
Automata-Theoretic Techniques for Reasoning and
Learning in Linear-Time Temporal Logics on Finite
Traces

Department of Computer, Control and Management Engineering

Dottorato di Ricerca in Engineering in Computer Science – XXXIV Ciclo

Candidate

Marco Favorito
ID number 1609890

Thesis Advisor

Prof. Giuseppe De Giacomo

Co-Advisor

Prof. Luca Iocchi

2021/2022

Thesis defended on the 26th of September
in front of a Board of Examiners composed by:

Prof. Giancarlo Fortino (chairman)
Prof. Fabrizio Maria Maggi
Prof. Luca Cabibbo

External reviewers:

Prof. Aniello Murano
Prof. Marco Roveri

Automata-Theoretic Techniques for Reasoning and Learning in Linear-Time
Temporal Logics on Finite Traces
Ph.D. thesis. Sapienza – University of Rome

© 2022 Marco Favorito. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Website: https://marcofavorito.me

Author’s email: favorito@diag.uniroma1.it

https://marcofavorito.me
mailto:favorito@diag.uniroma1.it

ii

Abstract

The use of temporal logics on finite traces, like Linear Temporal Logic (ltlf) and
Linear Dynamic Logic (ldlf), has shown to be very powerful for AI. In particular,
they have been successfully applied in several AI fields, such as temporal synthesis,
FOND planning, the theory of Markov Decision Processes, Reinforcement Learning,
and Business Process Management. Almost all the techniques developed in recent
years rely on the well-known connection between temporal logics and automata
theory. In particular, the size of a deterministic finite automaton equivalent to
an ltlf/ldlf formula is, in the worst-case, doubly-exponentially larger than the
formula. Nevertheless, such transformation is much better behaved with respect to
the infinite traces setting, and this opens new avenues for algorithms that work well
in practice.

This thesis aims to take some of these avenues, and open new ones, both in the
theory and the applications of temporal logics in AI.

As a first contribution, we present a novel compositional technique for trans-
forming an ldlf formula into a minimal dfa, and propose an efficient symbolic
implementation that is competitive with state-of-the-art tools. The impressive results
obtained open new possibilities for further research on this direction, as well as a
ready-to-use tool for several applications in AI.

Then, we studied new problems in applying temporal logics in the context of
Reinforcement Learning and Markov Decision Processes. In particular, we study
the novel problem of Restraining Bolts, in which an authority imposes a restraining
specification, written in ltlf/ldlf , to the acting of a reinforcement learning agent.
Despite the authority and the learning agent having different representations of the
world, we can show that, under general circumstances, the agent can learn its goals to
suitably conform (as much as possible) to the restraining bolt specifications. We also
studied variants of this problem and methods to engineer restraining specifications
in order to improve the learning process.

In the area of ltlf synthesis, we develop the theory and the implementation of a
forward technique that, in many cases, is able to cope with the costly translation to
automata by building the automaton on-the-fly. We drastically improve related works
on the topic by using an AND/OR graph search algorithm and Knowledge Compila-
tion techniques to efficiently explore the search graph. The experimental results are
very promising. This contribution is the starting point for cross-fertilization between
the Synthesis and Planning community, and in particular for the development of a
science of heuristics for ltlf synthesis, as has happened in Planning.

iii

Contents

1 Introduction 1
1.1 Context: Temporal Logics for AI in Decision-Making 1

1.1.1 Logic and Computer Science 1
1.1.2 Temporal Logics and Program Verification 2
1.1.3 Temporal Logics and Artificial Intelligence 2
1.1.4 Temporal Logics on Finite Traces 4
1.1.5 ltlf/ldlf -to-dfa: State-of-the-art 6

1.2 Contributions . 7
1.2.1 Compositional ltlf/ldlf -to-dfa 8
1.2.2 Reinforcement Learning with ltlf/ldlf reward specifications 9
1.2.3 Forward Synthesis . 10

1.3 Structure of the Thesis . 11

I Temporal Logics and Automata Theory 13

2 Finite Automata Theory 14
2.1 Deterministic Finite Automata (dfa) 15
2.2 Nondeterministic Finite Automata (nfa) and Universal Finite Au-

tomata (ufa) . 15
2.2.1 nfa with ϵ-transitions: ϵ-nfa 16

2.3 Alternating Finite Automata (afa) 16
2.4 Binary Decision Diagrams (BDD) . 17
2.5 dfa Representations . 18

2.5.1 Fully-Explicit: Explicit State, Explicit Alphabet 18
2.5.2 Semi-Symbolic: Explicit State, Symbolic Alphabet 18
2.5.3 Fully-Symbolic: Symbolic State, Symbolic Alphabet 19

2.6 dfa operations: Projections, Concatenation, Closures 20
2.6.1 Existential projection . 20
2.6.2 Universal Projection . 20
2.6.3 Concatenation . 21
2.6.4 Kleene Closure . 23

2.7 Summary . 26

3 Temporal Logics on Finite Traces 27
3.1 Linear Temporal Logic . 27

3.1.1 Syntax . 27
3.1.2 Semantics . 28

3.2 Linear Temporal Logic on Finite Traces: ltlf 29
3.2.1 Syntax . 29

Contents iv

3.2.2 Semantics . 31
3.2.3 Complexity and Expressiveness 32

3.3 Regular Temporal Specifications (ref) 32
3.4 Linear Dynamic Logic on Finite Traces: ldlf 33

3.4.1 Syntax . 34
3.4.2 Semantics . 34

3.5 Reasoning in ltlf/ldlf . 35
3.6 Summary . 36

4 ltlf and ldlf translation to automata 37
4.1 From ltlf/ldlf to afa . 37

4.1.1 ∂ function for ltlf . 38
4.1.2 ∂ function for ldlf . 39

4.2 The ldlf2nfa algorithm . 40
4.3 On-the-fly dfa . 46

4.3.1 On-the-fly ltlf/ldlf evaluation 46
4.3.2 ldlf2dfa: a variant of ldlf2nfa 50

4.4 From ltlf to fol using Mona . 53
4.4.1 Reduction to fol . 53
4.4.2 Weak monadic Second-order theory of 1 Successor (WS1S) . 55

4.5 Summary . 55

II Compositional Automata Construction 57

5 Compositional approach 58
5.1 Introduction . 58
5.2 Compositional Translation . 60

5.2.1 The Technique . 61
5.2.2 Analysis . 62

5.3 Examples . 65
5.4 Summary and Discussion . 71

5.4.1 Refinement of Complexity Analysis 71
5.4.2 Tailored Rewriting of ldlf Formulas 72
5.4.3 Design Compositional Translation for Other Formalisms . . . 72

6 Symoblic Compositional Approach 73
6.1 From afa to dfa using projections 73
6.2 Semi-symbolic automata operations 76

6.2.1 Existential and Universal Projections 76
6.2.2 Concatenation and Kleene Closure 77
6.2.3 Construction of the afa . 79

6.3 Summary and Discussion . 82
6.3.1 Exploit dfa-representation of afas for other problems 82
6.3.2 dfa-representation of a Full afa 83
6.3.3 Hybrid Compositional Approach 83

7 The Lydia and LydiaSynt Tools 84
7.1 Mona dfa Library . 84

7.1.1 What is Mona . 84
7.1.2 Mona automata . 85

7.2 Lydia and LydiaSynt . 85

Contents v

7.2.1 Lydia . 86
7.2.2 LydiaSynt . 86

7.3 Experimental Evaluation . 87
7.3.1 Experimental Methodology. 88
7.3.2 Experiment Setup. 88
7.3.3 Benchmarks . 89
7.3.4 Results and Analysis . 89

7.4 Discussion and Future Works . 93
7.4.1 Get rid of the Mona dfa Library 93
7.4.2 Improve Experimental Coverage 94
7.4.3 Optimizations . 94

III Reinforcement Learning with ltlf/ldlf Specifications 95

8 Background on Reinforcement Learning 96
8.1 Reinforcement Learning . 96
8.2 Markov Decision Process (MDP) . 97
8.3 Temporal Difference Learning . 101
8.4 Reward Shaping (RS) . 101
8.5 Non-Markovian Reward Decision Process (NMRDP) 103

8.5.1 Preliminaries . 103
8.5.2 Find an optimal policy ρ̄ for NMRDPs 104
8.5.3 Define the non-Markovian reward function R̄ 105
8.5.4 Using pltl . 105

8.6 RL for NMRDP with ltlf/ldlf Rewards 105
8.6.1 NMRDP with ltlf/ldlf rewards 106

8.7 Summary . 108

9 Restraining Bolts 109
9.1 Introduction . 109
9.2 RL with ltlf/ldlf restraining specifications 111
9.3 Automata-based reward shaping . 116
9.4 Implementation and Examples . 117
9.5 Summary and Discussion . 120

9.5.1 Learning ltlf/ldlf goals . 121
9.5.2 POMDPs . 121
9.5.3 Quantitative Interpretation of Temporal Formulas 122
9.5.4 Automata-based Reward Shaping 122
9.5.5 Restraining Bolts with Clocks 122

10 Imitation Learning over Heterogeneous Agents 125
10.1 Introduction . 125
10.2 Related work . 126
10.3 Problem definition . 127
10.4 Solution method . 128
10.5 Case studies . 130
10.6 Summary and Discussion . 131

Contents vi

11 Temporal Logic Monitoring Rewards via Transducers 133
11.1 Introduction . 134
11.2 Background . 135
11.3 Reward Transducers . 138
11.4 Extending MDPs via Reward Transducers 139
11.5 Rewards as Temporal Specifications 142
11.6 Monitoring Rewards . 144
11.7 Applications in RL . 147
11.8 Summary and Discussion . 149

12 Domain-independent reward machines for modular integration of
planning and learning 150
12.1 Introduction . 151
12.2 Related work . 153
12.3 Problem formulation . 154
12.4 Solution . 155

12.4.1 Reward machine generation 155
12.4.2 Use of the reward machine for RL 156
12.4.3 Automatic sub task decomposition 157

12.5 Experimental results . 158
12.6 Summary and Discussion . 159

IV Forward ltlf Synthesis 161

13 Background on ltlf Synthesis 162
13.1 ltlf Basics . 162
13.2 ltlf Synthesis . 164
13.3 AND-OR Graph Search . 167
13.4 Sentential Decision Diagrams (SDDs) 167
13.5 Summary . 168

14 ltlf Synthesis as AND-OR Graph Search 169
14.1 Introduction . 170
14.2 DFA Construction from ltlf . 171
14.3 ltlf Synthesis as AND-OR Graph Search 174

14.3.1 Synthesis Algorithm . 175
14.3.2 SDD-based Expand . 178

14.4 Related Work . 183
14.5 Summary and Discussion . 184

14.5.1 Informed Search . 184
14.5.2 Different Strategies to implement Expand 184
14.5.3 Extension to ldlf , ppltl, ppldl 185
14.5.4 Other optimizations . 185

15 Cynthia 186
15.1 Implementation . 186
15.2 Empirical Evaluation . 187
15.3 Empirical Evaluations . 187

15.3.1 Benchmarks . 187
15.4 Summary and Discussion . 190

Contents vii

16 Conclusions 194

References 195

1

Chapter 1

Introduction

This chapter presents the outline of this thesis and summarises its motivation,
goals, and achievements. Section 1.1 provides a high-level introduction to applications
of temporal logics for AI techniques in decision-making. Then, Section 1.2 summarizes
the major contributions of the work which was done towards this thesis. The structure
of the rest of this thesis is discussed in Section 1.3.

1.1 Context: Temporal Logics for AI in Decision-Making
1.1.1 Logic and Computer Science

The connection between Logic and Computer Science (CS) has been widely
acknowledged in the academic community (Halpern et al., 2001; Davis, 2018; Davis,
1988; Manna and Waldinger, 1993; Gottlob, 2009). From a historical perspective,
mathematical logic was developed in an attempt to solve the crisis in the foundations
of mathematics that emerged at the beginning of the 20th century. Between 1900
and 1930, this development was led by the mathematician David Hilbert’s Program,
whose main aim was to formalize all of mathematics and establish that mathematics is
complete and decidable. Informally, completeness means that all “true” mathematical
statements can be “proved”, whereas decidability means that there is a mechanical
rule to determine whether a given mathematical statement is “true” or “false”.
Hilbert’s belief was really that for any problem, it is always possible to prove, in a
finite number of unambiguous steps (with what nowadays is called an algorithm),
its truth or its untruth.

However, this belief has been refuted by Kurt Gödel in his celebrated paper (Gödel,
1931), where he showed that the standard first-order axioms of arithmetic were incom-
plete. Furthermore, Alan Turing, Alonzo Church, and Alfred Tarski demonstrated
the undecidability of first-order logic. Specifically, the set of all valid first-order
sentences was shown to be undecidable (Church, 1936; Turing et al., 1936) whereas
the set of all first-order sentences that are true in arithmetic was shown to be highly
undecidable (Tarski, 1936).

