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Abstract

This work aims to extend previous research on how a trifactorial stochastic model, which we
call CIR?, can be turned into a forecasting tool for energy time series. In particular, in this
work, we intend to predict changes in the industrial production of electric and gas utilities.
The model accounts for several stylized facts such as the mean reversion of both the process
and its volatility to a short-run mean, non-normality, autocorrelation, cluster volatility and fat
tails. In addition to that, we provide two theoretical results which are of particular importance
in modelling and simulations. The first is the proof of existence and uniqueness of the solution
to the SDEs system that describes the model. The second theoretical result is to convert, by
the means of Lamperti transformations, the correlated system into an uncorrelated one. The
forecasting performance is tested against an ARIMA-GARCH and a nonlinear regression
model (NRM).
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1 Introduction

Further to previous research [13], in this article, we illustrate a stochastic model to forecast
changes in the industrial production (and then market demand) of electric and gas utilities.
The examined time series is highly irregular and difficult to predict, with maximum volatility
reaching up to 800%, as shown in Fig. 1 and Table 1. Therefore, we have considered a three-
factor model [16, 17] and extended it to fit the current case, incorporating a number of changes
described in this paper.

In his work, Chen suggested a bond pricing formula “under a non-trivial, three-factor
model of interest rates” [16] where the future short rate ”depends on (1) the current short
rate, (2) the short-term mean of the short rate, and (3) the current volatility of the short rate”.
In addition, Chen assumed that “’both the short-term mean and the volatility are stochastic”.
The rationale of his model lies in the observation that ”short rates should be better modelled
as reverting to a short-run mean, rather than to a long-run constant mean”. Similarly, Chen
observed that short-rate volatility is not constant and mean reverting as well.

Stochastic models, such as the one proposed by Chen, are designed to replicate short-term
interest rates r;, along with their mean 6; and volatility v, for pricing purposes. However,
in the case under consideration, our objective is to forecast changes in industrial production.
Therefore, we replace interest rates with the production of electric and gas utilities, denoted
by S;, and we use 6; and v; to represent its short-term mean and volatility, respectively.
Furthermore, we link the processes S, 6;, and v; together through correlations, which is a
crucial novelty in our approach. Finally, our approach differs from the literature cited because
we do not model the short-term mean 6; as a Cox—Ingersoll-Ross process [19] due to the
stochastic volatility coefficient that depends on v;.

Our first achievement is an existence and uniqueness result for the solution of the system
of stochastic differential equations (SDEs) describing our three-factor model (see Theorem
4.1 and Corollary 4.2 below). To our knowledge, this issue has never been discussed before.
Our system of SDEs does not satisfy the classical local Lipschitz condition hence we can
not apply well known results of the (global) existence and uniqueness of the solution. For
this reason, we first discuss existence in a weak sense (see, for instance, Chapter 4 in [36] or
Chapter 5 in [25]), where the probability space and Brownian motions are not fixed a priori
but they are part of the solution itself. For the unidimensional CIR model where mean and
volatility coefficients are positive constants, the well-known Feller’s condition implies that
a CIR process starting from a positive initial point stays strictly positive (see, Section 6.3.1
in [37]). This implies that in our model the volatility v, is a non-explosive strictly positive
process under Feller’s condition. While, even if starting from positive initial points S; and 6,
due to their unbounded stochastic volatility v;, hit zero almost surely. Nevertheless, we prove
that our model is well defined in a local sense, that is, in terms of a unique weak solution until
7 = 15 A1?, where t5 and t? denote the first hitting times of zero for S, and 6;, respectively.

Finally, by Theorem 1.1, Chapter 4 in [36] or Corollary 3.2.3, Chapter 5 in [58], (local)
weak existence and pathwise uniqueness of a (strict positive) solution implies also (local)
strong existence.

As well as in [13], by using the Lamperti transformation, which applies thanks to the
strict positivity of (S;, 6;, v;), we show how the correlated process S; can be turned into
an uncorrelated auxiliary process X;, which is important for simulations and forecasting.
We give a rigorous proof of equivalence between the two systems of SDEs related to the
dynamics of the triples (S, 6;, v;) and (X, 6;, vy).
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Last but not least, we show that the proposed model accounts for several stylized facts such
as the mean reversion of both the process and its volatility to a short-run mean, non-normality,
cluster volatility and fat tails. This is because, by design, both the process and its mean are
reverting, the volatility is time-dependent and the processes are correlated. A discussion on
the choice of the model is provided and specific analysis is carried out on the time series
of the industrial production of electric and gas utilities. Subsequently, the implementation
shows that the proposed model provides the best fit for the data.

This paper is organized as follows. Section 2 provides the rationale for our quest on model
selection and a brief account of the relevant literature. Section3 shows the time series we
are considering and its main statistical characteristics. In Section4 the three-factor model
is presented and the main results are provided (i.e. existence and uniqueness result and the
presentation of the Lamperti transformations that lead to the new dynamics of the auxiliary
process). Section 5 illustrates a numerical implementation in the following order: calibra-
tion, in-sample simulation, out-of-sample forecasts. The last Section contains the concluding
remark.

