proving that refinements and severe antiwithdrawals can be removed by
suitably modifying the sequence. This is done differently than the reductions in the previous sec-
tion, which only modify the sequence locally: Nothing is changed before or after the operator that
is replaced. Removing refinements instead requires introducing lexicographic revisions in other
points of the sequence, and removing severe antiwithdrawals requires changing the previous lex-
icographic revisions.

The algorithm that computes the bases of a sequence of lexicographic revisions is then mod-
ified to work on the original sequence. The detour to the sequence of lexicographic revisions is
necessary to prove that the final algorithm works. In particular, it is shown to do the same as the
original algorithm on the simplified sequence.

All sequences are assumed to start with the empty ordering ∅. Every other ordering C =
[C (0), . . . ,C (m)] is the result of a sequence of lexicographic revision applied to the empty ordering:
∅lex(Form(C (m))) . . . lex(Form(C (0))).

4.1 Simplification

A sequence of lexicographic revisions ending in either a refinement or a severe antiwithdrawal
can be turned into a sequence of lexicographic revisions that has exactly the same final ordering
when applied to the same original ordering. As a result, a sequence containing every of these three
operators can be scanned from the beginning until the first operator that is not a lexicographic
revising is found. The initial part of the sequence is then turned into a sequence containing only
lexicographic revisions, and the process restarted.

Removal of the refinements is done thanks to the following theorems, which proves that a re-
finement can be moved at the beginning of a sequence of lexicographic revisions, and then turned
into a lexicographic revision itself.

Theorem 9. For every ordering C and two formulae R and L, it holds Clex(L)ref (R) =
C ref (R)lex(L).

Proof. According to the definitions of lex and ref, the ordering Clex(L) ref (R) is

[C (0), . . . ,C (m)]lex(L) ref (R)

= [C (0) ∩Mod (L), . . . ,C (m) ∩Mod (L),C (0)\Mod (L), . . . ,C (m)\Mod (L)] ref (R)

= [C (0) ∩Mod (L) ∩Mod (R),C (0) ∩Mod (L)\Mod (R)

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:21

. . .C (m) ∩Mod (L) ∩Mod (R),C (m) ∩Mod (L)\Mod (R),

C (0)\Mod (L) ∩Mod (R),C (0)\Mod (L)\Mod (R)

. . .C (m)\Mod (L) ∩Mod (R)C (m)\Mod (L)\Mod (R)].

The ordering resulting from the opposite application C ref (R)lex(L) is

[C (0), . . . ,C (m)] ref (R)lex(L)

= [C (0) ∩Mod (R),C (0)\Mod (R) . . .C (m) ∩Mod (R),C (m)\Mod (R)]lex(L)

= [C (0) ∩Mod (R) ∩Mod (L),C (0)\Mod (R) ∩Mod (L)

. . .C (m) ∩Mod (R) ∩Mod (L),C (m)\Mod (R) ∩Mod (L),

C (0) ∩Mod (R)\Mod (L),C (0)\Mod (R)\Mod (L)

. . .C (m) ∩Mod (R)\Mod (L),C (m)\Mod (R)\Mod (L)].

Since ∩ and \ commute, these two sequences are the same. �

This proves that ∅lex(L1) . . . lex(Ln−1)lex(Ln) ref (R) is equal to ∅lex(L1) . . . lex(Ln−1)
ref (R)lex(Ln). Iteratively applying commutativity produces ∅ ref (R)lex(L1) . . . lex(Ln). Since ∅ =
[Mod (�)], by definition ∅ref (R) = [Mod (R),Mod (¬R)], and this is also the total preorder ∅lex(R).
As a result, the whole sequence is equivalent to ∅lex(R)lex(L1) . . . lex(Ln).

Corollary 1. For every formulae L1, . . . ,Ln and R, it holds

∅lex(L1) . . . lex(Ln−1)lex(Ln) ref (R) ≡ ∅lex(R)lex(L1) . . . lex(Ln−1)lex(Ln).

If a sequence contains lex and ref, then every ref (R) in order can be moved to the beginning of
the sequence and then replaced by lex(L). What results is a sequence containing only lexicographic
revisions.

Example 6. The sequence in the running example was changed to comprise lexicographic revi-
sions, refinements and severe antiwithdrawals only:

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)lex(x ∧ y ∧ z)lex(z)sev(¬z)lex(¬z).

The corollary above shows that ref (x ∧ z) can be moved to the beginning of the sequence and
there turned into a lexicographic revision:

∅lex(x ∧ z)lex(y)lex(¬x ∧ y)lex(x ∧ y ∧ z)lex(z)sev(¬z)lex(¬z).

This transformation can be used to prove the folklore theorem linking lexicographic revision
with maxcons, usually defined for sets of formulae and extended to sequences by Booth and
Nittka [9]:

maxcon(F) ≡ F ,

maxcon(F1, F2) ≡
{

F1 ∧ F2 if consistent,
F1 otherwise,

maxcon(F1, . . . , Fn) ≡ maxcon(maxcon(F1, . . . , Fn−1), Fn).

The theorem establishes that maxcon can be used to determine the minimal models of a formula
in the ordering resulting from a sequence of lexicographic revisions. The proof is included here
for the sake of completeness.

Theorem 10. For every formula P and sequence of formulae L1, . . . ,Ln , it holds

min(∅lex(L1) . . . lex(Ln), P) = Mod (maxcon(P ,Ln , . . . ,L1)).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:22 P. Liberatore

Proof. Proved by induction on the length of the sequence. With n = 0, maxcon(P) = P and
min(∅, P) = Mod (P). The claim therefore holds.

If the claim holds for n − 1 formulae, then min(∅lex(L2) . . . lex(Ln), P) = Mod (maxcon
(P ,Ln , . . . ,L2)). The same has to be proved with a formula L1 more.

Let C = [C (0), . . . ,C (m)] = ∅lex(L2) . . . lex(Ln). By the above theorem, ∅lex(L1)lex(L2) . . .
lex(Ln) = ∅lex(L2) . . . lex(Ln) ref (L1) = C ref (L1).

Let i be the index such that min(C, P) = C (i) ∩Mod (P). This implies that C (0), . . . ,C (i − 1) do
not intersect Mod (P). By definition, C ref (L1) is

[C (0), . . . ,C (m)] ref (L1)

= [C (0) ∩Mod (L1),C (0)\Mod (L1), . . . ,C (i − 1) ∩Mod (L1),C (i − 1)\Mod (L1),

C (i) ∩Mod (L1),C (i)\Mod (L1), . . .C (m) ∩Mod (L1),C (m)\Mod (L1)].

Since C (0), . . . ,C (i − 1) do not intersect Mod (P), the minimal class of Cref (P) doing that is
C (i) ∩Mod (L1) if not empty andC (i)\Mod (L1) otherwise. In the second case,C (i)\Mod (L1) = C (i),
since C (i) ∩ Mod (L1) = ∅. Therefore, min(C ref (L1), P) is C (i) ∩ Mod (L1) ∩ Mod (P) if not empty
and C (i) ∩Mod (P) otherwise.

By the inductive assumption, min(C, P) = Mod (maxcon(P ,Ln , . . . ,L2)), and by definition of i it
holds C (i) ∩ Mod (P) = min(C, P). Therefore, min(Cref (L1), P) is Mod (maxcon(P ,Ln , . . . ,L2)) ∩
Mod (L1) if not empty, and Mod (maxcon(P ,Ln , . . . ,L2) otherwise. In terms of formulae,
min(Cref (P), P) is the set of models of maxcon(P ,Ln , . . . ,L2)∧L2 if this formula is consistent and
of maxcon(P ,Ln , . . . ,L2) otherwise. By the recursive definition of maxcon, min(C ref (L1), P) =
Mod (maxcon(P ,Ln , . . . ,L2,L1)). �

In a sequence of lexicographic revisions, refinements, and severe antiwithdrawals, if the first
operator of the sequence that is not a lexicographic revision is a refinement, then it can be turned
into a lexicographic revision and moved to the beginning of the sequence. If it is a severe antiwith-
drawal, then a more complex change needs to be applied to the sequence.

As the previous refinements can be turned into lexicographic revisions, the previous belief
change operators can be all assumed to be lexicographic revisions. In other words, the considered
sequence has all lexicographic revisions but the last operator, which is a severe antiwithdrawal.
Such a sequence can be modified as follows, where B = under(S ;L1, . . . ,L1) is a formula defined
as follows:

∅lex(L1) . . . lex(Ln)sev(S) = ∅lex(L1 ∨ B) . . . lex(Ln ∨ B)lex(B).

Intuitively, B is constructed so that it collects all models that are in the same class of the minimal
ones of S or in lower classes. Disjoining every revising formula with B ensures that these models
remain in class zero over each revision. The claim therefore requires two proofs: first, that B ac-
tually comprises these models; second, that modifying the lexicographic sequence this way does
not change the resulting total preorder.

Definition 10. The underformula of a sequence of formulae is

under(S ; ϵ) = �,
under(S ;Ln ,Ln−1, . . . ,L1)

=

{
Ln ∧ under(S ∧ Ln ;Ln−1, . . . ,L1) if S ∧ Ln is consistent,
Ln ∨ under(S ;Ln−1, . . . ,L1) otherwise.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:23

Informally, this construction includes as alternatives the formulae that are excluded from
maxcon(P ,Ln , . . . ,L1), because they are inconsistent with the partially built maxcon M . Starting
from M = S , the procedure of maxcon construction adds Li to M if M ∧Li is consistent. Otherwise,
Li is skipped. This procedure results in the minimal models of S . If M ∧ Li is inconsistent only
because of S , then its models are in lower classes than all models of S in the final total preorder.
Disjoining M with Li gathers all such models. This is obtained in the last case of the definition:
Li is disjoined with the underformula but not added to M . This intuition is formalized by the
following theorem.

Lemma 1. If C = [C (0), . . . ,C (m)] = ∅lex(L1) . . . lex(Ln) and i is the minimal index such that

C (i) ∩Mod (S) � ∅, then

C (0) ∪ · · · ∪C (i) = Mod (under(S ;Ln , . . . ,L1)).

Proof. The class of a model I is lower or equal than all classes of Mod (S) if and only if
I ∈ min(C, S ∨ Form(I)). As a result, C (0) ∪ · · · ∪ C (i) is defined by {I | I |= maxcon(S ∨
Form(I),Ln , . . . ,L1)}. This set can be inductively proved to be equal to Mod (under(S ;Ln , . . . ,L1)).
By induction on n, the following is proved:

I |= maxcon(S ∨ Form(I),Ln , . . . ,L1)} iff I |= under(S ;Ln , . . . ,L1).

With m = 0, by definition under(S ; ϵ) = �, which contains all models; maxcon(S ∨ Form(I)) =
S ∨ Form(I), which always contains I . The base case is therefore proved.

The induction step assumes

I |= maxcon(S ∨ Form(I),Ln−1, . . . ,L1) iff I |= under(S ;Ln−1, . . . ,L1).

The claim is the same with Ln added. The underformula of the claim is by definition:

under(S ;Ln ,Ln−1, . . . ,L1)

=

{
Ln ∧ under(S ∧ Ln ;Ln−1, . . . ,L1) if S ∧ L1 is consistent,
Ln ∨ under(S ;Ln−1, . . . ,L1) otherwise.

The maxcon is instead

maxcon(S ∨ Form(I),Ln ,Ln−1, . . . ,L1)

=

{
maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1) if (S ∨ Form(I)) ∧ Ln is consistent,
maxcon(S ∨ Form(I),Ln−1, . . . ,L1) otherwise.

The claim is proved if I |= maxcon(S ∨ Form(I),Ln ,Ln−1, . . . ,L1) is shown to be the same as I |=
under(S ;Ln ,Ln−1, . . . ,L1). This is done by reformulating the first condition. Since (S∨Form(I))∧Ln

is consistent if and only if S ∧ Ln is consistent or I |= Ln , the first case in the definition of maxcon
can be divided into three:

maxcon(S ∨ Form(I),Ln ,Ln−1, . . . ,L1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1) if S ∧ Ln is consistent and I |= Ln ,
maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1) if S ∧ Ln is consistent and I � |= Ln ,
maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1) if S ∧ Ln is inconsistent and I |= Ln ,
maxcon(S ∨ Form(I),Ln−1, . . . ,L1) if S ∧ Ln is inconsistent and I � |= Ln .

In the first case, since I |= Ln it follows that I |= maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1)
is equivalent to I |= Ln ∧ maxcon((S ∨ Form(I)) ∧ Ln ,Ln−1, . . . ,L1). The first argument (S ∨
Form(I)) ∧ Ln can be rewritten (S ∧ Ln) ∨ Form(I), since I |= Ln . By the induction assumption,

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:24 P. Liberatore

I |= Ln∧maxcon((S∧Ln)∨Form(I),Ln−1, . . . ,L1) is the same as I |= Ln∧under(S∧Ln ;Ln−1, . . . ,L1).
Since S ∧ L1 is consistent, the latter is equivalent to I |= under(S ;Ln , . . . ,L1).

