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Abstract. We explore a conjecture posed by Eswarathasan and Levine on the distribution of p-adic

valuations of harmonic numbers H(n) = 1 + 1/2 + · · ·+ 1/n that states that the set Jp of the positive

integers n such that p divides the numerator of H(n) is finite. We proved two results, using a modular-
arithmetic approach, one for non-Wolstenholme primes and the other for Wolstenholme primes, on an

anomalous asymptotic behaviour of the p-adic valuation of H(pmn) when the p-adic valuation of H(n)

equals exactly 3.
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1. Introduction and general setting

The n-th harmonic number is defined as the partial sum of the well-known harmonic series as follows:

H(n) := 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

It has been known since the nineteenth century that by the Wolstenholme Theorem [14], for any prime
p ≥ 5 the numerator of H(p − 1) is multiple of p2. Many researchers have investigated the arithmetic
properties of harmonic numbers and related problems; in the last century, Bleicher and Erdös have
studied the so-called harmonic subsums [2] while random harmonic sums and harmonic series have been
investigated in probabilistic terms (see, for example, [1, 7, 12, 13]).

In 1991, Eswarathasan and Levine [6] introduced the set Jp of the positive integers n whereby H(n) is
a multiple of p and conjectured that Jp is finite for all primes p. Eswarathasan and Levine also introduced
an algorithm to count the elements of Jp in the event that Jp is finite, which was improved by Boyd [3]
in 1994. Boyd determined Jp for all p ≤ 547, except 83, 127 and 397. It is easy to show that J2 = ∅ and
J3 = {2, 7, 22}, while for all p ≥ 5,

{p− 1, p(p− 1), p2 − 1} ⊆ Jp.

The primes for which Jp contains only these three elements are called “harmonic”: for instance p = 5 is
harmonic as J5 = {4, 20, 24} (see [6] for further details). The case p = 3 was also treated individually in
the paper by Kamano [9].
Sanna [11] recently gave an upper bound for the number of elements of Jp showing that

#Jp(x) ≤ 129p
2
3x0.765

where Jp(x) = Jp ∩ [1, x]. This upper bound was improved by Chen and Wu [15]:

#Jp(x) ≤ 3x
2
3+

1
25 log p .

They also tackled the alternating harmonic sum [16]. Recently Leonetti and Sanna also studied the
p-adic valuation of H(n, k), for n ≥ k, a kind of generalized Harmonic numbers defined as:

H(n, k) :=
∑

1≤i1<···<ik≤n

1

i1 · · · ik
,

which are closely linked to the Stirling numbers of the first kind.
An interesting connection between harmonic numbers and Bernoulli numbers was discovered by Boyd

[3, §4]. This connection concerns Wolstenholme primes that are defined as the primes p that divide the
numerator of the Bernoulli numbers Bp−3. The only two known Wolstenholme primes are 16843 and
2124679, but it is conjectured that infinitely many such primes exist. The latest search for Wolstenholme
primes in 2007 found that those were the only two up to 109 (see [10]). In this paper, we explored this
connection by identifying different behaviours of Jp according to whether p is or is not a Wolstenholme
prime.

We studied the p-adic valuation of the sequence of harmonic numbers H(pmn) for fixed (n, p) where
p ∤ n, and we identified that it follows one out of three patterns. These patterns differ according to whether
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p is a Wolstenholme prime or not. Interesting phenomena occur in pairs (n, p) such that νp(H(n)) = 3,
whose only known occurrences up to today were n = 848, 9338, 10583, 3546471722268916272 for p = 11,
one n ≥ 105 for p = 83, which were found by Boyd [3], (n = 16842, p = 16843) and (n = 2124678, p =
2124679), which are Wolstenholme primes and satisfy ν16843(H(16842)) = 3 and ν2124678(H(2124679)) ≥
3. Finally, Boyd [3] conjectured that there are no pairs (n, p) such that νp(H(n)) ≥ 4.

2. Results

In [3] and [6] the following Lemma has been proved:

Lemma 2.1. For any prime p ≥ 5, if νp(H(n)) ≤ 2 then

νp(H(pn)) = νp(H(n))− 1.