2 Literature and model selection

The reason why we thought of a three-factor model is that, as for the interest rates, the time
series considered seems to adapt to some characteristics that are well explained by this model.
Namely, the level of industrial production of electric and gas utilities, S;, reverts to its mean 6;
which, in turn, is time-varying and reverting to a constant long-term mean. The distribution of
S; is highly non-normal, displays fat tails (see Fig. 2), its volatility depends on time and seems
to be mean reverting as well, as the interest rate’s volatility [44]. In other models volatility is
represented either as an Ornstein—Uhlenbeck (OU) process [11, 54, 61] or as a log-normal
process [11]. However, in the first case, volatility can take undesirable negative values (except
for non-Gaussian Ornstein—Uhlenbeck (OU) processes [5]) and in the second, volatility has
no mean reversion [16]. The Chen model, instead, simulates volatility with a square root
process, with the advantage that it excludes negative values and allows mean reversion.
Furthermore, the model can be designed in such a way as to correlate processes with each
other and, as a by-product, this allows for autocorrelation. For reference, on autocorrelation
for an OU process see [9] and on autocorrelation for geometric Brownian motion see [57].
As detailed in Sect. 3, both S; and v; are mean reverting. Consequently, another class of
models that we have considered is the so-called autoregressive integrated moving average
(ARIMA) adopted for example by Chavez et al. [15] to simulate and predict future energy
production and consumption in Asturias. Other examples of the use of ARIMA models
for forecasting can be found in Shi et al. [59] for short-term wind power generation, in
Jiang et al. [38] for China’s coal future consumption, in Mahia et al. [46] for industrial
electricity consumption in Guangdong, etc. However, since we obtained unsatisfactory results
in our simulations, we supplemented the classical ARIMA with a generalized autoregressive
conditional heteroskedasticity (GARCH) to model clustering in volatility. Among those who
tested the class of ARIMA-GARCH model, we mention Soares et al. [60] who modelled
the hourly electricity load in the area covered by an electric utility located in southeastern
Brazil. Gupta et al. [29] that implemented the ARIMA-GARCH for wind power prediction.
Hussin et al. [35] who used the model for forecasting wind speed. Yotto et al. [64] that
employed the ARIMA-GARCH for estimating and forecasting electricity load. Mohammadi
et al. [50] who examined the usefulness of several ARIMA-GARCH models for modelling
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Table 1 First four central
moments for Industrial

Production: Electric and Gas 0 3.0476 —1.8642 52.1525
Utilities [TPUTIL] (changes)

K1 w2 "3 o

and forecasting the conditional mean and volatility of weekly crude oil spot prices” and
Diallo et al. [22] who estimated the spread between Hungarian (HUPX) and German (EEX)
day-ahead power prices. The latter, in their analysis, found out that NGARCH, TGARCH,
EGARCH, GJR GARCH perform similarly in terms of RMSE and MAE. In addition, they
claim that all models perform better than ’the simple ARIMA model” [22]. Finally, Bufalo
and Orlando [13] have recently used the ARIMA-GARCH as a benchmark against the C/ R3
to predict the production of energy material. Thus, for the above mentioned reasons, we find
the ARIMA-GARCH a popular and suitable reference model.

In our model’s selection, we also considered the following nonlinear regression model
(NRM)

y=c1 + cre” . (1)

Eq. (1) is consistent with the expectations of the Ornstein—Uhlenbeck process and, in general,
with the expectations coming from multifactor Hull-White model (e.g. G2++ by Brigo and
Mercurio [11]), which are widely used in finance [20, 27, 52]. Nonlinear mean reversion in
financial time series has been reported by many (e.g. see [4, 18, 28]). Among those that used
nonlinear models for energy, we mention Bilgili et al. [7], Kumru et al. [40] and Noskov
et al. [51]. To run a robust estimation we adopted the iteratively re-weighted least squares
algorithm by Holland [33]. The algorithm recalculates the weights based on the residual from
the previous iteration and progressively downweights outliers so that iterations continue until
the weights converge.

In summary, drawing inspiration from the literature, ARIMA-GARCH and NRM are the
two models used as benchmarks to test the performance of the proposed approach.

3 Data

Figure 1 displays the monthly percent change (i.e., the month-to-month variation in the indus-
trial production) of electric and gas utilities, as classified by the North American Industry
Classification System (NAICS) and represented by the IPUTIL index. The data was retrieved
from the Federal Reserve Economic Data (FRED) [8]. As a side note, we would like to
emphasize that while we model the IPUTIL time series level (i.e. S;), the results displayed
are in terms of percent change. This approach is chosen because percent changes are more
challenging to model and may hold financial significance, as what matters most are the
variations rather than the absolute levels.

3.1 Statistical characteristics
Regarding the model’s selection mentioned in Sect.2, as shown in Fig.2 and Table 1, not

only the time series we are considering is very volatile, but its statistical characteristics are
quite different from those of the Gaussian distribution.
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Fig.1 Board of Governors of the Federal Reserve System (US), Industrial Production: Electric and Gas Utilities

(NAICS =2211,2) [TPUTIL] [8]. Percent change. Monthly data from 1939-02-01 to 2020-11-01. Shaded grey
areas correspond to recessions and the yellow strip to the right highlights the COVID-19 pandemic
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Fig.2 Q-Q plot of changes in Industrial Production: Electric and Gas Utilities (IPUTIL) along with a fitted
polynomial curve (Polyfit) shows how the data deviates from a Gaussian distribution

3.2 Mean reversion and stationarity

Mean reversion contrasts with random walk behavior, which is used to support the efficient
market hypothesis in theoretical studies in finance [10, 12, 26]. However, studies have found
mixed or mean-reverting processes in both developed and emerging markets [2, 34, 55]. Mean
reversion is used for modeling electricity and natural gas prices [1] because “most energy
and commodity markets exhibit mean-reversion” [56]. As mentioned by Hoque et al. [34],
since the pioneering work of Lo and MacKinlay [45], variance ratio (VR) tests have been
widely used econometric tools for testing the random walk hypothesis (RWH). The VR test
on both the levels and the volatility of the IPUTIL rejects the random walk hypothesis with
p-values of 2.33 x 1072 and 3.20 x 1079, respectively.

Mean reversion is also linked to the absence of a unit root and to stationarity. For assessing
that, a number of tests have been developed in the literature such as Augmented Dickey—
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Table 2 Rejection decision h and ADF KPSS PP DEGLS
p-value from the Augmented

Dickey—Fuller (ADF) test, KPSS h 1 0 1 1

test, Philips—Perron (PP) test, 7
Dickey—Fuller-GLS (DFGLS) p-value 0.0010 0.1000 0.0010 1.0258x 10
test for unit roots All tests do not find a statistical indication of a unit root in data
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Fig.3 Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) of IPUTIL

Fuller, KPSS, Pierre—Perron, and DFGLS tests. Table 2 does not confirm the presence of
stationarity in data. Notice that, unlike the other tests, for the KPSS test the null hypothesis
is that the time series is trend stationary therefore h = 0 means that there is no statistical
indication of a unit root.