Since then, logic has permeated through computer science. In particular, com-
puter science benefitted from logic in the areas of computational complexity (Garey
and Johnson, 1979; Immerman, 1999; Papadimitriou, 2007), database theory (Abite-
boul, Hull, and Vianu, 1995), programming languages (Reynolds, 1998), reasoning
about knowledge (Fagin et al., 1995), and computer-aided verification (Clarke, Emer-
son, and Sistla, 1986; Lichtenstein and Pnueli, 1985; Queille and Sifakis, 1982; Vardi
and Wolper, 1986), just to name a few.

1.1 Context: Temporal Logics for AI in Decision-Making 2

1.1.2 Temporal Logics and Program Verification
Program Verification, in particular Program Synthesis, is one of such fields. It

started from a Church’s paper back in 1957 (Church, 1963), in which he described
the use of logic to specify and verify sequential circuits. A sequential circuit is a
switching circuit whose output depends not only upon its input but also on what its
input has been in the past. It can be seen as a particular type of finite-state machine,
which became a subject of study in mathematical logic and computer science in the
1950s. Informally, the synthesis problem is to come up with mechanical translation
of human-understandable task specifications to a program that is known to meet
the specifications (Church, 1964). Since then, the topic has received very much
attention from the scientific community, but the “big bang” (to use Moshe Vardi’s
words (Vardi, 2008)) for the application of logic to program correctness occurred
with Amir Pnueli’s 1977 paper (Pnueli, 1977), by advocating using future linear
temporal logic (ltl), a type of temporal logic, as a logic for the specification of
non-terminating programs

What are temporal logics? Differently from classical logics, temporal logics allow
us to reason about propositions in terms of time (e.g. "I am always hungry", "I will
eventually be hungry", or "I will be hungry until I eat something"). The history
of time in logic goes back to ancient times (see (Ohrstrom and Hasle, 2007) for a
detailed history), but the birth of modern temporal logic is unquestionably credited
to the philosopher Arthur Norman Prior (Prior, 2003). The connection between
classical logics and temporal logics is due to Hans Kamp in his PhD Thesis, dated
1968 (Kamp, 1968), by essentially showing that monadic first-order logic over the
ordered naturals and linear-time temporal logic were mutually reducible logics.

Back to ltl. Thanks to its declarativeness and human-friendliness, Linear-time
Temporal Logic turned out to be particularly suited for the specification of reactive
systems (Pnueli, 1985), i.e. systems that have to operate continuously, e.g. hardware,
operating systems, communication protocols, robots, etc. Examples of interesting
specifications in the context of a distributed system are:

• (mutual exclusion): two processes can never be simultaneously in a critical
section;

• (conditional response): if a process requests a resource, then eventually the
resource will be granted;

• (liveness): eventually the process terminates.

One of the major approaches to reactive synthesis is the automata-theoretic
approach (Nagel, Suppes, and Tarski, 1966; Hopcroft, Motwani, and Ullman, 2006).
The key idea underlying the automata-theoretic approach is that, given an ltl
formula φ, it is possible to construct a finite-state automaton A on infinite words
that accepts precisely all computations that satisfy φ (Vardi and Wolper, 1994).

The correspondence between logic and automata is well-known in the academic
community, and the automata-theoretic approach is at the foundation of many other
techniques that deal with temporal logics (Buchi and Landweber, 1969; Vardi and
Wolper, 1986; Vardi, 2003; Vardi, 1995; Burch et al., 1992; Gerth et al., 1995).

1.1.3 Temporal Logics and Artificial Intelligence
The field of Artificial Intelligence (AI) (Russell and Norvig, 2010), and in particu-

lar the Knowledge Representation (KR) (Brachman and Levesque, 2004; Reiter, 2001)

1.1 Context: Temporal Logics for AI in Decision-Making 3

and Planning (Ghallab, Nau, and Traverso, 2004; Geffner and Bonet, 2013) commu-
nity, is well aware of temporal logics since a long time, as they have been used for
temporal specification of the course of actions of an agent or a system of agents (Fagin
et al., 1995). For example, in reasoning about actions and planning, ltl has often
been used as a specification mechanism for temporally extended goals (Bacchus and
Kabanza, 1996; Bacchus and Kabanza, 2000; Felli, De Giacomo, and Lomuscio, 2012;
Patrizi et al., 2011), temporal constraints on trajectories (Gabaldon, 2004; Gerevini
et al., 2009a), for expressing preferences and soft constraints (Bienvenu, Fritz, and
McIlraith, 2006; Bienvenu, Fritz, and McIlraith, 2011; Sohrabi, Baier, and McIl-
raith, 2011), for specifying declarative control knowledge on trajectories (Baier and
McIlraith, 2006), for procedural control knowledge on trajectories (Baier, Fritz, and
McIlraith, 2007), for planning via model checking using CTL (Cimatti, Giunchiglia,
et al., 1997) and ltl (De Giacomo and Vardi, 1999), for temporal specifications in
planning domains (Calvanese, De Giacomo, and Vardi, 2002), for specifying non-
Markovian reward functions in Non-Markovian Reward Decision Processes (Bacchus,
Boutilier, and Grove, 1996; Thiébaux et al., 2006), and in Declarative Business
Process Management (BPM) (Pesic and Aalst, 2006; Pesic, Bosnacki, and Aalst,
2010).

The above techniques all rely on ltl, which is a temporal logic whose semantic
is over ω-traces, i.e. infinite words. However, especially in the context of temporal
constraints and preferences, ltl formulas are used to express properties or constraints
on finite traces of actions/states; in fact, this can be done even if the standard
semantics of ltl is defined on infinite traces. Nevertheless, often, the distinction
between interpreting ltl on infinite or finite traces is blurred (De Giacomo, Masellis,
and Montali, 2014). In fact, this assumption has been considered a sort of accident
in much of the AI and BPM literature, and standard temporal logics (on infinite
traces) have been “hacked” to fit this assumption, with some success, but only lately,
clean solutions have been devised. In reality, interpreting temporal constraints/goals
on finite traces is different than interpreting them on infinite traces (and much more
well-behaved). Moreover, in AI, almost always, the focus is actually on finite traces.
For example, in planning, the agent has a task specification or “goal”, and has to
produce a “plan” to satisfy the task in the environment model. However, the task
has to terminate (typically, just reaching a certain state in the environment, i.e. a
reachability goal) because if it were not the case, the agent would be stuck into
doing the same task forever. But then, why bother with equipping it with a model
of the environment and of the task at all? The other motivation is practical. In
problems like reactive synthesis of an ltl specification φ (which is on infinite traces),
the classical automata-theoretic solution involves the following steps:

1. compute the corresponding Büchi Nondeterministic Automaton (NBW) (Nagel,
Suppes, and Tarski, 1966),

2. determinize the NBW into a Deterministic Parity Automaton (DPW) (expo-
nential in the number of states, polytime in the number of priorities),

3. synthesize a winning strategy for parity game (polytime in the number of
states, exponential in the number of priorities).

For the determinization in step 2, no scalable algorithm exists yet. In fact, the
problem is highly intractable: from a 9-state NBW, its DRW counterpart has
1,059,057-state DRW (Althoff, Thomas, and Wallmeier, 2005), and there are no
symbolic algorithms for it. Moreover, in step 3, solving parity games requires
computing nested fixpoints (possibly exponentially many). Despite, as we shall see,

1.1 Context: Temporal Logics for AI in Decision-Making 4

the synthesis problem in the finite-trace setting is still 2EXPTIME-complete as
in the infinite-trace setting, automata-theoretic algorithms for automata on finite
traces are much more well-behaved wrt the ones on infinite traces, and so amenable
for effective implementations.

1.1.4 Temporal Logics on Finite Traces
For these reasons, Linear Temporal Logic on finite traces (ltlf) has been

advocated in (De Giacomo and Vardi, 2013) as a proper variant of ltl interpreted
over finite traces. Moreover, at no cost of computational complexity but higher
expressive power, the authors propose a novel formalism, Linear Dynamic Logic on
finite traces (ldlf); it is as expressive as a regular expression, while retaining the
declarative nature and intuitive appeal of ltlf . As in the case of infinite traces,
both ltlf and ldlf have a tight connection with (finite traces) automata theory.
Indeed, for an ltlf/ldlf formula φ, it is possible to compute an Alternating Finite
Automaton (afa) (Chandra, Kozen, and Stockmeyer, 1981; Brzozowski and Leiss,
1980; Leiss, 1981) A that accepts the traces that satisfy φ. This makes reasoning
over ltlf/ldlf very appealing wrt the infinite trace counterpart, as in finite-trace
settings, algorithms over automata, e.g. determinization becomes doable in practice.
Once determinized, the resulting Deterministic Finite Automaton (dfa) (Rabin and
Scott, 1959) can be exploited to efficiently execute a run over the trace produced by
the system and easily verify whether the system of interest is well-behaving wrt the
original specification.

The new version of ltlf and its pure-past counterpart (De Giacomo, Di Stasio,
et al., 2020) have been quite successful in the AI and Formal Methods communities
in recent years. For example, they have been used for finite temporal synthesis (De
Giacomo and Vardi, 2015; De Giacomo and Vardi, 2016; Camacho, Baier, et al., 2018;
Zhu, Tabajara, Li, et al., 2017), in Fully-Observable Non-Deterministic (FOND)
Planning for ltlf Goals (De Giacomo and Rubin, 2018; Brafman and De Giacomo,
2019b; Brafman and De Giacomo, 2019b; Camacho and McIlraith, 2019a; De
Giacomo, Favorito, and Fuggitti, 2022), in the theory of Markov Decision Processes
(MDP) to capture non-Markovian rewards (Gretton, 2014; Lacerda, Parker, and
Hawes, 2015; Brafman, De Giacomo, and Patrizi, 2018; Brafman and De Giacomo,
2019a; De Giacomo, Favorito, Iocchi, Patrizi, and Ronca, 2020) with applications
in reinforcement learning (RL) (Puterman, 1994; Sutton and Barto, 1998) with
temporal specifications (Camacho, Icarte, et al., 2019; De Giacomo, Iocchi, et al.,
2019), to specify and monitor business processes (De Giacomo, Masellis, and Montali,
2014; De Giacomo, Masellis, Grasso, et al., 2014; De Giacomo, De Masellis, et al.,
2020), and many others.

For all these techniques, the foundational building block is the transformation
from ltlf/ldlf formulas into a dfa. Figure 1.1 depicts the workflow when working
with ltlf/ldlf applied to AI. The ltlf/ldlf formula φ is first transformed into
a dfa A, and then combined with other techniques, depending on the field of
application. We now briefly survey how this connection actually emerges in these
domains.

FOND planning. Planning for ltlf goals has been studied in, e.g., (Baier
and McIlraith, 2006; De Giacomo and Vardi, 2013; Torres and Baier, 2015) for
deterministic domains and in (De Giacomo and Vardi, 2015; Camacho, Triantafillou,
et al., 2017; De Giacomo and Rubin, 2018) for nondeterministic domain. The overall
approach for FOND planning with ltlf goals (De Giacomo and Rubin, 2018) is to
compute both the dfa of the formula and the dfa of the planning domain, compute

1.1 Context: Temporal Logics for AI in Decision-Making 5

MDP

Synthesis

FOND

DFA
BPM

Figure 1.1. Diagram that shows how the ltlf /ldlf -to-dfa problem is at the foundations
of other temporal logic-based areas in AI. An ltlf /ldlf formula φ is usually translated
into a dfa and then combined with other techniques from the areas of: Fully-Observable
Non-Deterministic (FOND) planning; the theory of Markov Decision Processes (MDP);
Business Process Management (BPM) and Finite Temporal Synthesis of ltlf /ldlf

specifications.

the product, and solve the dfa game (De Giacomo and Vardi, 2015) by returning a
winning strategy if it exists.

Theory of MDPs. Specification of reward functions using temporal logics is
known since (Bacchus, Boutilier, and Grove, 1996). But more recently, it has
been done using ltlf/ldlf for specifying the reward function and then planning
with MDPs (Brafman, De Giacomo, and Patrizi, 2018). Given a temporal logic
specification (φ, r), where φ is an ltlf/ldlf formula and r ∈ R is a reward value,
the approach first computes the automaton Aφ, and then computes the synchronous
product between Aφ and the Non-Markovian MDP M, resulting in a new MDP
with an extended state space, i.e. the original state plus the needed memory to
let the agent remembering the salient information of the history so far, in function
of the satisfaction of φ. Another interesting application is in Regular Decision
Processes (Brafman and De Giacomo, 2019b), a novel model of the environment
where not just the reward function but also the transition function is non-Markovian,
i.e. the transition probabilities from a given state depend on past information but
only “regularly” (i.e. with a function that is not more complex to evaluate than
regular languages). Both the transitions and the rewards are specified by means
of ltlf/ldlf formulas, which can be further compiled into transducers (Moore,
1956; Mealy, 1955). In particular, such model has gained very recent interest in the
reinforcement learning community (Gaon and Brafman, 2020; Abadi and Brafman,
2020; Ronca and De Giacomo, 2021; Ronca, Licks, and De Giacomo, 2022). Other
related works in the related field of reinforcement learning with temporal logic
specifications are (Icarte, Klassen, et al., 2018b; Camacho, Icarte, et al., 2019;
Alshiekh et al., 2018; Aksaray et al., 2016; Littman et al., 2017; Hasanbeig, Abate,

1.1 Context: Temporal Logics for AI in Decision-Making 6

and Kroening, 2019; Hasanbeig, Kantaros, et al., 2019; Jothimurugan et al., 2021;
Li, Vasile, and Belta, 2017).