Boyd [3] gives a stronger version of this lemma, which we have postponed to Proposition 3.5. At
this introductory stage, in fact, a weaker version is sufficient to explains what we will call the “descent
phenomenon” observed in Table 1 of the p-adic valuations of harmonic numbers. Starting from that point,
we can see that the behaviour of harmonic numbers when νp(H(n)) ≤ 2 in terms of p-adic valuation is
the following: νp(H(pmn)) = νp(H(n))−m for all m ∈ N; here we give a fragment for the table of p = 5.

Table 1. Table for p = 5: this shows the 5-adic valuation of H(5m + k), where m is
the column index and k is the row index.

ν5(H(5m+ k))
k = 0 k = 1 k = 2 k = 3 k = 4

m = 0 ∞ 0 0 0 2
1 -1 -1 -1 -1 -1
2 -1 -1 -1 -1 -1
3 -1 -1 -1 -1 -1
4 1 0 0 0 1
5 -2 -2 -2 -2 -2
6 -2 -2 -2 -2 -2
...

...
...

...
...

...
19 -2 -2 -2 -2 -2
20 0 0 0 0 0
21 -1 -1 -1 -1 -1
22 -1 -1 -1 -1 -1
23 -1 -1 -1 -1 -1
24 0 0 0 0 0
25 -3 -3 -3 -3 -3
...

...
...

...
...

...
124 -1 -1 -1 -1 -1
125 -4 -4 -4 -4 -4
126 -4 -4 -4 -4 -4
...

...
...

...
...

...

However, Lemma 2.1 cannot be applied to the case νp(H(n)) ≥ 3. We provide formulas that can
apply to this case as well.

Definition 2.2. The Bernoulli numbers Bn are defined using the generating function

t

1− et
=

∞∑
k=0

Bk
tk

k!
.

Definition 2.3. A prime p is a Wolstenholme prime if p | Bp−3.

Proposition 2.4. p is a Wolstenholme prime if and only if p3 | H(p− 1).

This result explains the fact that Wolstenholme primes give occurrences of νp(H(n)) = 3 for n = p − 1
as in the introduction. It is important to report this result (which comes from a paper submitted by
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Gardiner [8] in 1988), as it shows also other equivalent definitions of Wohstenholme primes, that, however,
we did not use in this article.

Below we present the main results of our research:

Theorem 2.5. Let p ≥ 5 be a non-Wolstenholme prime and n ∈ N such that p ∤ n and νp(H(n)) ≥ 3.
Then

(1) If νp(H(n)) ≥ 4, then νp(H(pn)) = 2 and then we perceive the “descent phenomenon”,
(2) If νp(H(n)) = 3 and there does not exists m ∈ N such that νp(H(pmn)) ≤ 2, then νp(H(pmn)) =

2m+ 3 for all m ∈ N,
(3) If νp(H(n)) = 3 and there exists m ∈ N such that νp(H(pmn)) ≤ 2, then there exists M ∈ N

such that νp(H(pMn)) = 0 and

νp(H(pmn)) =


2m+ 3 if m ≤ M

3
+ 1

M −m if m >
M

3
+ 1

for all m ∈ N.

Theorem 2.6. Let p ≥ 5 be a Wolstenholme prime, and n ∈ N such that p ∤ n and νp(H(n)) ≥ 3. Then

(1) If νp(H(n)) = 3, then νp(H(pn)) = 2 and then we perceive the “descent phenomenon”,
(2) If νp(H(n)) ≥ 4 and there does not exists m ∈ N such that νp(H(pmn)) ≤ 3, then νp(H(pmn)) ≥

2m+ 4 for all m ∈ N,
(3) If νp(H(n)) ≥ 4 and there exists m ∈ N such that νp(H(pmn)) ≤ 3, then there exists M ∈ N

such that νp(H(pMn)) = 0 and
νp(H(pmn)) ≥ 2m+ 4 if m ≤ M + 1

3
+ 1

νp(H(pmn)) = M −m if m >
M + 1

3
+ 1

for all m ∈ N.