In the second case, the claim is proved by showing that I satisfies neither maxcon((S ∨
Form(I)),Ln ,Ln−1, . . . ,L1) nor under(S ;Ln ,Ln−1, . . . ,L1). Since S∧Ln is consistent, (S∨Form(I))∧
Ln is also consistent. As a result, maxcon((S∨Form(I)),Ln ,Ln−1, . . . ,L1) implies (S∨Form(I))∧Ln ,
which implies Ln . Since I � |= Ln , it follows I � |= maxcon((S ∨Form(I)),Ln ,Ln−1, . . . ,L1). This model
does not satisfy under(S ;Ln ,Ln−1, . . . ,L1) either, because this formula is equal to Ln ∧ under(S ∧
Ln ;Ln−1, . . . ,L1) when S ∧ Ln is consistent.

In the third case, (S ∨ Form(I)) ∧ Ln ≡ Form(I), since S ∧ Ln is inconsistent and I |= Ln . As a
result, I is the only model of maxcon(S ∨ Form(I),Ln ,Ln−1, . . . ,L1).

Together with the fourth case, this means that if S ∧ Ln is inconsistent then I |= maxcon(S ∨
Form(I),Ln ,Ln−1, . . . ,L1) if and only if I |= Ln or I |= maxcon(S ∨ Form(I),Ln−1, . . . ,L1). By
the induction assumption, the latter is equivalent to I |= under(S ;Ln−1, . . . ,L1). Therefore, the
condition can be rewritten as I |= Ln ∨ under(S ;Ln−1, . . . ,L1). Since S ∧ Ln is inconsistent, Ln ∨
under(S ;Ln−1, . . . ,L1) = under(S ;Ln ,Ln−1, . . . ,L1). �

It is now shown that under(S,Ln , . . . ,L1) allows rewriting the sequence without affecting the
final total preorder.

Theorem 11. If B = under(S ;Ln , . . . ,L1), then

∅lex(L1) . . . lex(Ln)sev(S) ≡ ∅lex(L1 ∨ B) . . . lex(Ln ∨ B)lex(B).

Proof. The claim is proved by showing that for every consistent formula P , its minimal models
according to the two total preorders are the same.

By the previous theorem, if B = under(S ;Ln , . . . ,L1), then Mod (B) = C (0) ∪ · · · ∪ C (i), where
C = [C (0), . . . ,C (m)] = ∅lex(L1) . . . lex(Ln) and i is the minimal index such thatC (i)∩Mod (S) � ∅.
Since Csev(S) = [C (0) ∪ · · · ∪C (i),C (i + 1), . . . ,C (m)] = [Mod (B),C (i + 1), . . . ,C (m)], it follows
that

min(P ,Csev(S)) =
⎧⎪⎪⎨
⎪⎪
⎩

Mod (P) ∩Mod (B) if not empty,
Mod (P) ∩C (j) otherwise, for j minimal index

such that this set is not empty.

Since C = ∅lex(L1) . . . lex(Ln), Mod (P) ∩C (j) for the minimal j for which this set is not empty
is the set of models of maxcon(P ,Ln , . . . ,L1). As a result, min(P ,Csev(S)) can be rewritten as

min(P ,Csev(S)) =

{
Mod (P ∧ B) if consistent,
Mod (maxcon(P ,Ln , . . . ,L1)) otherwise.

Let C ′ = ∅lex(L1 ∨ B) . . . lex(Ln ∨ B)lex(B). It is now shown that min(Csev(S), P) = min(C ′, P).
Since C ′ results from applying a number of lexicographic revisions to an empty total preorder, it
holds

min(P ,C ′) = maxcon(P ,B,Ln ∨ B, . . . ,L1 ∨ B).

If P ∧ B is consistent, then it is consistent with all formulae Li ∨ B but also entails all of them.
As a result,

min(P ,C ′) = maxcon(P ,B,Ln ∨ B, . . . ,L1 ∨ B)

= maxcon(P ∧ B,Ln ∨ B, . . . ,L1 ∨ B)

= P ∧ B ∧ (Ln ∨ B) ∧ · · · ∧ (L1 ∨ B)

= P ∧ B.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:25

If P ∧ B is inconsistent, then P |= ¬B; therefore,

min(P ,C ′) = maxcon(P ,B,Ln ∨ B, . . . ,L1 ∨ B)

= maxcon(P ,Ln ∨ B, . . . ,L1 ∨ B).

Since P |= ¬B, then P |= ¬B. As a result, P ∧ (Ln ∨ B) is equivalent to P ∧ Li . This implies
that maxcon(P ,Ln ∨ B, . . . ,L1 ∨ B) is maxcon(P ∧ Ln ,Ln−1 . . . ,L1 ∨ B) if P ∧ Ln is consistent,
otherwise it is maxcon(P ,Lm−1 . . . ,L1 ∨B). This argument can be repeated for every P ∧∧L with
L ⊆ {Ln , . . . ,Li }, proving that the result is maxcon(P ,Ln , . . . ,L1). �

These theorems tell how to modify a sequence into one that only contains lexicographic revi-
sions: starting from the beginning, the first operator that is not lex can be ref (R) or sev(S); in the
first case, it is turned into lex(R) and moved at the beginning of the sequence; in the second case,
the underformula B of the previous revisions (which are all lexicographic by assumption) is used to
replace sev(S) with lex(B) and is disjoined to all previous revisions. This part of the sequence now
contains only lexicographic revisions, and the process can therefore be repeated for the next ref or
sev operator. The final result is a sequence of lexicographic revisions applied to the empty preorder.

Such a sequence not only has the correct vale min(C, P) at each step but also the same final
preorder of the original sequence. This implies that it is equivalent to it even regarding subsequent
revisions.

Example 7. The sequence in the running example has been shown to be equivalent to the fol-
lowing one, which only contains lexicographic revisions and a severe antiwithdrawal:

∅lex(x ∧ z)lex(y)lex(¬x ∧ y)lex(x ∧ y ∧ z)lex(z)sev(¬z)lex(¬z).

The severe antiwithdrawal can be turned into a lexicographic revision by first calculating its
underformula:

under(¬z;z,x ∧ y ∧ z,¬x ∧ y,y,x ∧ z)

= z ∨ under(¬z;x ∧ y ∧ z,¬x ∧ y,y,x ∧ z)

= z ∨ (x ∧ y ∧ z) ∨ under(¬z;¬x ∧ y,y,x ∧ z)

= z ∨ (x ∧ y ∧ z) ∨ (¬x ∧ y ∧ under(¬z ∧ ¬x ∧ y,y,x ∧ z))

= z ∨ (x ∧ y ∧ z) ∨ (¬x ∧ y ∧ y ∧ under(¬z ∧ ¬x ∧ y ∧ y,x ∧ z))

= z ∨ (x ∧ y ∧ z) ∨ (¬x ∧ y ∧ y ∧ ((x ∧ z) ∨ under(¬z ∧ ¬x ∧ y ∧ y)))

= z ∨ (x ∧ y ∧ z) ∨ (¬x ∧ y ∧ y ∧ ((x ∧ z) ∨ �)).

This formula is equivalent to B = z ∨ (¬x ∧ y). The sequence is therefore turned into

∅lex((x ∧ z) ∨ B)lex(y ∨ B)lex((¬x ∧ y) ∨ B)lex((x ∧ y ∧ z) ∨ B)lex(z ∨ B)lex(B)lex(¬z).

Some simplifications can be then applied. For example, (x ∧ z) ∨ B = (x ∧ z) ∨ (z ∨ (¬x ∧y)) ≡
z ∨ (¬x ∧ y) and y ∨ (z ∨ (¬x ∧ y)) ≡ y ∨ z.

In this particular case, only one severe antiwithdrawal occurs. More generally, they are trans-
formed into lexicographic revisions starting from the first.

The only apparent drawback of this procedure is that every sev(S) requires the underformula
B to be disjoined to all previous formulae. This makes B to be included in the underformula of
the next sev(S ′). This problem is solved by leaving the sequence as it is and processing it as if the
transformation has been done.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:26 P. Liberatore

4.2 Algorithm

A sequence contains only lexicographic revisions and refinements applied to the empty ordering
can be turned into a sequence of lexicographic revisions by moving all refinements to the begin-
ning. After this change, the minimal models of a formula P can be calculated using the maxcon
construction. Since the refinements are moved to the start of the sequence in the order in which
they are encountered, they end up there in reverse order. As a result, the maxcon can be calculated
from the original sequence following the order that would result from the simplification:

(1) start with M = P ;
(2) proceeding from the end to the start of the sequence, for every lex(Li) turn M into M ∧ Li if

this formula is consistent;
(3) from the start to the end of the sequence, for every ref (Ri) turn M into M∧Ri if this formula

is consistent.

The back and forth algorithm.

The following figure shows how the algorithm proceeds when computing a formula equivalent
to the set of the minimal models of P . Every formula encountered following the arrows is
conjoined with it if that does not result in contradiction.

The back and forth algorithm works, because it builds the maxcon starting from P and proced-
ing in the same order as if the refinements were moved to the start of the sequence. Its correctness
is therefore proved by Corollary 1. For the same reason, a similar mechanism determines an un-
derformula instead of a maxcon.

This is important, because a sequence may contain lexicographic revisions, refinements and
severe antiwithdrawals. Assuming that the underformulae for the latter have all been determined,
at each severe antiwithdrawal encountered while going back, if B is consistent with the current
maxcon M, then M is turned into M∧B and the procedure “bounces” back in the forward direction.
This is because if M ∧ B is consistent then the previous lex(L) in the original sequence would be
turned into lex(L ∨ B) in the modified sequence. As a result, M is consistent with all of them, but
their addition is irrelevant, because M is already conjoined with B.

(1) Start at the end of the sequence with M = P and go back;
(2) for every lex(Li) turn M into M ∧ Li if this formula is consistent; regardless, continue going

backwards;
(3) for every sev(S), if M is consistent with its underformula B, then turn M into M ∧ B and

bounce forward, toward the end of the sequence; otherwise, continue going backwards;
(4) at the start of the sequence, bounce forward, toward the end of the sequence;
(5) when proceeding forward, for every ref (Ri) turn M into M ∧Ri if this formula is consistent;

regardless, continue going forward.

The back, bounce and forth algorithm

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:27

The fourth point can be omitted by placing sev(�) at the very beginning of the sequence. This
marker signals the algorithm to bounce forward without the need to verify whether the sequence
is at the start. At the end M has the minimal models of the final ordering.

The algorithm works, because it builds a formula that is the same that would have been produced
when creating the maxcon of the modified sequence that only contains lexicographic revisions.

The following figure shows how the algorithm moves in a segment of the sequence. When it
reaches sev(F), if the formula that is currently being built is consistent with the underformula
of this severe antiwithdrawal, then the algorithm bounces forward to ref (H), otherwise it keeps
going back, to lex(D).

This construction produces a maxcon. The underformula of each severe antiwithdrawal is built
similarly, by going back to the start of the sequence and coming back.

Example 8. The algorithm is applied to the sequence of the running example. It first determines
the underformula of the severe antiwithdrawal, then the base at the end of the sequence:

∅lex(y)lex(¬x ∧ y)ref (x ∧ z)lex(x ∧ y ∧ z)lex(z)sev(¬z)lex(¬z).

The first step is to determine the underformula of the first severe revision in the sequence. This is
done by following the back and forth procedure: first go back through the lexicographic revisions,
then come forth through the refinements:

0 lex(y) lex(¬x ∧ y) ref (x ∧ z) lex(x ∧ y ∧ z) lex(z) sev(¬z) lex(¬z)
5 4 3 2 1

6

Following the numbers, the formulae are in the sequence ¬z, z, x ∧y ∧ z, ¬x ∧y, y, and x ∧ z. As
a result, the underformula of the severe antiwithdrawal is calculated on this sequence:

under(¬z;z,x ∧ y ∧ z,¬x ∧ y,y,x ∧ z).

This has been previously shown to be equivalent to B = z ∨ (¬x ∧y). It allows determining the
final base by following the arrows as in the back, bounce and forth algorithm:

0 lex(y) lex(¬x ∧ y) ref (x ∧ z) lex(x ∧ y ∧ z) lex(z) sev(¬z) lex(¬z)
3? 2 1

3?

The choice of keeping going back or bouncing forth depends on the consistency of the formula
under construction with the underformula of sev(¬z). In this case, the formula is ¬z and the un-
derformula z ∨ (¬x ∧y). Since their conjunction ¬z ∧¬x ∧y is consistent, the algorithm bounces.
Since there are no refinement after the severe antiwithdrawal, the resulting base is this formula.