Business Process Management. ltl is at the base of one of the main declarative
process modelling approaches: DECLARE (Pesic and Aalst, 2006; Montali et al.,
2010; Maggi et al., 2011). Recently, DECLARE has been revised in terms of finite
traces (De Giacomo, De Masellis, and Montali, 2014). In (De Giacomo, Maggi, et al.,
2017), the problem of the ltlf -based trace alignment has been studied, which is one
major task in business process management where the aim is to align real process
execution traces to a process model by (minimally) introducing and eliminating steps.
It is, again, based on the translation from ltlf/ldlf formulas to dfas. In runtime
monitoring (Aalst, 2011) which is one of the central tasks to provide operational
decision support to running business processes, it can be checked on-the-fly whether
they comply with constraints and rules specified in ltlf/ldlf formulas (De Giacomo,
De Masellis, et al., 2020; De Giacomo, Masellis, Grasso, et al., 2014; Maggi et al.,
2011).

Finite Temporal Synthesis. The foundations for ltlf/ldlf synthesis have been
laid down in (De Giacomo and Vardi, 2015; De Giacomo and Vardi, 2016). The
automata-based procedure for ltlf/ldlf synthesis is as follows: (i) compute the dfa
of the ltlf/ldlf formula φ; (ii) find a winning strategy over the dfa game induced
by the partition of controllable and uncontrollable variables. Since then, a plethora
of extensions and variants have been studied: ltlf synthesis under environment
specifications (Aminof, De Giacomo, Murano, et al., 2019; Zhu, Giacomo, et al., 2020;
Camacho, Bienvenu, and McIlraith, 2018; De Giacomo, Stasio, Vardi, et al., 2020;
De Giacomo, Stasio, Tabajara, et al., 2021), ltlf synthesis with mandatory stop
actions (De Giacomo, Stasio, Perelli, et al., 2021), best-effort ltlf synthesis (Aminof,
De Giacomo, and Rubin, 2021; Aminof, De Giacomo, Lomuscio, et al., 2021; Aminof,
De Giacomo, Lomuscio, et al., 2020; Ciolek et al., 2020), forward ltlf synthesis (Xiao
et al., 2021). Among implementations, we report Syft (Zhu, Tabajara, Li, et al.,
2017), Lisa (Bansal et al., 2020), and LTLfSyn (Xiao et al., 2021).

The impressive energies the community has put on the use of ltlf/ldlf for-
malisms in all of these AI problems stands on its own as a motivation of this thesis
to exist.

1.1.5 ltlf/ldlf -to-dfa: State-of-the-art
As already stressed earlier, the crux of the applications of ltlf/ldlf to the

AI problems is the computation of the dfa which is semantically equivalent to
a ltlf/ldlf formula. In the worst case, if the formula φ is of size n, then the
minimal dfa Aφ can have a state space whose size is doubly exponentially larger,
i.e. 22n (Chandra, Kozen, and Stockmeyer, 1981). This is a discouraging complexity
result, although this does not mean that good algorithms and implementation cannot
be found. In fact, practice has shown that many instances of ltlf/ldlf -to-dfa
are tractable (Tabakov and Vardi, 2005), i.e. on average, we can compute the
dfa of a formula ltlf/ldlf in a reasonable time. Figure 1.2 gives an overview of
state-of-the-art techniques and tools to compute the dfa from a ltlf formula.

Another approach is to avoid the full construction of the dfa, and instead build
the automaton on-the-fly, in a way that depends on the actual problem being solved.
This idea has been suggested several times in the literature, e.g. (Brafman, De

1.2 Contributions 7

Figure 1.2. Overview of approaches to compute the dfa Aφ from an ltlf formula φ. At
the top, the classical approach proposed in (De Giacomo and Vardi, 2013; De Giacomo
and Vardi, 2015) reduces the problem to afa determinization. In the middle, the
translation is reduced to the translation from fol-to-dfa (by using a state-of-the-art
tool Mona) (Zhu, Tabajara, Li, et al., 2017), and a well-known correspondence between
Weak-Monadic Second-order logic of one successor (WS1S) and automata (Büchi, 1960a;
Elgot, 1961). At the bottom, we describe the approach proposed in (Bansal et al., 2020),
where the outermost conjunction of the ltlf formula is decomposed into its operands,
which are smaller ltlf formulas, and then each of these formulas is translated into dfa,
again by resorting to fol.

Giacomo, and Patrizi, 2018) for computing the temporal reward specification on-the-
fly, and in (Xiao et al., 2021) to perform ltlf synthesis without fully constructing
the dfa.

Finding good algorithms for the ltlf/ldlf -to-dfa transformation is of essential
importance, as it is at the basis of solutions of many problems in AI. Part of this
thesis will be dedicated to purse this goal.

1.2 Contributions
The contributions of the thesis can be split into the following parts:

• We introduce a novel, compositional approach, for the translation from an
ltlf/ldlf formula into a dfa. Moreover, we design a symbolic approach
suitable for an effective implementation. Finally, we propose a tool, Lydia,
that implements the compositional procedure and that on our benchmarks is
highly competitive with the state-of-the-art tools for dfa construction and
ltlf synthesis.

• We study different problems and develop new techniques for Reinforcement
Learning with ltlf/ldlf specifications. In particular, we investigate on
the concept of “Restraining Bolts”, where an authority imposes restraining
ltlf/ldlf specifications to the learning agent. Other contributions related to
this part will be discussed below.

• We study a forward approach for ltlf synthesis, which drastically improves
previous work on the topic (Xiao et al., 2021) thanks to a smarter way of

1.2 Contributions 8

clustering automata transitions by means of knowledge compilation techniques.
Moreover, we provide an implementation of such technique, showing its poten-
tial and its competitiveness with other state-of-the-art approaches, and break
new ground for interesting and promising developments by further exploring
the connection with FOND planning and forward search.

Figure Figure 1.3 visually depicts the areas of AI impacted by the thesis.

MDP

Synthesis

FOND

DFA
BPM

Compositional

Forward

Planning

RL

Figure 1.3. The diagram in Figure 1.1, expanded to include areas of AI in which the
thesis has contributed to (highlighted in green). We consider FOND planning as area of
contribution because it is a problem very similar to synthesis.

In the following, we briefly recap the main contributions in each category.

1.2.1 Compositional ltlf/ldlf -to-dfa
The first main contribution in this field is a novel solution to the ltlf/ldlf -

to-dfa problem. In particular, we devise a new approach for the translation of
ldlf formulas into dfa by means of inductive translation rules that process each
subformula separately, in a bottom-up fashion. That is why we call it compositional:
the procedure tries to split the problem as much as possible, up to base cases (e.g.
in ltlf these are atomic formulas and boolean constants), and then, according to
the ldlf operator, the automata of the operands are composed using automata-
theoretic operations (e.g. cartesian product, Kleene closure etc.). One of the main
advantages of adopting this approach is practical: it allows to aggressively minimize
partial results. This technique was already known to be effective by the authors of
Mona (Klarlund, 1997; Klarlund and Møller, 2001) for the WS1S logic. Interestingly,
the computational complexity of this translation approach is non-elementary (i.e.
the time complexity cannot be bound by any tower of exponential in function of
the input); nevertheless, as we will shall see, in practice the intractability does not
emerge. Of course this scheme can be applied to ltlf formulas as well, by first
translating them into equivalent ldlf formulas, which has a linear cost wrt the size
of the formula.

1.2 Contributions 9

The second contribution is to formalize the technique using semi-symbolic dfa
representation. We say “semi-symbolic” because the transition function is repre-
sented symbolically (i.e. binary representation of the alphabet), whereas the state
space is represented explicitly (i.e. unary representation). Symbolic representations,
either in the alphabet of both in the state space and in the alphabet, are essential
for the scalability of an implementation. We keep this contribution separate from
the previous one as the proposed approach is agnostic with respect to the actual rep-
resentation. and the semi-symbolic operations we used are non-trivial (in particular,
the dfa-representation of an alternating finite automaton).

The third contribution of this part is an implementation of the abovementioned
approach. The tool is called Lydia, and it is published open-source1. Benchmarks
available from the literature on dfa constructions and ltlf synthesis show that our
implementation is competitive, and sometimes better, than other implementations.
Our tool is able to perform synthesis by first constructing the entire (minimal) dfa
of the ltlf/ldlf formula, and then by relying on a symbolic technique used for
ltlf synthesis (Zhu, Tabajara, Li, et al., 2017). In particular, it is not just a scalable
tool for dfa construction and synthesis of ltlf formulas, but also the first able to
handling ldlf formulas.

1.2.2 Reinforcement Learning with ltlf/ldlf reward specifications
The first contribution in this field is the study of a novel problem in AI, the

restraining bolts. Restraining Bolts is a concept coming from the Science Fiction: a
restraining bolt is a “device that restricts a droid’s [agent’s] actions when connected
to its systems. Droid owners install restraining bolts to limit actions to a set of
desired behaviors.”2. In the context of AI, we imagined a scenario in which an
authority wants to impose a restraining specification to the agent. Such entities,
the authority and the agent, can be completely different, e.g. not even sharing the
same perception of the world. Studying this problem from a classical Knowledge
Representation perspective (Reiter, 2001) would require to establish some sort of
“glue” between the representation by the agent and that by the restraining bolt.
Instead, we bypass dealing with such a “glue” by studying this problem in the
context of reinforcement learning, which is currently of great interest to develop
components with forms of decision making, and in the case when the restraining
specifications are expressed in temporal logic formalisms like ltlf/ldlf . We show
formally, and illustrate with examples, that, under general circumstances, the agent
can learn while shaping its goals to suitably conform (as much as possible) to the
restraining bolt specifications.

Other contributions aim at further developing this concept, by studying variants
of the problem, or addressing practical issues when training an agent in such settings.

The second contribution in this part is the study of the following problem. We
have an expert agent which knows how to perform a certain task, and a (reinforcement)
learning agent, which aims at learning the task of the expert, However, we assume
that the expert is not able to “explain”, or to directly transfer the knowledge to
the learning agent, but only through demonstration of the optimal behaviour. We
describe an Imitation Learning (IL) method where the execution traces generated by
the expert agent are used to produce a logical specification of the reward function,
to be incorporated into a restraining bolt. The restraining bolt can then be attached
to the learning agent to drive the learning process and ultimately make it imitate

1https://github.com/whitemech/lydia
2https://www.starwars.com/databank/restraining-bolt

https://github.com/whitemech/lydia
https://www.starwars.com/databank/restraining-bolt

1.2 Contributions 10

the expert. Crucially, we show that such method can be applied to heterogeneous
agents, with the expert, the learner and the RB using different representations of
the environment’s actions and states, without specifying mappings among their
representations.

The third contribution is to contribute to the techniques to handle temporal
rewards and to the solutions to engineer them. In particular, following the work that
studied MDPs with a set of ltlf/ldlf specifications as source of reward (Brafman,
De Giacomo, and Patrizi, 2018), we show how to compile the temporal specifications
with a smaller state space overhead if we do not care which is the source of reward.
Note that, when dealing with non-Markovian reward, it is necessary the overhead
in order to keep track of relevant information from the history, and it is important
to keep it as small as possible to make both planning and learning with MDPs as
efficient as possible. We also introduce the novel concept of monitoring rewards,
which drawn inspiration from the runtime monitoring literature (Bauer, Leucker,
and Schallhart, 2010; Ly et al., 2013; De Giacomo, Masellis, Grasso, et al., 2014),
allows a finer-grained reward specification at no additional overhead cost.

The fourth contribution is on the integration of planning and learning. The
integration has many advantages in practical applications, as it allows for combining
the different benefits of the two approaches: prediction of future states from planning
with adaptivity to current situations from learning. However, a problem with is
approach is that the two components should share a common representation of the
information about the environment (e.g., states and actions). By exploiting the
restraining bolts, we show how we can address the problem by using a modular
design where the two components can use their own representation formalism,
without requiring an explicit mapping between them. More specifically, we introduce
the concept of domain-independent reward machines, generated by a goal-oriented
planning system and use them to drive a reinforcement learning agent to reach a
goal state. Moreover, we show how to automatically generate and use sub task
decomposition to speed up the reinforcement learning process.

1.2.3 Forward Synthesis
The first contribution in this part is to devise a new method for solving ltlf

synthesis using a forward approach. Whilst other techniques relied on the full
construction of the dfa, forward synthesis does not need to build the entire dfa
but can build it on-the-fly, possibly exploring only a subset of the entire state space.
This has the potential of being a very scalable technique, since many instances can
be solved by searching for a winning strategy not far from the initial state of the
agent-environment system. The method employs AND/OR graph search to find a
winning strategy, with an implicit graph which is generated on-the-fly according to
formula progression rules. Crucially, and this is what distinguishes our approach the
most with the one proposed in (Xiao et al., 2021), we employ Knowledge Compilation
(KC) techniques, in particular Sentential Decision Diagrams (SDD) (Darwiche, 2011),
to cluster equivalent agent’s and environment’s moves in the AND/OR search graph,
avoiding redundant checks on equivalent agent/env moves. Another useful feature of
the chosen KC technique is the support for constant-time checks for state equivalence
(only at syntactic level, not semantical).