3. Setting the problem

In this section we will use the Big-O notation,

νp(x− y) ≥ k ⇐⇒ x− y = O(pk).

Proposition 3.1. Let a, b ∈ Z, (b, p) = 1. Then

a

b
=

a

b+ hp
+O(p)

for all h ∈ Z.

Proof. We have

νp

(
a

b
− a

b+ hp

)
= νp

(
ahp

b(b+ hp)

)
≥ 1,

□

Proposition 3.2. Let q ∈ Q. Then νp(q) = k < 1 if and only if there exist a, b ∈ Z, b ̸= 0 with (a, p) = 1
and (b, p) = 1 such that

q = pk
a

b
+O(p).

Proof. (=⇒) Straightforward.
(⇐=) We have

νp

(
q − pk

a

b

)
≥ 1,

then

νp(q) = min
{
νp

(
pk

a

b

)
, νp

(
q − pk

a

b

)}
= k. □

Now, in order to study the behaviour of J(p), we must consider a very important property:
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Lemma 3.3. If n ∈ J(p), νp(H(pn)) ≥ 0, we have

H(pn+ k) =
H(n)

p
+H(k) +O(p)

for each k = 1, . . . p− 1.

Proof. Using Lemma 2.1 and Proposition 3.1 we get

H(pn+ k) = H(pn) +

k∑
i=1

1

pn+ i
=

H(n)

p
+

k∑
i=1

1

i
+O(p) =

H(n)

p
+H(k) +O(p),

□

From Lemma 3.3 follows immediately the following:

Corollary 3.4. If νp(H(pn)) ≥ 1, H(pn+ k) = H(k) +O(p).

It means that the set of indices k = 1, . . . p − 1 such that νp(H(pn + k)) = 0 coincides with the set
of indices k = 1, . . . p− 1 as before such that νp(H(k)) = 0. This explains the repetition with the same
patterns of zeros observed in Table 1, however we cannot yet predict the actual p-adic valuation, only
whether it is null or not. If, on the other hand, νp(H(pn)) = 0, then given that

H(pn+ k) =
H(n)

p
+H(k)

for each k = 1, . . . p − 1, the study of these k with H(pn + k) = 0 is reduced to the study of the p-adic
valuation in modulus p of the initial terms of a shifted sum. We now focus on harmonic numbers of the
type H(pmn).

3.1. Formulas for H(pmn). We recall a stronger version of Lemma 2.1:

Proposition 3.5 (see [3], Lemma 3.1). If p ≥ 5 is prime and n ≥ 1, we have

H(pn) =
H(n)

p
+O(p2).

We could conclude that, if νp(H(n)) ≤ 2, then

νp(H(pn)) = νp(H(n))− 1.

Lemma 3.6. If p ≥ 5 is prime and n ≥ 1, we have

H(p2n) =
H(n)

p2
+O(p),

Proof. Proposition 3.5 implies that there exists α ∈ Q with νp(α) ≥ 0 such that

H(pn) =
H(n)

p
+O(p2),

then

H(p2n) =
H(pn)

p
+O(p) =

H(n)

p2
+O(p).

□

Lemma 3.7. Let a, b ∈ Z, then (b, p) = 1 and k ≥ 0 an integer. Then

a

pkb
=

ab−1

pk
+O(p),

where b−1 denotes the inverse of b modulo pk+1.

Proof. We have

νp

(
a

pkb
− ab−1

pk

)
= νp

(
a(1− bb−1)

pkb

)
≥ 1.

□

Lemma 3.8. If a, b ∈ Z and a = b+O(pk+1),

a

pk
=

b

pk
+O(p).
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Proof. We have

νp

(
a

pk
− b

pk

)
= νp

(
a− b

pk

)
= νp(a− b)− k ≥ 1.

□

We now recall the famous Clausen-Van Staudt Theorem:

Theorem 3.9 (Clausen-Van Staudt). Let n ∈ N and Bi be the i-th Bernoulli number, then

B2n +
∑

p prime
(p−1)|2n

1

p

is an integer.