The algorithm can be adapted to work with the other considered revisions without replacing
them with lex, ref and sev, since each of them can be “locally” replaced with a sequence of these
three. As a result, while going forward or backwards, suffices to behave in the same way as if the
replacement has been done. This is done in the complexity analysis, in the next section.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:28 P. Liberatore

5 COMPLEXITY

The reductions shown in the previous sections prove that each considered belief change operators
can be turned into a lexicographic revision, possibly by first calculating a maxcon or an underfor-
mula. Both operations can be done by a polynomial number of calls to a propositional satisfiability
solver. Therefore, the complexity of a sequence of arbitrary and mixed belief change operators is in

the complexity class Δ
p

2 , which contains all problems that can be solved by a polynomial number
of calls to an NP oracle.

Theorem 12. The problems of establishing whether the base resulting from a sequence of lexico-

graphic, natural, restrained, very radical and severe revisions, refinements and severe antiwithdrawals

applied to the empty ordering implies a formula is in Δ
p

2 .

Proof. The complexity class Δ
p

2 contains all problems that can be solved by a polynomial num-
ber of tests of propositional satisfiability. Membership to this class is proved by showing that the
considered problems can be solved by an algorithm that takes polynomial time, excluding the time
needed to check the satisfiability of some propositional formulae.

The transformations of Section 3 and the algorithm of Section 4 require polynomial time, ex-
cluding the time needed to establishing the satisfiability of a polynomial number of propositional
formulae.

The algorithm starts from the end of the sequence, goes back and comes forward. For each
formula it meets in this journey, it performs a satisfiability check. The number of such satisfiability
tests is linear in the number of formulae. The same happens when determining an underformula
rather than the result of a revision.

Some transformations require no satisfiability check (e.g., msev(P) is turned into sev(P)lex(P));
the others require the result of a revision or two (e.g., nat(P) is turned into lex(K), where K is
the result of lexicographically revising by P). The result of a revision can be computed by a linear
number of satisfiability tests, as shown in the previous paragraph. It is required at most twice for
each formula in the sequence. The total number of satisfiability checks is quadratic in the length
of the sequence.

The size of these results of revisions and of the underformulae is kept low by formulae x ≡ F ,
called definitions. Each formula F in the sequence is replaced by a new variable x , and x ≡ F is
added to a set of definitions. These definitions are used in all subsequent satisfiability or entailment
tests. Every time the result of a revision or an underformula is generated, it is replaced in the
sequence by a new variable, whose definition is added to the set of definitions. Since the results
of revisions and the underformulae are linear combinations of the previous formulae, which are
always one of these new variables each, they are linear in size. �

The problem is also easily shown to be hard for the same class even if all operators are lexico-
graphic revisions. This was previously published without proof [55].

Theorem 13. The problem of establishing whether the base resulting from a sequence of lexico-

graphic, natural, restrained, very radical and severe revisions, refinements and severe antiwithdrawals

applied to the empty ordering implies a formula is Δ
p

2 -hard even if the sequence comprises lexico-

graphic revisions only or refinements only.

Proof. Hardness to Δ
p

2 is proved as usual by showing that a problem that is already known to be
hard can be reduced in polynomial time to the problem under consideration, in this case checking
entailment from a sequence of iterated revisions.

For this specific proof, the problem that is known to be Δ
p

2 -hard is that of the lexicographically
maximally model. An instance of this problem is a propositional formula F over an alphabet of vari-

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:29

ables {x1, . . . ,xn } assumed sorted by index. Given two models over this alphabet, the lexicographic
order compares them according to the their value of x1, where true is greater than false; if they are
the same, then it compares the values of x2 in the same way. The problem is to establish whether

the lexicographically maximal model of F assigns true to xn . This check is Δ
p

2 -complete [51].
A simple reduction translates this problem into the similar one where the formula is satisfiable:

a possibly unsatisfiable formula F is turned into the satisfiable formula (¬x0 ∧¬x1 ∧ · · · ¬xn) ∨ F ,
where x0 is a new variable. A further reduction shows that the maximal model of a satisfiable
formula F satisfies xn if and only if the base of ∅lex(xn) . . . lex(x1)lex(F) implies xn . This proves

that entailment for a sequence of lexicographic revisions is Δ
p

2 -hard. The sequence is equivalent

to ∅ ref (F) ref (x1) . . . ref (xn), proving the Δ
p

2 -hardness for refinements only. More generally, it is
hard for every alternation of these two belief change operators. �

Since severe antiwithdrawal turns an empty total preorder into an empty total preorder, a se-
quence comprising only this operator has low complexity: entailment is equal to validity, coNP
complete.

Sequences of mixed belief change operators are now considered. Two classes can be shown to

be Δ
p

2 -hard: operators that can produce a lexicographically maximal model and operators that can
refine the lowest class of an ordering. In both cases, the alternation of operators does not matter,
as long as they have the given behavior.

5.1 Lexicographic-finding Revisions

Entailment from a sequence of lexicographic revisions is Δ
p

2 -hard by Theorem 13. Some other belief
change operators can be intermixed without changing complexity. These are the ones that produce
the same results when applied after a sequence of revisions whose formulae are consistent.

Theorem 14. If rev is any of a class of revision operators such that ∅rev(S1) . . . rev(Sn) ≡
∅lex(S1) . . . lex(Sn) whenever S1 ∧ · · · ∧ Sn is consistent, then entailment for rev is Δ

p

2 -hard.

Proof. Checking whether the lexicographically maximal model of a formula F satisfies xn is

Δ
p

2 -hard [51]. This model is also the only element of class zero of ∅lex(xn) . . . lex(x1)lex(F). Since
x1, . . . ,xn is consistent, ∅lex(xn) . . . lex(x1) is equivalent to ∅rev(xn) . . . rev(x1) by assumption.
Therefore, entailment from these two sequences is the same. �

Moderate severe revision satisfies the premise of this theorem: it coincides with lexicographic
revision on all consistent sequences.

Theorem 15. If S1 ∧ · · · ∧ Sn is consistent, then

∅msev(S1) . . .msev(Sn) = ∅lex(S1) . . . lex(Sn).

Proof. It is inductively proved that ∅msev(S1) . . .msev(Sn) = ∅lex(S1) . . . lex(Sn) and that
∅msev(S1) . . .msev(Sn) (0) = Mod (S1 ∧ · · · ∧ Sn).

The base case is with n = 0, where the claim holds, because ∅ = ∅ and the conjunction of an
empty sequence is �.

Assuming that ∅msev(S1) . . .msev(Sn−1) = ∅lex(S1) . . . lex(Sn−1), and that ∅msev(S1) . . .
msev(Sn−1) (0) = Mod (S1 ∧ · · · ∧ Sn−1), the same are proved with the addition of Sn .

LetC = [C (0), . . . ,C (m)] be ∅msev(S1) . . .msev(Sn−1), and M = S1∧· · ·∧Sn−1. By the induction
assumptions, C = ∅lex(S1) . . . lex(Sn−1), and C (0) = Mod (M).

The definition ofCmsev(Sn) depends on min(C, Sn) = C (i)∩Mod (Sn). SinceC (0) = Mod (M) and
M ∧ Sn is by assumption consistent, i = 0. The definition of moderate severe revision specializes

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:30 P. Liberatore

to i = 0 as

[C (0), . . . ,C (m)]msev(Sn)

= [C (0) ∩Mod (Sn), . . . ,C (m) ∩Mod (Sn),

(C (0) ∪ · · · ∪C (0))\Mod (Sn),C (1)\Mod (Sn), . . . ,C (m)\Mod (Sn)]

= [C (0) ∩Mod (Sn), . . . ,C (m) ∩Mod (Sn),

C (0)\Mod (Sn),C (1)\Mod (Sn), . . . ,C (m)\Mod (Sn)]

= [C (0), . . . ,C (m)]lex(Sn).

The total preorder [C (0), . . . ,C (m)]lex(Sn) is ∅lex(S1) . . . lex(Sn−1)lex(Sn) because of the induc-
tion assumption C = ∅lex(S1) . . . lex(Sn−1). Since C (0) = Mod (S1 ∧ · · · ∧ Sn−1), it follows that the
class zero of this ordering is Cmsev(Sn) (0) = C (0) ∩Mod (Sn) = Mod (S1 ∧ · · · ∧ Sn−1 ∧ Sn), which
concludes the proof of the induction claim. �

A consequence of the two theorems above is that entailment from a sequence of moderate severe

revision is Δ
p

2 -hard. The same holds even if lexicographic and moderate severe revisions are mixed.

Corollary 2. Entailment from a sequence of moderate severe revision is Δ
p

2 -hard.

5.2 Bottom-refining Revisions

A revision operator is bottom-refining if it “refines” the lowest-index class of the ordering that has
models of the revising formula.

Definition 11. An operator rev is a revision if min(Crev(P),�) = min(C, P) and is a bottom-
revising revision if Crev(P) (1) = C (0)\Mod (P) also holds whenever C (0) ∩Mod (P) � ∅.

Removing empty classes, the minimal models of � according to Crev(P) are class zero of
Crev(P). The minimal models of P according to C are the non-empty intersection C (i) ∩ Mod (P)
of minimal i . Equality between these two classes means that a revision operator makes this
intersection the new class zero. No constraint is imposed on the other classes.

The new class zero isC (0) ∩Mod (P) if this intersection is not empty. Bottom-refining revisions
add an additional constraint in this case: revising C by P splits C (0) based on P .

The name bottom-refining derives from the way the “bottom” classC (0) is partitioned (refined)
into the part satisfying P and the part not satisfy P . How the other classes are changed is not
constrained.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:31

Theorem 16. Lexicographic revision, natural revision, restrained revision, plain severe revision,

severe revision, moderate severe revision, very radical revision and full meet revision are revision

operators.

Proof. All these operators make the new class zero out of the first non-empty intersection
C (i) ∩Mod (P). �

Theorem 17. Natural revision, restrained revision and severe revision are bottom-refining

revisions.

Proof. All three operators are revisions, as proved by the previous theorem.
The condition of bottom-refining only concerns the case where C (0) ∩Mod (P) � ∅, where this

index i is 0. The definition of natural revisions specializes as follows:

[C (0), . . . ,C (m)]nat(P)

= [C (i) ∩Mod (M),C (0), . . .C (i − 1),C (i)\Mod (P),C (i + 1), . . . ,C (m)]

= [C (0) ∩Mod (M),C (0)\Mod (P),C (1), . . .C (m)].

The definition of restrained revisions specializes as follows:

[C (0), . . . ,C (m)]res(P)

= [C (i) ∩Mod (P),

C (0) ∩Mod (P),C (0)\Mod (P), . . . ,C (i − 1) ∩Mod (P),C (i − 1)\Mod (P),
C (i)\Mod (P),

C (i + 1) ∩Mod (P),C (i + 1)\Mod (P), . . .C (m) ∩Mod (P),C (m)\Mod (P)]

= [C (0) ∩Mod (P),C (0)\Mod (P),C (1) ∩Mod (P),C (1)\Mod (P),

. . .C (m) ∩Mod (P),C (m)\Mod (P)].

The definition of severe revisions specializes as follows:

[C (0), . . . ,C (m)]sevr(P)

= [C (i) ∩Mod (P), (C (0) ∪ · · · ∪C (i))\Mod (P),C (i + 1), . . . ,C (m)]

= [C (0) ∩Mod (P),C (0)\Mod (P),C (1), . . . ,C (m)].

All three revisions makes C (0) ∩ Mod (P) the new class zero and C (0)\Mod (P) the new class
one. �

The complexity of arbitrary sequences of bottom-refining revisions is established by the follow-
ing theorem.

Theorem 18. Inference from a sequence of bottom-refining revisions is Δ
p

2 -hard.

Proof. The claim is proved by reduction from the problem of establishing whether the lexico-
graphically maximal model of a consistent formula F over alphabet {x1, . . . ,xn } satisfies xn . The
corresponding sequence of bottom refining revisions rev is the following, where y1, . . . ,yn are
fresh variables in bijective correspondence with x1, . . . ,xn :

∅rev(F)rev(y1)rev(y1 → x1) . . . rev(yn)rev(yn → xn).

The reduction first introduces the models of F as the class zero, then refines it by x1 if consistent,
then by x2 if consistent, and so on. A single bottom-refining revision for each variable cannot do
that: if x1 is inconsistent with F the effect of F rev(x1) is to move the models of x1 in a class lower
than that of F . This is why the new variable y1 is introduced first.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:32 P. Liberatore

The empty ordering has all models in class zero. A revision operator cuts Mod (F) out from it to
make the new class zero when revising by a consistent formula F . The class Mod (¬F) is created
only if F is not tautological, but this is irrelevant.