The second contribution is to provide an implementation of the approach. It uses
a recursive AND/OR search algorithm, able to handle cycles in the search graph.
It uses state-of-the-art SDD compiler and implements procedures for ltlf formula

1.3 Structure of the Thesis 11

progression. The tool is called Cynthia, and its source code is publicly available3.
We experimentally showed that for a certain class of problems it outperforms state-
of-the-art tools that rely on full construction of the dfa.

The deeper connection between ltlf synthesis and AND/OR graph search
highlighted in the contributions of this part opens countless developments, especially
regarding the connections with FOND planning. In fact, observe that in both
problems there is a game between two players, the agent and the environment,
where for every sequence of inputs from the environments (i.e. the fluents of the
environment in FOND and assignment of environment variables in synthesis) there
is an agent’s response (i.e. an action in FOND planning and an assignment of output
variables in synthesis) such that the agent always wins the game. Therefore, we
consider our contributions to be abscribed also to the FOND planning community.

1.3 Structure of the Thesis
The thesis is divided in four parts:

• in Part I, we give preliminary background knowledge on several topics of interest
for the entire thesis: automata theory, temporal logics, and the automata-logic
connection.

• in Part II, we present our contributions for the ltlf/ldlf -to-dfa problem,
presenting our compositional approach, its semi-symbolic formalization, and
the implementation details of the Lydia tool.

• in Part III, we present our contributions to the theory of MDPs and reinforce-
ment learning with ltlf/ldlf temporal reward specifications.

• in Part IV, we present our contributions to forward ltlf synthesis with
reduction to AND/OR graph search and by exploiting knowledge compilation
techniques for achieving a more efficient search.

The rest of the thesis is organised as follows:

• Chapter 2 presents the topic of automata theory in the setting of finite words.
It briefly surveys the main automata formalisms studied in the literature, the
operations over them, and different representations of automata based on the
explicit or symbolic representation of the state space or the action space.

• Chapter 3 introduces the reader, from a technical perspective, temporal logics
on finite traces. We give the syntax and semantics of ltlf and ldlf , as well
as state results from the literature about the complexity of reasoning.

• Chapter 4 explains more in detail how reasoning with ltlf/ldlf formulas
is performed by means of automata-theoretic techniques. We list the main
approaches available from the literature to build the dfa from an ltlf/ldlf
formula, and we provide several examples describing how they working.

• Chapter 5 begins Part II, and introduces the first main contribution, by
describing the compositional approach for translating ltlf/ldlf formulas to
dfa, explaining the details, proof of correctness, and analysis of computational
complexity. We then give several examples and discuss potential future works.

3https://github.com/whitemech/cynthia/

https://github.com/whitemech/cynthia/

1.3 Structure of the Thesis 12

• Chapter 6 gives a more concrete formalization of the compositional approach
presented in Chapter 5, important for efficient and scalable implementations
of the technique.

• Chapter 7 describes Lydia, our implementation of the compositional approach.
We explain at high-level how it works, the data structures and algorithms
used, and report its performance compared with state-of-the-art tools over
benchmarks from the literature of ltlf synthesis.

• Chapter 8 gives the background knowledge on the topics of classical Rein-
forcement Learning and Reinforcement Learning with non-Markovian rewards
specified by temporal logic specifications.

• Chapter 9 begins Part III, and introduces the concept of Restraining Bolts,
formalizes the problem, describes the solution, and provides use-cases of the
approach.

• Chapter 10 presents the imitation learning problem with heterogeneous agents.
We formalize the problem, propose a solution based on model learning tech-
niques, and show use cases.

• Chapter 11 studies non-Markovian rewards specifications in ltlf/ldlf in
Markov Decision Processes with the aim of minimizing the state space overhead
to handle the non-Markovianity. This is achieved by using reward transducers,
i.e. transducers from fluents to reward signals. We also introduce monitoring
reward specifications, a type of specification with finer-grained control of
reward at no additional cost in terms of overhead wrt traditional specifications.

• Chapter 12 proposes an approach to integrate a planning module and a learning
module by means of restraining bolts. We formalize the problem using the
options framework and provide experimental coverage that shows the goodness
of the approach.

• Chapter 13 begins Part IV of the thesis. It introduces the problem of ltlf
synthesis, as well as AND-OR graph search and Sentential Decision Diagrams,
important building blocks for the forward ltlf synthesis technique.

• Chapter 14 develops a forward ltlf synthesis approach, based on AND-
OR graph search, which efficiently explores the search graph by employing
knowledge compilation techniques. We formalize all the components and prove
the correctness.

• Chapter 15 presents the tool Cynthia, the implementation of the forward ltlf
synthesis technique studied in the previous chapter, and experimentally shows
the performances on ltlf synthesis benchmarks.

• Chapter 16 concludes the thesis, by summarizing the results and giving final
remarks.

13

Part I

Temporal Logics and Automata
Theory

14

Chapter 2

Finite Automata Theory

In this chapter, we revise the theory of finite automata, i.e. the part of automata
theory that deals with machines with finite states and constant bounded memory
or, equivalently, the types of automata that are as expressive as regular expressions.
For a more thorough treatment, the reader might refer to the standard textbooks
on the topic, e.g. (Hopcroft, Motwani, and Ullman, 2006).

The rest of the chapter is divided as follows:

• In Section 2.1, we introduce Deterministic Finite Automata (dfa), a type
finite-state machine that accepts or rejects a given string of symbols, by running
through a state sequence uniquely determined by the string.

• In Section 2.2, we present two generalizations of dfas, namely Nondeterministic
Finite Automata (nfa) and Universal Finite Automata (ufa), where in general
there is more than one run for a given string (they differ in the acceptance
condition). We also present the ϵ-nfa formalism, useful to formalize certain
operations betwen automata.

• In Section 2.3, we introduce Alternating Finite Automata (afa), a type of
automaton that is also able to represent both existential choice (as an nfa) and
universal choice (as an ufa). Such formalism generalizes all the automata above,
achieving greater succincteness although without increase of expressiveness.

• In Section 2.4, we present Binary Decision Diagrams (BDD), data structures
that are used to represent a Boolean function. It is an important building
block for the implementation of automata.

• In Section 2.5, we survey the main categories of automata representation:
fully explicit, semi-symbolic, and fully symbolic. For our purposes, from an
implementation perspective, the semi-symbolic and fully-symbolic are the most
relevant.

• In Section 2.6, we formalize some operations over dfas that have a correspond-
ing semantics with respect to the languages that they represent. In particular,
we will see how we can compute the boolean operations, the concatenation, the
Kleene closure and language projections of the operands languages exploiting
their automata representation.

• Section 2.7 concludes the chapter.

2.1 Deterministic Finite Automata (dfa) 15

2.1 Deterministic Finite Automata (dfa)
A deterministic finite automaton (dfa) (Rabin and Scott, 1959) A is a tuple

(Q,Σ, q0, δ, F) where Q is a finite non-empty set of states, Σ is a finite set of symbols
called the alphabet, q0 is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q× Σ→ Q is the transition function.

A run of A on a finite word w = a0 · · · an ∈ Σ∗ is a finite sequence q1 · · · qn such
that qi+1 = δ(q, a) for 0 ≤ i < n. The transition function δ can be extended into a
function δ∗ : Q× Σ∗ → Q such that δ∗(q, ϵ) = q, and δ∗(q, wa) = δ(δ∗(q, w), a), for
q ∈ Q, w ∈ Σ∗ and a ∈ Σ. An automaton A accepts w if δ∗(q, w) ∈ F . The language
of A, written L(A), is the set of words that A accepts.

dfas are closed under boolean operations. The complement of a dfa A =
(Q,Σ, q0, δ, F) is A = (Q,Σ, q0, δ, S \ F), i.e. the complementation is obtained by
inverting the acceptance of the automaton states. It can be shown that L(A) =
L(A) = Σ∗ \ L(A). The product under a boolean binary operator ⊙ ∈ {∪,∩} of
A1 = (Q1,Σ, q10, δ1, F1) and A2 = (Q2,Σ, q20, δ2, F2), denoted as A⊙, is defined as
A⊙ = (Q1 ×Q2,Σ, (q10, q20), δ′, F ′), where δ′((s1, s2), a) = (s′

1, s
′
2) iff s1 = δ1(s1, a)

and s2 = δ2(s2, a), and F ′ = {(q1, q2) | q1 ∈ F1⊙q2 ∈ F2}. From a language-theoretic
perspective, it can be showed that L(A⊙) = L(A1)⊙s L(A2), where ⊙s is the set
operator analogous to the boolean operator ⊙. The intersection and the union of
two automata is equivalent to the product under disjunction and product under
conjunction, respectively.

A dfa A is minimal if there is no other dfa A′ such that L(A′) = L(A) and
|Q′| < |Q|. It can be shown that if a dfa is minimal, it is unique for the language it
represents (modulo state renaming). Or, equivalently, that each language L ⊆ Σ has
one and only one minimal dfa that represents it. Any dfa can be minimized, and the
operation is called minimization. The best known complexity for dfa minimization
has complexity O(n logn) (Hopcroft, 1971).

The dfas are also closed under the following operations: existential and universal
projection (followed by determinization), concatenation, closure and Kleene closure.
More details on such operations will be provided later in this section.

2.2 Nondeterministic Finite Automata (nfa) and Uni-
versal Finite Automata (ufa)

A nondeterministic finite automaton (nfa) (Rabin and Scott, 1959) is defined as
a dfa except for δ which be which becomes a relation rather than a function, i.e.
δ : Q× Σ→ 2Q. Therefore, a dfa can be seen as a special case of a nfa. Given a
symbol σ, the successors of an nfa state q can be many, in contrast with the case of
a dfa, in which only one successor was allowed. The notion of acceptance of a word
w takes into account all the possible runs, and we say that an nfa accepts a word w
if at least one of the runs hits an accepting state. The definition of the language of
an nfa AN is the same of the dfa, but using the new definition of acceptance.

Using the subset (or powerset) algorithm, an nfaAN can be converted to an equiv-
alent dfa A′ that accepts the same language of AN , i.e. L(AN) = L(A′) (Rabin and
Scott, 1959). This operation is also called determinization. Let AN = ⟨Q,Σ, q0, δ, F ⟩
be an nfa. The equivalent dfa Ad is defined as Ad = ⟨2Q,Σ, {q0}, δd, Fd⟩, where
Fd = {T | T ∩ F ̸= ∅} is the collection of sets of states that intersect F nontrivially,
and δd(T, a) = {t | t ∈ δ(s, a) for some s ∈ T}.

In general, given an nfa AN with a number of states n, the equivalent (minimal)
dfa can have a number of states that is exponentially larger than n, i.e. 2n. From

2.3 Alternating Finite Automata (afa) 16

the above it follows that nfa and dfa are equally expressive formalisms, with nfa
being, in general, exponentially more succinct than dfa.

We also define the universal finite automaton (ufa) to be structurally the same
of an nfa, except for the acceptance condition: every run generated by a word w
must be accepted in order to be accepted by the automaton.

2.2.1 nfa with ϵ-transitions: ϵ-nfa
An alternative definition of nfa, called ϵ-nfa includes a special symbol ϵ. Transi-

tions labeled with ϵ can be taken without consuming any symbol of the input word.
This new capability does not expand the class of languages that can be accepted
by nfas, but we introduce it as it gives us some “programming convenience”, as we
shall see.

2.3 Alternating Finite Automata (afa)
An alternating finite automaton (afa) (Chandra, Kozen, and Stockmeyer, 1981;

Vardi, 1995) is defined as dfa and nfa, except for δ that is defined as δ : Q× Σ→
B+(Q), where B+(Q) is a set of positive boolean formulas whose atoms are states of
Q. Due to the universal quantification, a run is represented by a run tree. An afa
AA accepts a word w, if there exists a run tree on w such that every path ends in an
accepting state. Let ϕ = δ(q, σ) for some state q and some symbol σ. A deterministic
transition is a transition in which ϕ is an atomic formula. An existential transition
is a transition in which ϕ is made of only disjunctions. An nfa can be seen as a
special case of an afa in which the transitions are either deterministic or existential,
whereas an ufa can be seen as a special case of an afa in which all the transitions
are either deterministic or universal.

Because of the universal choice in alternating transitions, a run of an alternating
automaton is a tree rather than a sequence. A tree is a (finite or infinite) connected
directed graph, with one node designated as the root and denoted by ε, and in
which every non-root node has a unique parent (s is the parent of t and t is a child
of s is there is an edge from s to t) and the root ε has no parent. The level of a
node x, denoted |x|, is its distance from the root ε; in particular, |ε| = 0. A branch
β = x0, x1, . . . of a tree is a maximal sequence of nodes such that x0 is the root ε
and xi is the parent of xi+1 for all i > 0. Note that β can be finite or infinite. A
Σ-labeled tree, for a finite alphabet Σ, is a pair (τ, T), where τ is a tree and T is a
mapping from nodes(τ) to Σ that assigns to every node of τ a label in Σ. We often
refer to T as the labeled tree. A branch β = x0, x1, . . . of T defined an infinite word
T (β) = T (x0), T (x1), . . . consiting of the sequence of labels along the branch.