See [4] for a proof of the theorem.

Corollary 3.10. Let n ∈ N and Bi be the i-th Bernoulli number, then

i) νp(B2n) ≥ −1,
ii) νp(B2n) = −1 ⇐⇒ p− 1 | 2n.

The previous Propositions and Lemmas are used to investigate H(pmn) more in detail:

Theorem 3.11. Let n,m be non-negative integers and p ≥ 5 be a prime number, then the following
formula holds

H(pmn) =
H(n)

pm
+

m−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(m−h)n2k +O(p), (1)

where Bi is the i-th Bernoulli number.

Proof. In order to prove the statement:
Let us define

am(n) :=

m−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(m−h)n2k.

Hence the statement becomes:

H(pmn) =
H(n)

pm
+ am(n) +O(p).

The proof follows by induction on m: our aim is to find functions χm(n) such that the following congru-
ences hold:

H(pm+1n) =
H(pn)

pm
+ am(n) +O(p) =

H(n)

pm+1
+ χm(n) + am(n) +O(p) =

H(n)

pm+1
+ am+1(n) +O(p).

Step 1. Find χm(n) such that
H(pn)

pm
=

H(n)

pm+1
+ χm(n) +O(p).

Step 2. Prove that, for the χm(n) already found, it holds

χm(pn) + am(n) = am+1(n) +O(p).

Proof of step 1. By Proposition 3.5 and noting that

H(pn) =

n∑
k=1

1

pk
+

n−1∑
ℓ=0

p−1∑
k=1

1

ℓp+ k
,

we obtain

H(pn)

pm
=

1

pm

(
n∑

k=1

1

pk
+

n−1∑
ℓ=0

p−1∑
k=1

1

ℓp+ k

)
+O(p)

=
1

pm

(
H(n)

p
+

n−1∑
ℓ=0

p−1∑
k=1

1

ℓp+ k

)
+O(p)

=
H(n)

pm+1
+

1

pm

n−1∑
ℓ=0

p−1∑
k=1

1

ℓp+ k
+O(p).
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Hence, we found

χm(n) =
1

pm

n−1∑
ℓ=0

p−1∑
k=1

1

ℓp+ k
.

We focus on the inner sum of the RHS:

1

pm

p−1∑
k=1

1

ℓp+ k
=

1

pm

p−1∑
k=1

(ℓp+ k)p
m(p−1)−1 +O(p)

=
1

pm

(
ℓp+p−1∑
k=1

kp
m(p−1)−1 −

ℓp∑
k=1

kp
m(p−1)−1

)
+O(p)

=
1

pm

(ℓ+1)p∑
k=1

kp
m(p−1)−1 −

ℓp∑
k=1

kp
m(p−1)−1

+O(p). (2)

We have taken advantage of the fact that, if y has an inverse modulo n, y−1 ≡ yφ(n)−1(mod n) by
Euler’s Theorem, where φ denotes Euler’s totient function. This explains the choice of the exponent
pm(p− 1) = φ(pm+1).
Now the recurring expression

1

pm

ℓp∑
k=1

kp
m(p−1)−1

can be simplified using Bernoulli’s formula for sums of powers (Faulhaber’s formula, see [5, §4] pag. 106):

1

pm

ℓp∑
k=1

kp
m(p−1)−1 =

1

p2m(p− 1)

pm(p−1)−1∑
k=0

(−1)kBk

(
pm(p− 1)

k

)
(ℓp)p

m(p−1)−k. (3)

In terms of congruence modulo p, the terms with 0 ≤ k < pm(p−1)−2m vanish since they have positive
p-adic valuation: by Corollary 3.10 we find that νp(Bk) ≥ −1. Moreover, the p-adic valuation of a
binomial coefficient is non-negative and by removing B1 we do not need the factor (−1)k because Bk = 0
for all k ≥ 3 odd. Then, the RHS of (3) is equal to

1

p2m(p− 1)

2m∑
k=1

Bpm(p−1)−k

(
pm(p− 1)

k

)
(ℓp)k.

