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In this paper the aerothermal heating of a reusable launch vehicle is reconstructed on the basis of temperature 
measurements taken in the thermal protection system of this vehicle. The discussed integrated thermal protection 
system is composed of three layers. Mathematical model, describing the problem, takes into account the 
dependence on temperature of the material parameters as well as the thermal resistances occurring in the contact 
zones of the layers, which is a novelty in the proposed approach. For solving the direct problem, the implicit 
scheme of the finite difference method is applied. Next, by using the solution of the direct problem, the Tikhonov 
functional is created, which describes the error of the current approximate solution. Whereas for determining 
the solution of the inverse problem the Levenberg-Marquardt method, modified and adapted to the Tikhonov 
functional, is used. The paper presents the mathematical model of the problem and the method of solution 
together with the selected examples illustrating its exactness and stability. In order to better examination of the 
solution method some various values of parameters are taken in the demonstrated examples.
1. Introduction

Many processes, finding their applications in technics and engineer-
ing, must be, very often, at first properly designed, modeled and simu-
lated in order to verify their possible run. Appropriate modeling of the 
process and execution of the necessary simulations enables to reduce 
the production costs of the planned product, as well as to minimize the 
risk and to maximize the safety. In particular such situation takes place 
in case of processes running in high temperatures. An example of such 
phenomenon is the spacecraft landing through the atmosphere, where 
the complicated thermal processes occur, and the vehicle is vulnera-
ble to the serious damages. In that case the thermal protection system 
(TPS) must be designed with properly selected system geometry and 
made of the properly chosen materials. To do that the computer model-
ing is very useful, basing on the, among others, solution of the inverse 
heat conduction problems (like, for example, the identification of heat 
flux in outer surface in TPS). It is because the inverse problems enable 
to select the initial and boundary conditions and the values of coeffi-
cients ruling the thermal processes, so that the process runs in strictly 
determined and required way. Therefore so important is to develop the 
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technics of solution of the inverse problems and the computational al-

gorithms necessary to execute the simulations of running processes.

The review of various thermal protection systems is presented by 
Uyanna and Najafi in paper [1]. Whereas the review of scientific works 
concerning the layer constructions for thermal protection systems is pre-

sented by Le et al. [2]. Next, Gusarov et al. in paper [3] describe the 
models of reflection coefficient and heat transfer through the porous 
material made of carbon fiber, applied in the thermal protection sys-

tem. Whereas Wang et al. in work [4] present the integrated system 
of thermal protection which incorporates the graded insulation materi-

als and multi-layer ceramic matrix composite cellular sandwich panels. 
The thermal and mechanical properties of the proposed system are also 
examined in this paper.

Direct measurement of the heat flux which heats the reusable launch 
vehicle entering the atmosphere is very difficult, or even impossible. 
Therefore so important in practise is a possibility of the heat flux iden-

tification on the ground of temperature measurements taken inside of 
the vehicle. This can be done by using the inverse problems. Some re-

search papers describing the solutions of the inverse problems created 
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Nomenclature

𝑏𝑠 limits of layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
𝑐𝑠 specific heat in layer 𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
𝐸 identity matrix
𝐸𝑎𝑏𝑠 absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝐸𝑟𝑒𝑙 relative error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %
𝐹 minimized functional
ℎ𝑧 contact conductance for the interface . . . . . . . . . . . W/m2 K
𝐼 number of sought parameters
𝐽 sensitivity matrix
𝑘 thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K
𝑚 number of time steps
𝑛𝑠 number of nodes in layer 𝑠
𝑁 number of measurements
𝑝 iteration number
𝑝𝑚𝑎𝑥 maximal number of iterations
𝑞𝑎𝑡 aerothermal heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝑞𝑐𝑜𝑛 heat flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝑞𝑒𝑠𝑡 estimated heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝑞𝑒𝑥 exact heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝑞𝑟𝑎𝑑 re-radiation heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

𝑟𝑠 auxiliary parameter in the finite difference method
𝑅12, 𝑅23 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 K/W
𝑆𝑠 mesh in layer 𝑠
𝑆𝑡 mesh in time interval
𝑆𝑥 spatial mesh in the entire region

𝑡 time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
𝑡∗ end of the time interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
�̂�𝑖 nodes of interpolation
𝑇𝑠 temperature in layer 𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑇∞ temperature of surrounding . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑈𝑖 measured temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑉𝑖 reconstructed temperature in measurement point . . . . . . K
𝑤𝑠 auxiliary parameter in the finite difference method
𝑥 spatial variable
𝑥𝑚 location of measurement point

Greek symbols

𝛾 regularization parameter
𝛿 length of gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Δ𝑡 time step
Δ𝑥𝑠 step mesh in layer 𝑠
𝜀 surface emissivity
𝜂1, 𝜂2 numeric parameters
𝜇 damping parameter
𝜈 random variable
𝜉 a priori given approximation of the heat flux
𝜌𝑠 mass density in layer 𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

𝜎 the Stefan-Boltzmann constant 5.67 ⋅ 10−8 W/m2 K4

𝜑 temperature on inner surface . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝜓𝑠 temperature in layer 𝑠 in initial moment . . . . . . . . . . . . . . . K
for various mathematical models of thermal protection systems are al-
ready available.

In particular, Uyanna et al. [5] consider the model composed of 
three layers which represent an integrated thermal protection system. 
The model does not assume any conditions in the contact points be-
tween the layers and the inverse heat conduction problem, presented 
in the paper, consists in the identification of an aerothermal surface 
heat flux of TPS. The problem is solved sequentially in the successive 
layers, starting from the inner layer. Similar problem is considered in 
paper [6], but the model presented there is composed only of two layers 
and for solving the inverse problem the Levenberg-Marquardt method 
is applied. The same Authors in work [7] investigate the problem of 
the material selection, their properties and geometric dimensions in the 
successive layers of TPS. The results, described in this paper, indicate 
that the best materials in the successive layers should be the silicone 
impregnated reusable ceramic ablator (SIRCA), Saffil and glass-wool, re-
spectively. Fang et al. [8] solve the direct problem of heat transfer in the 
multi-layer thermal protection system doped with the phase change ma-
terials. Nenarokomov et al. [9] also solve the inverse heat conduction 
problem consisting in retrieving the heat flux in the thermal protection 
system of spacecrafts. For this purpose the Authors use the iterated reg-
ularization method. Next, Nakamura et al. [10] apply the sequential 
function specification method and the truncated singular value decom-
position in solving the inverse problem for two-dimensional one-layer 
model. Duda [11] presents an algorithm enabling to reconstruct the 
heat flux on the outer surface of an atmospheric reentry capsule on the 
basis of measurements of temperature. Future time steps and smoothing 
filters are next used to stabilize the solution of an inverse problem. Cui 
et al. [12] use an inverse problem for estimating the, depending on tem-
perature, thermal conductivity coefficient of an Inconel in the reusable 
metallic thermal protection system. Alifanov et al. in paper [13] con-
sider the problem of selection of the optimal width of layer, together 
with the diameter of cell and the porosity of carbon foam, creating one 
of the layers in the multi-layer thermal shield of the solar probe. Xu 
et al. in work [14] examine an influence of the distribution of pores in 
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the material, the thermal protection system is made of, on the effective-
ness of the whole system. Jiang et al. [15] discuss the multi-layer model 
with the uncertain thermo-physical parameters, but with no thermal re-
sistances between layers taken into account. The widths of layers are 
determined with the use of a non-probabilistic optimization process in 
order to ensure the imposed temperature restrictions. Ren et al. [16] in-
vestigate an influence of adding the layer, made of the phase change 
material, to the thermal protection system on the thermal efficiency 
of the system. In the considered model the perfect contact (with zero 
thermal resistances) of the layers is assumed. In paper [17] the Au-
thors solve the inverse problem of the lightweight thermal protection 
system. By using the sequential function specification method they re-
construct the thermal conditions on the outer surface on the ground of 
temperature measurements taken inside of the region. The performed 
simulations, imitating the behavior of lightweight thermal protection 
system in the blunt body, are described in paper [18]. Finally, Wen 
et al. in work [19] apply the unscented Kalman filtering technique to 
reconstruct the surface heat flux and inner temperature field of the ther-
mal protection system, on the basis of temperature measurements.