3.3 Autocorrelation

Figure 3 plots the sample autocorrelation function (ACF) and sample partial autocorrelation
function (PACF) of the IPUTIL index (changes). By a visual inspection, there is autocorre-
lation at lag 1 and 2. The Ljung—Box Q-test (LBQ) confirms the presence of autocorrelation
with a p-value of 5.8953 x 10713,

As a comparison Fig. 4 displays the ACF and PACF of a CIR process. Notice the autocor-
relation at lag 1 but the absence of autocorrelation at lag 2. For that reason, we need a more
advanced model such as the one proposed in Sect. 4.

As one can see from Fig. 5, the C I R® model exhibits a significant autocorrelation both at
lag 1 and 2 (with a LBQ p-value around 5.1507x 10~ !3), and a partial autocorrelation at lag
11 according to the original time series.
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Fig.4 Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) of a simu-
lated CIR process. Parameters: 1 = 0.1; o = 0.05; k = 0.85
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Fig.5 Sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF) of a simu-
lated CIR3 process

3.4 Cluster volatility
Lastly, we check whether the difference between the mean and the realizations display het-

eroscedasticity (cluster volatility). According to Engle’s ARCH [24] the null hypothesis of
no heteroscedasticity should be rejected with a p-value of 5.9 x 10713,
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4 A three-factor stochastic model

Let us denote by {S;};>0 the stochastic process modelling the level of industrial production
of electric and gas utilities. In addition, the correlated processes referring to the volatility and
the short-run mean of {S;};,>¢ are, respectively, {v;};>0 and {6;};>0.

Let ky, n, v, ko, ¢, B, k and o be positive constants. We consider the following system of
SDEs

dS, = k(0 — Sp)dt + a/Tor /1S dW, ™,
6, = ko (Z — 6)d1 + aBf/To VB 1dW>, )
dv, = ky(n — v)dt + y/To [ dW,S2,

with the initial condition (So, 6, vo) € (0, +00)3. Here (W };20, i = 1,2, 3, are three
standard correlated Brownian motions such that

dWVaw? = pgdt,  awNaw® = pdr,  awPaw? =o, A3)
po, py € (—1, 1). Moreover, the correlation coefficients satisfy the following relation
pg + ,03 < L.

System (2) represents a three-factor type model that we call C1R>. In our framework, each
dynamic process follows a square-root process, and, differently from the model in [16], the
variance of the processes S; is proportional to the variance of the process itself, i.e., v;, as
often suggested by financial literature (see, [3, 30, 32, 43, 62, 63]). The same holds true for
the mean process 6;.

By introducing the stochastic process

(1 2 (3)
Wr* _ W, = po W, — pu W, , )

NV

which is a standard Brownian motion, independent both from Wt(z) and W,(3), the system (2)
reads as

dS, = k(6; — S)dt + a/TolV/IS1(\/1 = p2 — p2d W + ped W + p,d W)
db; = ko(¢ — 6,)dt + aB/Tor /18T dW 2, ©)
dv; = ky(n — v)dt + y/To [ AW,

with (So, 89, vo) € (0, +00)? and {wp, W,(z) , W,(3) }i>0 a three-dimensional standard Brow-
nian motion.

Assumption 4.1 We assume Feller’s condition
2k = 2.

We will work with the weak solution to system (5) according to the following definition.
We say that (2, F, P; F = (F;);>0, W, S, 6, v) is a solution of system (5) if:

e (Q,F,P;F) is a filtered probability, W = (W* W2, W},~ is a 3-dimensional
standard F-Brownian motion, and {S;, 6;, v;};>0 is an R3-valued process with continuous
sample paths.

e {S;, 0, v }>0 satisfies the initial condition (So, 6, vo) € (0, +00)3.
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e System (5) holds a.s.
We first prove pathwise uniqueness and weak existence of a local solution to system (5)

with state-space (0, +00)3.

Theorem 4.1 Under Assumption 4.1, system (5) admits a weak solution {S;, 0;, v, };>0 with
state-space [0, +00)% x (0, +00). Pathwise uniqueness of the solution to system (5) holds
over the stochastic interval [0, T = 5 A 7], where

S—inf{lr>0:8 =0}, % =inf{r>0:6, =0} (6)
are the hitting time of zero for S; and 6, respectively. The random time t is such that

P(t > 0) = 1 and for all t < t the process (Sy, 0;, v;) takes values in (0, +00)3.

Proof Step (i) Weak existence of a global solution
The coefficient matrix of the diffusion term X (S, 6, v) and the drift (S, 0, v) associated
to system (5) are given by

a1 —p5 — mwm apo/TolVIST apy/ToIV/IST
X(S.0.v) = aBVTlVI0] 0
0 0 Yl

and
b(S,0,v) = (k(® — ), ko (L — 0), ku(n — v))T,

respectively. Note that (S, 6, v) and b(S, 0, v) are continuous functions and satisfy growth
conditions. In fact,

IZ(S,0,v)|* = trace(Z(S, 0, )BT (S, 6, v)) = (@*vS| + & B2[v] + y?|v])

and by the inequality ab < %(a2 + bz), a, b € R, follows the sublinear growth condition
1Z(5.0.0) < K(L+|SP +10 + [v]*), 0

for some constant K > 0. Moreover, let x = (S, 0, v) € R3, we have

X -b(x) =Sk® — 8) + 0kg(¢ — 0) + vky(n — v) < kSO + kg6 + kynv
and again by ab < %(a2 +b%),a, b € R, we get the inequality
Xxb(x) < K1+ x?), x=(S.0,v) e R’ 8)

for some constant K > 0. Let us observe that b also satisfies the sublinear growth condition

b < K(1+1x1?) x = (S,0,v) € R? ©)

for some constant K > 0.

