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Abstract
Aims: The Raunkiær's system classifies vascular plants into life forms based on the po-
sition	of	renewal	buds	during	periods	unfavourable	for	plant	growth.	Despite	the	im-
portance of Raunkiær's system for ecological research, a study exploring the diversity 
and distribution of life forms on a continental scale is missing. We aim to (i) map the 
diversity and distribution of life forms in European vegetation and (ii) test for effects 
of	bioclimatic	variables	while	controlling	for	habitat-	specific	responses.
Location: Europe.
Methods: We	used	data	on	life	forms	of	8883	species	recorded	in	546,501	vegetation	
plots of different habitats (forest, grassland, scrub and wetland). For each plot, we 
calculated: (i) the proportion of species of each life form and (ii) the richness and even-
ness	of	life	forms.	We	mapped	these	plot-	level	metrics	averaged	across	50 km × 50 km	
grid cells and modelled their response to bioclimatic variables.
Results: Hemicryptophytes were the most widespread life form, especially in the 
temperate zone of Central Europe. Conversely, therophyte and chamaephyte species 
were more common in the Mediterranean as well as in the dry temperate regions. 
Moreover, chamaephytes were also more common in the boreal and arctic zones. 
Higher	proportions	of	phanerophytes	were	 found	 in	 the	Mediterranean.	Overall,	 a	
higher richness of life forms was found at lower latitudes while evenness showed 
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1  |  INTRODUC TION

Christen Christiansen Raunkiær (1934) proposed a classification 
system of vascular plant life forms based on the position and the 
degree of protection of the renewal buds during periods unfavour-
able for plant growth (i.e., cold and/or dry seasons). The system is 
based on the theory that the strategy for protecting the perennating 
organs reflects plant adaptation to cope with (micro)climatic con-
ditions — particularly	extremes,	 such	as	 frost	and	drought.	Despite	
various updates and advancements in the classification system and 
the addition of several subcategories within each life form (see e.g., 
Mueller-	Dombois	 &	 Ellenberg,	 1974; Galán de Mera et al., 1999), 
six main Raunkiær's life forms are most commonly used to classify 
vascular plants: therophytes, hydrophytes, geophytes, hemicrypto-
phytes, chamaephytes and phanerophytes (Cain, 1950) (see Box 1 
for further details on each life form).

Over	 several	 decades,	 the	 Raunkiær's	 system	 became	 one	
of	 the	 most	 commonly	 used	 life-	form	 classification	 systems	 due	
to its simplicity and adaptability to various types of vegetation 
(Adamson,	1939; Cain, 1950). For these reasons, it has been widely 
applied to study the impacts of environmental change on vegeta-
tion (Harrison et al., 2010; Marini et al., 2011) and to study biogeo-
graphic	 patterns	 in	 plants	 (Danin	&	Orshan,	1990; Pignatti, 1994; 
Pavón et al., 2000;	 Irl	 et	 al.,	2020). More recently, Raunkiær's life 
forms have also been proposed as indicators of plant trait syndrome 
driving local persistence strategies, particularly in insular systems 
(Ottaviani	et	al.,	2020; Conti et al., 2022).

The Raunkiær's system is especially useful for classifying floras 
in seasonal climates where the growing season is determined by 
frost occurrence and/or water scarcity. Consequently, the diversity 
and distribution of life forms in European plant communities are ex-
pected to be strongly determined by climatic conditions. For exam-
ple, the flora of continental temperate Europe is largely composed 
of hemicryptophytes with perennating buds at the ground surface 
(Leuschner & Ellenberg, 2017). This represents an effective adap-
tation to survive in herbaceous vegetation types characterised by 
winters with persistent snow cover and disturbed by mowing and 
grazing. Conversely, the strategy of chamaephytes (with buds rarely 

higher	 than	 25 cm	 above	 the	 ground	 surface)	 is	 well	 adapted	 to	
take advantage of the higher surface temperatures as well as high 
wind	speeds	and	little	snow	cover	(Bliss,	1962).	As	a	result,	it	is	ex-
pected that they will occur more frequently in alpine/tundra zones, 
where their morphology can provide an insulating microclimate that 
protects	 them	 from	 frost	 (e.g.,	 in	 cushion-	like	 plants)	 (Matteodo	
et al., 2013), as well as in the Mediterranean regions, where they can 
survive dry periods thanks to the high heteromorphism of transpir-
ing	organs	(Montserrat-	Martí	et	al.,	2011).

At	the	same	time,	there	is	a	strong	association	between	the	dis-
tribution of Raunkiær's life forms and specific habitat types since the 
latter can be defined based on the dominance of certain life forms 
(such as phanerophytes in forests and chamaephytes in heathlands; 
Chytrý et al., 2020) and because some habitats themselves are in 
turn largely driven by climate. Consequently, human impacts on 
European	 vegetation	 have	 strongly	 shaped	 life-	form	 distribution,	
leading	to	a	shift	from	mostly	forest-	dominated	landscapes	to	open	
habitat	 types	 (Dengler	et	al.,	2020). For this reason, assessing the 
response of the diversity of Raunkiær life forms to environmental 
factors necessitates accounting for different habitat types to control 
for potential dependence between certain habitats and life forms. 
Indeed,	controlling	for	differences	among	major	habitat	types	is	key	
to better identifying patterns of functional trait variation along bio-
climatic gradients (Kambach et al., 2023).