As mentioned before, in order to successful modeling and simulating 
the run of thermal processes essential is, very often, to solve the prop-
erly formulated inverse problems. In particular, these problems can be 
useful in case of the need to identify the model parameters. The inverse 
problems belong to the group of ill-posed problems, that is the prob-
lems very sensitive to the noises of input data, in result of which small 
perturbations of the input data may cause very big differences in the 
output data. For this reason the inverse problems are very difficult in 
solving. Therefore the new ideas for solving the inverse problems, re-
lated to the specific technical and engineering problems, are constantly 
required and wanted. In particular one can find in literature the propos-
als of various computational techniques and modifications of algorithms 
of different kind dedicated to the solution of inverse heat conduction 
problems. One of the approaches for solving the inverse problems with 
the measurement noises is the Tikhonov regularization [20,21], another 
approach is given by the variational method with an additional numer-
ical regularization parameter, as well as the method of direct iterative 

regularization. More details and theory in this subject can be found 
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in [22,23] and [24,25]. Many applications are additionally described in 
paper [26].

The Levenberg–Marquardt method is a well verified and efficient 
method for solving many inverse problems. It belongs to the class of 
iteratively regularized Gauss–Newton methods and one can find in lit-
erature its successful applications for solving various ill-posed inverse 
problems of heat transfer, filtration and geophysics (see for exam-
ple [27]). Whereas paper [28] presents a modification of the Levenberg-
Marquardt method for the Tikhonov operator and proves its conver-
gence under some local conditions. Some other modifications of the 
Levenberg–Marquardt method are proposed, for example, by Cui et al. 
in [29] and by Sajedi et al. in [30].

The object of interests of the current paper is the inverse problem 
consisted in reconstruction of the aerothermal heating conditions for a 
thermal protection system used in the spacecrafts. An information, nec-
essary for solving the discussed inverse problem, is delivered by the 
values of temperature measured in the selected point of thermal pro-
tection system. The considered integrated thermal protection system 
of the vehicle [1,5] is composed of three layers. The solution of the 
corresponding direct problem is obtained by using the implicit scheme 
of the finite difference method. Basing on the solution of the direct 
problem, the Tikhonov functional, defining the error of the current 
approximate solution, is constructed. Whereas for solving the inverse 
problem the modified Levenberg-Marquardt method [28] is applied. 
The atmospheric entry heating profile on the surface of the reusable 
launch vehicle, used in the calculations, was generated at NASA Lang-
ley Research Center [31] (see also [6,5]).

In the previous works of the Authors [32,33] one can find an algo-
rithm elaborated for solving the problem for the case of perfect contact 
between the layers, constant parameters of the material and parameters 
of the material depending on temperature. Novelty of the model pre-
sented in this paper is the thermal resistance between layers taken into 
account in the model. Parameters of the material, as well as the ther-
mal resistance of substances filling the spaces between layers, depend 
on temperature. The paper includes the description of mathematical 
model of the considered system, explanation of the solution method 
and analysis of the computational examples illustrating the exactness 
and stability of the proposed approach.

2. Formulation of the problem

The object of interests is a shell composed of three layers. The outer 
layer is affected by the heat flux, whereas on the surface of inner layer 
the constant temperature is maintained. Thermal contact between lay-
ers is not perfect, that is the thermal resistances occur in substances 
filling the spaces between layers. Moreover, the coefficients character-
izing the materials, the layers are made of, depend on temperature. 
Distribution of temperature in each layer is described by means of the 
heat conduction equation [34]:

𝑐𝑠(𝑇 )𝜚𝑠(𝑇 )
𝜕𝑇𝑠(𝑥, 𝑡)
𝜕𝑡

= 𝜕

𝜕𝑥

(
𝑘𝑠(𝑇 )

𝜕𝑇𝑠(𝑥, 𝑡)
𝜕𝑥

)
, 𝑥 ∈ (𝑏𝑠−1, 𝑏𝑠), 𝑡 ∈ (0, 𝑡∗),

(1)

where 𝑐𝑠, 𝜚𝑠, 𝑘𝑠 and 𝑇𝑠, 𝑠 = 1, 2, 3, denote the specific heat, density, 
thermal conductivity coefficient and temperature in layer number 𝑠, 
respectively.

Aim of the inverse problem is to reconstruct the aerothermal heat 
flux (𝑞𝑎𝑡) applied on the outer surface. Some part of this heat flux is 
transferred in the material (𝑞𝑐𝑜𝑛). Simultaneously, this heat flux causes 
a heating of the surface that emits a heat flux by radiation (𝑞𝑟𝑎𝑑 ). Thus, 
the energy balance equation can be written as follows

𝑞𝑐𝑜𝑛(𝑡) = 𝑞𝑎𝑡(𝑡) − 𝑞𝑟𝑎𝑑 (𝑡). (2)

Re-radiation term can be determined basing on the knowledge of tem-
3
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𝑞𝑟𝑎𝑑 (𝑡) = 𝜀𝜎
(
𝑇 4
1 (𝑏0, 𝑡) − 𝑇

4
∞
)
, (3)

where 𝜀 means the surface emissivity, 𝜎 is the Stefan-Boltzmann con-
stant, and 𝑇∞ denotes the ambient temperature.

Hence, the boundary condition of the second kind, defined on the 
outer surface, has the form

−𝑘1(𝑇 )
𝜕𝑇1(𝑥, 𝑡)
𝜕𝑥

||||𝑥=𝑏0 = 𝑞𝑎𝑡(𝑡) − 𝑞𝑟𝑎𝑑 (𝑡), 𝑡 ∈ (0, 𝑡∗). (4)

Whereas on the inner surface, that is at the end of third layer, the 
boundary condition of the first kind is given

𝑇3(𝑏3, 𝑡) = 𝜑(𝑡), 𝑡 ∈ (0, 𝑡∗). (5)

Meanwhile, in the spaces of contact of two layers the interface boundary 
conditions are defined, with the non-zero values of thermal resistances 
𝑅12 and 𝑅23. In the contact space between the first and second layers, 
that is at point 𝑥 = 𝑏1, there is a condition of the form

− 𝑘1(𝑇 )
𝜕𝑇1(𝑥, 𝑡)
𝜕𝑥

||||𝑥=𝑏1 = 𝑇1(𝑏1, 𝑡) − 𝑇2(𝑏1, 𝑡)𝑅12(𝑇 )
=

= −𝑘2(𝑇 )
𝜕𝑇2(𝑥, 𝑡)
𝜕𝑥

||||𝑥=𝑏1 , 𝑡 ∈ (0, 𝑡∗). (6)

Whereas in the contact space between the second and third layer, that 
is at point 𝑥 = 𝑏2, the condition has the form

− 𝑘2(𝑇 )
𝜕𝑇2(𝑥, 𝑡)
𝜕𝑥

||||𝑥=𝑏2 = 𝑇2(𝑏2, 𝑡) − 𝑇3(𝑏2, 𝑡)𝑅23(𝑇 )
=

= −𝑘3(𝑇 )
𝜕𝑇3(𝑥, 𝑡)
𝜕𝑥

||||𝑥=𝑏2 , 𝑡 ∈ (0, 𝑡∗). (7)

The above two conditions can be often formulated with the use of con-
tact conductance for the interface [34]:

ℎ𝑧(𝑇 ) =
1

𝑅𝑧(𝑇 )
, 𝑧 ∈ {12,23}.

The temperature distribution in the initial moment of time is known

𝑇𝑠(𝑥,0) = 𝜓𝑠(𝑥), 𝑥 ∈ [𝑏𝑠−1, 𝑏𝑠]. (8)

In the common points the consistency of the respective conditions is 
assumed.