Thanks to Egs. (7) and (8) we can apply Theorem 3.10, in [25] (or Theorems 2.3 and 2.4,
Chapter 6, in [36]), since X and b are continuous and satisfy the sublinear growth conditions
(7) and (9)). Thus there exists a weak solution {S;, 6;, v;};>0 to system (5) for any initial
condition (Sp, 0y, vg) € R3, which does not explode in finite time. Let us note that continuity
of £(S,6,v)and b(S, 0, v) ensures existence of a weak solution (see Theorems 2.3, Chapter
6, in [36]) but this solution could explode (i.e. it could tend to infinity in finite time) and so
we need an additional condition, as sublinear growth, which implies that the solution does
not explode (see Theorems 2.4, Chapter 6, in [36]).
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Summarizing, we have proved that there exist a filtered probability space (2, 7, P, F =
(F1)1=0), a three-dimensional F-Brownian motion {W*, Wt(z), Wt(S)}tz(), and an F-adapted
process with sample paths in Cy3[0, +00), {S;, 6;, v };>0, such that (5) holds IP-a.s. Moreover,
we have that forall r > 0

E[S? 4 67 + v}] < +oo. (10)

Step (ii) Nonnegativity of the global solution.

At this point, we are going to show that if the process starts from a strictly positive initial
condition (Sy, 6y, vg) € (0, +00)3 then {S:, 0r, vt }1>0 takes values in [0, —i—oo)2 x (0, +00).
Under the Assumption 4.1, for any initial condition vy > 0, it is known that there exists a
unique strong solution to the third equation in System (5), the so-called CIR-process, which is
strictly positive (see, for instance, Section 6.3.1 in [37]). Hence we get that the process {v; };>0
is strictly positive. We can now prove by comparison result that for any initial conditions
So > 0 and 6y > 0, both the processes {S;};>0 and {6;};>¢ take values in [0, 4+-00).

We first prove that for all 7 > 0, 6, > 0, P — a.s.. Let us consider, on the probability space
(2, F,P,F = (F:)1>0) where the processes {6;};>0 and {v;};>0 are defined, the following
SDE

6} = —kg6dt + aBJv1/16}1dW?, 6} =0 (11)

and note that for any + > O, 9,1 = 0 solves Eq. (11). We can proceed as in the proof of
Theorem 1.1, Chapter 6 in [36] with

bi(x) = —kgx, br(x) =ko(¢ —x), o(t,w,x)= aﬂm\/m, reR, we .
Note that, for all x € R b1 (x) < ba(x), b is Lipschitz continuous, i.e.
|b1(x) = b1(x")] < kglx — x|, Vx,x" €R,
and o satisfies
o (1, 0, x) — o (t, 0, X)| < Vv (@p(x —x]), x,x €R, (t,0)e€l0,+00)x 2,

where p(x) = aB+/x is a strictly increasing function defined on [0, +00) such that p(0) = 0
and satisfying Eq. (1.1) in Chapter 6 of [36].

We can not apply directly Theorem 1.1, Chapter 6 in [36] because the diffusion coeffi-
cient depends on the process {v;};>0, which is an unbounded process. Therefore, we use a
localization argument and define for all N € N

ny =inf{t >0:v, > N}.

The sequence of stopping times {1y} xyen is non-decreasing and such that ny — —+o0 as
N — 400 (since the process {v;};>0 does not explode in a finite time).

We can now consider the non-decreasing sequence of continuous functions {¢;, (x)},cn as
defined in the proof of Theorem 1.1, Chapter 6 of [36], which satisfy ¢, € C%(R), 9, (x) =0
forx <0,0 < ¢} (x) <1andg,(x) - (x); = max{x, 0} asn — +oo.

We apply Itd’s rule and by similar computations as in that proof, we get that

00}y = Onny) = L.t AnN) + La(n, t Ann) + I3(n, £ Ay,

where

IANN
Li(n,t Any) = / or(0) — 60 (s,0)) — o (s,0,)1dW?
0
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IANN
Ln,t Aqy) = / ol O} — 65)(b1(8)) — ba(6y))ds
0

AN
Bint Ay = 5 / o8] — 6,)p(16) — 6,)2ds.
0

It is clear that E[ /1 (n, t A ny)] = 0 and since

N2 TANN
E[3(n,t Ann)] < TE[ /0 ol 6 —6,)0%(16) — 0s|)ds]

we can proceed as in the proof of Theorem 1.1, Chapter 6 of [36] obtaining

N2t
Ell3(n,t Ann)] < P

Observing that for all t > 0
b1(8)) — b2(6;) = b1(8)) — b1(6,) + b1(6)) — ba(6;) < b1(8)) — b1(6))

and again as in the proof of Theorem 1.1, Chapter 6 of [36] we get that

tANN AN
Ln,t Any) < f ol O} —0)(b1(8)) — bi(6y))ds < / ko (8, — 65)4ds.
0 0

Hence

I Nzt tANN I
E[(ﬂn(emm\, - otAr/N)] =< T +E|:/(; k@(es - ¢9S)+ds]

and by letting n — +o00, we obtain
t
EL(6] sy — Orany)+] < ko / E[(0 1,y — Osnny)+1ds.
0

By Gronwall’s Lemma we deduce that for all ¥ > 0, N € N, IE[(@,IMN — Oranppy)+] = 0,
which in turn implies that

Ot ny < Orrny-P—as. Vi >0,NeN.
Finally, letting N — +oc and recalling that for all # > 0, 6! = 0, we obtain
6, >0, P—a.s. Vt>0.

Similarly, we can prove that, for any r > 0, S; > 0, P — a.s. Let us consider, on the
probability space (2, F, P, F = (F;);>0) where the processes {0;};>0, {v/};>0 and {S;};>0
are defined, the following SDE

S} = —kS}dr +apJoiy/ISHaw!D, si=0 (12)
and note that Stl =0, V¢ > 0 solves Eq. (12). We now take
bi(x) = —kx, by(t,w,x) =k(0(w) —x), xR, (t,w)e][0,+00)x Q
and o (¢, w, x) as before. Note that for all x € R and (¢, w) € [0, +00) x £,

bi(x) < by(t,w,x) P—a.s.
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(because, for all t > 0,0, > 0,P — a.s. and k > 0) and b; is Lipschitz continuous with
Lipschitz constant equals to k. Finally, observing that for all (¢, ) € [0, +00) x Q

bi(x") —ba(t,w,x) =b1(x") — b1 (x) + b1 (x) — balt, 0, x) <bi(x') —bi(x), x,x' €eR

we can perform the same computations as before.