Resuming from (2), we arrive at

1

pm

p−1∑
k=1

1

ℓp+ k
=

1

pm

(ℓ+1)p∑
k=1

kp
m(p−1)−1 −

ℓp∑
k=1

kp
m(p−1)−1

+O(p)

=
1

p2m(p− 1)

2m∑
k=1

Bpm(p−1)−k

(
pm(p− 1)

k

)(
((ℓ+ 1)p)

k − (ℓp)k
)
+O(p).

Now we have a candidate χm(n), and by rearranging terms, developing the telescopic sum and highlight-
ing again that Bk = 0 for all k ≥ 3 odd, we arrive at the following

χm(n) =
1

p2m(p− 1)

n−1∑
ℓ=0

2m∑
k=1

Bpm(p−1)−k

(
pm(p− 1)

k

)(
((ℓ+ 1)p)

k − (ℓp)k
)
+O(p)

=
1

p2m(p− 1)

2m∑
k=1

Bpm(p−1)−k

(
pm(p− 1)

k

)
(np)k +O(p)

=
1

pm

2m∑
k=1

Bpm(p−1)−k

k

(
pm(p− 1)− 1

k − 1

)
(np)k +O(p)

=

m∑
k=1

Bpm(p−1)−2k

2kpm

(
pm(p− 1)− 1

2k − 1

)
(np)2k +O(p).

Proof of step 2. In order to conclude the global proof we need to show that it holds

am+1(n) = χm(pn) + am(n) +O(p),
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The identity is true for m = 3 and, given the inductive hypothesis, the identity is trivial since χm(n)
just found is exactly the m-th term of the sum of am(n). □

4. Proof of Theorem 2.5 and 2.6

We recall here this famous result from Kummer:

Theorem 4.1 (Kummer’s Congruence). If a, b ∈ N are even, not divisible by p − 1 and a = b +
O(p− 1), then

Ba

a
=

Bb

b
+O(p).

Now we are able to prove Theorem 2.5.

4.1. Proof of Theorem 2.5.

Proof of Theorem 2.5.

(1) If we prove that H(p3n) = O(p) it follows from Lemma 3.6 that H(pn)
p2 = O(p) and this means

that νp(H(pn)) ≥ 2. We consider then Theorem 3.11 for m = 3:

H(p3n) =
H(n)

p3
−Bp2(p−1)−2

n2

2
+O(p) =

H(n)

p3
− Bp−3

3
n2 +O(p) = −Bp−3

3
n2 +O(p),

as by hypothesis, νp(H(n)) ≥ 4. The RHS has valuation zero if p is non-Wolstenholme: in fact,
using Theorem 4.1 to justify the Bernoulli number congruence,

−
Bp2(p−1)−2

2
=

Bp2(p−1)−2

p2(p− 1)− 2
+O(p) =

Bp−3

p− 3
+O(p) = −Bp−3

3
+O(p).

(2) By hypothesis, for all m ∈ N, H(pmn) = O(p), we then evaluate formula (1) in pjn: ∀j ∈ N,
where p ∤ n,

H(pm+jn) = O(p) and

H(pm+jn) =
H(pjn)

pm
+

m−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(m−h+j)n2k +O(p).

We now aim to prove that the term with the lowest p-adic valuation in the sum is obtained for
h = m− 1, k = 1. This term has valuation

vmin =νp

(
Bpm−1(p−1)−2

2pm−1

(
pm−1(p− 1)− 1

1

)
p2(j+1)n2

)
=

= νp
(
Bpm−1(p−1)−2

)
+ 2j + 3−m =

= νp (Bp−3) + 2j + 3−m = 2j + 3−m.

Once again we used Theorem 4.1 and Proposition 3.2 to justify the Bernoulli number congruence

−
Bpm−1(p−1)−2

2
=

Bpm−1(p−1)−2

pm−1(p− 1)− 2
+O(p) =

Bp−3

p− 3
+O(p) = −Bp−3

3
+O(p),

from which follows the equivalence of valuations if p is non-Wolstenholme. Now we discuss the
p-adic valuation term by term in the sum. Each summand may be represented as a pair (h, k)
as coordinates in the two sums formula with 2 ≤ h ≤ m− 1 and 1 ≤ k ≤ h. Therefore each term
falls into one of these three groups:
i) The term corresponding to (h, k) = (m− 1, 1), discussed above,
ii) Terms of the forms (h, k) such that (p− 1) | 2k (except the summand in the (i) group),
iii) The remaining terms.