The unknown element in the discussed inverse problem is the heat 
flux 𝑞𝑎𝑡 and the necessary additional information is delivered by the 
measurements of temperature read in the internal point of the region

𝑇𝑠(𝑥𝑚, 𝑡𝑖) =𝑈𝑖, 𝑖 = 1,… ,𝑁, (9)

where 𝑠 ∈ {1, 2, 3} is so that 𝑥𝑚 ∈ [𝑏𝑠−1, 𝑏𝑠), and 𝑁 denotes the number 
of measurements.

The sought heat flux depends on parameters 𝑞1, 𝑞2, … , 𝑞𝐼 , the values 
of which must be determined. If in the considered problem the heat flux 
𝑞𝑎𝑡 is given, then it is the direct problem. Solution of the direct problem 
delivers the values 𝑉𝑖(𝑞) of temperature at point 𝑥𝑚 corresponding to 
this heat flux. By using the obtained values the Tikhonov functional is 
constructed, which defines the error of current approximate solution

𝐹 (𝑞) = ‖𝑈 − 𝑉 (𝑞)‖2 + 𝛾 ‖𝜉 − 𝑞‖2 =
=

𝑁∑
𝑖=0

(
𝑈𝑖 − 𝑉𝑖(𝑞)

)2 + 𝛾 𝐼∑
𝑖=0

(
𝜉𝑖 − 𝑞𝑖

)2
, (10)

where 𝑞 = [𝑞1, … , 𝑞𝐼 ]⊺, 𝑉 (𝑞) =
[
𝑉0(𝑞), … , 𝑉𝑁 (𝑞)

]⊺
, 𝑈 =

[
𝑈0, … , 𝑈𝑁

]⊺
, 𝛾 >

0 is the regularization parameter and 𝜉 = [𝜉1, … , 𝜉𝐼 ]⊺ is an a priori given 
approximation to the unknown heat flux 𝑞, and ⊺ denotes the transpose. 
The Tikhonov functional (10) is next minimized in order to determine 
the desired heat flux 𝑞𝑎𝑡 so that the approximate values of temperature 

are as close as possible to the measured values.
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3. The solution procedure

The direct problem is solved with the aid of implicit scheme of the fi-
nite difference method [34–36]. This method requires the discretization 
of the considered region which is done by introducing the appropri-
ate mesh. The layers are divided into 𝑛𝑠, 𝑠 = 1, 2, 3, subintervals which 
makes the following meshes in the successive layers

𝑆1 =
{
𝑥𝑖 ∶ 𝑥𝑖 = 𝑏0 + 𝑖Δ𝑥1, 𝑖 = 0,1,… , 𝑛1

}
, (11)

𝑆2 =
{
𝑥𝑖 ∶ 𝑥𝑖 = 𝑏1 + (𝑖− 𝑛1 − 1)Δ𝑥2, 𝑖 = 𝑛1 + 1,… , 𝑛1 + 𝑛2 + 1

}
, (12)

𝑆3 =
{
𝑥𝑖 ∶ 𝑥𝑖 = 𝑏2 + (𝑖− 𝑛1 − 𝑛2 − 2)Δ𝑥3,

𝑖 = 𝑛1 + 𝑛2 + 2,… , 𝑛1 + 𝑛2 + 𝑛3 + 2
}
, (13)

where Δ𝑥1 =
𝑏1−𝑏0
𝑛1

, Δ𝑥2 =
𝑏2−𝑏1
𝑛2

, Δ𝑥3 =
𝑏3−𝑏2
𝑛3

. Because of the non-zero 
thermal resistances two nodes are given in the contact of the layers. 
The first one corresponds to the end of previous layer and the second 
one – to the beginning of next layer. The spatial mesh in the whole 
region is defined as the sum of meshes introduced in the respective 
layers 𝑆𝑥 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3. Whereas the time interval is divided into 𝑚
equal subintervals which makes the following time mesh

𝑆𝑡 =
{
𝑡𝑗 ∶ 𝑡𝑗 = 𝑗Δ𝑡, 𝑗 = 0,1,… ,𝑚

}
, (14)

where Δ𝑡 = 𝑡∗

𝑚
. Finally, the mesh for the unsteady problem of heat 

conduction is defined as the cartesian product of the spatial and time 
meshes 𝑆 = 𝑆𝑥 ×𝑆𝑡.

In the internal nodes of each layer the discretization of equation (1)
is performed by means of the implicit scheme of order 𝑂

(
(Δ𝑥𝑠)2 + Δ𝑡

)
leading to the difference equation of the form

− 𝑟𝑠
𝑘𝑠,𝑖−1∕2

𝑐𝑠,𝑖 𝜚𝑠,𝑖
𝑇
𝑗+1
𝑠,𝑖−1 +

(
1 + 𝑟𝑠

𝑘𝑠,𝑖−1∕2 + 𝑘𝑠,𝑖+1∕2
𝑐𝑠,𝑖 𝜚𝑠,𝑖

)
𝑇
𝑗+1
𝑠,𝑖

−

− 𝑟𝑠
𝑘𝑠,𝑖+1∕2

𝑐𝑠,𝑖 𝜚𝑠,𝑖
𝑇
𝑗+1
𝑠,𝑖+1 = 𝑇

𝑗
𝑠,𝑖
, (15)

where 𝑟𝑠 = Δ𝑡
(Δ𝑥𝑠)2

, 𝑇 𝑗
𝑠,𝑖

∶= 𝑇𝑠(𝑥𝑖, 𝑡𝑗 ), 𝑐𝑠,𝑖 = 𝑐𝑠(𝑇
𝑗
𝑠,𝑖
), 𝜚𝑠,𝑖 = 𝜚𝑠(𝑇

𝑗
𝑠,𝑖
) and 

𝑘𝑠,𝑖+1∕2 =
2𝑘𝑠,𝑖 𝑘𝑠,𝑖+1
𝑘𝑠,𝑖+𝑘𝑠,𝑖+1

is the harmonic mean of thermal conductivity co-

efficient in the temperature interval [𝑇 𝑗
𝑠,𝑖
, 𝑇 𝑗
𝑠,𝑖+1], and 𝑘𝑠,𝑖−1∕2 =

2𝑘𝑠,𝑖−1 𝑘𝑠,𝑖
𝑘𝑠,𝑖−1+𝑘𝑠,𝑖

is the harmonic mean of thermal conductivity coefficient in interval 
[𝑇 𝑗
𝑠,𝑖−1, 𝑇

𝑗
𝑠,𝑖
] [35,36].

The boundary conditions are discretized so that the convergence or-
der of discretization of equation (1) is maintained. For the boundary 
condition of the second order on the outer surface the following differ-
ence equation is obtained

3𝑤1 𝑇
𝑗+1
1,0 − 4𝑤1 𝑇

𝑗+1
1,1 +𝑤1 𝑇

𝑗+1
1,2 = 𝑞𝑗+1∕2𝑎𝑡 − 𝜀𝜎

(
(𝑇 𝑗1,0)

4 − 𝑇 4
∞
)
, (16)

where 𝑤1 =
𝑘1,0
2Δ𝑥1

and 𝑞𝑗+1∕2𝑎𝑡 ∶= 𝑞𝑎𝑡(𝑡𝑗 +Δ𝑡∕2).
The interface boundary condition in the contact of the first and sec-

ond layer (6) is transformed into two difference equations of the form

−𝑤1,𝑛1 𝑇
𝑗+1
1,𝑛1−2

+ 4𝑤1,𝑛1 𝑇
𝑗+1
1,𝑛1−1

−
(
3𝑤1,𝑛1 +𝑅

−1
12
)
𝑇
𝑗+1
1,𝑛1

+

+𝑅
−1
12 𝑇

𝑗+1
2,𝑛1+1

= 0, (17)

𝑤2,𝑛1+1 𝑇
𝑗+1
2,𝑛1+3

− 4𝑤2,𝑛1+1 𝑇
𝑗+1
2,𝑛1+2

+

+
(
3𝑤2,𝑛1+1 +𝑅

−1
12
)
𝑇
𝑗+1
2,𝑛1+1

−𝑅
−1
12 𝑇

𝑗+1
1,𝑛1

= 0, (18)

where 𝑤𝑠,𝑖 =
𝑘𝑠,𝑖

2Δ𝑥𝑠
and 𝑅12 =

2𝑅12(𝑇
𝑗

1,𝑛1
)𝑅12(𝑇

𝑗

2,𝑛1+1
)

𝑅12(𝑇
𝑗

1,𝑛1
)+𝑅12(𝑇

𝑗

2,𝑛1+1
)
.