Understanding the diversity and distribution of plant func-
tional	 traits	 and	 life	 forms	has	a	broad	appeal	 in	macro-	ecological	
and	biogeographical	research	(Violle	et	al.,	2014). The link between 
Raunkiær's life forms and vegetation type has been widely explored 
in the past century (Raunkiær, 1934;	Adamson,	1939; Cain, 1950) 
and their variation along climatic gradients have been described 
in	 spatially-	constrained	 areas	 (e.g.,	 in	 elevational	 gradient	 studies;	
Irl	et	al.,	2020; Pavón et al., 2000; Matteodo et al., 2013). Previous 
studies	have	also	shown	the	 large-	scale	distribution	of	plant	 traits	
associated with plant growth forms along climatic gradients (such as 
plant height; Moles et al., 2009;	Olson	et	al.,	2018) and how these 
changes are influenced, in part, by the differentiation between 
growth habits (Zanne et al., 2014).	Nevertheless,	to	our	knowledge,	
there	have	been	only	a	 few	studies	explicitly	analysing	 large-	scale	

more spatially heterogeneous patterns. Habitat type was the main discriminator for 
most	of	the	responses	analysed,	but	several	moisture-	related	predictors	still	showed	
a marked effect on the diversity of therophytes and chamaephytes.
Conclusions: Our	maps	can	be	used	as	a	 tool	 for	 future	biogeographic	and	macro-	
ecological research at a continental scale. Habitat type and bioclimatic conditions are 
key for regulating the diversity and distribution of plant life forms, with concomi-
tant consequences for the response of functional diversity in European vegetation to 
global environmental changes.

K E Y W O R D S
annual plant, growth form, plant functional trait, plant life span, shrub, species richness, tree
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patterns of plant life forms within single biogeographical regions 
(Taylor et al., 2023)	 and	 habitat	 types	 (Blasi	 et	 al.,	 1990; Loidi 
et al., 2021).

As	a	 result,	we	currently	 lack	substantial	knowledge	about	 the	
geographic distribution of diversity in Raunkiær's life forms in Europe 
and how bioclimatic factors contribute to this distribution across 
different habitat types. Under the assumption that the Raunkiær's 
life	 forms	 represent	 life-	history	 traits	 maximising	 organisms'	 per-
formance	 under	 a	 given	 set	 of	 environmental	 conditions	 (Violle	
et al., 2007), we expect life forms to respond to both temperature 
and moisture gradients in various habitat types. Likewise, previous 
studies have shown that (continuous) trait syndromes follow consid-
erable	geographic	variation	at	 large	 spatial	 scales	 (e.g.,	Bruelheide	
et al., 2018) and that environmental conditions explain some of 
these patterns when accounting for responses within individual hab-
itat types (Padullés Cubino et al., 2021; Kambach et al., 2023).

The	 recently	 assembled	 vegetation-	plot	 databases	 covering	
large areas (Chytrý et al., 2016;	 Bruelheide	 et	 al.,	 2019; Sabatini 
et al., 2021) are an excellent means of exploring such patterns at 
the	pan-	European	scale.	They	allowed	us	to	check,	for	the	first	time,	

the distribution and diversity of plant life forms within and among 
different habitat types across a wide range of bioclimatic conditions 
and biogeographic regions located on the European continent. Here, 
we calculated the proportion of species for the six Raunkiær's life 
forms and the diversity (richness and evenness) of life forms in about 
half a million vegetation plots of forest, grassland, scrub and wetland 
habitats across Europe. We present maps of various metrics mea-
suring	life-	form	diversity	at	a	resolution	of	50 km × 50 km	and	mod-
elled their response to climate while controlling for the main habitat 
categories.

2  |  MATERIAL S AND METHODS

2.1  |  Vegetation data selection

The	initial	data	set	consisted	of	1,508,375	vegetation	plots	from	the	
European	Vegetation	Archive	(EVA;	Project	163;	Chytrý	et	al.,	2016; 
data	retrieved	28	November	2022).	Most	plots	were	georeferenced	
with	coordinate	uncertainty	of	 less	 than	5 km,	while	only	188,035	

BOX 1 Overview of the main Raunkiær's life forms

Therophytes.	Annual	plants,	 in	which	perennating	organs	correspond	to	the	embryo	contained	 in	 the	seeds	since	no	other	organ	
survives	the	unfavourable	season.	Such	life	form	is	often	associated	with	semi-	arid	and	desert	climates	as	the	best	effective	adapta-
tion to the driest conditions for plant growth or, more generally, to habitats with short windows of opportunity, either due to short 
growing seasons (e.g., steppe) or frequent disturbance events (e.g., arable land).

Hydrophytes.	Aquatic	or	semi-	aquatic	plants.	They	were	originally	classified	by	Raunkiær	as	a	subgroup	of	cryptophytes	 (‘hidden	
plants’;	 including	also	geophytes	and	helophytes).	Hydrophytes	 include	plants	with	 free-	floating	buds	at	 the	water	 surface	 (e.g.,	
Lemna spp.) as well as plants whose perennating organs are rooted in the soil (e.g., Nymphaea	 spp.).	Helophytes — namely	plants	
with submerged perennating organs but with emergent stems (e.g., Typha	spp.) — are	also	included	in	the	hydrophyte	category	in	the	
present study.

Geophytes.	Herbaceous	perennial	plants	bearing	underground	buds	during	the	unfavourable	season.	Buds	are	borne	by	underground	
perennating organs such as rhizomes, tubers, bulbs or corms. These organs serve as a food supply enabling geophytes to have a 
rapid vegetative development compared to many other life forms when the adverse season ends. This life form is therefore more 
successful in Mediterranean climates and in temperate forest understories, where they can quickly sprout before canopy leaves are 
formed in the early spring. Geophytes can overlap with hemicryptophytes if the perennating buds are located at the base of the stem 
but still placed belowground (e.g., Elytrigia repens).

Hemicryptophytes. Herbaceous perennial plants with buds located at the ground surface. Raunkiær's system further distinguishes 
between	(1)	non-	rosette	plants	with	absent	basal	leaves	(e.g.,	Silene dioica); (2) partial rosette plants with both stem and basal leaves 
(e.g., Ajuga reptans); and (3) plants with basal leaves only (e.g., Primula veris). The hemicryptophytes are a very diverse group and 
constitute the most widespread life form in floras of humid temperate climates.