Formally, a run of A on a finite word w = a0, a1, . . . , an−1 is a finite Q-labeled tree
r such that r(ε) = q0 and the following holds: if |x| = 1 < n, r(x) = q, and δA(s, ai) =
θ, then x has k children x1, . . . , xk for some k ≤ |Q|, and {r(x1), . . . , r(xk)} satisfies
θ.

For example, if δA(q0, a0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then the nodes of the run tree
at level 1 include the label q1 or the label q2 and also include the label q3 or the
label q4. Note that the depth of r (i.e., the maximal level of a node in r) is at most
n, but not all branches need to reach such depth, since if δA(r(x), ai) = true, then x
does not need to have any children. On the other hand, if |x| = i < n and r(x) = q,
then we cannot have δA(q, ai) = false, since false is not satisfiable. The run tree r is
accepting if all nodes at depth n are labeled by states in F . Thus, a branch in an

2.4 Binary Decision Diagrams (BDD) 17

10

a

b

c

d

Figure 2.1. The BDD for the boolean function F = ab+ cd.

accepting run has to hit the true transition or hit an accepting state after reading
all the input word.

Given an afa AA, we can compute an equivalent nfa AN such that L(AA) =
L(AN) (Fellah, Jürgensen, and Yu, 1990). Let AA = ⟨Q,Σ, q0, δ, F ⟩ be an afa.
The equivalent nfa An is defined as An = ⟨2Q,Σ, {q0}, δn, Fn⟩, where Fn = 2F and
δn(T, a) = {T ′ | T ′ satisfies

∧
t∈T δ(t, a)}.

This transformation may require an exponentially larger number of states in
the resulting nfa AN , i.e. 2|Q|. Moreover, as shown in (Chandra, Kozen, and
Stockmeyer, 1981), converting an n-state afa to an equivalent dfa requires 22n

states in the worst case.

2.4 Binary Decision Diagrams (BDD)
In this section we present Binary Decision Diagrams (BDD), a well-studied

knowledge compilation technique that it is a fundamental building block for non-
naïve automata representations, discussed in Section 2.5.

A Binary Decision Diagram (BDD) (Bryant, 1992) is a data structure to represent
Boolean functions. A BDD represents the function as a rooted directed acyclic graph.
Each non-constant node n is labeled by a variable v and has edges directed towards
two successor (children) nodes, then(n) and else(n), representing the cofactors of n
with respect to v. The then successor is also called high and the else successor low.
Each constant node is labeled with 0 or 1. For a given assignment of the variables,
the value of the function is found by tracing a path from the root to a constant
vertex following the branches indicated by the values assigned to the variables. The
function value is given by the constant vertex label. For example, Figure 2.1 shows
the BDD of the Boolean function F = ab+ cd. The edges are directed downwards.
The dashed edges (solid) edges correspond to v = 0 (v = 1).

In popular usage, the term BDD almost always refers to Reduced Ordered Binary
Decision Diagram (ROBDD in the literature, used when the ordering and reduction
aspects need to be emphasized). The advantage of an ROBDD is that it is canonical
(unique) for a particular function and variable order. This property makes it useful
in functional equivalence checking and other operations like functional technology
mapping.

In the average case, BDDs are a succinct representation for the set of models
of a formula. Nevertheless, it is possible to prove that, for some orderings of the
variables, the BDDs is exponential in the size of the formula. In addition, checking
the optimal ordering (i.e., the ordering for which the BDDs is the smallest one) is
NP-complete.

2.5 dfa Representations 18

2.5 dfa Representations
In this section, we revise the most important types of representations for dfas.

We mostly follow the taxonomy made in (Zhu, Tabajara, Pu, et al., 2021).

2.5.1 Fully-Explicit: Explicit State, Explicit Alphabet
A dfa is in fully-explicit representation if the dfa is represented with an explicit

graph. Explicit data structures store separately each of the configurations of Q and
F , and the pairs of configurations of δ; typical examples are lists and hash tables.
Their distinctive feature is that the memory needed to store a set is proportional to
the number of its elements.

For domains in which either Q or Σ are very large, this solution is impractical.
For example, in the context of automated software/hardware verification, e.g. model
checking (Clarke, Grumberg, and Peled, 1999), the configurations of the systems
are partitioned, or encoded, using a binary encoding with P boolean variables.
Considering all the possible configurations¸ this yields an alphabet of size 2|P|, i.e.
exponential in the number of variables. In such cases, an explicit representation of
the alphabet should be avoided.

2.5.2 Semi-Symbolic: Explicit State, Symbolic Alphabet
A dfa is in semi-symbolic representation if the state space Q is stored explicitly

as in the automaton representation, as transitions are represented symbolically by
propositional formulas but the states are still represented explicitly.

Such representation aims to address the issue of how to represent the transition
function δ efficiently. It could be represented by a table mapping states and
assignments in 2P to the set of successor states, but this table would necessarily be
exponential in the number of propositions. Note that an alphabet of the form 2P

is isomorphic to Bk, where the vector v ∈ Bk identifies a subset Π ⊆ P, such that
the bit vi is true iff pi ∈ Π. Moreover, observe that any dfa over alphabet Σ can
be reduced to a semi-symbolic representation, using a set of propositions b0, . . . , bn
where n = ⌈log2(|Σ|)⌉.

In practice, from a given state it is usually the case that multiple assignments
can lead to a same successor state. These assignments can then be represented
collectively by a single Boolean formula λ. For a given state, the number of such
formulas is usually much smaller than the number of assignments. Therefore, the
transition function can alternatively be represented by a relation H : Q × Λ ×Q,
where Λ is a set of propositional formulas over P. We then have (q1, λ, q2) ∈ H
for a formula λ, iff q2 ∈ δ(q, σ) for every σ ∈ 2P that satisfies λ. Intuitively, the
tuples of H can be thought of as edges in the graph representation of the automaton,
labeled by the propositional formulas that match the transitions. It should be noted
that MONA (Klarlund, 1997), explain in later chapters, adopts this representation,
representing propositional formulas as Binary Decision Diagrams (BDDs) (Bryant,
1992).

Therefore, we call the above a semi-symbolic automaton representation, as
transitions are represented symbolically by propositional formulas but the states
are still represented explicitly. This may cause scalability problems when the state
space is very large.

2.5 dfa Representations 19

2.5.3 Fully-Symbolic: Symbolic State, Symbolic Alphabet
A dfa in fully-symbolic (symbolic for short) representation, if both states and

transitions are represented symbolically. In the fully-symbolic representation, not
only the symbols of the alphabet, but also states are encoded using a set of state
variables Z, where a state corresponds to an assignment of Z.

Definition 2.1 (Symbolic Deterministic Finite Automaton). A symbolic dfa of
a corresponding explicit dfa A = ⟨Q, 2P , q0, δ, F ⟩, in which δ is in the form of
δ : Q× 2P → Q, is represented as a tuple A′ = ⟨Z,P, I, δ′, f), where

• Z is a set of state variables with |Z| = ⌈log2 |Q|⌉, and every state q in the
explicit dfa corresponds to an assignment Z ∈ 2Z of propositions in Z;

• P is the set of propositions as in A;

• I ∈ 2Z is the initial assignment corresponding to q0;

• δ : 2Z × 2P → 2Z is the transition function. Given assignment Z of cur-
rent state q and transition condition σ, δ(Z, σ) returns the assignment Z ′

corresponding to the successor state q′ = δ(q, σ);

• f is a propositional formula over Z describing the accepting states, that is,
each satisfying assignment Z of f corresponds to an accepting state q ∈ F .

Since the states are encoded into a logarithmic number of state variables, de-
pending on the structure of these formulas, the symbolic representation can be
exponentially smaller than the semi-symbolic representation.

We distinguish two types of symbolic representations, monolithic and partitioned
symbolic representations, which they differ only in how δ is represented.

Monolithic

We call a symbolic representation monolithic if the representation of the transition
function δ is stored in a unique data structure.

Definition 2.2. Let A′ = ⟨Z,P, I, δ, f) be a symbolic dfa. The monolithic repre-
sentation of δ is a boolean formula T over variables Z∪P∪Z ′, where Z ′ = z′

1, . . . , z
′
n

are the primed counterparts of Z and encode the next state. When representing the
next state of the transition function, the same encoding is used for an interpretation
Z ′ over Z ′. Moreover, T is such that it is satisfied by interpretations Z ∈ 2Z ,
P ∈ 2P and Z ′ ∈ 2Z′ iff δ(q, P) = q′, where q and q′ are the states corresponding to
Z and Z ′.

In (Bansal et al., 2020), they use monolithic dfas in order to perform symbolic
ltlf synthesis when the state space gets very large.

Partitioned

Note that the transition function δ can be represented by an indexed family
consisting of a Boolean formula δi for each state variable zi ∈ Z, which when
evaluated over an assignment to Z ∪ P returns the next assignment to zi. A dfa
in symbolic representation is partitioned if the transition function is split into |Z|
functions δi : 2Z × 2P → {0, 1}. Each δi determines the value of the i-th bit in the
next successor state q′. This allows more compositionality, which helps in keeping
the transition function representation relatively small.

2.6 dfa operations: Projections, Concatenation, Closures 20

An example of how this representation has been applied to ltlf synthesis can
be found in (Zhu, Tabajara, Li, et al., 2017), where they decompose a monolithic
transition function into a sequence of BDDs B = ⟨B0, B1, . . . , Bn−1⟩, n = ⌈log2 |Q|⌉,
where each Bi, when evaluated on an interpretation (Z ∪ P), computes the i-th bit
in the binary encoding of state δ(Z,P).

2.6 dfa operations: Projections, Concatenation, Clo-
sures

In this section we describe some operations over dfa that are at the foundations
of the techniques introduced later in this thesis. The following definitions of concate-
nation and Kleene closure operations on semi-symbolic automata have been already
introduced in (Yu, Bultan, et al., 2008), whereas the description of the (existential)
projection on semi-symbolic automata can be found in (Klarlund and Møller, 2001).

2.6.1 Existential projection
Let A be a dfa, over the alphabet Σ = Bk, and let 1 ≤ i ≤ k. The existential

projection on the i-th bit of A is another dfa A′ obtained with the following
procedure:

1. remove from A the i-th track from all the transition labels; this operation in
general, yields an nfa AN ;

2. determinize AN via the subset construction to obtain the dfa A′.

In language-theoretic terms,the existential project operation of a language L over
the i-th track is another language L′ defined as:

L′ = {w | ∃w′ ∈ L : w is identical to w′ except for the i-th track}. (2.1)

In our context, differently from the literature, we make the projection operation
stronger in the sense that the resuling automaton will be defined over a new alphabet
Σ′ = Bk−1 where the i-th track is completely removed, and not just ignored. In
the following, we will denote with EProject(A, i), or alternatively EProjecti(A),
the existential projection of A on the i-th bit, and with EProject(A, I), with
I ⊂ {1, . . . k}, the existential projection over a set of bits I.

2.6.2 Universal Projection
The universal projection on the i-th bit of A is the same of the existential version,

but using an ufa instead of an nfa in the first step. Notice that the only thing
that changes is the acceptance condition: the acceptances of the states inside the
macro-state, during the subset construction, are interpreted as disjunction in the
case of existential alternation, as in nfas, but in conjunction in the case of universal
alternation, as in ufas.

In language-theoretic terms,the universal project operation of a language L over
the i-th track is another language L′ defined as:

L′ = {w | ∀w′ ∈ L : w is identical to w′ except for the i-th track}. (2.2)

2.6 dfa operations: Projections, Concatenation, Closures 21

We denote UProject(A, i), or alternatively UProjecti(A), the universal pro-
jection of dfa A on the i-th bit, and with UProject(A, I), with I ⊂ {1, . . . k}, the
universal projection over a set of bits I.

2.6.3 Concatenation
The dfa A is a concatenation-dfa of the dfas A1 and A2 if L(A) = {w1w2 | w1 ∈

L(A1) ∧ w2 ∈ L(A2)}. Let A1 = (Q1,Σ, q10, δ1, F1) and A2 = (Q2,Σ, q20, δ2, F2),
the concatenation A = A1 | A2 can be constructed as follows. Without loss
of generality, we assume Q1 ∩ Q2 is empty. We first construct an intermediate
automaton A′ = (Q′, q10,Σ,′ , δ′, F ′) where:

• Q′ = Q1 ∪Q2

• Σ′ = {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

• ∀q, q′ ∈ Q1, δ
′(q, α0) = q′, if δ1(q, α) = q′

• ∀q, q′ ∈ Q2, δ
′(q, α0) = q′, if δ2(q, α) = q′

• ∀q ∈ Q1, δ
′(q, α1) = q′, if q ∈ F1 and ∃q′ ∈ Q2, δ2(q20, α) = q′

• F ′ = F1 ∪ F2, if q20 ∈ F2;F2, otherwise.