Next, for the interface boundary condition in the contact of the 
second and third layer (7) the following two difference equations are 
4

received
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−𝑤2,𝑁2
𝑇
𝑗+1
2,𝑁2−2

+ 4𝑤2,𝑁2
𝑇
𝑗+1
2,𝑁2−1

−
(
3𝑤2,𝑁2

+𝑅
−1
23
)
𝑇
𝑗+1
2,𝑁2

+

+𝑅
−1
23 𝑇

𝑗+1
3,𝑁2+1

= 0, (19)

𝑤2,𝑁2+1 𝑇
𝑗+1
3,𝑁2+3

− 4𝑤3,𝑁2+1 𝑇
𝑗+1
3,𝑛2+2

+

+
(
3𝑤3,𝑛2+1 +𝑅

−1
12
)
𝑇
𝑗+1
3,𝑁2+1

−𝑅
−1
12 𝑇

𝑗+1
2,𝑁2

= 0, (20)

where 𝑁2 ∶= 𝑛1 + 𝑛2 + 1, 𝑤𝑠,𝑖 =
𝑘𝑠,𝑖

2Δ𝑥𝑠
and 𝑅23 =

2𝑅23(𝑇
𝑗

2,𝑁2
)𝑅23(𝑇

𝑗

3,𝑁2+1
)

𝑅23(𝑇
𝑗

2,𝑁2
)+𝑅23(𝑇

𝑗

3,𝑁2+1
)
.

Putting together the above equations and including the boundary 
condition of the first kind on the inner surface leads to the pentagonal 
system of linear equations of the form

𝐀𝑗 𝐓𝑗+1 = 𝐟 𝑗 . (21)

Matrix 𝐀𝑗 contains the material parameters dependent on temperature, 
therefore it changes in each step of calculations. The obtained system is 
of dimensions (𝑛1 + 𝑛2 + 𝑛3 + 2) × (𝑛1 + 𝑛2 + 𝑛3 + 2).

Solution of the direct problem (1)–(9) for the given heat flux deliv-
ers the values 𝑉 (𝑞) of temperature in the measurement point enabling 
to determine the value of Tikhonov functional 𝐹 . Minimization of this 
functional is executed by using the Levenberg-Marquardt method in 
the special version designed for the Tikhonov functional [28]. In this 
method the special element Δ𝑞𝑝, correcting the current approximate so-
lution 𝑞𝑝, is computed on the way of solving the system of equations(
(𝐽𝑝)⊺ 𝐽𝑝 + 𝜇𝑝 𝐸

)
Δ𝑞𝑝 = (𝐽𝑝)⊺

(
𝑈 − 𝑉 (𝑞𝑝)

)
+ 𝛾

(
𝜉 − 𝑞𝑝

)
, (22)

where 𝐽 denotes the sensitivity matrix, 𝜇 is the damping parameter, 𝐸
denotes the identity matrix, 𝑝 means the iteration number and 𝛾 > 0 is 
the regularization parameter. Value of the regularization parameter is 
determined by applying the discrepancy principle [21,37]. In the per-
formed calculations the damping parameter 𝜇 is assumed to be 0.001.

The termination criteria of the algorithm are defined as follows

𝐹 (𝑞𝑝+1) < 𝜂1,

‖𝑞𝑝+1 − 𝑞𝑝‖ < 𝜂2,
𝑝 ⩾ 𝑝𝑚𝑎𝑥,

where 𝑝𝑚𝑎𝑥 is the maximal number of iterations, 𝜂1 and 𝜂2 are the nu-
meric parameters. The algorithm is terminated if any of the conditions 
is fulfilled. The calculations are performed for 𝜂1 = 10−12, 𝜂2 = 10−8, and 
𝑝𝑚𝑎𝑥 = 60.

More information about the method, including the proof of con-
vergence, can be found in paper [28]. However, the computational 
algorithm itself is similar to the algorithm for the classical version of the 
Levenberg-Marquardt method [32]. The measurements of temperature 
𝑈 =

[
𝑈0, 𝑈1, … , 𝑈𝑁

]𝑇
, initial approximation of the sought parameters 

𝑞0, value of the regularization parameter 𝛾 and a priori estimation of 
the sought solution 𝜉 are assumed to be known. It is taken 𝑝 = 0.

1. Value of the functional 𝐹 (𝑞𝑝) is calculated.
2. Sensitivity matrix 𝐽𝑝 is determined.
3. On the way of solving the system of equations (22) the vector Δ𝑞𝑝

is calculated, and next the new approximation 𝑞𝑝+1 = 𝑞𝑝 + Δ𝑞𝑝 is 
determined.

4. Value of the functional 𝐹 (𝑞𝑝+1) is calculated.
5. If 𝐹 (𝑞𝑝+1) ⩾ 𝐹 (𝑞𝑝), then 𝜇𝑝 = 10 𝜇𝑝 is taken and algorithm returns 

to 3.
6. If 𝐹 (𝑞𝑝+1) < 𝐹 (𝑞𝑝), then 𝑞𝑝+1 is accepted and 𝜇𝑝 = 0.1 𝜇𝑝 is taken.
7. The procedure is stopped if any of the termination criteria is ful-

filled. In opposite case the iteration number increases by one and 

algorithm returns to 2.
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Fig. 1. Thermal conductivity coefficient of dry air dependent on temperature 
(dots – data taken from [38], solid line – interpolation with the third order 
spline).

4. Numerical calculations

The heat flux on the outer surface is reconstructed in the form of a 
continuous function. For this reason the absolute error (𝐸𝑎𝑏𝑠) and the 
relative error (𝐸𝑟𝑒𝑙) of the heat flux reconstruction are computed by 
using the following relations

𝐸𝑎𝑏𝑠 =
1
𝑡∗

𝑡∗

∫
0

|𝑞𝑒𝑥(𝑡) − 𝑞𝑒𝑠𝑡(𝑡)|𝑑𝑡, (23)

𝐸𝑟𝑒𝑙 =𝐸𝑎𝑏𝑠
( 1
𝑡∗

𝑡∗

∫
0

|𝑞𝑒𝑥(𝑡)|𝑑𝑡)−1
100%, (24)

where 𝑞𝑒𝑥 is the exact heat flux and 𝑞𝑒𝑠𝑡 denotes the estimated heat flux.
The widths of the successive layers are equal to 2.2 mm, 4 mm 

and 114 mm, respectively. According to this, the values 𝑏0 = 0 m, 
𝑏1 = 0.0022 m, 𝑏2 = 0.0062 m and 𝑏3 = 0.1202 m are taken in calculations, 
as well as the emissivity 𝜀 = 0.84 and the temperature of surrounding 
𝑇∞ = 273 K. Moreover, the temperature of the inner surface is assumed 
as 𝜑(𝑡) = 273 K. Temperature of the whole region in the initial mo-
ment of time is assumed to be the same and is equal to 𝜓𝑠(𝑥) = 273 K, 
𝑠 = 1, 2, 3.