For the general summand in (1) we have:

νp

(
Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(m−h+j)n2k

)
=

= νp
(
Bph(p−1)−2k

)
+ νp

(
ph(p− 1)− 1

2k − 1

)
+ 2k(m− h+ j)− h− νp(k)
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≥ νp
(
Bph(p−1)−2k

)
+ 2k(m− h+ j)− h− νp(k)

≥ νp
(
Bph(p−1)−2k

)
+ 2k(m− h+ j)− h+ (k − νp(k)− 1)− k + 1

≥ νp
(
Bph(p−1)−2k

)
+ 2k(m− h+ j)− h− k + 1

≥ νp
(
Bph(p−1)−2k

)
+ 2k

(
m− h+ j − 1

2

)
− h+ 1, (4)

as k > 1 + νp(k) for p ≥ 5, and k ≥ 2. Now, we use Corollary 3.10: νp
(
Bph(p−1)−2k

)
≥ −1 and

νp
(
Bph(p−1)−2k

)
= −1 if and only if (p− 1) | 2k.

If the terms belong to group (ii), (p− 1) | 2k, then (4) is greater than

2k
(
m− h+ j − 1

2

)
− h

≥(p− 1)(m− h+ j − 1

2
)−m+ 1

≥(p− 1)(1 + j − 1

2
)−m+ 1 > vmin.

Otherwise, if the terms belong to group (iii), the inequality h < m− 1 is strict, bearing in mind
that for group (iii) we have (h, k) ̸= (m− 1, 1) and k ≥ 2. Then (4) is greater than

2k
(
m− h+ j − 1

2

)
− h+ 1

>2k
(1
2
+ j
)
−m+ 2

>2(1 + j)−m+ 1

=2j + 3−m = vmin.

Therefore we find that the sum has valuation vmin, which is negative for sufficiently large m,
thus

νp
(
H(pjn)

)
−m = νp

(
H(pjn)

pm

)
= vmin = 2j + 3−m,

that means

νp
(
H(pjn)

)
= 2j + 3.

(3) If instead there exists m ∈ N such that νp(H(pmn)) ≤ 2, then by the descent phenomenon there
exists M ∈ N such that νp(H(pMn)) = 0. Then again evaluating formula (1) in H(pM pjn) with
m = M in pjn, where p ∤ n, we have

H(pM pjn) =
H(pjn)

pM
+

M−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(M−h+j)n2k +O(p),

where the LHS has valuation −j, and by the same reasoning as in case (2) the RHS is a sum of
two terms of valuation respectively νp(H(pjn))−M and 2j+3−M . Now surely both valuation
cannot exceed −j, since then the LHS and RHS would then have different valuations. Thus, we
have the following cases:

� If 3j + 3 > M , then νp(H(pjn)) = M − j.
� If νp(H(pjn)) > M − j, then 3j + 3 = M .
� If 3j + 3 ≤ M and νp(H(pjn)) ≤ M − j, then νp(H(pjn)) = 2j + 3.

Therefore, by rearranging the results, we conclude the proof. □

4.2. Proof of Theorem 2.6. Using the same arguments we can prove the analogous theorem for
Wolstenholme primes.

Proof of Theorem 2.6.

(1) Again, using the same reasoning as in the previous Theorem, we evaluate formula (1) in m = 3:

H(p3n) =
H(n)

p3
−Bp2(p−1)−2

n2

2
+O(p) =

H(n)

p3
+

Bp−3

3
n2 +O(p) =

H(n)

p3
+O(p),

where the RHS has valuation zero. We note that this fact proves the descent phenomenon in the
case m = 3 for Wolstenholme primes.
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(2) As before, we evaluate formula (1) in pjn, where p ∤ n:

H(pm+jn) = O(p) and

H(pm+jn) =
H(pjn)

pm
+

m−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(m−h+j)n2k +O(p).