Then, A = Project(A′, k + 1). Since both A1 and A2 are DFA, the subset
construction happens only when there exists q ∈ F1 such that ∃α, q′, q′′, α ∈ Σ, q′ ∈
Q1, q

′′ ∈ Q2, δ1(q, α) = q′, δ2(q20, α) = q′′

Example 2.3. Let L1 = {00∗} and L2 = {0 + 1} be two languages over the
alphabet B1. The dfas in semi-symbolic representation for L1 and L2 are showed in
Figure 2.2.

q1
0 q1

1 q2
0 q2

1
0

0

0

1

L1

L2

Figure 2.2. The automata for L1 (left) and L2 (right).

We are interested in computing the concatenation of the two languages, i.e.
L1 | L2. To compute the corresponding automaton, we first add an auxiliary
existential bit e, and set it to false (i.e. ē) to the existing transitions (Figure 2.3):

q1
0 q1

1 q2
0 q2

1
0e0

0e0

0e0

0e1

L1

L2

Figure 2.3. The automata A1 (left) and A2 with the new auxiliary existential bit.

2.6 dfa operations: Projections, Concatenation, Closures 22

Now, we add the concatenation transitions with bit e set to true (Figure 2.4):

q1
0 q1

1 q2
0 q2

1
0e0

0e0

0e0

0e1

1e0

1e1

L1

L2

Figure 2.4. The automata A1 (left) and A2 with the new concatenating transitions.

We are ready to EProject the automaton on the new bit. In Figure 2.5 the
concatenation automaton before projection, and in Figure 2.6 the result after the
projection:

q1
0 q1

1 q2
0 q2

1
0e0

0e0

0e0

0e1

1e0

1e1

L1

L2

Figure 2.5. The concatenation automaton A1 | A2, before projection.

q1
0 q1

1 q2
0 q2

1
0

0

0

1

0

1

L1

L2

Figure 2.6. The concatenation automaton A1 | A2, after projection.

The next step is to determinize the output of EProject, since the operation
introduced nondeterminism e.g. in q1

1 (Figure 2.7):

2.6 dfa operations: Projections, Concatenation, Closures 23

{q1
0} {q1

1}

{q1
1, q

2
1}

{q2
1}

0

0

0

1

1

Figure 2.7. The concatenation automaton A1 | A2, after determinization.

After minimization (Figure 2.8):

q0 q1

q2

q3
0

0
0

1

1

Figure 2.8. The concatenation automaton A1 | A2, after minimization.

A concatenation between two dfas can be also done by means of ϵ-transitions,
hence relying on the ϵ-nfa formalism. Let A1 and A2 the two operands of the
concatenation. To obtain the ϵ-nfa that represents L1 | L2:

• Connect the accepting states of A1 to the initial state of A2 by ϵ-transitions;

• Make all the states of A1 non-accepting.

Example 2.4. Let consider the same languages and automata of Example 2.3.
The concatenation can be obtained by adding ϵ-transitions from accepting states
of A1 leading to the initial state q2

0 of A2, and then by making q1
1 non-accepting

(Figure 2.9):

q1
0 q1

1 q2
0 q2

1
0

0

0

1

L1

L2

ϵ

Figure 2.9. The concatenation automaton A1 | A2 using ϵ-transitions.

2.6.4 Kleene Closure
We first show how to compute a closure-dfa; from there, the construction of

the Kleene Closure of a dfa is trivial. The dfa A is a closure-dfa of the dfa
A1, if L(A) = {w1w2 . . . wk | k ≥ 0 ∧ (∀i.1 ≤ i ≤ k =⇒ wi ∈ L(A1))} Let
A = (Q1,Σ, q0, δ, F) be an automaton. L(A) is a Kleene Closure of A1 if it also
accepts the empty string, i.e. Lk(A) = L(A) ∪ {ϵ}. Given A1 = (Q1,Σ, q10, δ1, F1),
its closure A can be constructed by first constructing an intermediate DFA A′ =
(Q1,Σ′, q10, δ

′, F1) as:

2.6 dfa operations: Projections, Concatenation, Closures 24

• Σ′ = {α0 | ∀α ∈ Σ} ∪ {α1 | ∀α ∈ Σ}

• ∀q, q′ ∈ Q1, δ
′(q, α0) = q′, if δ1(q, α) = q′.

• ∀q ∈ Q1, δ
′(q, α1) = q′, if q ∈ F1 and δ1(q10, α) = q′.

Then, A = Project(A′, k + 1) is the closure of A′. Since A1 is a dfa, the project
operation requires the subset construction only when there exists q ∈ Q1, q ∈
F1, and ∃α, q′, q′′, α ∈ Σ, q′, q′′ ∈ Q1, q

′ ̸= q′′, δ1(q10, α) = q′, δ1(q10, α) = q′′. To
have the Kleene closure, it would be enough to add the initial state to the set of
accepting states.

Example 2.5. Let L = {0, 001} be a language over the alphabet B1. The dfas in
semi-symbolic representation for L is showed in Figure 2.10:

q0 q1 q2 q3

0 0 1

Figure 2.10. The automaton for L.

We are interested in computing the Kleene closure of the language L, L∗. To
compute the corresponding automaton, we first add an auxiliary existential bit e, and
set it to false (i.e. ē) to the existing transitions (Figure 2.11):

q0 q1 q2 q3

0e0 0e0 0e1

Figure 2.11. The automata A for L with the new auxiliary existential bit.

Now, we add the closure transitions, with the auxiliary bit set to 1 (Figure 2.12):

q0 q1 q2 q3

0e0 0e0 0e1

1e0
1e0

Figure 2.12. The automata A with the new concatenating transitions.

Now, we make the initial state accepting (Figure 2.13):

q1 q2 q3q0

0e0 0e0 0e1

1e0
1e0

Figure 2.13. The automata A with the closure transitions and with the initial state marked
as accepting.

2.6 dfa operations: Projections, Concatenation, Closures 25

We are ready to EProject the automaton on the new bit. In Figure 2.14 the
closure automaton before projection, and in Figure 2.15 the result after the projection:

q0 q1 q2 q3

0 0 1

0
0

Figure 2.14. The Kleene closure automaton A∗, before projection.

q0 q1 q2 q3

0 0 1

0
0

Figure 2.15. The Kleene closure automaton A∗, after projection.

The next step is to determinize the output of EProject, since the operation
introduced nondeterminism e.g. in q1 (Figure 2.16):

{q0} {q1} {q1, q2} {q3}
0 0 1

0

0

Figure 2.16. The concatenation automaton A∗, after determinization.

After minimization (Figure 2.17):

q0 q1 q2

0 0

0

1

Figure 2.17. The Kleene closure automaton A∗, after minimization.

The Kleene closure of a dfa can be constructed also by means of ϵ-transitions,
hence relying on the ϵ-nfa formalism. Let A1 the operand of the Kleene closure
operation. To obtain the ϵ-nfa that represents L∗

1:

2.7 Summary 26

• Add a new initial state, make it accepting, and connect it to the old initial
state of A1 by an ϵ-transition;

• Then, add ϵ-transitions from every accepting state of A1 to the old initial
state.

Example 2.6. Let consider the same language and automaton of Example 2.5. The
concatenation can be obtained by adding a new initial accepting state qi, connecting
it with an ϵ-transition to q0, and then by adding ϵ-transitions from q1 and q3 to qi
(Figure 2.18):

qi q0 q1 q2 q3

0 0 1ϵ

ϵ

ϵ

Figure 2.18. The concatenation automaton A1 | A2 using ϵ-transitions.

2.7 Summary
This chapter presented the main aspects of the theory of finite automata, which

is one of the fundamental building block of the other topics of this thesis. We
presented the formalisms of dfa, nfa, ufa and afa, explained their relationship in
terms of expressiveness and succinctness and mutual reducibility. We talked about
the Binary Decision Diagram, which is very useful to achieve compact and canonical
representation of boolean functions, and once the compilation is done, it allows to
answer several queries (satisfiability, propositional equivalence, model counting etc.)
in polytime. We discussed the main types of representations of dfas, and relevant
works in the literature that make use of them, pointing out pros and cons of each.
Finally, we formalized and presented with thorough examples the main operations
over dfas in semi-symbolic representation, that will be relied on in future chapters.

27

Chapter 3

Temporal Logics on Finite
Traces

In this chapter, we introduce the reader to the main important framework to
talk about behaviours over time, which gives the foundations for our approach. The
chapter is structured as follows:

• In Section 3.1, we talk about the well-known Linear-Time Temporal Logic
(ltl) and its main applications.

• In Section 3.2, we present a specific formalism, namely Linear Temporal Logic
over Finite Traces ltlf , which shares the same syntax of ltl but is interpreted
over finite traces.

• In Section 3.3 we describe a formal language that resembles regular expressions,
called ref , still interpreted on finite words.

• In Section 3.4 we describe Linear Dynamic Logic (ldlf), a formalism that
merges the declarativeness and convenience of ltlf with the expressive power
of ref . Interestingly, such formalism has greater expressive power than ltlf
despite belonging to the same complexity class.

• Section 3.6 concludes the chapter.

3.1 Linear Temporal Logic
Linear Temporal Logic (ltl) (Pnueli, 1977) is a temporal logic, and it is the

most popular and widely used temporal logic in computer science, especially in
formal verification of software/hardware systems, in AI to reasoning about actions
and planning, and in the area of Business Process Specification and Verification to
specify processes declaratively.

It allows to express temporal patterns about some property p, like liveness (p
will eventually happen), safety (p will never happen) and fairness, combinations of
the previous patterns (infinitely often p holds, eventually always p holds).

3.1.1 Syntax
A ltl formula φ is defined over a set of propositional symbols P and are closed

under the boolean connectives, the unary temporal operator ◦(next-time) and the
binary operator U (until):

3.1 Linear Temporal Logic 28

φ ::= A | ¬φ | φ1 ∧ φ2 | ◦φ | φ1 U φ2

With A ∈ P.
Additional operators can be defined in terms of the ones above: as usual logical

operators such as ∨,⇒,⇔, true, false and temporal formulas like eventually as
♢φ

.= true U φ, always as □φ
.= ¬♢¬φ and release as φ1Rφ2

.= ¬(¬φ1 U ¬φ2).

Example 3.1. Several interesting temporal properties can be defined in ltl:

• Liveness: ♢φ, which means "condition expressed by φ at some time in the
future will be satisfied", "sooner or later φ will hold" or "eventually φ will
hold". E.g., ♢rich (eventually I will become rich), Request =⇒ ♢Response
(if someone requested the service, sooner or later he will receive a response).

• Safety: □φ, which means "condition expressed by φ, every time in the future
will be satisfied", "always φ will hold". E.g., □happy (I’m always happy),
□¬(temperature > 30) (the temperature of the room must never be over 30).

• Response: □♢φ which means "at any instant of time there exists a moment
later where φ holds". This temporal pattern is known in computer science as
fairness.

• Persistence: ♢□φ, which stands for "There exists a moment in the future such
that from then on φ always holds". E.g. ♢□dead (at a certain point you will
die, and you will be dead forever)

• Strong fairness: □♢φ1 =⇒ □♢φ2, "if something is attempted/requested
infinitely often, then it will be successful/allocated infinitely often". E.g.,
□♢ready =⇒ □♢run (if a process is in ready state infinitely often, then
infinitely often it will be selected by the scheduler).

3.1.2 Semantics
The semantics of ltl is provided by (infinite) traces, i.e. ω-word over the alphabet

2P .

Definition 3.2. Given a infinite trace π, we define that a ltl formula φ is true at
time i, in symbols π, i |= φ inductively as follows:

π, i |= A, for A ∈ P iff A ∈ π(i)

π, i |= ¬φ iff π, i ̸|= φ

π, i |= φ1 ∧ φ2 iff π, i |= φ1 ∧ π, i |= φ2

π, i |= ◦φ iff π, i+ 1 |= φ

π, i |= φ1 U φ2 iff ∃j.(j ≥ i) ∧ π, j |= φ ∧ ∀k.(i ≤ k < j)⇒ π, k |= φ1

Similarly as in classical logic we give the following definitions:

3.2 Linear Temporal Logic on Finite Traces: ltlf 29

Definition 3.3. A ltl formula is true in π, in notation π |= φ, if π, 0 |= φ. A
formula φ is satisfiable if it is true in some π and is valid if it is true in every π.
φ1 entails φ2, in symbols φ1 |= φ2 iff ∀π,∀i.π, i |= φ1 =⇒ π, i |= φ2.

Now we state an important result:

Theorem 3.4 ((Sistla and Clarke, 1985)). Satisfiability, validity, and entailment
for ltl formulas are pspace-complete.

Indeed, Linear Temporal Logic can be thought of as a specific decidable (pspace-
complete) fragment of classical first-order logic (fol).