Step (iii) Pathwise uniqueness of a strict positive local solution

We want to show that starting from (So, 6o, vo) € (0, —i—oo)3 the process {S;, 0;, v; }1>0 is
the unique solution (in pathwise sense) until one of the processes {S;};>0 or {#};>( reaches
zero. Note that (S, 6, v) is not Lipschitz-continuous in [0, +00)% x (0, +00) but, it is in
the open set Uy = (%, N)3, for any N > 0. In fact,

3
12(S,0,v) = B(S, 0/, V)P = Y [%ij(S, 0, v) — (S, 0,07
i,j=I1

= |VuS — VU2 4+ a?BHNVOS — V'SP + 2o — V)P

By Lagrange’s Theorem, for all x, x” € (a, b), 0 < a < b, there exists X € (a, b) such that

1
I«/;—\/x_|=2ﬁ

lx —x'|

hence

1
— x| < —|x — X',
[Vx x|_2\/a|x by

It is clear that for all x, x’, y, ¥’ € (#, N),
ey =Xy = Nl =2 4 |y = 5P
By applying the above inequalities we get that for all (S, 6, v), (§',0',v") € Uy
12(S,6,v) = £(5', 0", V)1 < Kn(IS = S'P+10 =0 + v =)
for some constant Ky > 0. Then, we can apply Theorem 3.7 in [25], and we get that pathwise
uniqueness holds over the stochastic interval [0, tiy] where
y =inf{t > 0: (S, 0, v,) ¢ Uy} (13)

Note that Uy C Upn+1, 50 Ty is an increasing sequence of stopping times with ty — ©
as N — +oo due to the fact that {S;};>0, {6;};>0, and {v;};>0 do not explode and v; > 0 for
all + > 0. Therefore, by taking the limit as N — 400, we obtain pathwise uniqueness on
[0, T].

Finally, from continuity of trajectories of {S;, 6;},>0 since Sp > 0 and 6y > 0 we get that
P(z > 0) = 1 and this concludes the proof.

Ultimately, (local) weak existence and pathwise uniqueness of the solution to system (5)
imply (local) strong existence.

Corollary 4.2 Let consider any initial condition (sg, 6y, vo) € (0, +00)3. The system (5)
admits a unique strong solution (S;, 6, v;) taking values in (0, +00)3, forallt < t, where

t=t5A? =inf{t>0:S, =0o0r 6 =0)}.
Proof The assertion directly comes from Theorem 4.1 and [39, Corollary 3.23, Chapter 5]
(or [36, Theorem 1.1, Chapter 4]).
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Thanks to the strict positivity of (S;, 6;, v;) forall t < t, we can apply a suitable Lamperti
transformation that converts the correlated system (5) into an uncorrelated one, as described
in (19) below. This transformation will be useful in Sect. 5 for numerical purposes. We first
provide a preliminary result.

Lemma 4.1 Foranyt < t, define

2
X, =25 — 20 Jo, — %, (14)
B 14

Then X, solves fort < t

2
2k6 k
dX, = ( — = Xt - Zcu,z)dt +aon/1—pf — pFdWS, (15
u=0

Xt + ¢
where
2 o
e = ) = 206+ 20, (16)
B Y
and
s — o?u; L <k9(§ —6) ﬁoczvt> L, Poeko(n = vo)
TT2X e ' B0 4o, ) ! y '
a7
Proof By virtue of Itd’s formula we have that for any r < v = 5 A 7
1 P Py o? poa®B
dX;, = —=dS — —=db; — —dv; — vidt + v dt 18
ST RAN T T aE g
By substituting the expressions of dS;, d; and dv; in Eq. (18) and observing that
X
=2
2
we obtain Eq. (15).
Based on Lemma 4.1, we introduce the following system of SDEs
= (xikfz, — 5 e = 2 g eus )i + a1 - pf — pFaw;
19

db; = ko (¢ — 6)dt + af Jor /B dW)
dv; = ky(n — v)dt + v Jor dW,

where ¢, and ¢; ;, i = 0, 1, 2 are defined in Egs. (16) and (17).

Note that the drift in the dynamics of X, in system (19) explodes if 6; or X; + c(6;, v¢)
hits zero. As a consequence of Theorem 4.1 and Corollary 4.2 we will prove that system (19)
admits a unique strong solution over the random interval [0, XA 1'9), where

X —inf{r > 0: X, +c(6;, v,) <0} (20)
Theorem 4.3 Let us consider any deterministic initial condition, (xg,6p,v9) € R x

(0, +00)2, such that xo + ¢(0y, vo) > 0. Then there exists a unique strong solution to system
(19) over the random time interval [0, T A 1.'9).
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Proof Step (i) Existence of a strong local solution.
From Theorem 4.1 and Lemma 4.1 we get existence of a solution to system (19) over the
random time interval [0,7 = 75 A r("). By construction, for all t < t = SAatl X+
(@, v) = 2/8 > 0and X5 + c(0,s,v,s) = 2,/S;s = 0. This implies that t¥ = 75,
and hence the solution is defined on the random time interval [0, T = X A ©9).
Step (ii) Pathwise uniqueness of the local solution B
Let ()? ‘s @ V) be a solution to (19), for any ¢ < X A7l starting from any deterministic
initial condition (xg, 69, vg) € R x (0, +00)2 satisfying xo + (6o, vo) > 0. Let us introduce,
on the same probability space where (f ‘ 5,, V) is defined, and, for any r < X A 79 the
process
~ <§t+c(§t75t))2
Ss=—) .
2
From It’s formula we get that for any ¢ < tX A 77 the triple (S;.6;,7;) solves system (5),
with initial condition

xo + (6o, vo))2

(50, 60, v0) € (0, +00)°, So=< 5

By construction, for any ¢t < X A, 5, > 0 and §r>7 = 0. Thus, we have that t5 = 7X.
By strong uniqueness of a strict positive solution (see Corollary 4.2), we get that (S;, 6y, ;)

N 0 N 4

and (Sy, 0;, v) coincides forany r < t°> At = 1> A TY.