The new class zero Mod (F) is refined into Mod (F ∧y1) and Mod (F ∧¬y1) because of the bottom-
refining condition: Since F is consistent and does not containy1, the conjunctions F∧y1 and F∧¬y1

are consistent.
Revising this ordering by y1 → x1 depends on the consistency of F ∧ x1. If F is consistent with

x1, then F ∧ y1 ∧ (y1 → x1) is consistent; therefore, class zero Mod (F ∧ y1) contains some models
of y1 → x1. The resulting class zero comprises them: Mod (F ∧y1 ∧ (y1 → x1)) = Mod (F ∧ x1 ∧y1).
If F is inconsistent with x1, then F ∧ y1 ∧ (y1 → x1) is inconsistent; therefore, Mod (F ∧ y1) does
not contain any model of y1 → x1. Instead, Mod (F ∧ ¬y1) does, since Mod (F ∧ ¬y1 ∧ (y1 → x1) is
the same as Mod (F ∧ ¬y1), which is consistent, because F is consistent and does not mention y1.
The class zero resulting from revising by y1 → x1 is Mod (F ∧ ¬y1 ∧ (y1 → x1)) = Mod (F ∧ ¬y1),
since rev is a revision.

This proves that the result of revising first by y1 and then by y1 → x1 is an ordering that has
Mod (F ∧ x1 ∧ y1) as its class zero if F ∧ x1 is consistent and Mod (F ∧ ¬y1) otherwise. Apart from
y1, which is unlinked to the rest of the formula and the other variables yi , these are the models of
F ∧ x1 if consistent and the models of F otherwise.

Iterating the procedure on the remaining variables x2, . . . ,xn produces an ordering whose class
zero comprises the lexicographically maximally model of F only. Checking whether it entails xn

is the final step of the translation.
This intuition is made a formal proof by induction. For every i , class zero of
∅rev(F)rev(y1)rev(y1 → x1) . . . rev(yi)rev(yi → xi) is Mod (

∧
Y ′ ∧ maxcon(F ,x1, . . . ,xi))

for some consistent Y ′ ⊆ {y1,¬y1, . . . ,yi ,¬yi }. This is the lexicographically maximal partial
model over variables x1, . . . ,xi , apart from some of the variables y1, . . . ,yi . Assuming that this
condition is true for i , it is shown to remain true after revising by yi+1 and yi+1 → xi+1.

Let C = ∅rev(F)rev(y1)rev(y1 → x1) . . . rev(yi)rev(yi → xi) and M =
∧
Y ′ ∧

maxcon(F ,x1, . . . ,xi). The inductive assumption is C (0) = Mod (M). Since M does not mention
yi+1 and is consistent, M ∧yi+1 is consistent. As a result,C (0) ∩Mod (yi+1) is not empty. A bottom-
refining revision splits the class zero in two:

Crev(yi+1) (0) = Mod (M ∧ yi+1),

Crev(yi+1) (1) = Mod (M ∧ ¬yi+1).

This ordering is further revised byyi+1 → xi+1. The resulting class zero ofCrev(yi+1)rev(yi+1 →
xi+1) is the first non-empty of the following two sets, since rev is by assumption a revision operator
and at least the second is not empty, since M is consistent and does not contain yi+1:

Crev(yi+1) (0) ∩Mod (yi+1 → xi+1) = Mod (M ∧ yi+1 ∧ (yi+1 → xi+1))

= Mod (M ∧ yi+1 ∧ xi+1),

Crev(yi+1) (1) ∩Mod (yi+1 → xi+1) = Mod (M ∧ ¬yi+1 ∧ (yi+1 → xi+1))

= Mod (M ∧ ¬yi+1).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:33

Since M is
∧
Y ′ ∧ maxcon(F ,x1, . . . ,xi) and F is a formula over variables {x1, . . . ,xn } only,

M ∧ yi+1 ∧ xi+1 is consistent if and only if maxcon(F ,x1, . . . ,xi) ∧ xi+1 is consistent. Depending
on this condition:

maxcon(F ,x1, . . . ,xi) ∧ xi+1 is consistent: M ∧ yi+1 ∧ xi+1 is also consistent; therefore, the
models of this formula are the new class zero;

∧
Y ′ ∧maxcon(F ,x1, . . . ,xi) ∧ yi+1 ∧ xi+1 is

the same as
∧
Y ′′ ∧ maxcon(F ,x1, . . . ,xi+1) where Y ′′ = Y ′ ∪ {yi+1}, since by assumption

maxcon(F ,x1, . . . ,xi) ∧ xi+1 is consistent;
maxcon(F ,x1, . . . ,xi) ∧ xi+1 is inconsistent: Since M ∧ yi+1 ∧ xi+1 is inconsistent, the first

non-empty of the two sets above is Mod (M ∧ ¬yi+1); replacing M with its definition,
M ∧ yi+1 becomes

∧
Y ′ ∧ maxcon(F ,x1, . . . ,xi) ∧ ¬yi+1 and this is equal to

∧
Y ′′ ∧

maxcon(F ,x1, . . . ,xi ,xi+1) where Y ′′ = Y ′ ∪ {¬yi }. Indeed, maxcon(F ,x1, . . . ,xi ,xi+1) =
maxcon(F ,x1, . . . ,xi), since by assumption maxcon(F ,x1, . . . ,xi) ∧ xi+1 is inconsistent. �

5.3 Very Radical Revision

Very radical revision is neither lexicographic-finding nor bottom-refining. It is indeed easier, as
the classes of ∅rad(R1) . . . rad(Rn) are relatively easy to determine.

Theorem 19. For every formulae R1, . . . ,Rn , the total preorder ∅rad(R1) . . . rad(Rn) is equivalent

to the following preorder C :

C (0) = Mod (¬⊥ ∧ R1 ∧ R2 ∧ R3 ∧ · · · ∧ Rn),

C (1) = Mod (¬R1 ∧ R2 ∧ R3 ∧ · · · ∧ Rn),

C (2) = Mod (¬R2 ∧ R3 ∧ · · · ∧ Rn),

...

C (n − 1) = Mod (¬Rn−1 ∧ Rn),

C (n) = Mod (¬Rn).

Proof. The proof is by induction on the length of the sequence. For n = 1, the total preorder
C = ∅rad(R1) splits the single class ∅(0) = Mod (�) into the two classesC (0) = Mod (�)∩Mod (R1) =
Mod (¬⊥ ∧ R1) and C (1) = Mod (�)\Mod (R1) = Mod (¬R1). The claim therefore holds.

Assuming that the claim holds for the preorderC = [C (0), . . . ,C (n−1)] = ∅rad(R1) . . . rad(Rn−1),
it is proved for Crad(Rn). From the definition of rad:

[C (0), . . . ,C (m)]rad(Rn)

= [C (0) ∩Mod (Rn), . . . ,C (n − 1) ∩Mod (Rn), (C (0) ∪ · · · ∪C (n − 1))\Mod (Rn)]

= [Mod (¬⊥ ∧ R1 ∧ · · · ∧ Rn−1) ∩Mod (Rn),

. . . ,Mod (¬Rn−1) ∩Mod (Rn),Mod (�)\Mod (Rn)]

= [Mod (¬⊥ ∧ R1 ∧ · · · ∧ Rn−1 ∧ Rn), . . . ,Mod (¬Rn−1 ∧ Rn),Mod (¬Rn)].

The second equality holds, because by definition C includes all models; therefore,
C (0) ∪ · · · ∪ C (n) = Mod (�). The third holds, because Mod (�)\Mod (Rn) is the set of all
models but the ones of Rn . �

This theorem tells how to determine min(∅rad(R1) . . . rad(Rn),�): by conjoining Rn with Rn−1,
then with Rn−2 and so on until consistent.

Definition 12. The longest consistent conjunction of a sequence of formulae longest(L1, . . . ,Ln)
is L1 ∧ · · · ∧ Li such that either i = n or L1 ∧ · · · ∧ Li ∧ Li+1 is inconsistent.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:34 P. Liberatore

A longest sequence is a simplified form of maxcon: the maxcons conjoin formulae in order
skipping every one that would create an inconsistency; the longest sequences stop altogether at
the first. A sequence of very radical revisions from the empty ordering can be reformulated in
terms of this definition.

Theorem 20. For every formulae R1, . . . ,Rn , formula Form(min(∅rad(R1) . . . rad(Rn),�)) is

equivalent to longest(Rn , . . . ,R1).

Proof. The previous theorem shows that the classes of ∅rad(R1) . . . rad(Rn) are the models of
the following formulae:

¬⊥ ∧ R1 ∧ R2 ∧ R3 ∧ · · · ∧ Rn ,

¬R1 ∧ R2 ∧ R3 ∧ · · · ∧ Rn ,

¬R2 ∧ R3 ∧ · · · ∧ Rn ,

...

¬Rn−1 ∧ Rn ,

¬Rn .

As a result, min(∅rad(R1) . . . rad(Rn),�) is the set of models of the first consistent formula in
the list. This formula may the first or any of the others. The first is ¬⊥ ∧ R1 ∧ R2 ∧ R3 ∧ · · · ∧ Rn ,
which is equivalent to R1 ∧ · · · ∧ Rn . If it is consistent, then Rn ∧ · · · ∧ Ri is consistent for i = 1,
and is therefore the same as longest(Rn , . . . ,R1).

The other case is that the first consistent formula of the list is ¬Ri−1 ∧ Ri ∧ · · · ∧ Rn for some
index i . Since it is consistent, its subformula Ri ∧ · · · ∧ Rn is consistent too. This is the first
part of the definition of the longest consistent conjunction, the second being the inconsistency of
Ri−1 ∧ Ri ∧ · · · ∧ Rn .

To the contrary, let M be a model of Ri−1 ∧Ri ∧ · · · ∧Rn . If M satisfies all formulae R1, . . . ,Ri−2,
then R1 ∧ · · · ∧Rn ∧¬⊥ is consistent, contrary to assumption. Therefore, M falsifies some formula
among R1, . . . ,Ri−2. Let j ≤ i − 2 be the highest index such that M falsifies R j . Since M falsifies
this formula, it satisfies its negation ¬R j . Because of the highest index, M satisfies all formulae
R j+1, . . . ,Ri−2 if any. As a result, M satisfies ¬R j ∧ R j+1 ∧ · · · ∧ Ri−2. Since it also satisfies Ri−1 ∧
Ri ∧ · · · ∧ Rn , it satisfies ¬R j ∧ R j+1 ∧ · · · ∧ R1. The consistency of this sequence with j ≤ i − 2
contradicts the assumption that i is the lowest index such that ¬Ri−1 ∧ Ri ∧ · · · ∧ R1 is consistent.

This proves that Ri−1 ∧ Ri ∧ · · · ∧ Rn is inconsistent. Since Ri ∧ · · · ∧ Rn is consistent, this is
longest(Rn , . . . ,R1). �

By this theorem, the complexity of longest(L1, . . . ,Ln) |= Q is the same as inference from a
sequence of very radical revisions from an empty sequence. This problem is investigated under
the condition that each formula Li is consistent.

Theorem 21. For every sequence of consistent formulae L1, . . . ,Ln and formula Q , checking

whether longest(L1, . . . ,Ln) |= Q is Δ
p

2 [logn]-complete, and BH2n−1-complete if n is a constant.

Proof. The complexity classes Δ
p

2 [logn] has a definition similar to that of Δ
p

2 : they both contain
all problems that can be solved by an algorithm that runs in polynomial time, not counting the
time spent in solving a certain number satisfiability test. This number is bounded by a polynomial

in the size of the input for Δ
p

2 , and by a logarithm in the size of the input for Δ
p

2 [logn].
The complexity class BH2n−1 is defined by identifying a decision problem (such as whether a

sequence of iterated revisions entails a formula) with the set of its input instances whose answer is

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:35

“yes.” The class BH2n−1 is the union of a problem in BH2n and a problem in NP. In turns, BH2n is the
intersection of a problem in BH2n−1 and a problem in coNP. The base of this recursive definition
is that BH0 is NP.

Entailment longest(L1, . . . ,Ln) |= Q holds if L1 ∧ · · · ∧ Li is consistent and entails Q for some
i ∈ {1, . . . ,n}. The check for the inconsistency of L1 ∧ · · · ∧ Li ∧ Li+1 is not necessary: if it does
not hold, then Li+1 is added to the conjunction L1 ∧ · · · ∧ Li |= Q , and the result still entails Q .

These consistency and entailment tests can be done in parallel; if they succeed for the same

index i , then longest(L1, . . . ,Ln) entailsQ . The problem is therefore in Δ
p

2 [logn]. If n is a constant,
then an exact computation of the tests to be performed is needed; these are

(1) |= Q ; or
(2) L1 is consistent and L1 |= Q ; or
(3) L1 ∧ L2 is consistent and L1 ∧ L2 |= Q ; or
...

n + 1 L1 ∧ · · · ∧ Ln is consistent and entails Q .

Under the assumption that every single Li is consistent, the first two ones can be simplified.
Indeed, the second one “L1 is consistent and L1 |= Q” is the same as L1 |= Q . This condition is
entailed by |= Q , which becomes unnecessary. The conditions can therefore be rewritten as

(1) L1 |= Q ; or
(2) L1 ∧ L2 is consistent and L1 ∧ L2 |= Q ; or
...

n L1 ∧ · · · ∧ Ln is consistent and entails Q .

The first test is in coNP, the other n − 1 ones are in Dp . By the definition of the Boolean hierar-
chy [79], the problem is in BH2n−1.