Chamaephytes.	Woody	perennial	plants	with	buds	above	the	ground	surface	but	lower	than	approximately	25 cm.	Thus,	buds	of	such	
plants	are	often	protected	by	snow	or	by	above-	ground	plant	biomass	present	 in	the	vegetation	(including	dead	leaves	on	forest	
floors) during unfavourable conditions. The chamaephytes have a positive relationship with latitude and elevation proposed by 
Raunkiær, although they are widely representative of the subtropical evergreen and Mediterranean vegetation as well.

Phanerophytes.	Woody	 perennial	 plants	 with	 buds	 placed	 higher	 than	 25 cm	 above	 the	 ground	 surface.	 Phanerophytes	 include	
large trees (e.g., Fagus sylvatica), shrubs (e.g., Rhododendron spp., Viburnum spp.) and woody lianas (e.g., Hedera spp.). Subcategories 
described by Raunkiær span from small shrubs (=nanophanerophytes) to very tall trees (=megaphanerophytes). The geographical 
distribution	of	such	variants	is	linked	to	bioclimatic	determinants	of	plant	stature	in	the	vegetation	and	within-	species	variability.

 16541103, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jvs.13229 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [14/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 15  |    
Journal of Vegetation Science

MIDOLO et al.

plots did not contain coordinate uncertainty information but were 
retained.	We	 focused	only	on	plots	 in	Europe	 and	excluded	1664	
plots	from	Armenia,	Azerbaijan,	Cyprus,	Georgia,	Russia,	Turkey	and	
the	Arctic	Ocean	islands.

The vegetation plots were then classified into four major habi-
tat types based on species composition and cover: forest, grassland, 
scrub	and	wetland	using	the	European	Nature	 Information	System	
(EUNIS)	Habitat	 Classification	 expert	 system	 (Chytrý et al., 2020; 
ver.	 2021-	06-	01).	We	 excluded	 549,238	 plots	 that	 did	 not	 corre-
spond to any of these four habitat types. Regarding the size of plots, 
we	selected	only	plots	in	the	range	of	100–1000 m2 for forests and 
1–100 m2	 for	 the	 other	 habitat	 types	 and	 excluded	 46,620	 plots	
outside these ranges. However, we retained plots of unknown size 
because otherwise an important part of the geographic coverage 
would	have	been	lost	(see	Večeřa	et	al.,	2021).

To avoid oversampling of specific vegetation types, we strat-
ified vegetation plots by geographic location and habitat. To this 
end,	plots	for	each	habitat	type	(at	hierarchical	level	3	of	the	EUNIS	
Habitat Classification system) were randomly selected with a min-
imum	threshold	distance	of	8.6 × 10−4 degrees (corresponding to a 
resolution	 of	 approximately	 100 m)	 using	 the	 ‘clean_dup’	 function	
of the R package ntbox	 (Osorio-	Olvera	et	al.,	2020). This approach 
allowed us to maintain sufficient spatial variability in species com-
position	 across	 different	 level-	3	 EUNIS	 habitats	 while	 reducing	
the potential for pseudoreplication originating from spatially close 
vegetation	plots	with	potentially	 similar	 composition.	After	 spatial	
thinning,	a	total	of	353,297	plots	were	excluded.	In	addition,	11,055	
plots with less than 90% of the total number of species that could 
not be assigned to life forms were discarded. Finally, we obtained 
546,501	 vegetation	 plots	 used	 in	 our	 analysis	 (173,190	 forests,	
260,884	grasslands,	52,517	scrubs	and	59,910	wetlands).

2.2  |  Plant nomenclature and life- form data

Our	 vegetation	 data	 included	 a	 total	 of	 10,281	 taxa	 (hereafter	
referred to as species) classified as species, subspecies, hybrids 
and	aggregates,	excluding	non-	vascular	plants	and	taxa	identified	
at the genus level only. The taxonomy and plant nomenclature 
was unified according to the Euro+Med	 PlantBase	 (2023). We 
used	species	aggregates	following	the	EUNIS-	ESy	expert	system,	
which merges some related and similar species that are often 
not distinguished or misidentified (Chytrý et al., 2020). These 
species aggregates include some from the Euro+Med	PlantBase	
and	others	 defined	 in	EUNIS-	ESy.	 Information	 regarding	 species	
merging and the content of these aggregates can be found in 
the	 EUNIS-	ESy	 repository	 (https:// doi. org/ 10. 5281/ zenodo. 
4812736). Cover values belonging to the same species following 
nomenclature corrections were summed within the same plot and 
vegetation layer, while covers of the same species within different 
vegetation layers were merged using the formula proposed by 
Fischer (2015). This formula combines cover values of the same 
species occurring at different vegetation strata within the same 

plot, assuming random overlap while ensuring that the combined 
cover values do not exceed 100% (Fischer, 2015). We used data on 
Raunkiær's	life	forms	by	Dřevojan	et	al.	(2023) available at https:// 
flora veg. eu. These data were compiled using several databases 
and	 floras	 (Săvulescu,	 1952–1976; Horváth et al., 1995; Klotz 
et al., 2002;	 Tavşanoğlu	 &	 Pausas,	 2018; Guarino et al., 2019; 
Kaplan et al., 2019),	 European	 broad-	scale	 vegetation	 studies	
(Wagner et al., 2017; Giulio et al., 2020) and different online 
sources	 (e.g.,	 CATMINAT,	 2020, http:// phili ppe. julve. pages perso 
-		orange.	fr/	catmi	nat.	htm; GreekFlora.gr, 2020, www. greek flora. 
gr).	 In	the	case	of	different	assessments	 in	original	data	sources,	
Dřevojan	 et	 al.	 (2023) critically revised them using additional 
sources and their knowledge.