System (19) is equivalent to (5). In particular, from the solution to (19) we can derive by
a simple transformation, see (21) below, the solution of our original system (5).

Corollary 4.4 Let us consider any deterministic initial condition, (xg,0p,v0) € R x
(0, +00)2, such that xo + ¢(0p, vo) > 0. Let (X,, 0;, v;) be the unique strong solution to
system (19) over the random time interval [0, T A t?). Then (S;, 6;, v;), where

2
St _ <X{ +C2(0;, U;)) 7 (21)

and c(0;, v;) given in (16), is the unique strong solution to system (5) over the random time
interval [0, T5 A 1:‘9).

Proof The proof follows directly from Step (ii) in the proof of Theorem 4.3.

As just said the main advantage given by the process X is to provide a fast and independent
simulation of the process S;. Indeed, we can first simulate the pair (6;, v;), and next the
process X;, whose stochastic component W;* is uncorrelated with those of 6; and v;. Finally,
the dynamics of S; can be obtained by the transformation (21).

Remark 4.1 Note that in our model S; or 6, have unbounded stochastic volatility due to the
presence of v;. It is known, see for instance Section 6.3.1 in [37], that a CIR process hits
zero almost surely if Feller’s condition is not fulfilled, i.e. the volatility is not sufficiently
small. This implies that S; or 6; reaches zero almost surely, that is, P(tS < +00) = IP’(‘CQ <
+00) = 1. However, even if existence and uniqueness of solution to systems (5) and (19) are
only in local sense, and we do not have a lower bound for the random time t, we observe that
E[t%] = E[tY] = +o0. This property is observed only through numerical inspection, and its
formal treatment will be the subject of future research. Specifically, to test this numerically,
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we simulated the process together with 10,000 randomly bootstrapped realizations. In no
iteration did we find S; or 6, to be zero.

‘We conclude the Section with a remark which will be useful in the next sections.
Remark 4.2 1t is easy to verify that

E[6;|Fs] = EP[6,165]1 = ¢ + (6 — 0)e M=) v > 5, (22)
Elv/|F] = E'[v;[vs] = 0 + (v — me X079 vt > 5. (23)

Indeed the processes f(; ekos /v, 0, dWS(Z), and fot ekv‘\/v_sdwga), t > 0, thanks to Eq. (10)
turn to be F-martingales.

5 Results

In this section, we apply our model to the change in the industrial production of electric and
gas utilities already mentioned. Other models used as a benchmark are the ARIMA-GARCH
and the non-linear regression model (NRM) specified in Eq. (1). Note that, with reference
to the model (2), let (s1, ..., s,) be the observations of S;, and (®1, ..., ®,) those of the
mean process 6;, taken as the exponential weighted moving average (EWMA) of (s1, .. ., s,)-
Moreover, the observations (v1, ..., v,) of the volatility process v; are given by the so-called
pointwise volatility

Vy =[Sy — Oy 1 <u=<n)).

Once again, the results displayed are in terms of percent change because, economically,
the focus is on the variations rather than absolute levels.

5.1 Parameters calibration

In order to estimate S;, 6;, and v; the involved parameters k, kg, ky, 1, ¢, o, B, v and the corre-
lations py, py in Eq. (2) need to be calibrated to the market prices. To estimate the correlation
po we use the Spearman correlation between the realizations of S; and 6;; analogously for
Pu-

Among many approaches existing in the literature to estimate the parameters of the square-
root models (see, for instance, [41] and references therein), we consider the estimating
function approach for ergodic diffusion models introduced in Bibby et al. [6]. This method
proved to be very useful in obtaining optimal estimators for the parameters of discretely
sampled diffusion-type models whose likelihood function is usually not explicitly known. In
[6, Example 5.4] the authors constructed an approximately optimal estimating function for
the square-root model, from which they derived the following explicit estimators of the three
parameters based on a sample of n observed market prices. For example, with regard to the
process vy, the parameters k,, 1, y on a sample (vy, ..., v,) are given by

é :_ln(("_l)zz ZVM/UM 1= (Zu ZVM)(ZM 2V — 1 )
’ (n — 1)? - (Zn_z Vu— l)(z =2V, _ ] '
1 n e*kv

h = u + ——————— @, — ), 24
g (n_n;” oA ey (24)
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Y v oy = vumrehe — (1 — emhy)2
S v ()2 = veme e — (7 — vu_1)e ke 7/2) Jk,

<>
Il

These estimators exist provided that the argument of the logarithm in the first equation is
strictly positive (the authors observed that this happens with a probability tending to one as
n — 0o, see Example 5.4 in [6].

Analogously, given the observations (®1, ..., ®,), we may compute

e <(n =D 22 O/ O =~ B O i ®u_'1>>
(n—=1%=Qn0Ou-1Dhs 9;_11) ’
A ] n 67129 2
= O+ — (®,-0), 5
¢ (I’l—l)ug; (n_l)(l—e—ke)( 1) (25)
@B) = 0,10 — Oy_teh — {(1 — ehn)2

Y07 ((E2-0, e — (¢ -0, e 4 £/2)0/ks

where ¥ is computed through the average (in [1, n]) of the discretization scheme described
in Sect. 5.3, once the related parameters are estimated by Eq. (24). Similarly to v, we obtain
6. Finally, given the observations (sq, ..., s,), we take

P ((n—nzﬁzsu/su =0 zsu>(zz zs_ll)>,
(n_1)2 (Zu 2 Su— 1)(214 =2 u— 1
& ZZ=2 su_,ll(su - Sufleil2 - é(l - eilz))2