Hardness for Δ
p

2 [logn] and BH2n−1 is proved for unbounded and constant n by a reduction
from the following problem: given F1, . . . , F2n−1 with Fi consistent implying Fi−1 consistent,
check whether the number of consistent Fi is even [24]. This problem is reduced to checking

longest(L1, . . . ,Ln) |= Q . This implies that entailment from the longest sequence is both Δ
p

2 [logn]-
hard in the general case and BH2n−1-hard if n is constant.

The first step of the reduction is rewriting of each formula Fi on a private alphabet. This is
assumed already done, and does not change consistency.

New variables are introduced, one for each formula: {y1, . . . ,ym }. The queryQ is ¬y1∨¬y3∨· · · ,
the disjunction of all literals ¬yi with i odd.

The first formula L1 is y1 → F1, which is consistent, because it is satisfied by setting y1 to false.
If F1 is inconsistent, then ¬y1 is entailed. This is correct, since the number of consistent formulae
is zero, which is even.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:36 P. Liberatore

The second formula L2 contains y1 and an unrelated variable. The conjunction of the first two
formulae contains (y1 → F1) ∧ y1 ≡ F1 ∧ y1. If F1 is consistent, then this formula does not entail
¬y1 and is consistent. The construction of the longest consistent sequence continues.

Overall, if F1 is inconsistent, then ¬y1 is entailed. Otherwise, ¬y1 is not entailed and the con-
struction of the longest consistent sequence continues.

The rest of the sequence works similarly: the construction stops at the first inconsistent formula
Fi ; if i is odd, then ¬yi is entailed, which is correct, since the number of consistent formulae is i−1,
even.

The other formulae are as follows, where i is odd.

Assuming that the construction of the longest consistent sequence includes Li−1, it proceeds as
follows.

Three cases are possible: Fi−1 is inconsistent; it is consistent but Fi is not; they are both
consistent.

If Fi−1 is inconsistent, then Li is not added to the sequence, because Li−1 ∧ Li contains
yi−1 ∧ (yi−1 → Fi), which implies the inconsistent formula Fi−1. Therefore, the longest consistent
sequence does not contain yi , and it therefore does not entail ¬yi . This is correct, since the
number of consistent formulae is i − 2, odd.

If Fi−1 is consistent, then Li is added to the sequence, because the final part of its conjunction
is yi−1 ∧ (yi−1 → Fi−1) ∧ (yi → Fi), which is equivalent to yi−1 ∧ Fi−1 ∧ (yi → Fi) and is
therefore consistent. If Fi is inconsistent, then this formula entails ¬yi , which is correct, because
the number of consistent formulae is i − 1, even.

The final case is that Fi is consistent. Not only yi−1 ∧ Fi−1 ∧ (yi → Fi) is consistent but is also
consistent with Li+1, which is yi plus an unrelated variable. Therefore, the construction of the
longest consistent sequence continues.

Technically, the formulae Li ,Li+1 and Q are as follows, where i is odd:

L1 = y1 → F1,

L2 = y1 ∧ y2,

...

Li = (yi−1 → Fi−1) ∧ (yi → Fi),

Li+1 = yi ∧ yi+1,

Q = ¬y1 ∨ ¬y3 ∨ · · · .

Each formula is consistent by itself: the formulae of odd index are satisfied by the model that
assigns false to all variables, the formulae of even index by that assigning true to all variables.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:37

The claim is that longest(L1, . . . ,Ln) entails Q if and only if the number of consistent formulae
Fi is even.

The entailment longest(L1, . . . ,Lm) |= Q simplifies, because longest(L1, . . . ,Lm) is a con-
junction of formulae Li , where the variables yi occur in separate subformulae. This means that
longest(L1, . . . ,Lm) entails Q if and only if it entails some variables ¬yi with i odd.

The number of consistent formulae Fi is even is the same as the consistency of F1 ∧ · · · ∧ Fi−1

and the inconsistency of F1 ∧ · · · ∧ Fi−1 ∧ Fi with i odd because of the separation of the variables
and the consistency of all formulae preceding a consistent one.

The conjunction L1∧· · ·∧Li with i odd is y1∧ (y1 → F1)∧· · · ∧yi−1∧ (yi−1 → Fi−1)∧ (yi → Fi).
This formula is equivalent to y1 ∧ F1 ∧ · · · ∧ yi−1 ∧ Fi−1 ∧ (yi → Fi).

The conjunction with i even is obtained by taking L1 ∧ · · · ∧ Li+1 in the definition above and
decreasing i by 1. It is y1 ∧ (y1 → F1) ∧ · · · ∧ yi−1 ∧ (yi−1 → Fi−1) ∧ yi , which is equivalent to
y1 ∧ F1 ∧ · · · ∧ yi−1 ∧ Fi−1 ∧ yi .

The claim can now be proved in each direction.
If F1 ∧ · · · ∧ Fi−1 is consistent and F1 ∧ · · · ∧ Fi−1 ∧ Fi is not with i odd, then

L1 ∧ · · · ∧ Li = y1 ∧ F1 ∧ · · · ∧ yi−1 ∧ Fi−1 ∧ (yi → Fi) is consistent and entails ¬yi . The
longest consistent conjunction contains it and therefore entails ¬yi as well.

To prove the other direction, the longest consistent conjunction L1 ∧ · · · ∧ Li is assumed to
entail a literal ¬yj . Since this conjunction is consistent, it does not contain yj . Since it contains all
variables yj with j < i regardless of whether i is even or odd, the only possible j is i . If i is even,
then L1 ∧ · · · ∧ Li contains yi . Therefore, i is odd. �

Since a sequence of very radical revisions from the empty ordering is exactly the same as the
longest consistent conjunction, and all formulae are consistent by assumption, the problem of

entailment for very radical revision is Δ
p

2 [logn]-complete in the general case and BH2n−1-complete
for constant n.

5.4 Plain Severe Revision and Full Meet Revision

On total preorders comprising at most two classes, plain severe and full meet revision coincide,
and always generate an ordering of at most two classes. As a result, when the initial ordering is
empty, sequence of plain severe and full meet revision coincide:

∅psev(P1) . . . psev(Pn) ≡ ∅full(P1) . . . full(Pn).

More generally, mixed sequences of plain severe and full meet revisions applied to an order-
ing comprising at most two classes are equivalent to sequence of full meet revisions only and to
sequences of plain severe revisions only.

These two revisions are neither lexicographic-finding nor bottom-refining. A lexicographic-
finding sequence of revisions x1 ∧ x3,¬x1,x2 produces ¬x1 ∧ x2 ∧ x3, but the same sequence of
full meet revisions instead produces to ¬x1 ∧ x2. A sequence of bottom-refining revisions x1,x2

produces an ordering with a class one equal to x1 ∧ ¬x2, but the same sequence of full meet revi-
sions instead gives ¬x1 ∨ ¬x2. They are also different from very radical revision, as seen from the
sequence of revisions x1,x2,¬x1, where very radical revision produces x2 ∧ ¬x1 while full meet
produces ¬x1.

Theorem 22. Inference from a sequence of full meet and plain severe revisions applied to the empty

ordering is Δ
p

2 [logn]-complete.

Proof. The Δ
p

2 [logn] class includes all problems that can be solved by a polynomial number of
nonadaptive calls to an NP-oracle. Nonadaptive means that no call depends on the others. Equiv-
alently, these calls are in parallel [13, 39].

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:38 P. Liberatore

A sequence of full meet revisions ∅full(S1) . . . full(Sn) requires establishing the satisfiability of
the following quadratic number of formulae:

S1,

S1 ∧ S2,

...

S1 ∧ S2 ∧ · · · ∧ Sn ,

S2,

S2 ∧ S3,

...

S2 ∧ S3 ∧ · · · ∧ Sn ,

...

Sn .

The first group of formulae starts with S1 and adds a formula at time until the last. The second
starts with S2 and does the same. This is repeated for all subsequent formulae S3, . . . , Sn . All these
conjunctions are checked for satisfiability regardless of the satisfiability of the others.

Given the result of these tests, the result of full meet revision is calculated in polynomial time.
First, the longest continuous conjunction F1 ∧ · · · ∧ Fi is determined. If i = n, then it is the final
result. Otherwise, since i < n then i +1 is less than or equal to n. Therefore, Fi+1 is a formula of the
sequence. The longest continuous conjunction Fi+1 ∧ · · · ∧ Fj is again determined. If j = n, then
it is the final result. Otherwise, the process continues with Fj+1. This is repeated until Fn is in the
conjunction.

Hardness was announced for full meet revision in a previous article, but without proof [55]. The
proof provided here is by reduction from the problem of deciding longest(L1, . . . ,Ln) |= Q . Given
the consistent formulae L1, . . . ,Ln , the reduction builds the following sequence:

Fn = an → (L1 ∧ · · · ∧ Ln),

Fn−1 = an ∧ (an−1 → (L1 ∧ · · · ∧ Ln−1)),

Fn−2 = an−1 ∧ (an−2 → (L1 ∧ · · · ∧ Ln−2)),

...

F2 = a3 ∧ (a2 → (L1 ∧ L2),

F1 = a2 ∧ L1.

The sequence of revisions Fn , . . . , F1 applied to the empty order entails Q if and only if
longest(L1, . . . ,Ln) does. This is the case because an inconsistent conjunction L1 ∧ · · · ∧ Li makes
Fi inconsistent with the following formulae Fi+1, which therefore takes its place. Otherwise, they
are conjoined and the process continues.

Technically, if L1 ∧ · · · ∧ Li is the longest consistent conjunction, then L1 ∧ · · · ∧ Li+1 is
inconsistent. Since Fi+1 contains ai+1 → (L1 ∧ · · · ∧ Li+1), it is inconsistent with ai+1, which is
contained in Fi . As a result, full meet revision produces Fi . The subsequent formulae Fi−1, . . . , F1

are consistent with Fi . Indeed, Fi ∧ Fi+1 implies L1 ∧ · · · ∧ Li , which is consistent and entails all
implications aj → (L1 ∧ · · · ∧ Lj) in the following formulae. What remains after their removal is
only a number of positive literals aj , which are therefore consistent.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:39

This proves that the result of the sequence of revision is Fi ∧ · · · ∧ F1, which is equivalent to the
longest consistent conjunction L1 ∧ · · · ∧ Li apart from some unrelated variables aj . Entailment of
Q is therefore the same. �

5.5 Alternating Sequences

The core of this article is that revisions may not be all of the same kind. Yet, the previous theorems
show the hardness of sequences of similar revisions: all lexicographic-finding, all bottom-refining,
all very radical, all full meet revisions. Does complexity change when they are intermixed? It de-
pends on the specific alternation. Bottom-revising revisions maintain their complexity even when
alternating with other revisions.

Theorem 23. Inference from an alternating sequence of revisions and bottom-refining revisions is

Δ
p

2 -hard.

Proof. Reduction is from the problem of inference from the lexicographically maximal model
of a consistent formula F over the alphabet x1, . . . ,xn , where y1, . . . ,yn are new variables:

0rev(F)botr(y1 → x1)rev (y1)botr(y2 → x2)rev (y2)

The (generic) revision rev(F) isolates the models of F in class zero. The other classes are not of
interest. Since y1 is a new variable, y1 → x1 is always consistent with F . By definition of bottom-
refining revisions, botr(y1 → x1) splits Mod (F) into Mod (F ∧ (y1 → x1)) and Mod (F ∧¬(y1 → x1)).
The following revision rev(y1) produces Mod (F ∧ (y1 → x1)∧y1) if consistent, otherwise Mod (F ∧
¬(y1 → x1)∧y1). These two sets are, respectively, the same as Mod (F∧x1∧y1) and Mod (F∧¬x1∧y1).
The new variable y1 can be disregarded, because it does not occur anywhere else in the sequence.
The result of the first pair of revision is F ∧ x1 if consistent and F ∧ ¬x1 otherwise. The following
pairs of revisions do the same: each conjoins the result of the previous revision with xi if consistent
and with ¬xi otherwise. The final result is the lexicographically maximal model of F . �

Some generic revisions are computationally easier than bottom-refining ones. Yet, intermixing
them does not lower complexity. The same holds for lexicographic and very radical revision.

Theorem 24. Inference from an alternating sequence of lexicographic and very radical revisions is

Δ
p

2 -hard.

Proof. Reduction is from the problem of inference from the lexicographically maximal model
of a consistent formula F over the alphabet x1, . . . ,xn , where y1, . . . ,yn are new variables:

0lex(xn)rad(yn) . . . lex(x1)rad(y1)lex(F).

The first revision splits Mod (�) into the classes Mod (xn) and Mod (¬xn). The second makes
three classes of out these two: Mod (xn ∧ yn), Mod (¬xn ∧ yn), and Mod (¬yn).

The second lexicographic revision duplicates the sequence: the first replica has xn−1 added to
each of the three classes, the second has ¬xn−1. The second very radical revision conjoins all six
with yn−1 and adds a new class Mod (¬yn−1) at the end.