The database covered 8883 species present across our vegeta-
tion	data,	 including	non-	native	 species.	Thus,	we	did	not	 consider	
1398	vascular	plant	species	for	which	life-	form	data	were	not	avail-
able. However, these species were very rare in our dataset, with a 
frequency	ranging	from	1	to	232	occurrences	(mean = 8.3;	SD = 17.1).	
Our	final	selection	resulted	in	the	following	number	of	species	cat-
egorised in one or more of the following life forms: therophytes 
(1816	species),	hydrophytes	(153	species),	geophytes	(959	species),	
hemicryptophytes	(5006	species),	chamaephytes	(1020	species)	and	
phanerophytes (909 species). We excluded epiphytes, represented 
by seven species only in our data. Each species was assigned to one 
(7916	species),	two	(954	species),	or	three	(13	species)	life-	form	cat-
egories, since plants of the same species can develop different life 
forms depending on site conditions (e.g., Médail et al., 2019).

2.3  |  Calculating and mapping life- form diversity

We calculated two diversity metrics of plant life forms for each plot: 
(i) the proportion of species of each life form and (ii) the diversity of 
life forms, namely richness and evenness. Species assigned to more 
than one life form were counted as separate life forms at the plot 
level, dividing their cover by the number of life forms assigned to that 
species.	Following	Večeřa	et	al.	(2021), we calculated the proportion 
of species of each life form as the number of species belonging to 
this life form divided by the total number of species recorded in the 
plot. Using proportions rather than the absolute species number 
decreases the effect of changes in species richness related to 
different	plot	sizes	of	sampled	vegetation	(Večeřa	et	al.,	2021).

The	community-	level	richness	of	plant	life	forms	was	defined	as	
the	count	of	 life	 forms	present	 in	each	plot.	To	calculate	 life-	form	
evenness, we summed the cover of species belonging to the same 
life form in each plot and applied Pielou's evenness index using the 
‘diversity’	 function	of	 the	vegan	R	package	 (Oksanen	et	al.,	2020). 
Pielou's index was calculated by dividing the Shannon index by the 
log-	transformed	number	of	life	forms	present	in	the	plot.	We	then	
omitted	from	this	analysis	7477	plots	 in	which	evenness	could	not	
be calculated because only one life form was present in the plot. 
Evenness was poorly correlated with richness (Pearson's r = 0.21).	We	
used	life-	form	richness	and	evenness	rather	than	multidimensional	
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functional diversity metrics (such as functional evenness and diver-
gence;	see	Villéger	et	al.,	2008) as the latter are commonly applied 
when multiple traits are involved. Thus, since we only look at life 
forms as a single trait dimension, we consider the richness and even-
ness of life forms more intuitive metrics.

We prepared maps for the entire data set to visualise the 
geographical distribution patterns of life forms across Europe. 
Additionally,	 we	 generated	 habitat-	specific	 maps	 by	 dividing	
the data set to examine patterns unique to each habitat type 
(Appendix	 S1). We assigned vegetation plots to a UTM grid 
(‘EPSG:32633’)	 of	 50 km × 50 km	 resolution	 and	 calculated,	 for	
each metric, the arithmetic mean of the values from all the plots 
located in a given grid cell. Such spatial resolution, although 
coarse,	accounts	for	poorly-	sampled	areas	of	Europe	 in	our	data	
(see e.g., Padullés Cubino et al., 2021;	Večeřa	et	al.,	2021), since 
single or few plots cannot properly represent vegetation data of 
one area. To deal with different sampling densities in the data set, 
we only displayed grid cells containing at least five plots for each 
metric analysed. We established the colour scale for each metric 
by grouping its values using k-	means	 clustering.	 To	better	 inter-
pret the biogeographic distribution of values within each map, 
we assigned each cell to the European biogeographical regions 
(European	Environment	Agency,	2022) based on its geographical 
location and calculated arithmetic means and standard deviations 
of	cell	values	across	each	region	(see	Appendix	S2).

The patterns observed in our maps can be influenced by the spe-
cies richness of vegetation plots. Thus, we prepared additional maps 
based on standardised effect sizes (SES) of the analysed metrics 
(Appendix	S3).	In	each	plot,	we	shuffled	species	identity	500	times	
without	replacement	for	those	species	that	contained	life-	form	data	
by	randomly	sampling	habitat	type-	specific	species	pools.	Thus,	we	
retained the same number of species and their abundances in each 
plot	 but	with	 a	 different	 life-	form	 composition	 at	 each	 repetition.	
We	 then	 re-	calculated	 the	expected	values	 for	 all	metrics	 at	each	
repetition.	We	calculated	SES	as	(observed	value − mean	of	the	ex-
pected values)/standard deviation of the expected values (Gotelli 
& McCabe, 2002).	Thus,	SES < −1.96	or	>1.96	indicate	significantly	
lower and higher values of a given metric than expected at random, 
respectively.	We	report	maps	obtained	this	way	in	Appendix	S3. We 
also prepared alternative maps for the proportion of life forms by 
selecting the list of species found across all plots located in each 
50 km × 50 km	 grid	 cell	 and	 calculating	 the	 proportion	 of	 each	 life	
form	of	species	found	in	that	cell	(Appendix	S3).

To better interpret the patterns found and to check for potential 
bias related to low overall richness in the plots, we further assessed 
which life form prevails in plots with low richness and evenness (see 
Appendix	S4). To do so, we selected plots with richness and even-
ness equal to or lower than the 10th quantile of the diversity values 
in	our	data	(10th	quantile	richness = 2;	10th	quantile	evenness = 0.2).	
This	resulted	in	a	subset	of	69,585	and	54,178	plots	for	richness	and	
evenness, respectively. Then, we summed the total relative cover 
of Raunkiær's life forms in each plot and selected the life form with 
the highest cover value in each plot. We plotted the maps with cells 

of the grid containing at least five plots with low richness (≤ 2) and 
evenness (≤ 0.2) and highlighted separately those containing at least 
five plots where a given life form is dominant.