Thermal resistances 𝑅12 and 𝑅23 between layers can be determined 
with the aid of relation [36,39]:

𝑅𝑧(𝑇 ) =
𝛿𝑧
𝑘𝑧(𝑇 )

, 𝑧 ∈ {12,23}, (25)

where 𝛿𝑧 denotes the width of gap between the layers and 𝑘𝑧 expresses 
the thermal conductivity of the gap. It is assumed that the gap is filled 
with the dry air or with the appropriate glue. Values of the thermal 
conductivity coefficient of the dry air are taken from [38]. Next, the 
taken values are interpolated with the third order spline and such 
obtained function is used in calculations in case of material param-
eters dependent on temperature (see Fig. 1). In case of the constant 
parameters two values of the thermal conductivity coefficient of dry 
air are used in calculations. The value in temperature 273 K which is 
𝑘𝑎𝑖𝑟 = 0.0241 W/(m K), and the mean value 𝑘𝑎𝑖𝑟 = 0.0578 W/(m K) in the 
temperature interval [273, 1300] determined from relation

𝑘𝑎𝑖𝑟 =

(
1

1027

1300

∫
273

(
𝑘𝑎𝑖𝑟(𝑇 )

)2
𝑑𝑇

)1∕2

. (26)

Whereas in case of glue filling the gaps, the value of its thermal con-
ductivity coefficient is taken as 𝑘𝑔 = 0.032 W/(m K). The widths of gaps 
between layers are equal to 0.1 mm, 0.01 mm and 0.001 mm, respec-
5

tively.
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Table 1

Material properties of the layers [5].

𝑠 Material 𝑐𝑠 [J/(kg K)] 𝜚𝑠 [kg/m3] 𝑘𝑠 [W/(m K)]

1 Alumino-silicate 1025 2525 2.725
2 Saffil 950 50 0.0315
3 Glass-wool 1000 26 0.03256

Table 2

Temperature dependent material properties [5].

Temperature [K] 𝑐2 [J/(kg K)] 𝑘2 [W/(m K)] 𝑘3 [W/(m K)]

300 950 0.0363 0.04
450 950 0.0468 0.09
800 1022.2 0.1063 0.203
1000 1064.7 0.1623 0.268
1050 1075.4 0.1788 0.284
1100 1086 0.1963 0.3

The algorithm was implemented in the Wolfram language of Math-
ematica 13.2 package and the computations were performed with the 
aid of computer with processor i7-8565U, 1.80 Ghz, 2.00 GHz, equipped 
with 16 GB of RAM memory.

4.1. Data independent on temperature

At first the calculations were executed for the material data inde-
pendent on temperature. Their values are collected in Table 1 [5].

Figs. 2–5 present the results obtained under the assumption that the 
gaps between layers are filled with the air. Fig. 2 shows the tempera-
tures at the end of first and second layers for width 𝛿 = 0.1 mm, different 
thermal resistances and air filling the gap. Differences of temperature 
at the end and beginning of the gaps, obtained for different widths of 
the gaps, are displayed in Figs. 3, 4 and 5. The difference of temper-
atures at the ends of gaps depends linearly on the value of thermal 
resistance. Ten times decrease of the thermal resistance corresponds to 
the ten times decrease of the temperature difference.

The next three figures present the results obtained under the as-
sumption that the gaps are filled with the glue. The first one (Fig. 6) 
shows the plots of temperature at the ends of first and second layers for 
the gaps of width 𝛿 = 0.1 mm and 𝛿 = 0.01 mm. Plots of the temperature 
differences are displayed in two next figures: at the end and beginning 
of the first gap (Fig. 7) and at the end and beginning of the second gap 
(Fig. 8) calculated for different widths of the gaps.

4.2. Data dependent on temperature

This section includes the results of calculations executed for the fol-
lowing material data independent on temperature [5]: in the first layer 
𝑐1 = 1025 [J/(kg K)], 𝜚1 = 2525 [kg/m3] and 𝑘1 = 2.725 [W/(m K)], in the 
second layer 𝜚2 = 50 [kg/m3], and in the third layer 𝑐3 = 1000 [J/(kg K)] 
and 𝜚3 = 26 [kg/m3]. Whereas the thermal conductivity coefficients of 
the second and third layers depend on temperature, as well as the spe-
cific heat of the second layer (Table 2). The plots of variability of these 
coefficients are presented in Fig. 9.

Three values of the gap widths are taken: 𝛿 = 0.1 mm, 𝛿 = 0.01 mm 
and 𝛿 = 0.001 mm, as previously. The constant values of the thermal re-
sistances, obtained for the thermal conductivity coefficient of dry air, 
that is 𝑘𝑎𝑖𝑟 = 0.0241 [W/(m K)] and 𝑘𝑎𝑖𝑟 = 0.0578 [W/(m K)], are used in 
calculations. The determined thermal conductivity coefficient, depen-
dent on temperature (see Fig. 1), is also used in calculations. Plot of 
values of the thermal resistance between layers is presented in Fig. 10. 
Solid line represents the distribution in time of the thermal resistances 
dependent on temperature, whereas the dashed line denotes the val-
ues of constant thermal resistances. At first, the thermal resistance of 
the second gap (𝑅23) has a slightly higher value, but later the differ-

ences are very tiny. At the end however, a slightly higher value takes 
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Fig. 2. Temperature at the end of first layer (𝐺12) and at the end of second layer (𝐺23) for 𝛿 = 0.1 mm: 𝑎) for 𝑘𝑎𝑖𝑟 = 0.0241; 𝑏) for 𝑘𝑎𝑖𝑟 = 0.0578.

Fig. 3. Difference of temperatures at the end and beginning of gaps filled with air for 𝛿 = 0.1 mm: 𝑎) 𝑇2(𝑏1, 𝑡) − 𝑇1(𝑏1, 𝑡); 𝑏) 𝑇3(𝑏2, 𝑡) − 𝑇2(𝑏2, 𝑡).

lled
Fig. 4. Difference of temperatures at the end and beginning of gaps fi

the thermal resistance of the first gap (𝑅12). It is connected with the dis-
tribution of the thermal conductivity coefficient of dry air (Fig. 1), used 
in calculations, which takes lower values in lower temperatures.

Figs. 11 and 12 show the plots of temperature differences at the 
end and beginning of the gaps. The temperature differences at the ends 
of the first gap are presented in figures 𝑎), whereas the temperature 
differences at the ends of the second gap are displayed in figures 𝑏). At 
the beginning of the process the difference of temperature is slightly 
6

bigger at the edges of the first gap, in the middle of the process the 
with air for 𝛿 = 0.01 mm: 𝑎) 𝑇2(𝑏1, 𝑡) − 𝑇1(𝑏1, 𝑡); 𝑏) 𝑇3(𝑏2, 𝑡) − 𝑇2(𝑏2, 𝑡).

differences are similar and finally at the end of the process the bigger 
difference appears at the edges of the second gap. Such tendency can be 
observed for every value of the thermal resistance, though the bigger is 
the thermal resistance, the bigger are the differences between the gaps.

4.3. Inverse problem

The algorithm, described in the previous section, is applied now for 

reconstruction of the aerothermal heat flux 𝑞𝑎𝑡 on the outer surface in 
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Fig. 5. Difference of temperatures at the end and beginning of gaps filled with air for 𝛿 = 0.001 mm: 𝑎) 𝑇2(𝑏1, 𝑡) − 𝑇1(𝑏1, 𝑡); 𝑏) 𝑇3(𝑏2, 𝑡) − 𝑇2(𝑏2, 𝑡).

Fig. 6. Temperature at the end of first layer (𝑇1) and at the end of second layer (𝑇2) in case of gaps filled with glue: 𝑎) for 𝛿 = 0.1 mm; 𝑏) for 𝛿 = 0.01 mm.