All models that satisfy xn−1 are all in lower classes than the others. Two that evaluate xn−1

the same are sorted according to xn . At the end of the sequence of revisions, models are sorted
according to the lexicographic order, disregarding the new variables y1, . . . ,yn .

The final revision lex(F) selects the minimal models of F according to this order. Sincey1, . . . ,yn

are new variables, their value does not affect the satisfiability of F . The final result is the lexico-
graphically minimal model of F . �

The above two theorems show two cases where complexity does not decrease when intermixing
hard and easy revisions. This is however not a general phenomenon. A counterexample is the

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:40 P. Liberatore

alternation of lexicographic and full meet revisions. It is easier than lexicographic revisions alone:

Δ
p

2 [logn]-complete. This result is based on rewriting such alternations as a sequences of full meet
revisions only.

Lemma 2. If O is a two-class ordering, then O lex(L)full(F) is equal to Ofull(L ∧ F) if L ∧ F is

consistent and to O f ull (F) otherwise.

Proof. Let S be a formula such that Mod (S) = O (0). Since O lex(L)full(F) is a result of full meet
revision, it always comprises two classes only, and is therefore identified by its class zero. This
class comprises the models of the first consistent formula of the following list:

• S ∧ L ∧ F
• L ∧ F
• S ∧ F
• F

Formula F is assumed consistent. The first three formulae of the list may be all inconsistent, but
the last is not.

The claim is proved by showing what happens in the four cases. The first revision applied to
O is lex(L). The classes of the resulting ordering comprise the models of the following formulae;
each is empty if the corresponding formula is inconsistent:

• S ∧ L
• ¬S ∧ L
• S ∧ ¬L
• ¬S ∧ ¬L

The second revision is full(F). It generates an ordering whose class zero comprises the models
of the first consistent conjunction of F and a formula of the above list. Which one is determined
by cases.

S ∧ L ∧ F is consistent. The first formula conjunction S ∧ L ∧ F is consistent. The resulting
class zero comprises its models.

S ∧ L ∧ F is inconsistent, L ∧ F is consistent. The first conjunction S ∧L∧ F is inconsistent.
The second conjunction is ¬S ∧ L ∧ F . The inconsistency of S ∧ L ∧ F implies L ∧ F |= ¬S .
Therefore, ¬S ∧ L ∧ F is equivalent to L ∧ F . This formula is consistent by assumption.
Therefore, the first class after revising is its set of models.

S ∧ L ∧ F and L ∧ F are inconsistent, S ∧ L consistent. The conjunction of F with the first
two formulae are S ∧ L ∧ F and ¬S ∧ L ∧ F . They are both inconsistent, since L ∧ F is
inconsistent.
The conjunction of F with the third formula is S ∧¬L∧F . The inconsistency of L∧F implies
F |= ¬L. Therefore, S ∧ ¬L ∧ F is equivalent to S ∧ F , which is consistent by assumption. Its
models therefore constitute the first class of the resulting order.

S ∧ L ∧ F , L ∧ F and S ∧ L are inconsistent. The conjunction of F with the first three classes
are S ∧¬L∧ F , ¬S ∧L∧ F and S ∧L∧ F . They are all inconsistent, since they contain either
L ∧ F or S ∧ F , which are inconsistent.
The conjunction of F with the fourth formula is ¬S ∧ ¬L ∧ F . The inconsistency of L ∧ F
implies F |= ¬L. The inconsistency of S ∧ F implies F |= ¬S . As a result, ¬S ∧ ¬L ∧ F is
equivalent to F . Since F is consistent, its models are class zero of the resulting order.

This list proves that if O is a two-class ordering, class zero of O lex(L)full(F) comprises the
models of: S ∧ L ∧ F if consistent, otherwise L ∧ F if consistent, otherwise S ∧ F if consistent,
otherwise F , where S is a formula whose models are class zero of O .

The claim can now be proved. Two cases are considered: either L ∧ F is satisfiable, or it is not.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:41

L ∧ F is inconsistent. Both S ∧L∧F and L∧F are inconsistent. The first two of the four cases
above are not possible. The remaining two are the consistency of S ∧ F and its inconsistency.
The resulting class zero is, respectively, Mod (S ∧F) and Mod (F). This is the same as full meet
revising O with F :

O lex(L)full(F) = Ofull(F).

L ∧ F is consistent. The consistency of L∧F is the second of the four cases above. As a result,
the third and fourth are never considered: either S ∧ L ∧ F is consistent, or it is inconsistent
and L∧F is consistent. The resulting class zero is Mod (S∧L∧F) if not empty and Mod (L∧F)
otherwise. This is the same as full meet revising O by L ∧ F :

O lex(L)full(F) = Ofull(L ∧ F). �

Every alternation of lexicographic and full meet revisions reduces to a sequence of full meet
revisions:

0lex(L1)full(F1) . . . lex (Ln) f ull (Fn).

Each pair lex(Li)full(Fi) is the same as either full(Li∧Fi) or full(Fi), depending on the satisfiabil-
ity of Li ∧ Fi . The satisfiability of these conjunctions can be checked independently on each other.
They are equivalent to a logarithmic sequence of satisfiability tests. Checking entailment from a
sequence of full meet revisions only is already known to require another logarithmic number of
satisfiability tests.

Theorem 25. Establishing entailment from the base resulting from an alternating sequence of

lexicographic and full meet revisions is Δ
p

2 [logn]-complete.

Proof. Entailment can be established by turning the alternating sequence into one comprising
only full meet revisions and then checking entailment. The first step can be done employing a
linear number of independent satisfiability checks. The second also, as proved by Theorem 22.
Buss and Hay [13, Theorem 9] proved that two rounds of linear number of parallel satisfiability
checks are equivalent to a logarithmic number of independent ones. This proves that the problem

is in Δ
p

2 [logn].
The same transformation proves that every pair lex(L)full(F) turns into full(F) whenever F |=

L and F is consistent. The hardness of full meet revision alone turns into the hardness of the
considered alternation by preceding each full meet revision full(F) with lex(F). �

Same hard revision, lexicographic. Different easy revisions, very radical and full meet. Different

complexity: Δ
p

2 -complete and Δ
p

2 [logn]-complete. Complexity differs when alternating the same
hard revision with different easy ones. In one case, it is as hard as the hard revision. In the other,
it is as easy as the easy one. The same for alternating full meet revisions with bottom-refining or
with lexicographic revisions. Hard in one case, easy in the other. No general pattern emerges, like
complexity being the same as the hardest of two revisions. It depends on the specific operators.

5.6 Arbitrarily Intermixed Sequences

Sequences of similar revisions, sequences of alternating revisions. Still, specific sequences of revi-
sions. What happens when arbitrarily intermixing sequences?

Theorem 12 gives an upper bound: no matter how iterated revisions are intermixed, entailment

is in Δ
p

2 . Theorems 23, 24, and 25 negate an equally general hardness result: complexity depends
on which revisions the sequence contains.

Some results easily extend to linear fractions of the same revision. A sequence that contains at

least a linear fraction of bottom-refining revisions among other revisions is Δ
p

2 -hard. Alternating
each bottom-refining revision with a number of other revisions of the same kind is the same as

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:42 P. Liberatore

a simple alternation if these other revisions are by the same formula; this is the case for the con-
sidered revision operators (not in general, for example, it is not when iterating an improvement
operator until success [49, 78]). This trick turns the sequence that proves the hardness of simple
alternations into a sequence that proves the hardness of the one-two alternations.

Revising multiple times by the same formula may look like cheating. It turns a quite general
scheme (bottom-refining revisions and other revisions) into a specific one (where each subse-
quence of other revisions is by the same formula). Yet, specific schemes are the nature of hardness
results. For example, the proof of hardness for lexicographic revision employs a sequence of revi-
sions by single variables. Such sequences are specific. In general, a sequence may contain arbitrary
complex formulae.

Hardness proofs are existential proofs. Every instance of an already known Δ
p

2 -hard problem
turns into a sequence of lexicographic revisions. Every instance turns into a sequence. Not the
other way around: some sequences are not outcomes of the translation.

The question “Are all sequences hard?” is not meaningful. Its obvious answer is always “No.”
Some sequences are easy, like the repetitions of the same revisions by the same formula. Some are

hard, like the ones produced by the Δ
p

2 -hard reductions.
The question that makes sense is whether a specific group of sequences is hard or not. The

sequences of lexicographic revisions are Δ
p

2 -hard. They are because they contain all results of
reducing all instances of lexicographically maximal model inference. They contain, they do not
coincide.

All hardness results are of this kind. Iterated revisions are not an exception. Hardness reductions
prove that certain groups of sequences are hard. A reduction that produces only sequences of a
given group prove the group hard, such as the group of all sequences alteranting lexicographic
and very radical revisions. All supersets of such a group are equally hard, including the group that
contains all possible sequences.

6 A CASE FOR SEVERE ANTIWITHDRAWAL

Severe antiwithdrawal is one of the three belief changing operators all others reduce to. While re-
finements are lexicographic revisions done in the opposite order, severe antiwithdrawal requires a
different computation, that of the underformula. Not only is it central, it is also in a way irreplace-
able. Essential.

What makes it so important? One of the referees of this article asked for an analysis of its
properties. Being just severe withdrawal with the negated formula, its basic properties for a single
step are the same [27, 70]. Postulates for iteration have been proposed by Darwiche and Pearl [18],
with variations from Boutilier [11] and Jin and Thielsher [43].

Postulate C1 by Darwiche and Pearl [18] states thatOsev(A)sev (B) is the same asOsev(B) when-
ever B entails A. This is a postulate for revision. Revision by A ensures that A is entailed; the same
for B. The principle of C1 is that if A is achieved (is entailed) whenever B is achieved (is entailed),
then a first revision by A is irrelevant if followed by a revision by B. Ubi major, minor cessat.

Yet, severe antiwithdrawal is not a form of revision. AchievingA is not believingA. It is accepting
the possibility it may be true. It is “giving a hearing to it,” as advocated by Glaister [33]. Achieving
A is making A consistent, not entailed.

Does C1 make sense for antiwithdrawal? Its essence is: If A is achieved whenever B is achieved,
then antiwithdrawingA is irrelevant if followed by antiwithdrawingB. Antiwithdrawing is making
a formula acceptable. Is ensuring consistency with it. Achieving A is creating consistency with A.
Achieving B is creating consistency with B.

Rewriting C1 for antiwithdrawal gives: Osev(A)sev(B) is the same as Osev (B) whenever the
consistency with B implies the consistency with A. The premise is that every formula that is

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:43

consistent with B is also consistent with A. This is only possible if every model of B is also a
model of A. In other words, B entails A. Technically, this is the same property as C1 for revision. It
comes from the same principle and arrives to the same condition, but via a different route, where
consistency takes the place of entailment.

Postulate C2 is: Osev(A)sev(B) is the same of Osev(B) whenever B entails the negation of A.
The premise is that entailing B makes A impossible. Achieving B negates achieving A. Achieving
is consistency for antiwithdrawal. Consistency with B negates consistency with A. Every model
of B negates A. This is the same as B entailing ¬A. Again, same technical condition, but coming
from a different route.

The premise of C3 is Osev(B) |= A: achieving B in the present case also achieves A. Achieving
is entailing for revision. For antiwithdrawal, is ensuring consistency. The consistency of Osev(B)
with A. This formalizes as Osev(B) � |= ¬A. This is the premise of C3 for antiwithdrawal. Its con-
sequent is the same for Osev(A)sev(B). For antiwithdrawal, Osev(A)sev(B) � |= ¬A. Overall, C3 for
antiwithdrawal is: if Osev(B) � |= ¬A, then Osev(A)sev(B) � |= ¬A. Contrary to C1 and C2, it differs
from its version for revision. Yet, it coincides with C4 for revision.

Adapting C4 to antiwithdrawal has the same effect: it turns it into C3.
Severe antiwithdrawal enjoys C1, C3, and C4 and does not enjoy C2.

C1 The premise is that all models of B are also models of A. If k is the minimal class of models
of A and k ′ that for B, then k ≤ k ′. Antiwithdrawing A merges all levels up to k . Antiwith-
drawing B further merges all levels up to k ′. Since k ′ is greater than k , the second merge
takes over the first.

C2 A counterexample is O = [C (0),C (1)] where Mod (B) intersects C (0) while Mod (A) does
not. Antiwithdrawing B leaves the same order. Antiwithdrawing A instead merges the two
classes into one; antiwithdrawing B after that does not split classes.

C3 The premise is Osev(B) |= A. The minimal class C (k) intersecting Mod (B) contains only
models satisfying A. Antiwithdrawing A leaves the ordering unaffected. Not only A is en-
tailed by the sequence of antiwithdrawing A and B, this sequence is the same as antiwith-
drawing B only.