Spatial analyses were performed in R version 4.1.3 (R Core 
Team, 2022) using the sf package (Pebesma, 2018). Maps were 
drawn using the ggplot2 package (Wickham, 2016).

2.4  |  Statistical analyses

We modelled the effect of habitat types and bioclimatic variables 
on	the	response	variables	of	the	plot-	level	proportion	of	life	forms	
and	life-	form	diversity	(richness	and	evenness).	To	reduce	potential	
bias due to oversampled geographic areas, we subdivided our data 
set by further thinning plots to a minimum distance of ~2.5 km	for	
each	 habitat	 type	 separately.	 The	 threshold	 distance	 of	 2.5 km	
was selected to achieve a balance between data comparability and 
computation	time	in	boosted	regression	trees	(BRTs).	This	resulted	in	
143,426	plots	used	for	modelling.

We	utilised	bioclimatic	variables	as	continuous	predictors.	As	we	
expected that some of the modelled response variables may change 
substantially across habitat types, we included habitat type (i.e., for-
est, grassland, scrub and wetland) as a single factor variable (with 
four levels) to control for the different proportions of life forms as-
sociated with different habitats. This allowed us to make separate 
predictions for each habitat type with respect to specific continuous 
bioclimatic predictors. We retrieved bioclimatic variables from the 
CHELSA	data	 (version	2.1)	at	a	 resolution	of	1 km.	We	considered	
bioclimatic	variables	available	from	CHELSA	(Karger	et	al.,	2017) and 
CHELSA-	BIOCLIM+	(Brun	et	al.,	2022). We used the variance infla-
tion factor test for multicollinearity (with a maximum threshold of 
10	for	variable	selection)	using	the	‘vifstep’	function	of	the	R	pack-
age usdm	(Naimi	et	al.,	2014). Finally, we included the following 13 
bioclimatic variables as predictors: aridity index, mean winter tem-
perature	 (BIO11),	 precipitation	 seasonality	 (BIO15),	mean	 summer	
precipitation	(BIO18),	temperature	seasonality	(BIO4),	mean	climate	
moisture	 index,	 range	 of	 climate	 moisture	 index,	 growing-	season	
length,	growing-	season	temperature,	potential	net	primary	produc-
tivity, potential evapotranspiration and vapour pressure deficit. To 
account for potential inaccuracy in the coordinates and to match the 
minimum distance of the selected plots, we extracted bioclimatic 
variables	 at	 each	 plot	 by	 aggregating	 the	 1-	km	 rasters	 to	 2.5-	km	
resolution.

We	fitted	BRTs	using	the	dismo R package (Hijmans et al., 2022). 
Decision	 trees	 are	 often	 used	 to	 model	 large-	scale	 vegetation	
data because they can handle complex relationships and poten-
tial	 collinearities	 between	 predictors	 (Divíšek	 &	 Chytrý,	 2018; 
Večeřa	 et	 al.,	2019; Padullés Cubino et al., 2021). We used the 
Bernoulli	 distribution	 for	modelling	 the	 proportion	 of	 life	 forms	
using the total number of species in each plot as a weighting fac-
tor to account for proportional data ranging between 0 and 1. We 
used	the	Poisson	distribution	for	life-	form	richness	to	account	for	
count	data	of	life-	form	diversity	(ranging	between	1	and	6),	while	
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evenness was modelled with a Gaussian distribution. Following 
Elith et al. (2008),	we	fitted	BRT	models	and	determined	their	op-
timal	number	of	regression	trees	using	a	10-	fold	cross-	validation	
procedure	using	the	‘gbm.step’	function	of	the	dismo package. We 
allowed the fitting of each regression tree on 50% of the data ran-
domly sampled from the full training data set to avoid overfitting 
and improve the speed and accuracy of the model. Regression 
trees were gradually added to the model with a learning rate of 
0.001. We set up a maximum of 10,000 regression trees with 
a	 complexity	 equal	 to	 5	 before	 stopping	 the	 cross-	validation.	
Appendix	S5 provides the plots displaying the average holdout re-
sidual deviance and its standard error as a function of the number 
of regression trees for each model.

We used the comparisons between fitted and observed val-
ues as evaluation statistics (= mean	 and	 standard	 error	 of	 the	
correlation and deviance at each fold) using the independent set 
of validation data (Hijmans & Elith, 2023). The relative influence 
(or	 ‘contribution’)	 of	 the	 predictor	 variables	 in	 each	 BRT	 model	
was estimated based on the number of times a predictor was se-
lected for splitting, weighted by the squared improvement in the 
model resulting from each split and averaged across all trees (Elith 
et al., 2008). The relative influence of each variable was scaled to 
sum up to 100, with larger values indicating a stronger influence 
on the response.

We assessed spatial autocorrelation of model residuals by plot-
ting correlograms of Moran's I	 using	 the	 ‘eco.correlog’	 function	of	
the EcoGenetics R package (Roser et al., 2017).	Because	we	were	in-
terested in spatial autocorrelation at short spatial distances, for each 
model	we	randomly	selected	250	plots	that	were	at	least	50 km	apart	
from each other and calculated the spatial correlogram for all plots 
located	within	250 km	of	the	focal	plot	(Padullés	Cubino	et	al.,	2021). 
We allowed up to 2000 plots and selected at least 30 plots around 
each focal plot. The resulting correlograms were then summarised 
using	loess	(local	polynomial	regression	fitting)	with	a	span	of	0.75.	
We detected a small positive signal of spatial autocorrelation at a 
distance of approx. 0.5 degrees in all of our models' residuals (see 
Appendix	S5).