Fig. 7. 𝑎) Difference of temperatures at the end and beginning of the first gap filled with glue; 𝑏) enlargement of the part of plot 𝑎).
the integrated thermal protection system of a reusable launch vehicle. 
The atmospheric entry heating profile on the surface of such vehicle 
(see Fig. 13) was generated at NASA Langley Research Center [31] (see 
also [6,5]). The additional information, necessary for the solution of 
inverse problem, is given by the values of temperature in the internal 
point of the considered region. Location of the thermocouple is assumed 
at the beginning of the third layer (𝑥𝑚 = 𝑏2). The initial data are taken 
from the solution of direct problem formulated for the aerothermal heat 
flux 𝑞𝑎𝑡 presented in Fig. 13. Calculations in this direct problem were 
7

executed for the mesh (𝑛1, 𝑛2, 𝑛3) ×𝑚 = (50, 50, 100) × 4400. Whereas the 
calculations in inverse problem were performed by using the different 
mesh, that is (20, 20, 30) × 2200, in order to avoid the, so called, inverse 
crime [40]. Distribution of temperature in the measurement point, in 
cases of gaps filled with glue and with air and the thermal conductivity 
coefficient dependent on temperature, is presented in Fig. 14. The ex-

act input data are perturbed by the random error of normal distribution 
and values 0.5%, 1%, 2% and 5%. Thanks to this the discussed proce-

dure could be examined with respect to the exactness and stability of 

obtained results.
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Fig. 8. 𝑎) Difference of temperatures at the end and beginning of the second gap filled with glue; 𝑏) enlargement of the part of plot 𝑎).

Fig. 9. Temperature dependent material properties: 𝑎) specific heat of the second layer; 𝑏) thermal conductivity coefficient of the second and third layer.

Fig. 10. Thermal resistance between the layers: 𝑎) for 𝛿 = 0.1 mm; 𝑏) for 𝛿 = 0.001 mm (𝑅12 – thermal resistance between the first and second layers, 𝑅23 – thermal 
resistance between the second and third layers).
The heat flux is reconstructed in the form of spline of the third order 
constructed for the nodes (̂𝑡𝑖, 𝑞𝑎𝑡,𝑖), 𝑖 = 0, 1, … , 20. Additionally, it is as-

sumed, according to the measurements [31], that in the initial moment 
the heat flux is equal to zero: 𝑞𝑎𝑡,0 = 0. Thus, each time 𝐼 = 20 values 
must be retrieved: 𝑞𝑎𝑡,1, 𝑞𝑎𝑡,2, … , 𝑞𝑎𝑡,20. In each case the nodes are evenly 
distributed in the interval (0, 2200), that is: ̂𝑡𝑖 = 110 𝑖, 𝑖 = 0, 1, … , 20. The 
third order spline and the number of twenty nodes is chosen basing on 
8

the Authors previous experiences [32,33].
Example 1. At first the problem is solved in case of the gaps filled with 
air and the constant material parameters. In the presented calculations 
the mean value of the thermal conductivity coefficient is taken as 𝑘𝑎𝑖𝑟 =
0.0578 W/(m K).

The errors of the heat flux reconstruction are collected in Table 3. 
They show that the results are very good and the reconstruction er-

rors are always lower than the input data errors. In case of the exact 

input data the absolute reconstruction error is equal to 306.59 W/m2
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Fig. 11. Difference of temperature at the end and beginning of gaps for 𝛿 = 0.1 mm: 𝑎) 𝑇2(𝑏1, 𝑡) − 𝑇1(𝑏1, 𝑡); 𝑏) 𝑇3(𝑏2, 𝑡) − 𝑇2(𝑏2, 𝑡).

Fig. 12. Difference of temperature at the end and beginning of gaps for 𝛿 = 0.01 mm: 𝑎) 𝑇 (𝑏 , 𝑡) − 𝑇 (𝑏 , 𝑡); 𝑏) 𝑇 (𝑏 , 𝑡) − 𝑇 (𝑏 , 𝑡).
Fig. 13. Aerothermal heat flux 𝑞𝑎𝑡 on the outer surface (measured by the NASA 
Langley Research Center [31]).

(determined by using equation (23)), and the relative error is 0.37611% 
(equation (24)). These errors could be reduced by increasing the den-
sity of calculation mesh, but it would cause the extension of calculation 
time. The reconstruction errors increase slightly with the increase of the 
input data perturbations. The table presents the results for two differ-
ent a priori values of the sought solution estimation (𝜉). Even by having 
no information about the required solution and by taking the zero a 
9

priori values 𝜉𝑖 = 0, 𝑖 = 0, … , 𝐼 , the discussed method allows still to re-
2 1 1 1 3 2 2 2

Table 3

Results of the heat flux 𝑞𝑎𝑡 reconstruction for 𝛿 =
0.01 mm and 𝑘𝑎𝑖𝑟 = 0.0578 W/(m K) (Example 1).

Noise 𝐹 𝐸𝑎𝑏𝑠 𝐸𝑟𝑒𝑙 [%]

𝜉𝑖 = 0
0% 569.3 306.59 0.37611
0.5% 6941.3 308.23 0.37812
1% 26922.1 322.74 0.39593
2% 107391.9 423.28 0.51927
5% 656905.8 669.46 0.82127

𝜉𝑖 = 81515
0% 569.3 306.59 0.37611
0.5% 6928.0 308.23 0.37813
1% 27173.1 323.01 0.39626
2% 107639.8 423.66 0.51973
5% 656916.6 669.49 0.82130

trieve well the sought heat flux. Second part of the table includes the 
results obtained for the a priori value assumed as the mean value for the 
whole time interval, that is 𝜉𝑖 = 81515, 𝑖 = 0, … , 𝐼 . The determined min-
imal value of the considered functional is the most often the same or 
only a little bit different. In case of the burdened input data the value of 
the regularization parameter is changed. Thus, for example for 1% per-
turbation of input data the regularization parameter is equal to 10−10
in the first case, and 10−8 in the second case. The number of calcula-

tions of the objective function value reduces as well from 545 to 469. It 
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Fig. 14. Temperature on the boundary of region (𝑇 (0, 𝑡)) and in the measurement point (𝑇 (𝑥𝑚, 𝑡)) for the gaps of width 𝛿 = 0.1 mm filled with glue (𝑎) and with air 
and the thermal conductivity coefficient dependent on temperature (𝑏).

Fig. 15. Exact (green line) and reconstructed (red line) heat flux (𝑎) together with the error of this reconstruction (𝑏) for the exact input data (𝛿 = 0.01 mm, 
𝑘 = 0.0578 W/(m K), 𝜉 = 0, 𝑖 = 0, 1, … , 𝐼) (Example 1). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
𝑎𝑖𝑟 𝑖

is followed by the reduction of the full calculation time from 398 s to 
346 s.

Figs. 15 𝑎) and 16 𝑎) present the exact value of the heat flux together 
with its approximation obtained from the solution of inverse problem, 
whereas on the right figures one can see the distribution of the abso-
lute error of the received approximation. First set of figures show the 
results obtained for the exact input data and the second one – for the 
input data burdened by 5% error. In case of the exact input data the 
maximal absolute error does not exceed the value 2300 W/m2, whereas 
in case of the perturbed input data (by 5% error) the maximal abso-
lute error is lower than 2630 W/m2. The mean errors in both discussed 
cases are equal to 306.59 W/m2 and 669.49 W/m2, respectively. In the 
other considered cases the distributions of absolute error, produced by 
the approximations of reconstructed heat flux, are very similar.

Table 4 collects the errors of temperature reconstruction in the mea-
surement point 𝑥𝑚 = 𝑏2. For the exact input data the maximal absolute 
reconstruction error is equal to 1.401 K, and the mean one is 0.389 K. 
Considering the relative error – the maximal one does not exceed the 
value 0.16%, and the mean one is lower than 0.042%. The increase of 
the input data perturbation causes the increase of the reconstruction 
error, but only minor, and in each considered case the reconstruction 
error is much lower than the input data error. The highest values of 
output data errors are for the 5% input data error. In this situation the 
maximal absolute error is equal to 4.516 K and the value of the mean ab-
10

solute error is 1.311 K. Discussing the relative error – the maximal one 
Table 4

Results of the temperature reconstruction in the mea-
surement point for 𝛿 = 0.01 mm and 𝑘𝑎𝑖𝑟 = 0.0578
W/(m K) (Example 1).