Zzzz Su__]l((é/z - Sufl)eiz'l2 - (é - 51471)67]2 + é/Z)i\)/]% ’

and from & we derive g = (Ofxﬁ

5.2 Accuracy statistics
5.2.1 Normalized root mean square error (NRMSE)
The root mean squared error (RMSE) is a measure of the closeness between the observed

data and the simulated values from a given model. So, it represents the accuracy of the model
in terms of goodness of fit. It is defined by

RMSE = (26)

where ¢, denotes the residuals between the observed data and their simulations, over n times.
Hence, a value near 0 indicates a perfect fit to the data, and values lower than 1 represent a
good result. Note that the RMSE depends on the scale of observed data, thus it is sensitive to
the outliers; consequently, larger errors have a disproportionately large effect. To solve this
issue, we adopt the so-called normalized root mean squared error (NRMSE)

RMSE
NRMSE = ——, 27)

Smax — Smin
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Table 3 MAPE accuracy levels

(indicative) MAPE Forecasting accuracy
< 10% High prediction
10%-20% Good prediction
20%-50% Resonable prediction
> 50% Inaccurate prediction

where smax denotes the maximum value and sy, 1S the minimum value of the observed
sample data.

5.2.2 Mean absolute percentage error (MAPE)

The mean absolute percentage error (MAPE) is a measure of prediction accuracy of a fore-
casting method. It is defined as

1 n
MAPE = - Z

u=1

€y

Su

; (28)

where e, denotes the residuals between the observed data s, and their previsions. Table 3
suggests the accuracy levels of the MAPE criterion.

5.3 In-sample simulation

As mentioned, for simulations, the pointwise volatility of S; is used as a proxy for the latent
variable v,, while the trend of S;, represented by the EWMA, is captured by the latent variable
0;.

To simulate the processes vy, 6; we apply the strong convergent Milstein discretization
([49]) to the second and third SDE of Eq. (2). Brigo and Mercurioin [11, Section 22.7] showed
that the Milstein scheme converges in a much better way than other numerical algorithms
for the square-root process. Here the Lévy area terms are expressed by means of the square
of the increments of the Brownian motion, as for instance discussed in [21].

Hence, forany 1 <u < (n — 1),1 we compute

A2

A A PPN A /x V
Vyt1 = Uy +hy() — V) A+ y UMA‘C’\;’J::] 4 (‘/_ o) ])2 (29)

and

A s a o — =/ (@By/0u)’

bt = b+ ko€ — 00 At aBVounu8 ey + == 2= (VA ] — Al GO)
respectively, where A is the time step and (sf,i))uzl (i =1,2,3) arei.i.d. (standard) normal

random variables.
Once calibrated the model parameters, we simulate the auxiliary process X; (see Eq. (15))

Xurt = X + 0K, 0 0)A + 670,81 — 57 — p2el) 31

1 That means we assume that only the first n observations are available for S, 6, vy.
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Fig. 6 Real data (changes) versus simulated data via the C/ R3 model Eq. (2). The top left graph shows the
volatility, while the top right graph shows the trend (i.e., the EWMA). The bottom graph in the center displays
the changes of real data. In-sample results

where
(x,0,v) 240 k( + ¢(6,v)) iw 0,v)
wx,0,v) = ——— — —(x+c@,v)) — cu(x,0,v
x+é0,v) 2 =~ "
where
20, v) 2ﬁ9ﬁ+ﬁv& 0(x. 6. v) a%v 32)
cO,v) = — —v, Cco(x,0,v) = —F——
A 0 2(x + (0, v))
and

ko2 —0)  Ba*v
BVo Ve

Next, we obtain by Eq. (21) in Corollary 4.4

(33)

A Alg A
é1(x.,0,v) = ,59< ) ba(x, 0, v) = @ V),
Y

~

1/ o 2
Suy1 = Z<Xu+1 + c(Ouyr, Uu+1)> .

Figure 6 and Table 4 display the results of our simulations on the entire dataset of the
proposed model versus the considered benchmarks mentioned in the literature review. The
fitted values are obtained by averaging 100,000 simulations. In particular, we simulate the
changes of S;, jointly with their pointwise volatility and their trend (see Fig. 1 and Sect.5).

As shown, our approach can provide an accurate fit for the considered time series. Observe
that the numerical investigation confirms that X utl + é(éu+1, Uyt+1) > O (forany 1 <u <
(n — 1)) as a consequence of the equivalence between systems (5) and (19).

5.3.1 Partitioning and regime changes in data

One may wonder if, because of the extended time period under consideration, data can be more
simply explained by a classical ARIMA which models both the moving average and autore-
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Table 4 Real data (changes) versus simulations

Err. measure Estimation CIR? ARIMA-GARCH NRM
NRMSE Process 0.0631 0.1084 0.1031
NRMSE Trend 0.0167 0.1812 0.0965

In sample results

Real data (volatility)
— Simulated

6;

o

Real data (lrend

1 —Slmulaled
0
0 200 400 600 800 100 200 300 400 500 600 700 800 900
t (months) t (months)
10 T T T T T T T
Real data (changes)
— Simulated
5
’ MWMMMW
5
10 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

t (months)

Fig. 7 Real data (changes) versus simulated data via the CI R3 model Eq. (2). The top left graph shows the
volatility, while the top right graph shows the trend (i.e., the EWMA). The bottom graph in the center displays
the changes of real data. In-sample results. The vertical green bars highlight the different intervals identified
by Lavielle’s algorithm [42]

I:?sll(?sssirljli?all 3 2;8; (iih::cg}? ) Err. measure Interval CIR3 ARIMA-GARCH

subsample NRMSE [1,337] 0.076396 0.113851
NRMSE (338, 802] 0.082719 0.137663
NRMSE (803, 982] 0.072441 0.168693

In sample results

gressive components (see Sect.3.3), coupled with a GARCH process to take into account
volatility clustering (see Sect.3.4). To check this, we divided the dataset using the Lavielle
method [42], which identifies the optimal segmentation of a time series by minimizing a
contrast function that quantifies the difference between the original and segmented series.
Figure 7 visually depicts the dataset partitioned into three segments, while Table 5 presents
the model performance results. The proposed model outperforms an ARIMA-GARCH model
in all three segments.