3  |  RESULTS

3.1  |  Maps of the proportion and diversity of life 
forms

Across	 Europe,	 the	 proportion	 of	 hemicryptophytes	 in	 vegetation	
plots was much higher than the proportion of other life forms, 
reflecting their dominance in the European flora (Figure 1). 
Hemicryptophytes	 represented,	 on	 average,	 more	 than	 two-	
thirds	 of	 the	 plot-	level	 proportion	 of	 life	 forms	 across	 all	 plots	
analysed	 (mean = 69.4%;	 SD = 24.2%),	 followed	 by	 phanerophytes	
(mean = 15.4%;	 SD = 21%),	 geophytes	 (mean = 15.2%;	 SD = 13.2%),	
therophytes	(mean = 8.4%;	SD = 13.9%),	chamaephytes	(mean = 7.3%;	
SD = 11.5%)	 and	 hydrophytes	 (mean = 2.3%;	 SD = 9.5%).	 In	 some	

cases, these proportions showed considerable variation across 
various	European	biogeographic	regions	(see	Appendix	S2).

The highest proportions of hemicryptophyte species were con-
centrated	in	continental	temperate	Europe	and	on	the	British	Isles.	
Chamaephytes showed higher proportions in the Mediterranean 
as well as in the boreal region. Phanerophytes had the highest pro-
portions	 in	 the	Mediterranean	 and	 some	 Atlantic	 regions	 (e.g.,	 in	
France). Patterns found for phanerophytes and chamaephytes were 
more	pronounced	 in	forest	and	scrub	habitat	types	 (Appendix	S1), 
reflecting the more frequent occurrence of these life forms in 
such habitats. The proportion of therophytes was higher in the 
Mediterranean	 and	 in	 the	 temperate-	dry	 zones	 of	 Europe	 (e.g.,	 in	
the Pannonian region). Such a geographical pattern was more pro-
nounced	 in	 grasslands	 than	 in	 other	 habitat	 types	 (Appendix	 S1). 
Geophytes had higher proportions at higher latitudes but did not 
show	clear	geographical	patterns	within	each	habitat	(Appendix	S1). 
Hydrophytes were more evenly distributed across European regions 
with no distinctive patterns, but clear hotspots were visible due to 
higher sampling intensity of wetland vegetation in some countries 
(e.g., Czech Republic, Lithuania and western Ukraine).

When	analysing	the	geographical	patterns	of	life-	form	diversity	
(Figure 2),	we	observed	a	gradient	of	 increasing	 life-	form	 richness	
from the northwest to the southeast of Europe. The median value 
of	life-	form	richness	across	grid	cells	was	3.7	(range	2.2–5).	Such	a	
pattern was fairly consistent when analysed across different hab-
itat	 types,	 especially	 in	 forests	 and	 grasslands	 (Appendix	S1). The 
map	 of	 life-	form	 evenness	 showed	 a	 less	 clear	 geographical	 pat-
tern, with some of the lowest values located in parts of central and 
eastern Europe and the highest values in northern Europe, with an 
overall	median	of	0.55	(range	0.16–0.88).	However,	different	habitat	
types	displayed	distinct	geographic	patterns	of	 life-	form	evenness	
(Appendix	S1). Specifically, forests and grasslands showed contrast-
ing gradients, with evenness generally increasing with latitude in for-
ests but decreasing in grasslands.

The observed geographical patterns in the maps were similar to 
the	ones	obtained	with	the	null-	model	approach	(Appendix	S3) with 
averaged SES showing values correlated to those presented here 
(Pearson's r > 0.5)	 except	 for	 life-	form	 richness	 (see	Appendix	S3). 
We also observed similar results in maps of the proportion of 
life forms when using the species pool of the individual grid cells 
(Appendix	S3).

3.2  |  Responses to bioclimatic predictors across 
habitat types

Habitat type was the predictor with the highest relative influence 
in the models for all the life forms, except therophytes (Figure 3), 
reflecting	the	distinction	of	 life-	form	diversity	compositions	 in	the	
main habitat types. Consequently, many bioclimatic predictors ana-
lysed had a lower relative importance in the models. For example, 
for the proportion of hydrophytes, geophytes and phanerophytes, 
the	 habitat	 type	 had	 a	 relative	 influence	 exceeding	 70%,	 strongly	
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F I G U R E  1 Maps	of	the	mean	proportion	of	Raunkiær's	life	forms	(%)	per	spatial	unit	in	European	vegetation	plots	(including	forest,	
grassland, scrub and wetland habitat types). The colour gradient ranges from low to high values (blue to red) of the proportion of species 
number	averaged	across	vegetation	plots	in	each	50 km × 50 km	grid	cell.	The	colour	scale	is	obtained	based	on	k-	means	clustering	of	
mapped	values.	Only	cells	with	at	least	five	plots	used	for	the	calculation	are	displayed	on	the	map.	Grey	cells	correspond	to	cells	where	no	
plots containing a given life form were present (mean value equal to zero). The legend reports the distribution of values across the data set 
(black curve). The numbers below the legend represent the minimum and maximum values, while the number in red on top of the legend 
corresponds to the median across Europe.
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determining the proportion of life forms in the plots, independently 
from	 bioclimatic	 conditions	 (see	 Appendix	 S5). Habitat type was 
also	key	to	distinguishing	life-	form	diversity,	with	higher	estimated	
richness in forests and scrub than in grasslands and wetlands and 
with lower evenness in grasslands than in other habitat types (see 
Appendix	S5).

Nevertheless,	some	climatic	predictors	played	a	key	role	in	shap-
ing the distribution of some analysed metrics (Figure 4). The pro-
portion of therophytes generally decreased with climatic moisture 

index	and	increased	with	vapour	pressure	deficit.	In	contrast,	hemic-
ryptophytes decreased with increasing vapour pressure deficit. 
Hydrophytes were also relatively less frequent in wetlands with a 
higher climate moisture index, indicating potentially higher diversity 
of aquatic plants under drier conditions. The proportion of chamae-
phytes was highest at intermediate values of the climatic moisture 
index	 (hump-	shaped	 relationship)	 and	 it	 was	 lowest	 at	 intermedi-
ate	 values	 of	 potential	 evapotranspiration.	 Life-	form	 richness	 and	
evenness	were	positively	linked	to	growing-	season	temperature	and	

F I G U R E  2 Maps	of	the	mean	richness	and	evenness	of	life	forms	per	spatial	unit	of	50 km × 50 km	in	European	vegetation	plots	(including	
forest, grassland, scrub and wetland habitat types). See the caption of Figure 1 for additional details.