Noise Error [K] Error [%]

max mean max mean

𝜉𝑖 = 0
0% 1.401 0.389 0.15621 0.04133
0.5% 1.487 0.423 0.18702 0.04598
1% 1.390 0.473 0.23059 0.05106
2% 3.306 0.658 0.39384 0.06905
5% 4.516 1.311 0.37422 0.13142

𝜉𝑖 = 81515
0% 1.401 0.389 0.15621 0.04133
0.5% 1.487 0.423 0.18702 0.04598
1% 1.388 0.473 0.23069 0.05106
2% 3.340 0.658 0.39785 0.06912
5% 4.516 1.311 0.37420 0.13142

does not exceed 0.38%, and the mean one is lower than 0.14%. A lit-
tle bit bigger maximal relative reconstruction error occurs for 2% input 
data error and is equal to 0.39384%. Distribution of the described er-
rors in the whole interval is presented in Figs. 17 and 18. The results 

obtained in the other considered cases are very similar.
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Fig. 16. Exact (green line) and reconstructed (red line) heat flux (𝑎) together with the error of this reconstruction (𝑏) for the input data perturbed by 5% error 
(𝛿 = 0.01 mm, 𝑘𝑎𝑖𝑟 = 0.0578 W/(m K), 𝜉𝑖 = 81515, 𝑖 = 0, 1, … , 𝐼) (Example 1).

Fig. 17. Distribution of the absolute (𝑎) and relative error (𝑏) of temperature reconstruction in the measurement point 𝑥𝑚 = 𝑏2 for the exact input data (𝛿 = 0.01 mm, 
𝑘𝑎𝑖𝑟 = 0.0578 W/(m K), 𝜉𝑖 = 81515, 𝑖 = 0, 1, … , 𝐼) (Example 1).

Fig. 18. Distribution of the absolute (𝑎) and relative error (𝑏) of temperature reconstruction in the measurement point 𝑥𝑚 = 𝑏2 for the input data perturbed by 5% 

error (𝛿 = 0.01 mm, 𝑘𝑎𝑖𝑟 = 0.0578 W/(m K), 𝜉𝑖 = 0, 𝑖 = 0, 1, … , 𝐼) (Example 1).

Fig. 19 displays the absolute errors of the heat flux restoration, ob-
tained for the input data perturbed by error of value 2% and the gaps 
of width 𝛿 = 0.1 mm and 𝛿 = 0.001 mm. The maximal absolute errors 
in these cases do not exceed the values 2125 W/m2 and 2650 W/m2, 
11

respectively. Meanwhile, the mean values of these errors are equal to 
333.96 W/m2 and 394.93 W/m2, respectively. Next, Fig. 20 presents the 
errors of temperature reconstructed in the measurement point for the 
gap of width 𝛿 = 0.1 mm. Each time these errors are low and they are 
much lower in comparison with the input data errors. In case of the ex-

act input data the maximal relative error of temperature reconstruction 
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Fig. 19. Distribution of absolute error of the heat flux reconstruction for input data perturbed by 2% error (𝑘𝑎𝑖𝑟 = 0.0578 W/(m K), 𝜉𝑖 = 0, 𝑖 = 0, 1, … , 𝐼): 𝑎) 𝛿 = 0.1 mm, 
𝑏) 𝛿 = 0.001 mm (Example 1).

Fig. 20. Maximal and mean absolute (𝑎) and relative (𝑏) errors of temperature reconstruction in the measurement point (𝛿 = 0.1 mm, 𝑘𝑎𝑖𝑟 = 0.0578 W/(m K), 𝜉𝑖 = 0, 

𝑖 = 0, 1, … , 𝐼) (Example 1).

is equal to 1.38 K, and the mean one is 0.38 K. These values influence 
obviously the values of relative errors – the maximal relative error is at 
the level of 0.16%, whereas the mean one is 0.04%. In case of the per-
turbed input data the reconstruction errors increase slightly with the 
increase of the input data perturbation. So, for the biggest perturba-
tions the restoration errors are: the maximal absolute error – 3.73 K, the 
mean absolute error – 1.28 K, the maximal relative error – 0.36% and 
finally the mean relative error is 0.13%. In the other investigated cases 
the errors of temperature reconstruction have very similar values.

Example 2. In the next example it is assumed that the gaps between 
layers are filled with glue, thermal conductivity coefficient of which is 
equal to 𝑘𝑔 = 0.032 W/(m K). This time the calculations are executed for 
the a priori values 𝜉𝑖 = 0, 𝑖 = 0, 1, … , 𝐼 .

The results of the heat flux 𝑞𝑎𝑡 restoration for the gaps of width 
𝛿 = 0.1 mm are collected in Table 5. The obtained results are very good 
and the reconstruction errors each time are very small. In case of the ex-
act input data the absolute reconstruction error is equal to 308.37 W/m2

(computed by using equation (23)), and the relative one is 0.3783% 
(equation (24)). The values of errors are influenced by the density of 
calculation mesh. Increase of the mesh density suppose to lead to de-
crease of the output data errors, but at the cost of increasing calculation 
time. Bigger input data errors entail the bigger errors of the heat flux 
12

reconstruction, but only slightly bigger. In case of input data burdened 
Table 5

Results of the heat flux 𝑞𝑎𝑡 reconstruction for 𝛿 =
0.1 mm, 𝑘𝑔 = 0.032 W/(m K) (Example 2).

Noise 𝐹 𝐸𝑎𝑏𝑠 𝐸𝑟𝑒𝑙 [%]

0% 543.7 308.37 0.37830
0.5% 7055.6 297.37 0.36481
1% 27123.1 331.65 0.40685
2% 106843.8 404.58 0.49633
5% 642423.3 823.09 1.00974

by the highest error, the absolute and relative reconstruction errors are 
not bigger than 823.1 W/m2 and 1.01%, respectively.

Fig. 21 presents the distributions of absolute errors of the heat flux 
reconstruction obtained for the input data perturbed by errors of values 
0.5% and 2%. In the first case the maximal absolute error does not 
exceed the value 2260 W/m2, whereas in the second case it is not bigger 
than 2980 W/m2. The highest maximal absolute reconstruction error is 
observed for the input data burdened by 5% error and is not bigger 
than 3750 W/m2. Mean values of the discussed errors are compiled in 
the third column of Table 5.

Next results, presented in Fig. 22, concern the temperature restored 
in the measurement point. With the increasing input data perturbations 
the reconstruction errors increase as well, but the observed growth is 
only tiny, and in each considered case the reconstruction errors are 

smaller than the input data errors. The maximal absolute error increases 
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Fig. 21. Distribution of the absolute error of heat flux reconstruction for 𝛿 = 0.1 mm, 𝑘𝑔 = 0.032 W/(m K) and the input data perturbed by: 𝑎) 0.5% error, 𝑏) 2% error 
(Example 2).

Fig. 22. Maximal and mean absolute (𝑎) and relative (𝑏) errors of temperature reconstruction in the measurement point (𝛿 = 0.1 mm, 𝑘𝑔 = 0.032 W/(m K)) (Example 2).

Fig. 23. Distribution of relative error of temperature reconstruction in the measurement point for 𝛿 = 0.1 mm, 𝑘𝑔 = 0.032 W/(m K) and the input data perturbed by: 

𝑎) 1% error, 𝑏) 5% error (Example 2).

from value 1.36 K to value 5.30 K, simultaneously the mean absolute er-
ror increases from value 0.38 K to value 1.59 K. This growth corresponds 
to the growth of the maximal relative error from value 0.15% to value 
0.58% and of the mean relative error from value 0.04% to value 0.16%. 
Fig. 23 shows the distribution of relative errors of temperature recon-
structed in the measurement point for input data burdened by 1% and 
13

5% errors.
Example 3. In the next step the calculations are performed for the 
material parameters depending on temperature (described in Subsec-
tion 4.2). The thermal conductivity coefficient is assumed as dependent 
on temperature as well. The results presented in this section are ob-
tained for the gaps of width 𝛿 = 0.1 mm and the zero a priori values.