3.2 Linear Temporal Logic on Finite Traces: ltlf
Linear-time Temporal Logic over finite traces, ltlf , is essentially standard ltl

(Pnueli, 1977) interpreted over finite, instead of over infinite, traces (De Giacomo
and Vardi, 2013). This apparently trivial difference has a big impact: as we will
see, some ltl formula has a different meaning if interpreted over infinite traces or
finite ones. The ltlf logic has been extensively used in Artificial Intelligence and
Computer Science. For example, it is used in finite temporal synthesis (De Giacomo
and Vardi, 2015; De Giacomo and Vardi, 2016; Camacho, Baier, et al., 2018; Zhu,
Tabajara, Li, et al., 2017), in FOND planning with temporal specifications (Brafman
and De Giacomo, 2019b; Camacho and McIlraith, 2019a), to express trajectory
constraints in PDDL 3.0 (Bacchus and Kabanza, 1998; Gerevini et al., 2009b), in the
theory of Markov Decision Processes to capture non-Markovian rewards (Bacchus,
Boutilier, and Grove, 1996; Brafman, De Giacomo, and Patrizi, 2018; Brafman and
De Giacomo, 2019a) with applications in reinforcement learning (Camacho, Icarte,
et al., 2019; De Giacomo, Iocchi, et al., 2019; De Giacomo, Favorito, Iocchi, Patrizi,
and Ronca, 2020), to specify business processes (Pešić, Bošnački, and Aalst, 2010),
and many others.

3.2.1 Syntax
The syntax of ltlf is very similar of the one showed in Section 3.1.1. Given a

set P of propositional symbols, ltlf formulae are built as follows:

φ ::= tt | ϕ | ¬φ | φ1 ∧ φ2 | ◦φ | φ1 U φ2

where tt is the tautology (not to be confused with true = ϕ∨¬ϕ), ϕ is a propositional
formula over P, ◦ is the next operator, and U is the until operator.

We use the standard abbreviations for classical logic formulas:

φ1 ∨ φ2
.= ¬(¬φ1 ∧ ¬φ2)

φ1 ⇒ φ2
.= ¬φ1 ∨ φ2

φ1 ⇔ φ2
.= φ1 ⇒ φ2 ∧ φ2 ⇒ φ1

true .= ¬ϕ ∨ ϕ
false .= ¬ϕ ∧ ϕ

3.2 Linear Temporal Logic on Finite Traces: ltlf 30

And for temporal formulas:

φ1Rφ2
.= ¬(¬φ1 U ¬φ2) (3.1)

♢φ
.= true U φ (3.2)

□φ
.= ¬♢¬φ (3.3)

•φ .= ¬◦¬φ (3.4)

Last .= •false (3.5)

End .= □false (3.6)

As the reader might already noticed, 3.2 and 3.3 are defined as in Section 3.1.1;
Equation 3.1 is called release; Equation 3.4 is called weak next (notice that on finite
traces ¬◦φ ̸≡ ◦¬φ); 3.5 denotes the end of the trace, while 3.6 denotes that the
trace is ended.
Example 3.5. Here we recall Example 3.1 and we see the impact on Always,
Eventually Response and Persistence ltl formulas if interpreted on finite traces
(i.e. formulas in ltlf):

• Safety: □A means that always till the end of the trace φ holds;

• Liveness: ♢A means that eventually before the end of the trace φ holds;

• Response: □♢φ on finite traces becomes equivalent to last point in the trace
satisfies φ, i.e. ♢(Last ∧ φ). Intuitively, this is true because □♢φ implies that
at the last point in the trace φ holds (because there are no successive instants
of time that make φ true); but if this is the case, then what happens at previous
points in the trace does not matter because the formula evaluates always to
true, since as we just said φ must hold at the last point in the trace, hence the
equivalence with ♢(Last ∧ φ).

• Persistence: ♢□φ on finite traces becomes equivalent to last point in the trace
satisfies φ, i.e. ♢(Last ∧ φ). Analogously to the previous case, the equivalence
holds because ♢□φ implies that at the last point in the trace □φ holds (and
so φ) since we have no further successive instants of time that make □φ true.
But if this is the case, then what happens at previous points in the trace does
not matter because the formula evaluates always to true, since as we just said
□φ (and so φ) must hold at the last point in the trace, hence the equivalence
with ♢(Last ∧ φ).

In other words, no direct nesting of eventually and always connectives is meaningful
in ltlf , and this contrast what happens in ltl of infinite traces.
Example 3.6. Another remarkable evidence about the relevance of the assumption
about the finiteness of traces is provided by the declare approach (Pesic and Aalst,
2006).

declare is a declarative approach to business process modeling based on ltl
interpreted over finite traces. The intuition is to map finite traces describing a
domain of interest (e.g. processes) into infinite traces under the assumption that

♢end ∧□(end ⇒ ◦end) ∧□(end ⇒
∧
p∈P
¬p) (3.7)

3.2 Linear Temporal Logic on Finite Traces: ltlf 31

which means that the following english statements hold:

• end eventually holds (end /∈ P);

• once end is true, it is true forever;

• when end is true all other propositions must be false

In other words, every finite trace πf is extended with an infinite sequence of end, or
in symbols πinf = πf{end}ω. By construction we have that

πinf |= ♢end ∧□(end ⇒ ◦end) ∧□(end ⇒
∧
p∈P
¬p)

Despite it seems a nice construction to adapt ltl on finite traces, in fact it is wrong
due to the next operator: in an infinite trace a successor state always exists, whereas
in a finite one this does not hold. There exists a counterexample showing that the
interpretation of ltl formulas on finite traces with the construction just explained is
not equivalent with proper interpretation over finite traces offered by ltlf , i.e. in
general:

πf{end}ω |= φ ̸⇔ πf |=f φ (3.8)
To see why this is the case, consider the declare "negation chain succession"

□(a⇒ ◦¬b) which requires that at any point in the trace, the state after we see a,
b is false. Consider also the finite trace πf = {a} and the associated infinite trace
πinf = {a}{end}ω built as explained before. We have that

πinf |= □(a⇒ ◦¬b)
where |= has been defined in 3.2. This is true because there is only one occurrence
of a and then end holds forever (and so b does not).

But if the same formula is interpreted on finite traces (namely |=f):

πf ̸|=f □(a⇒ ◦¬b)
because the finite trace a is true at the last instant, but then there is no next
instance where b is false, so ◦¬b is evaluated to false and the formula does not hold.
The correct way to express "negation chain succession" on finite traces would be
□(a⇒ •¬b).

The ltl formulas φ that are insensitive to the problem just shown, i.e. such that

πf{end}ω |= φ iff πf |=f φ (3.9)

holds are defined insensitive to infiniteness (De Giacomo, De Masellis, and Montali,
2014). This is another important evidence about the the relevance of the finiteness
trace assumption.

3.2.2 Semantics
The semantics of ltlf is given in terms of finite traces denoting a finite, possibly

empty, sequence π = π0, . . . , πn of elements from the alphabet 2P , containing all
possible propositional interpretations of the propositional symbols in P. We denote
the length of the trace π as length(π) =̇ n+ 1, and with Last(π)=̇n the last index.
We denote as π(i) =̇ πi the i-th step in the trace. If the trace is shorter and does
not include an i-th step, π(i) is undefined. We denote by π(i, j) =̇ πi, πi+1, . . . , πj−1

3.3 Regular Temporal Specifications (ref) 32

the segment of the trace π starting at the i-th step and ending at the j-th step
(excluded). If j > length(π) then π(i, j) = π(i, length(π)). For every j ≤ i, we have
π(i, j) = ϵ, i.e., the empty trace. Notice that, differently from (De Giacomo and
Vardi, 2013), we allow the empty trace as in (Brafman, De Giacomo, and Patrizi,
2018) and (De Giacomo, Di Stasio, et al., 2020).

Definition 3.7. Given a finite trace π, we inductively define when an ltlf formula
φ is satisfied at an instant i ∈ N, in symbols π, i |= φ, as follows:

π, i |= tt

π, i |= ϕ iff 0 ≤ i < length(π) and π(i) |= ϕ

π, i |= ¬φ iff π, i |= φ

π, i |= φ1 ∧ φ2 iff π, i |= φ1 ∧ π, i |= φ2

π, i |= ◦φ iff 0 ≤ i < length(π)− 1 and π, i+ 1 |= φ (3.10)

π, i |= φ1 U φ2 iff for some j s.t. 0 ≤ i ≤ j < length(π), we have π, j |= φ2, and
for all k, i ≤ k < j, we have π, k |= φ1 (3.11)

Notice that Definition 3.7 is pretty similar to Definition 3.2, except the bounding
of indexes in Equation 3.10 and Equation 3.11, to recognize that the trace is ended.

Analogously to Definition 3.3 we give the following definitions:

Definition 3.8. A ltlf formula is true in π, in notation π |= φ, if π, 0 |= φ. A
formula φ is satisfiable if it is true in some π and is valid if it is true in every π.
φ1 entails φ2, in symbols φ1 |= φ2 iff ∀π,∀i.π, i |= φ1 =⇒ π, i |= φ2.

3.2.3 Complexity and Expressiveness
Thanks to reduction of ltlf satisfiability (Definition 3.8) into ltl satisfiability

for pspace membership and reduction of STRIPS planning into ltlf satisfiability
for pspace-hardness, as proposed in (De Giacomo and Vardi, 2013), we have this
result:

Theorem 3.9 ((De Giacomo and Vardi, 2013)). Satisfiability, validity and entailment
for ltlf formulas are pspace-complete.

About expressiveness of ltlf , we have that:

Theorem 3.10 ((De Giacomo and Vardi, 2013; Gabbay et al., 1997)). ltlf has
exactly the same expressive power of fol over finite ordered sequences.

3.3 Regular Temporal Specifications (ref)
In this section, we talk about regular languages as a form of temporal specification

over finite traces. In particular we focus on regular expressions (Hopcroft, Motwani,
and Ullman, 2006).

A regular expression ϱ is defined inductively as follows, considering as alphabet
the set of propositional interpretations 2P , from a set of propositional symbols P:

ϱ ::= ϕ | ϱ1 + ϱ2 | ϱ1; ϱ2 | ϱ∗

3.4 Linear Dynamic Logic on Finite Traces: ldlf 33

where ϕ is a propositional formula that is an abbreviation for the union of all the
propositional interpretations that satisfy ϕ, i.e. ϕ =

∑
Π|=ϕ Π and Π ∈ 2P .

We denote by L(ϱ) the language recognized by a ref expression. We interpret
these expressions over finite traces, introduced in Section 3.2.2.

Definition 3.11. We say that a regular expression ϱ is true in the finite trace π ifs
π ∈ L(ϱ). We say that ϱ is true at instant i if π(i, last) ∈ L(ϱ). We say that ϱ is
true between instants i, j if π(i, j) ∈ L(ϱ).

Example 3.12. We can express some of the formulas shown in Example 3.5, and
many others, in ref :

• Safety: φ∗, equivalent to □φ

• Liveness: true∗;φ; true∗, equivalent to ♢φ;

• Response and Persistence: as said before, when interpreted on finite traces,
they are equivalent to ♢(Last ∧ φ); hence, they can be rewritten in ref as
true∗;φ

• Ordered occurrence: true∗;φ1; true∗;φ2; true∗, equivalent to ♢(φ1 ∧ ◦♢φ2)
means that φ1 and φ2 happen in order;

• Alternating sequence: (ψ,φ)∗ means that ψ and φ alternate from the beginning
of the trace, starting with ψ and ending with φ.

The Alternating sequence is an example of formula that has not a counterpart in
ltlf . More generally, ltlf (and ltl) are not able to capture regular structural
properties on path (Wolper, 1981).

This observation about expressiveness of ref is confirmed by Theorem 6 of (De
Giacomo and Vardi, 2013), which is a consequence of several classical results (Büchi,
1960b; Elgot, 1961; Trakhtenbrot, 1961; Thomas, 1979):

Theorem 3.13 ((De Giacomo and Vardi, 2013)). ref is strictly more expressive
than ltlf

More precisely, ref is expressive as monadic second-order logic mso over bounded
ordered sequences (Khoussainov and Nerode, 2001).

3.4 Linear Dynamic Logic on Finite Traces: ldlf
The problem with ref is that, although is strictly more expressive than ltlf ,

is considered a low-level formalism for temporal specifications. For instance, ref
misses a direct construct for negation and for conjunction. Moreover, negation
requires an exponential blow-up, hence adding complementation and intersection
constructs are not advisable.

Linear Dynamic Logic of Finite Traces ldlf (De Giacomo and Vardi, 2013)
merges ltlf with ref in a very natural way, borrowing the syntax of pdl (Fischer
and Ladner, 1979), a well-known (propositional) logic of programs in computer
science. It keeps the declarativeness and convenience of ltlf while having the same
expressive power of ref .