F I G U R E  3 Relative	influence	of	most	
relevant predictors in boosted regression 
trees	(BRT)	models.	The	score	values	of	
each model are scaled so that they sum 
up to 100%. Habitat type (either forest, 
grassland, scrub or wetland habitat type; 
in grey) was nearly always the most 
influential predictor across analysed 
models. Continuous predictors are 
represented	with	non-	neutral	colours.	
Only	those	variables	whose	relative	
influence was >9% for each model are 
shown. The remaining predictors are not 
shown (=‘other’;	in	white)
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potential	 evapotranspiration,	 respectively	 (see	 Appendix	 S5), but 
such climatic variables showed low relative influence on the predic-
tion of these metrics (<11%).

4  |  DISCUSSION

4.1  |  Proportion of life forms in European 
vegetation

We identified distinct geographical patterns showing how local species 
richness (i.e., alpha diversity) in vascular plants in European vegetation 
is subdivided between different Raunkiær's life forms. We suggest that 
suitable conditions for a given plant life form are associated with higher 
species numbers of that life form and this mechanism links local adap-
tation to plant diversity within single life forms. Hemicryptophytes, for 

example, are the group with the highest number of species in European 
vegetation. This success is attributed to the remarkable taxonomic and 
functional	diversity	within	this	group.	It	includes	plants	with	renewal	
buds protected by cauline foliage at one end to those with rosette fo-
liage protection at the other, with considerable variation in between 
(Cain, 1950).	 Indeed,	the	northern,	central	and	eastern	European	cli-
mate (characterised by cold winters) supports the strategy of peren-
nial herbs with renewal buds located at the soil surface (Leuschner & 
Ellenberg, 2017).

Our	 results	 overall	 highlighted	 the	 importance	 of	 habitats	 in	
determining the distribution of life forms in Europe. The diver-
sity of phanerophyte and hydrophyte species, for example, was 
mostly driven by the presence or absence of forests and wetlands, 
respectively, while climatic variables showed lower importance. 
The direct effect of the bioclimatic drivers had a minor importance 
for most life forms compared to habitat types. Potentially, this is 

F I G U R E  4 Results	of	the	boosted	regression	trees	(BRT)	models	showing	the	effect	of	most	relevant	bioclimatic	predictors	(relative	
influence >10%) on the proportions of species belonging to different life forms in European vegetation. Lines represent smoothed curves of 
the fitted functions based on local polynomial regression for the focal variable. Lines are predicted for each habitat separately by keeping 
constant	other	continuous	variables	present	in	the	model	using	their	average	across	the	data.	The	values	on	the	y-	axis	are	back-	transformed	
to	the	original	values	following	logit	transformation.	Appendix	S5 reports partial dependence plots across all life forms, the evaluation 
statistics and the number of observations used to fit each model.
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because habitats: (i) may depend upon the dominance and pres-
ence of specific growth forms (e.g., trees in forests); (ii) may be 
influenced by climate themselves; and (iii) indirectly capture key 
factors neglected in our models that likely contribute to explain-
ing the occurrence of life forms in the vegetation, such as distur-
bance (Midolo et al., 2023)	and	microclimate	(see	e.g.,	De	Frenne	
et al., 2021).

We	acknowledge	that	modelling	 life-	form	proportions	(and	po-
tentially other trait dimensions) within vegetation presents a chal-
lenge	 due	 to	 the	 non-	independence	 of	 certain	 habitat	 types	 and	
plant strategies. However, we still revealed that the diversity of life 
forms responds significantly to climatic variables within different 
habitat	types.	Our	results	overall	indicate	that	moisture-	related	vari-
ables	contribute	more	than	temperature	to	the	life-	form	distribution	
at the continental level across Europe. Consistently, Lancaster and 
Humphreys (2020) showed that growth forms in general explain very 
little of the thermal tolerance variability of plants worldwide, sug-
gesting	that	life-	form	distribution	might	be	more	influenced	by	other	
factors than temperature. Therophytes specifically represented an 
exception in our results as they were more related to climatic factors 
than habitat type. We found a larger proportion of therophytes with 
increasing vapour pressure deficit and decreasing climatic moisture 
index,	which	represent	key	bioclimatic	factors	for	drought-	induced	
mortality in plants (Grossiord et al., 2020). Therophytes represent 
indeed the most extreme adaptation to long summer droughts in 
Mediterranean	 climates.	 Short-	lived	 plants	 completing	 their	 life	
cycle during brief seasonal windows of opportunity also represent 
the best strategy in more disturbed habitats (Midolo et al., 2023). 
Conversely, more stable systems with higher moisture and produc-
tivity become more favourable for other life forms, such as hemic-
ryptophytes. Such a pattern is consistent with studies addressing 
variation	in	life-	form	composition	along	environmental	gradients	at	
smaller	spatial	extents	(Danin	&	Orshan,	1990; Giménez et al., 2004; 
Irl	et	al.,	2020).