5.4 Forecasting

To predict changes in the industrial production of electric and gas utilities through our model
in system (2), we use the expectations (22), (23) for 6; and v;, respectively. In addition, as
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Fig.8 Real trend (changes). Actual versus forecasted trend (1 month) obtained through the C'1 R3 model Eq.
(2), ARIMA-GARCH model and NRM model. Out of sample results
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Fig.9 Real data (changes) versus C/ R3 Eq. (2) forecasts (1 month). Out of sample results

the distribution of X; is unknown, we take the Monte Carlo approximation, i.e.

N

~ 1 ~

Xyt = N E IXquz,r (z=1), (34)
r=

where, for each iteration r, }A(u_,_z,r is computed as in Eq. (31), and N =100,000.

Figures 8 and 9 show how close the CIR3 model is to both real data and the selected

benchmarks. Table 6 summarizes the results in terms of MAPE and NMRSE thus confirming,
once again, that C I R® forecasts are quite accurate. Here we are interested in forecasting the
next data point in terms of process and trend while, for longer horizons, we check how far
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Table 6 MAPE and NRMSE obtained over the horizon of 1, 3 and 6 months

Err. measure Estimation Forecast Hor CIR? ARIMA-GARCH NRM

MAPE Process 1 Month 0.1092 0.1629 0.1594
NRMSE Process 1 Month 0.0575 0.0853 0.0820
MAPE Trend 1 Month 0.0038 0.0205 0.0246
NRMSE Trend 1 Month 0.0183 0.0950 0.1138
MAPE Trend 3 Months 0.0189 0.0266 0.0277
NRMSE Trend 3 Months 0.1634 0.1827 0.1844
MAPE Trend 6 Months 0.0303 0.0327 0.0322
NRMSE Trend 6 Months 0.2649 0.2705 0.2682

Rolling window set to 36 months. Out of sample results

Table 7 p-value from the Diebold-Mariano (DM) test and the Harvey—Leybourne-Newbold (HLN) test for
assessing the different nature of two series of predictions

Test Estimation Forecast Hor CIR? versus C1R3 versus NRM ARIMA-GARCH

ARIMA-GARCH versus NRM
DM Process 1 Month 0.7415x10~40 0.3451x10~40 0.5321x10~40
HLN  Process 1 Month 0.8097 x 10~40 0.3780x 10~40 0.5813x10~40

the estimate goes. Note that it makes sense to add the MAPE to the error analysis as, in this
instance, we are dealing with forecasts.

Comparison of competing predictions  Given an actual series and two competing predic-
tions, the Diebold and Mariano test [23] calculates a measure of the predictive accuracy of
those models. The null hypothesis is that the two methods have the same forecast accuracy.
Similarly, the Harvey, Leybourne and Newbold test [31], checks the hypothesis of equal
accuracy in forecast performance of two sources of predictions. Table 7 demonstrates that
the forecasts of the three models are statistically different.

Receiver operating characteristic (ROC) analysis Having confirmed that the models provide
statistically different forecasts. Next is to complement the accuracy of forecasts presented in
Table 6 with the receiver operating characteristic (ROC) analysis. The ROC curve plots the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The
TPR, also said sensitivity, indicates probability of detection. The FPR, also called sensitivity,
indicates the probability of a false alarm. In general, the closer the plot is to the top and
left-hand borders, the more accurate the test is. Red circles indicate coordinates in terms of
1-specificity (x-axis) and sensitivity (y-axis) of the optimal threshold. This means that the
closer the red dot is to the origin, the better. For more details and applications see [14, 47,
53, 65]. Figure 10 and Table 8 confirm that the best model is the C I R3. Note that, for sake of
space, we show only the results over 1-month horizon but similar results have been obtained
over the 3 and 6-month horizon.
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Fig. 10 ROC curves for the three different models (1-month horizon). Red circles indicate coordinates in
terms of 1-specificity (x-axis) and sensitivity (y-axis) of the optimal threshold. Top chart C 7 R3, bottom left
chart ARIMA-GARCH, bottom right chart NRM model

Table 8 Quantitative parameters of the ROC (1-month horizon)

Model Threshold Sensitivity Specificity AROC AR PPV NPV  FNR  FPR FDR  FOR

CIR? 1.0024  0.6409  0.6828  0.6881 0.6618 0.6689 0.6553 0.3591 0.3172 0.3311 0.3447

ARIMA- 0.4009  0.5344  0.4892  0.5002 0.5118 0.5113 0.5124 0.4656 0.5108 0.4887 0.4876
GARCH

NRM 0.1000  0.8376  0.4118  0.4683 0.6247 0.5875 0.7172 0.1624 0.5882 0.4125 0.2828

Legend: Threshold, optimum threshold calculated to maximize the sensitivity and specificity values; Sensitivity, hit
rate, or true positive rate; Specificity, true negative rate; AROC area under ROC curve, AR accuracy ratio, PPV positive
predicted value (i.e., precision), NPV negative predicted value, FNR false negative rate (i.e., miss rate), FPR false
positive rate (i.e., fall-out), FDR false discovery rate. Results obtained with the package “ROC Curve” by [48]

Conclusions

In this article, we have shown how a three-factor stochastic model, which we call CIR?,
can be used to predict changes in the industrial production of electric and gas utilities.
To this end, we introduce a model described by a system of SDEs (which accounts for
several stylized facts including mean reversion to a stochastic level, stochastic volatility,
and correlations/autocorrelations) and discuss the existence and uniqueness of the solution.
Next, since the process S; is correlated with its mean and volatility, by means of Lamperti
transformations we obtained an uncorrelated auxiliary process X, useful for simulation.
Numerical simulations show that the proposed model has an edge over the benchmarks
considered.
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