Differently from the proof of Theorem 2.5 the minimum valuation term in the sum is not known,
but the lowest valuation of each summand is vmin ≥ 2j +4−m according to the same argument
used in the previous proof. Thus, since the LHS has positive valuation, we have

νp

(
H(pjn)

pm

)
≥ 2j + 4−m,

otherwise, thanks to ultrametric inequality, we would have

νp
(
H(pm pjn)

)
= 2j + 4−m

that contradicts the hypothesis for sufficiently large m.
If, instead, there exists m ∈ N such that νp(H(pmn)) ≤ 3 then by descendent phenomenon there
exists M ∈ N such that νp(H(pMn)) = 0. Therefore, we have:

νp(H(pM+jn)) = −j.

Then again, evaluating formula (1) for m = M in pjn, where p ∤ n, we have the following
congruence:

H(pM pjn) =
H(pjn)

pM
+

M−1∑
h=2

h∑
k=1

Bph(p−1)−2k

2kph

(
ph(p− 1)− 1

2k − 1

)
p2k(M−h+j)n2k +O(p)

=
∆

pM
+Σ,

say. In this formula the p-adic valuation of the three terms are:
• νp(H(pM pjn)) = −j,

• νp

(
∆

pM

)
= νp(∆)−M ,

• νp(Σ) ≥ 2j + 4−M .
In order to complete the proof, we will use the p-adic valuation inequality to find a bound for
νp(∆). However, in contrast to the situation in Theorem 2.5 case (3), there is not the exact
valuation of νp(Σ). Hence, the possibilities are:

i) νp(∆)−M = −j νp(Σ) > −j

ii) νp(∆)−M > −j νp(Σ) = −j

iii) νp(∆)−M = νp(Σ) ≤ −j

We combine these results with the inequality for νp(Σ) in order to estimate νp(∆). It is important
to notice that the condition νp(Σ) > −j does not provide information combined with the other
inequality concerning νp(Σ).

i.a) νp(∆) = M − j < 2j + 4 if M < 3j + 4 and (i) holds,

i.b) νp(∆) = M − j ≥ 2j + 4 if M ≥ 3j + 4 and (i) holds,

ii) νp(∆) > M − j > 2j + 4 if M ≥ 3j + 4 and (ii) holds,

iii) νp(∆) = νp(Σ) +M ≥ 2j + 4 if M ≥ 3j + 4 and (iii) holds.

This yields the desired result. □

5. Conclusions and further developments

We highlight the fact that the existences of pairs (n, p) satisfying case (2) in Theorems 2.5 or 2.6 would
disprove the conjecture of Eswarathasan and Levine on the finiteness of Jp: to achieve this outcome in
formula (1) the sum should somehow vanish in valuation. We also point out that alas the refutation of
case (2) unfortunately does not imply Eswarathasan and Levine’s conjecture, or even Boyd’s conjecture
on the impossibility of νp(H(n)) ≥ 4, which would require the cases (1), (2) to be false, and M = 3 in
case (3).
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One possible way to use the results achived could be that one undertaken by Sanna [11] to “count”
the number of elements of Jp with p-adic valuation greater than 1. One could try to count the number
of elements with p-adic valuation greater or equal to a positive integer k in order to refute case 2 of
Theorem 2.5. The problem in this case is that Sanna’s Lemma 2.2 on short intervals works when looking
for elements that cancel the derivative in a field Zp (f ′

d ≡ 0 mod p). As this case concerns a ring Zpk

the number of roots of a polynomial cannot be bounded, in general, by p. Bounding it by (d − 1)pk−1

leads to overestimating the roots and then to a choice of z that is inadequate for our purpose.
According to the same arguments used in this paper it does not appear too difficult to extend Theorems

2.5- 2.6 for the generalized harmonic sum

Hα(n) :=

n∑
k=1

1

kα

in the case (p− 1) ∤ α, the only difference being that the descent phenomenon lowers the valuation by α.
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