C4 The premise is that the result of antiwithdrawing B is consistent withA. IfC (k ′) is the first
class that intersects Mod (B), then some models of C (0) ∪ · · · ∪ C (k ′) satisfy A. Therefore,
the minimal k such that C (k) intersects Mod (A) is less than k ′. Antiwithdrawing A merges
the classes from 0 to k ; further antiwithdrawing B merges all classes up to k ′ with k ′ ≥ k ,
incorporating all changes done by the first antiwithdrawal.

While C2 is not met by severe antiwithdrawing, its two weakenings CB and Ind may [11, 43]. The
premise of CB isOsev(A) |= ¬B. How to recast this property in terms of achievements? Achieving
Amakes B impossible. Making B impossible is different than negating the achievement of B, which
would be Osev(A) � |= B. It is a different property, with consistency in place of entailment. The
other weakening Ind has a similar premise: Osev(B) � |= ¬A, still involving consistency in addition
to achievements.

Severe antiwithdrawal satisfies C1, C3, and C4. It does not satisfy C2. The weakened versions
CB and Ind do not seem relevant to antiwithdrawal. All of this tells something about the
individual properties of severe antiwithdrawal, but does not answer the root question: What is
severe antiwithdrawal, exactly?

Antiwithdrawal is a shift in mind to accommodate the belief that something is possible. Formally,
it minimally and rationally changes the ordering among possibilities to ensure mutual consistency
with a formula. This is what Glaister [33] calls “giving a hearing to” and separates from contraction,
“not believing.” The present article further supports this operation from the technical point of view,
as a central belief changing mechanism.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:44 P. Liberatore

However, the specific form of antiwithdrawal that is severe antiwithdrawal exhibits a serious
drawback. To accept the possibility that something may be true, it also accepts everything else
currently judged equally unlikely. This is too much a shift in mind. When the hunter accepts that
a red bird may be in the thicket, he still maintains that no black boar is in the field next to the river.

Yet, if the red bird is indeed there, then the black boar will no longer be so unlikely. The pos-
sibility that some exotic animal wanders around the place increases the likeliness of some other
doing as well. Something unlikely becoming a possibility opens the door to something else equally
unlikely. At the same time, opening a door is not walking through it. Severe antiwithdrawal is an
element in this process. It raises the threshold of believable unlikeliness. Some restriction is then
necessary to ensure not everything is believed, only what is supported by some kind of evidence.
This use of severe antiwithdrawal is supported by the technical analysis as well, which fruitfully
employs it as a building block for translating other belief changing operations.

7 CONCLUSIONS

This article advocates and studies mixed sequences of belief change operators, in which revisions,
refinements, and withdrawals may occur. With some exceptions [7, 19, 29, 42, 48, 53], the semantics
for iterated belief revision mostly work on objects that are equivalent to total preorders, which
lets using different kinds of changes at different times. Even the memoryless operators such as
full meet revision [1] and the distance-based revision [17, 65] can be embedded in this framework:
They produce a plausibility order that does not depend at all on the previous one except for their
zero class.

The main technical result of this article is a method for computing the result of a mixed sequence
of revisions. It directly works on sequences of lexicographic revisions, refinements, and severe an-
tiwithdrawals, which may result from translating an arbitrary sequence of lexicographic revisions,
refinements, severe withdrawal, natural, severe, plain severe, moderate severe, and very radical re-
visions, alternating in every possible way. The requirement of being able to solve propositional
satisfiability problems is not too demanding, given the current efficiency of SAT algorithms [3, 5]
and given that belief revision is built upon propositional logic, whose basic operations of satisfia-
bility and validity are at the first level of the polynomial hierarchy [21, 58].

Example 9. The running example can be solved by an explicit representation of the preorders:

∅lex(y)nat(¬x) ref (x ∧ z)rad(¬z).

The initial preorder is empty: ∅ = [Mod (�)]. The revisions change it as follows, where Mod () is
omitted from the classes for simplicity.

The final result is the same as obtained by the algorithm: the base of the last preorder is ¬x ∧
y ∧ ¬z. However, explicitly storing the preorder means representing all its classes, which in this
example increased in number up to five. In general, with n variables there may be as many as 2n

models, and therefore as many as 2n nonempty classes. In this case, the bound 23 = 8 was almost
reached after res(x ∧ z).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:45

Other articles explored the translations from different belief change operators into a single for-
malism. Rott has shown that severe withdrawal, irrevocable and irrefutable revision can be ex-
pressed in terms of revision by comparison [67], natural and lexicographic in terms of bounded
revision [69]. Several single-step revisions can be recast in some forms of circumscription [57].

Several computational complexity results about belief revision are known. Eiter and Gottlob [22]

proved that most distance-based and syntax approaches are Π
p

2 -complete in the single-step case. In
a further article [23], the same authors proved (among other results) that the same applies to pos-
itive right-nested counterfactuals, which are equivalent to a form of iterated revision. Nebel [62]
proved a number of results, the most relevant to the present article being the that one-step

syntactic-lexicographic revision is Δ
p

2 -complete. This operator can encode lexicographic revision
as defined in the iterated case by placing each formula in a separate priority class. Other iterated
revisions have a similar degree of complexity [55].

A number of problems are left open. The algorithm requires a SAT solver, which is unavoidable
given that the underlying language is propositional logic and SAT expresses its basic problems
of satisfiability, mutual consistency and entailment. However, some restricted languages such as
Horn and Krom require only polynomial time for checking satisfiability [74]. As a result, it makes
sense to investigate their computational properties on iterated change. The analysis would not be
obvious, because underformulae include both disjunction and conjunction, which may result in a
non-Horn and non-Krom formula. The Horn restriction has been studied in single-step revisions
by Eiter and Gottlob [20], and has recently been considered as a contributor to the semantics of
revision [16].

Some iterated belief change operators such as radical revision (as opposed to very radical re-
vision, considered in this article) consider some models “inaccessible” [25, 75]. In terms of total
preorders, this amounts to shifting from a partition into ordered classes into a sequence of non-
overlapping subsets; the models that are not in any of them are the inaccessible one. Alternatively,
the highest-level class is given the special status of inaccessible model container. These operators
have not been considered in this article, but the analysis could be extended to them.

Other operators not considered in this article include the ones based on numerical rankings [43,
72, 76, 80] and bidimensional ones [15, 28, 69]. They allow for specifying the strength of a revision
either by a number or indirectly by referring to that of another formula. Either way, revision is by
a pair of a formula and an expression of its strength. A preliminary analysis suggests that at least
a form of bidimensional change, revision by comparison, can be recast in terms of lexicographic
and severe antiwithdrawal, at the cost of first determining an underformula and a maxcon of the
previous lexicographic revisions. Other two-place operators may be amenable to such reductions.
Other recent work include iterated contraction [6, 50, 73] and operators where conditions on the
result are specified, rather than mandating a mechanism for obtaining them [38].

Memoryless revision operators [17, 71] may be treated as if they had memory: this is the case
of full meet revision, which is indeed oblivious to the previous history of revision. The ordering
it generates is always [Mod (K),Mod (¬K)]. In spite of its simplicity, it is still useful to characterize
a tabula rasa step of reasoning, forgetting all previously acquired data to start over from a single
simple information.

Operators with full memory [19, 29, 48, 53] require a different analysis, since they work from
the complete history of revisions rather than from a total preorder that is modified at each step.
The same applies to operators working from structure more complex than total preorders over
models [7, 42].

Finally, given that a revision may be performed using different operators, a question is how
to decide which. This is related to merging and non-prioritized revision. An answer may be to

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

27:46 P. Liberatore

use the history of previous revision to find out the credibility of a source [56], which affects the
kind of incorporation. For example, trustworthy sources produce lexicographic revisions, plausible
but not very reliable sources produce natural revisions, the others refinements. Still better, sources
providing information that turned out to be valid after all subsequent changes are better treated by
lexicographic revisions; source providing information that turned out to be specific to the current
case are formalized by natural revision. As an alternative, every new information may be initially
treated as a natural revision; if observations suggest its generality, then they are promoted to
lexicographic.

Example 10 (Cont.). Sound of feathers. A bird, after all?
The hunter and the policeman turn their head, eager to find out. What comes out from the

bushes is a drag queen in red feathers, who stopped by the thicket for the obvious reason while
coming for the parade at the village fête. Not a bird (¬b) but red (r), not to be hunted anyway (¬h).

REFERENCES

[1] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. 1985. On the logic of theory change: Partial meet contraction and

revision functions. J. Symbol. Logic 50 (1985), 510–530.

[2] Carlos Areces and Verónica Becher. 2001. Iterable AGM functions. In Frontiers in Belief Revision, M. Williams and

H. Rott (Eds.). Springer Netherlands, 261–277. https://doi.org/10.1007/978-94-015-9817-0_13

[3] T. Balyo, M. J. H. Heule, and M. Järvisalo. 2017. SAT competition 2016: Recent developments. In Proceedings of the

31st AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press/The MIT Press, 5061–5063. Retrieved from http:

//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14977.

[4] S. Benferhat, D. Dubois, and H. Prade. 2001. A computational model for belief change and fusing ordered belief bases.

In Frontiers in Belief Revision, M. Williams and H. Rott (Eds.). Springer, 109–134.

[5] A. Biere, M. J. M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability. IOS Press.

[6] R. Booth and J. Chandler. 2019. From iterated revision to iterated contraction: Extending the Harper Identity. Artific.

Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103171

[7] R. Booth and J. Chandler. 2020. On strengthening the logic of iterated belief revision: Proper ordinal interval operators.

Artific. Intell. 285 (2020), 103–289. https://doi.org/10.1016/j.artint.2020.103289

[8] R. Booth and T. Meyer. 2006. Admissible and restrained revision. J. Artific. Intell. Res. 26 (2006), 127–151.

[9] R. Booth and A. Nittka. 2008. Reconstructing an Agent’s epistemic state from observations about its beliefs and non-

beliefs. J. Logic Comput. 18, 5 (2008), 755–782. https://doi.org/10.1093/logcom/exm091

[10] R. Booth, T. A. Meyer, and K. Wong. 2006. A bad day surfing is better than a good day working: How to revise a total

preorder. In Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning

(KR’06). AAAI Press/The MIT Press, 230–238.

[11] C. Boutilier. 1996. Abduction to plausible causes: An event-based model of belief update. Artific. Intell. 83 (1996), 143–

166.

[12] C. Boutilier. 1996. Iterated revision and minimal change of conditional beliefs. J. Philos. Logic 25, 3 (1996), 263–305.

[13] S. R. Buss and L. Hay. 1991. On truth-table reducibility to SAT. Info. Comput. 91, 1 (1991), 86–102. https://doi.org/10.

1016/0890-5401(91)90075-D

[14] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. 2000. Space efficiency of propositional knowledge representation

formalisms. J. Artific. Intell. Res. 13, 1 (2000), 1–31.

[15] J. Cantwell. 1997. On the logic of small changes in hypertheories. Theoria 63, 1-2 (1997), 54–89.

[16] N. Creignou, R. Ktari, and O. Papini. 2018. Belief update within propositional fragments. J. Artific. Intell. Res. 61 (2018),

807–834. https://doi.org/10.1613/jair.5541

[17] M. Dalal. 1988. Investigations into a theory of knowledge base revision: Preliminary report. In Proceedings of the

Seventh National Conference on Artificial Intelligence (AAAI’88). 475–479.

[18] A. Darwiche and J. Pearl. 1997. On the logic of iterated belief revision. Artific. Intell. 89, 1–2 (1997), 1–29.

[19] J. P. Delgrande, D. Dubois, and J. Lang. 2006. Iterated revision as prioritized merging. In Proceedings of the 10th Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR’06). 210–220.

[20] T. Eiter and G. Gottlob. 1992. Complexity Results for Disjunctive Logic Programming and Application to Nonmonotonic

Logics. Technical Report CD-TR 92/41. Technische Universität Wien, Vienna Austria, Christian Doppler Labor für

Expertensysteme.

[21] T. Eiter and G. Gottlob. 1992. On the complexity of propositional knowledge base revision, updates and counterfactuals.

Artific. Intell. 57 (1992), 227–270.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

https://doi.org/10.1007/978-94-015-9817-0_13
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14977
https://doi.org/10.1016/j.artint.2019.103171
https://doi.org/10.1016/j.artint.2020.103289
https://doi.org/10.1093/logcom/exm091
https://doi.org/10.1016/0890-5401(91)90075-D
https://doi.org/10.1613/jair.5541

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:47

[22] T. Eiter and G. Gottlob. 1992. On the complexity of propositional knowledge base revision, updates and counterfactuals.

Artific. Intell. 57 (1992), 227–270.

[23] T. Eiter and G. Gottlob. 1996. The complexity of nested counterfactuals and iterated knowledge base revisions. J.

Comput. Syst. Sci. 53, 3 (1996), 497–512.