Although	 the	 current	 distribution	 of	 life	 forms	 is	 affected	 by	
local climatic conditions and distribution of habitat types, we argue 
that historical factors can also interact with climate to explain the 
variation in species number within life forms. The European flora is 
characterised by a much larger proportion of herbaceous (mostly 
hemicryptophytes) than woody (phanerophytes) species, which is, to 
a large extent, a consequence of the impoverishment of the woody 
flora during Pleistocene glaciations (Huntley, 1993; Eiserhardt 
et al., 2015). For instance, the higher number of phanerophyte 
species found in southern Europe might reflect the role of the last 
glacial period limiting the current distribution and diversity of tree 
and shrub species at higher latitudes in European forests (Svenning 
& Sandel, 2013; Médail et al., 2019; Loidi et al., 2021).	Other	his-
torical factors can also include past dispersal events from different 
biogeographic	 regions.	 For	 example,	 the	 strong	 influence	 of	 sub-	
Mediterranean	 floristic	 elements	 in	 the	 Pannonian	 Basin	 (Fekete	
et al., 2016; Chytrý et al., 2022) can explain the large number of 
therophyte species we observed in this region. Yet, Pannonian veg-
etation specifically is also characterised by grasslands with many 

open patches/gaps due to droughts and sandy soils favouring thero-
phytes, which makes it difficult to disentangle historical factors from 
present-	day	bioclimatic	drivers.

4.2  |  Life- form diversity

Our	 maps	 identified	 clustered,	 yet	 irregularly	 distributed,	 life-	
form diversity values in the geographic space, with overall similar 
values	 across	 the	 main	 biogeographic	 regions	 (see	 Appendix	 S2), 
suggesting that several unaccounted factors could affect their 
distribution.	 Randomness	 in	 the	 distribution	 of	 life-	form	 diversity	
appeared	especially	in	the	maps	based	on	null	models	(Appendix	S3). 
Nevertheless,	 the	results	of	our	model	suggest	that	both	 life-	form	
richness and evenness strongly depend on the habitat type under 
consideration. Forest and scrub habitat types had a slightly higher 
richness of life forms, mostly because of the presence of trees 
and shrubs, which are rarer in herbaceous habitats (grasslands 
and wetlands). We also found positive relationships between the 
temperature of the growing season and temperature seasonality 
with	life-	form	richness	(Appendix	S5). This result is consistent with 
the positive coupling between functional diversity and climate 
seasonality	 observed	 by	 Boonman	 et	 al.	 (2021) in European 
grasslands and with the general role of warmer temperatures and 
seasonality in supporting higher plant diversity globally (Scheiner & 
Rey-	Benayas,	1994). We argue that this is a consequence of greater 
seasonality supporting different life forms coping with different 
temperatures over the year and allowing the coexistence of life 
forms that can exploit different temporal niches at the same site 
without outcompeting each other.

Evenness exhibited a more random spatial distribution than 
richness.	 In	 most	 vegetation	 plots	 analysed,	 across	 Europe	 low	
evenness was nearly always associated with plots dominated by 
hemicryptophyte	 species	 (see	Appendix	S3), highlighting the pre-
vailing	 role	 of	 hemicryptophytes	 in	 shaping	 life-	form	 diversity.	
Evenness of life forms was generally lower in grassland than in 
other	 habitat	 types — and	 this	 potentially	 reflects	 the	 dominance	
of single life forms (mostly hemicryptophytes) in this habitat type. 
In	addition,	evenness	was	positively	coupled	with	potential	evapo-
transpiration. We expected evenness to decrease with potential 
evapotranspiration given the environmental filtering role of climate 
on	plant	trait	evenness	(Le	Bagousse-	Pinguet	et	al.,	2017), but our 
results suggest instead that drier areas with higher evapotranspi-
ration can harbour more life forms (therophytes, chamaephytes) 
other than hemicryptophytes, potentially allowing the formation 
of more even communities following niche partitioning by different 
life forms.

5  |  CONCLUSIONS

Our	study	represents,	to	our	knowledge,	the	first	work	to	explore	the	
distribution of Raunkiær's life forms at the community level across 
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Europe. Previous studies have mostly used the Raunkiær's system 
at	local	or	regional	levels	(e.g.,	Blasi	et	al.,	1990;	Irl	et	al.,	2020; Loidi 
et al., 2021), but never studied the distribution of plant life forms at 
a	continental	extent.	Our	maps	depict	a	large	variation	in	the	propor-
tions	of	species	and	life-	form	diversity	across	Europe	and	within	the	
four major habitat types considered.

The results of our statistical models highlight the complex in-
terplay between habitat types and bioclimatic predictors, partic-
ularly	 those	 related	 to	humidity.	 In	general,	our	maps	 revealed	a	
considerable variation in analysed patterns when comparing the 
habitat types. This result is consistent with habitat specificity 
of	 community-	level	 functional	 and	 phylogenetic	 differentiation	
(Padullés Cubino et al., 2021;	Večeřa	et	al.,	2021, 2023; Kambach 
et al., 2023),	highlighting	the	need	to	account	for	habitat-	specific	
responses when projecting models of the European vegetation 
in time and space. We also provided an assessment of how dif-
ferent	 environmental	 variables	 predict	 such	 patterns.	Our	mod-
els confirmed the key role of humidity in shaping the distribution 
of Raunkiær's life forms at the continental extent, as this is one 
of the main determinants for the growing season in most diverse 
European biogeographical regions (i.e. the Mediterranean and 
temperate-	dry	regions).

By	identifying	geographic	patterns	and	environmental	drivers	
of the diversity of plant life forms, we provided new insights into 
previous endeavours mapping functional diversity on continental 
or	global	scales	(see	e.g.,	Butler	et	al.,	2017;	Šímová	et	al.,	2018). 
We believe these maps will support the interpretation of results 
obtained	in	studies	focussing	on	large-	scale	patterns	of	taxonomic	
and	functional	diversity	of	European	plants.	In	addition,	the	mod-
elled relationships we obtained with environmental predictors 
open new questions on how the distribution of life forms is re-
sponding to global environmental changes and how these would 
scale up at the regional and landscape level. Finally, the metrics 
of	 life-	form	 diversity	 used	 here	 can	 be	 applied	 to	 predict	 gen-
eral trends of biodiversity change focusing on Raunkiær's sys-
tem (or more complex functional groups) as modelling units for 
various modelling approaches, such as bioclimatic envelopes 
(Broennimann	 et	 al.,	 2006) and dynamic vegetation models 
(Boulangeat	et	al.,	2012).
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