Table 6 includes the results of heat flux 𝑞𝑎𝑡 reconstruction. In each 

considered case the reconstruction errors are small. The highest values 
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Fig. 24. Exact (green line) and reconstructed (red line) heat flux (𝑎) together with the absolute error of this reconstruction (𝑏) for the exact input data, 𝛿 = 0.1 mm, 
and material parameters dependent on temperature (Example 3).

Fig. 25. Exact (green line) and reconstructed (red line) heat flux (𝑎) together with the absolute error of this reconstruction (𝑏) for the input data perturbed by 5% 
3).
error, 𝛿 = 0.1 mm, and material parameters dependent on temperature (Example

Table 6

Results of the heat flux 𝑞𝑎𝑡 reconstruction for material 
parameters dependent on temperature and 𝛿 = 0.1 mm 
(Example 3).

Noise 𝐹 𝐸𝑎𝑏𝑠 𝐸𝑟𝑒𝑙 [%]

0% 978.6 282.05 0.34601
0.5% 7923.3 292.04 0.35827
1% 28858.2 309.69 0.37992
2% 110598.4 403.67 0.49520
5% 691738.1 613.90 0.75312

of error are observed for the input data burdened by 5% error and are 
equal to: absolute error – 613.90 W/m2, relative error – 0.75312%. For 
lower values of the input data perturbation the output data errors are 
respectively lower. The value of minimized functional increases from 
978.6, in case of the exact input data, to 691738.1, in case of the highest 
input data perturbation. The value of the regularization coefficient is 
equal to 10−10 in each case of the burdened input data.

Figs. 24 𝑎) and 25 𝑎) present the exact and reconstructed distribution 
of heat flux 𝑞𝑎𝑡 (left figures) obtained for the exact input data and the 
input data burdened by 5% error. Figs. 24 𝑏) and 25 𝑏) display the 
respective errors of this heat flux reconstruction. In the first case the 
maximal absolute error does not exceed the value 2090 W/m2, whereas 
in the second case it is lower than 2585 W/m2 and this value of the 
output data error is the highest one observed. The mean values of the 
14

relative errors are collected in the third column of Table 6.
In the next three figures one can see the results of temperature 
restoration in the measurement point. Figs. 26 𝑎) and 27 𝑎) present the 
exact (solid line) and reconstructed distribution of temperature in the 
measurement point 𝑥𝑚 = 𝑏2 together with the temperature reconstruc-
tion (dots) calculated for the heat flux restored in the inverse problem. 
Meanwhile, Figs. 26 𝑏) and 27 𝑏) display the absolute errors of this re-
construction.

Next, Fig. 28 presents the maximal and mean errors of temperature 
reconstruction in the measurement point for various perturbations of 
input data. With increasing values of the input data error, the output 
data errors increase as well, but just slightly. The only exception con-
cerns the maximal relative error obtained for the input data burdened 
by 1% error, which is equal to 0.2% and is lower than the error of value 
0.22% obtained for the input data perturbed by lower error. However, 
in each considered case the restoration errors are lower than the input 
data perturbations. The maximal absolute error grows from value 1.97 K 
to value 4.6 K, whereas the mean absolute error increases from value 
0.51 K to value 1.38 K. This corresponds to the growth of maximal rel-
ative error from value 0.22% to value 0.5% and the mean relative error 
from value 0.05% to value 0.13%.

Taking into account the depending on temperature thermophysical 
parameters has no influence on the exactness of results of the performed 
calculations. Errors of the heat flux and the temperature reconstructions 
are at the same level as in the previous considered examples. But it does 
cause the longer time of calculations. Time of solving the single direct 

problem increases from 0.6 s to 24.8 s, which results in an increase 
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Fig. 26. Exact (solid line) and reconstructed (dots) distribution of temperature in the measurement point (𝑎) together with the absolute error of this reconstruction 
(𝑏) for the input data perturbed by 1% error, 𝛿 = 0.1 mm and material parameters dependent on temperature (Example 3).

Fig. 27. Exact (solid line) and reconstructed (dots) distribution of temperature in the measurement point (𝑎) together with the absolute error of this reconstruction 
(𝑏) for the input data perturbed by 5% error, 𝛿 = 0.1 mm and material parameters dependent on temperature (Example 3).

Fig. 28. Maximal and mean absolute (𝑎) and relative (𝑏) errors of temperature reconstruction in the measurement point for 𝛿 = 0.1 mm and material parameters 

dependent on temperature (Example 3).

of time of the inverse problem solution. Solution of the corresponding 
inverse problem takes from 4800 s to 7800 s, depending on the input 
data perturbation and the randomly selected initial approximation. In 
case of the constant material parameters the time of the inverse problem 
15

solution is usually lower than 400 s.
5. Conclusions

Aim of this paper was to reconstruct the aerothermal heating of 
a reusable launch vehicle on the ground of the values of tempera-

ture measured in the thermal protection system of this vehicle. Using 
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the given temperatures and the temperatures calculated on the way 
of solving the appropriately formulated direct problem, the Tikhonov 
functional was constructed, which defined the error of approximate so-
lution. This functional was next minimized with the aid of modified 
Levenberg-Marquardt method in order to reduce the difference between 
the measured and restored values of temperature. Whereas the corre-
sponding direct problem was solved by applying the implicit scheme 
of the finite difference method. Novelty in this paper is to include in 
the three-layers model the thermal resistances occurring in the contact 
spaces between layers. Considering the parameters of material two cases 
were taken into account: constant parameters and parameters depend-
ing on temperature, including the thermal resistances of the contact 
spaces between layers also depending on temperature.

According to the previous analysis made for the case of perfect con-
tact between layers [32], the heat flux was reconstructed in the form of 
third order spline for twenty interpolation points. The calculations were 
performed for various a priori estimations of the sought solution, vari-
ous widths of the gaps and various values of the thermal conductivity 
coefficient of material filling the gaps. Moreover, the heat flux and the 
temperature were reconstructed for various errors of the input data.

All obtained results confirm the very good exactness of the proposed 
method and its stability with respect to the input data errors. In each 
considered case the heat flux is very well reconstructed. The highest 
restoration errors can be noticed for the highest input data perturba-
tions (5%) and width 𝛿 = 0.1 mm of the gaps filled with glue. In such 
worst case the mean absolute error is equal to 823.1 W/m2 and the rela-
tive one is at the level of 1.01%. When taking for calculations the exact 
input data, the errors in this worst case are equal to 308.4 W/m2 and 
0.38%, respectively. The assumed density of the calculation mesh influ-
ences the values of reconstruction errors as well. By increasing the mesh 
density one may expect the better precision of results, that is reduction 
of the reconstruction errors, but it happens at the expense of longer cal-
culation time. The restoration of temperature in the measurement point 
is also very good, the highest errors of temperature reconstruction do 
not exceed the values 7.6 K and 1.03%, respectively, whereas the mean 
errors in the worst case are equal to 1.6 K and 0.16%, respectively.

The plans for the future include the investigation of the two- and 
three-dimensional version of the considered problem, as well as the 
discussion on using the models with fractional derivatives for recon-
structing the aerothermal heating of a reusable launch vehicle. Another 
plan is to reconstruct simultaneously the heat flux on the boundary of 
the region and the thermal resistances between the layers. To achieve 
this goal, the algorithm for reconstruction of the heat flux, presented in 
this paper, is intend to be combined with the algorithm for reconstruc-
tion of the thermal resistance in the contact of the layers, proposed by 
Artyukhin and Nenarokomov in work [41].
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