[24] T. Eiter and G. Gottlob. 1997. The complexity class Θ
p

2 : Recent results and applications in AI and modal logic. In

Proceedings of the 11th International Symposium on Fundamentals of Computer Theory (FCT’97). Springer, 1–18. https:

//doi.org/10.1007/BFb0036168

[25] E. L. Fermé. 2000. Irrevocable belief revision and epistemic entrenchment. J. Interest Group Pure Appl. Logic 8, 5 (2000),

645–652. https://doi.org/10.1093/jigpal/8.5.645

[26] E. Fermé and M. D. L. Reis. 2013. Epistemic entrenchment-based multiple contractions. Rev. Symbol. Logic 6, 3 (2013),

460–487.

[27] E. Fermé and R. Rodriguez. 1998. A brief note about Rott contraction. J. Interest Group Pure Appl. Logic 6, 6 (1998),

835–842.

[28] E. Fermé and H. Rott. 2004. Revision by comparison. Artific. Intelligence 157, 1 (2004), 5–47.

[29] D. M. Gabbay, G. Pigozzi, and J. Woods. 2003. Controlled revision—An algorithmic approach for belief revision. J.

Logic Comput. 13, 1 (2003), 3–22. https://doi.org/10.1093/logcom/13.1.3

[30] P. Gärdenfors. 1988. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books, MIT Press, Cam-

bridge, MA.

[31] P. Gärdenfors and D. Makinson. 1988. Revision of knowledge systems using epistemic entrenchment. In Proceedings

of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge (TARK’88). 83–95.

[32] M. Girlando, B. Lellmann, N. Olivetti, and G. L. Pozzato. 2017. Hypersequent calculi for Lewis’ conditional logics

with uniformity and reflexivity. In Proceedings of the International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods. 131–148.

[33] S. M. Glaister. 1998. Symmetry and belief revision. Erkenntnis 49, 1 (1998), 21–56.

[34] S. M. Glaister. 2000. Recovery recovered. J. Philos. Logic 29, 2 (2000), 171–206.

[35] A. Grove. 1988. Two modellings for theory change. J. Philos. Logic (1988), 157–170.

[36] S. O. Hanson. 2011. Logic of belief revision. In The Stanford Encyclopedia of Philosophy, E. N. Zalta (Ed.). Metaphysics

Research Lab, Stanford University.

[37] S. O. Hansson. 2006. In praise of full meet contraction. Análisis filosófico 26, 1 (2006), 134–146.

[38] S. O. Hansson. 2016. Iterated descriptor revision and the logic of Ramsey test conditionals. J. Philos. Logic 45, 4 (2016),

429–450. https://doi.org/10.1007/s10992-015-9381-7

[39] L. A. Hemachandra. 1989. The strong exponential hierarchy collapses. J. Comput. Syst. Sci. 39, 3 (1989), 299–322.

https://doi.org/10.1016/0022-0000(89)90025-1

[40] A. Hunter and J. P. Delgrande. 2011. Iterated belief change due to actions and observations. J. Artific. Intell. Res. 40

(2011), 269–304. https://doi.org/10.1613/jair.3132

[41] A. Hunter and J. P. Delgrande. 2015. Belief change with uncertain action histories. J. Artific. Intell. Res. 53 (2015),

779–824. https://doi.org/10.1613/jair.4558

[42] T. I. I. Aravanis, P. Peppas, and M.-A. Williams. 2019. Observations on Darwiche and Pearl’s approach for iterated

belief revision. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19). 1509–1515.

https://doi.org/10.24963/ijcai.2019/209

[43] Y. Jin and M. Thielscher. 2007. Iterated belief revision, revised. Artific. Intell. 171, 1 (2007), 1–18.

[44] H. Katsuno and A. O. Mendelzon. 1991. Propositional knowledge base revision and minimal change. Artific. Intell. 52

(1991), 263–294.

[45] G. Kern-Isberner and D. Huvermann. 2017. What kind of independence do we need for multiple iterated belief change?

J. Appl. Logic 22 (2017), 91–119. https://doi.org/10.1016/j.jal.2016.11.033

[46] G. Kern-Isberner, N. Skovgaard-Olsen, and W. Spohn. 2021. Ranking Theory. The MIT Press, Chapter 5.3.

[47] S. Konieczny. 1998. Operators with Memory for Iterated Revision. Technical Report IT-314. Laboratoire d’Informatique

Fondamentale de Lille.

[48] S. Konieczny and R. Pino Pérez. 2000. A framework for iterated revision. J. Appl. Non-class. Logics 10, 3-4 (2000),

339–367.

[49] S. Konieczny and R. Pino Pérez. 2008. Improvement operators. In Proceedings of the 11th International Conference on

Principles of Knowledge Representation and Reasoning (KR’08). AAAI Press/The MIT Press, 177–187.

[50] S. Konieczny and R. Pino Pérez. 2017. On iterated contraction: Syntactic characterization, representation theorem and

limitations of the Levi identity. In Proceedings of the 11th International Conference on Scalable Uncertainty Management

(SUM’17). Springer, 348–362. https://doi.org/10.1007/978-3-319-67582-4_25

[51] M. W. Krentel. 1988. The complexity of optimization problems. J. Comput. System Sci. 36 (1988), 490–509.

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

https://doi.org/10.1007/BFb0036168
https://doi.org/10.1093/jigpal/8.5.645
https://doi.org/10.1093/logcom/13.1.3
https://doi.org/10.1007/s10992-015-9381-7
https://doi.org/10.1016/0022-0000(89)90025-1
https://doi.org/10.1613/jair.3132
https://doi.org/10.1613/jair.4558
https://doi.org/10.24963/ijcai.2019/209
https://doi.org/10.1016/j.jal.2016.11.033
https://doi.org/10.1007/978-3-319-67582-4_25

27:48 P. Liberatore

[52] M. Langlois, R. H. Sloan, B. Szörényi, and G. Turán. 2008. Horn complements: Towards Horn-to-Horn belief revision.

In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI’08). 466–471.

[53] D. Lehmann. 1995. Belief revision, revised. In Proceedings of the 14th International Joint Conference on Artificial Intel-

ligence (IJCAI’95). 1534–1540.

[54] P. Liberatore. 1997. The complexity of belief update. In Proceedings of the 15th International Joint Conference on Arti-

ficial Intelligence (IJCAI’97). 68–73.

[55] P. Liberatore. 1997. The complexity of iterated belief revision. In Proceedings of the 6th International Conference on

Database Theory (ICDT’97). 276–290.

[56] P. Liberatore. 2016. Belief merging by examples. ACM Trans. Comput. Logic 17, 2 (2016), 9:1–9:38. https://doi.org/10.

1145/2818645

[57] P. Liberatore and M. Schaerf. 1997. Reducing belief revision to circumscription (and viceversa). Artific. Intell. 93, 1–2

(1997), 261–296.

[58] P. Liberatore and M. Schaerf. 2001. Belief revision and update: Complexity of model checking. J. Comput. Syst. Sci. 62,

1 (2001), 43–72. https://doi.org/10.1006/jcss.2000.1698

[59] T. Meyer, A. Ghose, and S. Chopra. 2002. Syntactic representations of semantic merging operations. In Proceedings

of the 7th Pacific Rim International Conference on Artificial Intelligence (PRICAI’02). 620. https://doi.org/10.1007/3-540-

45683-X_88

[60] A. Nayak. 1994. Iterated belief change based on epistemic entrenchment. Erkenntnis 41 (1994), 353–390.

[61] A. Nayak, M. Pagnucco, and P. Peppas. 2003. Dynamic belief revision operators. Artific. Intell. 146, 2 (2003), 193–228.

https://doi.org/10.1016/S0004-3702(03)00017-1

[62] B. Nebel. 1998. How hard is it to revise a belief base? In Belief Change—Handbook of Defeasible Reasoning and Uncer-

tainty Management Systems, Vol. 3, D. Dubois and H. Prade (Eds.). Kluwer Academic.

[63] O. Papini. 2001. Iterated revision operations stemming from the history of an agent’s observations. In Frontiers in

Belief Revision. Applied Logic Series, Vol. 22. Springer, 279–301.

[64] P. Peppas, A. M. Fotinopoulos, and S. Seremetaki. 2008. Conflicts between relevance-sensitive and iterated belief

revision. In Proceedings of the 18th European Conference on Artificial Intelligence (ECAI’08). IOS Press, 85–88. https:

//doi.org/10.3233/978-1-58603-891-5-85

[65] P. Peppas and M. A. Williams. 2016. Kinetic consistency and relevance in belief revision. In Proceedings of the 15th

European Conference on Logics in Artificial Intelligence (JELIA’16). 401–414. https://doi.org/10.1007/978-3-319-48758-

8_26

[66] H. Rott. 2003. Coherence and conservatism in the dynamics of belief II: Iterated belief change without dispositional

coherence. J. Logic Comput. 13, 1 (2003), 111–145. https://doi.org/10.1093/logcom/13.1.111

[67] H. Rott. 2006. Revision by comparison as a unifying framework: Severe withdrawal, irrevocable revision and ir-

refutable revision. Theoret. Comput. Sci. 355, 2 (2006), 228–242. https://doi.org/10.1016/j.tcs.2006.01.011

[68] H. Rott. 2009. Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In To-

wards Mathematical Philosophy, D. Makinson, J. Malinowski, and H. Wansing (Eds.). Trends in Logic, Vol. 28. Springer

Netherlands, 269–296. https://doi.org/10.1007/978-1-4020-9084-4_14

[69] H. Rott. 2012. Bounded revision: Two-dimensional belief change between conservative and moderate revision. J. Philos.

Logic 41, 1 (2012), 173–200. https://doi.org/10.1007/s10992-011-9206-2

[70] H. Rott and M. Pagnucco. 1999. Severe withdrawal (and recovery). J. Philos. Logic 28, 5 (1999), 51–547.

[71] K. Satoh. 1988. Nonmonotonic reasoning by minimal belief revision. In Proceedings of the International Conference on

Fifth Generation Computer Systems (FGCS’88). 455–462.

[72] K. Sauerwald, J. Haldimann, M. von Berg, and C. Beierle. 2020. Descriptor revision for conditionals: Literal descriptors

and conditional preservation. In Proceedings of KI-2020: Advances in Artificial Intelligence—43rd German Conference on

AI. Springer, 204–218. https://doi.org/10.1007/978-3-030-58285-2_15

[73] K. Sauerwald, G. Kern-Isberner, and C. Beierle. 2020. A conditional perspective for iterated belief contraction. In

Proceedings of the 24th European Conference on Artificial Intelligence (ECAI’20). IOS Press, 889–896. https://doi.org/10.

3233/FAIA200180

[74] T. J. Schaefer. 1978. The complexity of satisfiability problems. In Proceedings of the 10th ACM Symposium on Theory of

Computing (STOC’78). 216–226.

[75] K. Segerberg. 1998. Irrevocable belief revision in dynamic doxastic logic. Notre Dame J. Formal Logic 39, 3 (1998),

287–306. https://doi.org/10.1305/ndjfl/1039182247

[76] W. Spohn. 1988. Ordinal conditional functions: A dynamic theory of epistemic states. In Causation in Decision, Belief

Change, and Statistics. Kluwer Academics, 105–134.

[77] W. Spohn. 1999. Ranking functions, AGM style. In Internet Festschrift for Peter Gärdenfors, B. Hansson, S. Halld/en,

N.-E. Sahlin, and W. Rabinowicz (Eds.).

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

https://doi.org/10.1145/2818645
https://doi.org/10.1006/jcss.2000.1698
https://doi.org/10.1007/3-540-45683-X_88
https://doi.org/10.1016/S0004-3702(03)00017-1
https://doi.org/10.3233/978-1-58603-891-5-85
https://doi.org/10.1007/978-3-319-48758-8_26
https://doi.org/10.1093/logcom/13.1.111
https://doi.org/10.1016/j.tcs.2006.01.011
https://doi.org/10.1007/978-1-4020-9084-4_14
https://doi.org/10.1007/s10992-011-9206-2
https://doi.org/10.1007/978-3-030-58285-2_15
https://doi.org/10.3233/FAIA200180
https://doi.org/10.1305/ndjfl/1039182247

Mixed Iterated Revisions: Rationale, Algorithms, and Complexity 27:49

[78] F. R. Velázquez-Quesada. 2017. On subtler belief revision policies. In Proceedings of the 6th International Workshop on

Logic, Rationality, and Interaction (Lecture Notes in Computer Science, Vol. 10455). Springer, 314–329. https://doi.org/10.

1007/978-3-662-55665-8_22

[79] K. Wagner. 1987. More complicated questions about maxima and minima, and some closures of NP. Theoret. Comput.

Sci. 51 (1987), 53–80. https://doi.org/10.1016/0304-3975(87)90049-1

[80] M. Williams. 1994. Transmutations of knowledge systems. In Proceedings of the 4th International Conference on the

Principles of Knowledge Representation and Reasoning (KR’94). 619–629.

Received 26 February 2022; revised 30 October 2022; accepted 23 January 2023

ACM Transactions on Computational Logic, Vol. 24, No. 3, Article 27. Publication date: May 2023.

https://doi.org/10.1007/978-3-662-55665-8_22
https://doi.org/10.1016/0304-3975(87)90049-1