3.4 Linear Dynamic Logic on Finite Traces: ldlf 34

3.4.1 Syntax
Formally, ldlf formulas φ are built over a set of propositional symbols P as

follows (Brafman, De Giacomo, and Patrizi, 2017):

φ ::= tt | ¬φ | φ1 ∧ φ2 | ⟨ϱ⟩φ
ϱ ::= ϕ | φ? | ϱ1 + ϱ2 | ϱ1; ϱ2 | ϱ∗

where tt stands for logical true; ϕ is a propositional formula over P; ϱ denotes path
expressions, which are re over propositional formulas ϕ with the addition of the
test construct φ? typical of pdl. Moreover, we use the following abbreviations for
classical logic operators:

φ1 ∨ φ2
.= ¬(¬φ1 ∧ ¬φ2)

φ1 ⇒ φ2
.= ¬φ1 ∨ φ2

φ1 ⇔ φ2
.= φ1 ⇒ φ2 ∧ φ2 ⇒ φ1

ff .= ¬tt

And for temporal formulas:

[ϱ]φ .= ¬⟨ϱ⟩¬φ (3.12)
End .= [true]ff (3.13)
Last .= ⟨true⟩End (3.14)

[ϱ]φ and ⟨ϱ⟩φ are analogous to box and diamond operators in pdl; Formula 3.14
denotes the last element of the trace, whereas Formula 3.13 denotes that the trace is
ended. Intuitively, ⟨ϱ⟩φ states that, from the current step in the trace, there exists
an execution satisfying the re ϱ such that its last step satisfies φ, while [ϱ]φ states
that, from the current step, all executions satisfying the re ϱ are such that their
last step satisfies φ.

3.4.2 Semantics
As we did in the previous sections, we formally give a semantics to ldlf (inter-

preted over finite traces, like ltlf and re).

Definition 3.14. Given a finite trace π, we define that a ldlf formula φ is true at
time i (0 ≤ i ≤ last), in symbols π, i |= φ inductively as follows:

π, i |= tt
π, i |= ¬φ iff π, i ̸|= φ

π, i |= φ1 ∧ φ2 iff π, i |= φ1 ∧ π, i |= φ2
π, i |= ⟨ϕ⟩φ iff i < last ∧ π(i) |= ϕ ∧ π, i+ 1 |= φ

π, i |= ⟨ψ?⟩φ iff π, i |= ψ ∧ π, i |= φ

π, i |= ⟨ϱ1 + ϱ2⟩φ iff π, i |= ⟨ϱ1⟩φ ∨ ⟨ϱ2⟩φ
π, i |= ⟨ϱ1; ϱ2⟩φ iff π, i |= ⟨ϱ1⟩⟨ϱ2⟩φ
π, i |= ⟨ϱ∗⟩φ iff π, i |= φ ∨ i < last ∧ π, i |= ⟨ϱ⟩⟨ϱ∗⟩φ and ϱ is not test-only

We say that ϱ is test-only if it is a ref expression whose atoms are only tests, i.e.
ψ?.

3.5 Reasoning in ltlf /ldlf 35

Notice that ldlf fully captures ltlf . For every formula in ltlf there exists a
ldlf formula with the same meaning, namely:

ltlf ldlf

ϕ ⟨ϕ⟩tt

¬φ ¬φ

φ1 ∧ φ2 φ1 ∧ φ2

◦φ ⟨true⟩(φ ∧ ¬End)

φ1 U φ ⟨(φ1?; true)∗⟩(φ2 ∧ ¬End)

Notice also that every ref expression ϱ is captured in ldlf by ⟨ϱ⟩End. Moreover,
since also the converse holds, i.e. every ldlf formula can be expressed in re (by
Theorem 11 in (De Giacomo and Vardi, 2013)), the following theorem holds:

Theorem 3.15 ((De Giacomo and Vardi, 2013)). ldlf has exactly the same ex-
pressive power of mso

Now we show several ldlf examples.

Example 3.16. Formulas described in Examples 3.5 and 3.12 can be rewritten in
ldlf as:

• Safety: [true∗]φ, equivalent to ltlf formula □φ

• Liveness: ⟨true∗⟩φ, equivalent to ltlf formula ♢φ

• Conditional Response: [true∗](φ1 ⇒ ⟨true∗⟩φ2), equivalent to ltlf formula
□(φ1 ⇒ ♢φ2)

• Ordered occurrence: ⟨true∗;φ1; true∗;φ2; true∗⟩End equivalent to the ref ex-
pression true∗;φ1; true∗;φ2; true∗

• Alternating occurrence: ⟨(ψ;φ)∗⟩End equivalent to the ref expression (ψ;φ)∗

3.5 Reasoning in ltlf/ldlf
In this section, we study the complexity of ltlf/ldlf reasoning (i.e. complexity

of problems as defined in Definition 3.8, by leveraging the automata construction
described in previous sections.

Theorem 3.17 ((De Giacomo and Vardi, 2013)). Satisfiability, validity, and logical
implication for ldlf formulas are pspace-complete

Proof. Given a ltlf/ldlf φ, we can leverage Theorem 4.3 to solve these problems,
namely:

• For ltlf/ldlf satisfiability we compute the associated nfa (as explained in
Chapter 4 (which is an exponential step) and then check nfa for nonemptiness
(nlogspace).

3.6 Summary 36

• For ltlf/ldlf validity we compute the nfa associated to ¬φ (which is an
exponential step) and then check nfa for nonemptiness (nlogspace).

• For ltlf/ldlf logical implication ψ |= φ we compute the nfa associated to
ψ ∧ ¬φ (which is an exponential step) and then check nfa for nonemptiness
(nlogspace).

3.6 Summary
In this chapter, we provided the logical tools to face other topics in later chapters.

We introduced several formal languages, starting from the classical ltl. We then
moved to logics interpreted on finite traces, namely ltlf and ldlf , focusing on
their interesting properties. These two formalisms will be extensively used in later
chapters of this thesis.

37

Chapter 4

ltlf and ldlf translation to
automata

Reasoning over ltlf/ldlf is usually done by relying on automata theory. In
particular, from a ltlf/ldlf formula φ, we can build a deterministic finite automaton
(dfa) Aφ, whose alphabet is the set of propositional interpretations P of φ, that is
semantically equivalent to the original formula (De Giacomo and Vardi, 2013; De
Giacomo and Vardi, 2015). The size of Aφ can be double-exponentially larger than
the original formula φ, in the worst case.

The rest of the chapter is structured as follows:

• in Section 4.1, we give the details of the aforementioned translation from
ltlf/ldlf formulas to alternating finite automata.

• in Section 4.2, we will see a more specialized algorithm that transforms an
ltlf/ldlf formula directly into an nfa, instead of passing through the afa.

• in Section 4.3, we will go further and present a direct translation from
ltlf/ldlf formulas into dfa, hence bypassing the determinization step from
nfa into dfa, but doing it on-the-fly.

• Section 4.4 presents another approach known in the literature, which first
transforms an ltlf formula into a fol formula, and then applies the inductive
translation rules defined for a kind of second-order logic, namely Weak-Monadic
Second-Order Logic of one successor (WS1S).

• Section 4.5 concludes the chapter.

4.1 From ltlf/ldlf to afa
In this section, we describe more in detail the transformation from ltlf/ldlf

formulas to afa.
Given an ltlf/ldlf formula φ, an equivalent afa Aφ = ⟨Q,Σ, q0, δ, F ⟩ can be

constructed as follows:

• Σ = 2P ;

• Q = cl(φ);

• q0 = φ;

4.1 From ltlf /ldlf to afa 38

• δ(ψ,Π) defined in Section 4.1.1 for ltlf and in Section 4.1.2 for ldlf ;

• F = {ψ | ψ ∈ Q and δ(ψ, ϵ)}

Where cl(φ) is the set of subformulas of φ. It can be shown that, by construction,
π |= φ iff π ∈ Aφ.

Then, the dfa for φ can be obtained by determinizing A.

4.1.1 ∂ function for ltlf
The We give the following definition:

Definition 4.1. The delta function ∂ for ltlf formulas is a function that takes as
input an (implicitly quoted) ltlf formula φ in NNF and a propositional interpretation
Π for P, and returns a positive boolean formula whose atoms are (implicitly quoted)
φ subformulas. It is defined as follows:

∂(tt,Π) = true

∂(ff ,Π) = false

∂(A,Π) =
{

true if A ∈ Π
false if A /∈ Π

∂(¬A,Π) =
{

false if A ∈ Π
true if A /∈ Π

∂(φ1 ∧ φ2,Π) = ∂(φ1,Π) ∧ ∂(φ2,Π)

∂(φ1 ∨ φ2,Π) = ∂(φ1,Π) ∨ ∂(φ2,Π)

∂(◦φ,Π) = φ ∧ ¬End ≡ φ ∧ ♢true

∂(•φ,Π) = φ ∨ End ≡ φ ∨□false

∂(φ1 U φ2,Π) = ∂(φ2,Π) ∨ (∂(φ1,Π) ∧ ∂(◦(φ1 U φ2),Π))

∂(φ1Rφ2,Π) = ∂(φ2,Π) ∧ (∂(φ1,Π) ∨ ∂(•(φ1Rφ2),Π))

(4.1)

where End is defined as Equation 3.6. As a consequence of Definition 4.1 and from
Equation 3.2 and 3.3, we can deduce that

∂(♢φ,Π) = ∂(φ,Π) ∨ ∂(◦♢φ,Π)

∂(□φ,Π) = ∂(φ,Π) ∧ ∂(•□φ,Π)

Moreover, we define ∂(φ, ϵ) which is inductively defined as Equation 4.1, except

4.1 From ltlf /ldlf to afa 39

for the following cases:

∂(tt, ϵ) = true

∂(ff , ϵ) = false

∂(A, ϵ) = false

∂(¬A, ϵ) = false

∂(◦φ, ϵ) = false

∂(•φ, ϵ) = true

∂(φ1 U φ2, ϵ) = false

∂(φ1Rφ2, ϵ) = true

(4.2)

Note that ∂(φ, ϵ) is always either true or false. It is worth to observe for future
use that from Equation 4.2 we can say ∂(♢φ, ϵ) = false and ∂(□φ, ϵ) = true.

4.1.2 ∂ function for ldlf
We give the following definition:

Definition 4.2. The delta function ∂ for ldlf formulas is a function that takes
as input an (implicitly quoted) ldlf formula φ in NNF, extended with auxiliary
constructs Fψ and Tψ, and a propositional interpretation Π for P, and returns a
positive boolean formula whose atoms are (implicitly quoted) φ subformulas (not

4.2 The ldlf 2nfa algorithm 40

including Fψ or Tψ). It is defined as follows:

∂(tt,Π) = true
∂(ff ,Π) = false
∂(ϕ,Π) = ∂(⟨ϕ⟩tt,Π)

∂(φ1 ∧ φ2,Π) = ∂(φ1,Π) ∧ ∂(φ2,Π)
∂(φ1 ∨ φ2,Π) = ∂(φ1,Π) ∨ ∂(φ2,Π)

∂(⟨ϕ⟩φ,Π) =
{

E(φ) if Π |= ϕ

false if Π ̸|= ϕ

∂(⟨ϱ?⟩φ,Π) = ∂(ϱ,Π) ∧ ∂(φ,Π)
∂(⟨ϱ1 + ϱ2⟩φ,Π) = ∂(⟨ϱ1⟩φ,Π) ∨ ∂(⟨ϱ2⟩φ,Π)
∂(⟨ϱ1; ϱ2⟩φ,Π) = ∂(⟨ϱ1⟩⟨ϱ2⟩φ,Π)

∂(⟨ϱ∗⟩φ,Π) = ∂(φ,Π) ∨ ∂(⟨ϱ⟩F⟨ϱ∗⟩φ,Π)

∂([ϕ]φ,Π) =
{

E(φ) if Π |= ϕ

true if Π ̸|= ϕ

∂([ϱ?]φ,Π) = ∂(nnf (¬ϱ),Π) ∨ ∂(φ,Π)
∂([ϱ1 + ϱ2]φ,Π) = ∂([ϱ1]φ,Π) ∧ ∂([ϱ2]φ,Π)
∂([ϱ1; ϱ2]φ,Π) = ∂([ϱ1][ϱ2]φ,Π)

∂([ϱ∗]φ,Π) = ∂(φ,Π) ∧ ∂([ϱ]T⟨ϱ∗⟩φ,Π)
∂(Tψ,Π) = true
∂(Fψ,Π) = false

(4.3)

where E(φ) recursively replaces in φ all occurrences of atoms of the form Tψ and
Fψ by E(ψ).

Moreover, we define ∂(φ, ϵ) which is inductively defined as Equation 4.3, except
for the following cases:

∂(⟨ϕ⟩φ, ϵ) = false
∂([ϕ]φ, ϵ) = true (4.4)

Note that ∂(φ, ϵ) is always either true or false.

4.2 The ldlf2nfa algorithm
Algorithm 1 (ldlf2nfa) takes in input a ldlf/ltlf formula φ and outputs a

nfa Aφ = ⟨2P , Q, q0, δ, F ⟩ that accepts exactly the traces satisfying φ. It is a variant
of the algorithm presented in (De Giacomo and Vardi, 2015), and its correctness
relies on the fact that every ldlf/ltlf formula φ can be associated a polynomial
alternating automaton on words (afw) accepting exactly the traces that satisfy φ
and that every afw can be transformed into an nfa (De Giacomo and Vardi, 2013).
The proposed algorithm requires that φ is in negation normal form (NNF), i.e. with
negation symbols occurring only in front of propositions.

The function ∂ used in lines 5, 11 and 14 is the one defined in sections 4.1.1 and
4.1.2; whether we are translating a ltlf or a ldlf formula, we use the function ∂
from Definition 4.1 and from Definition 4.2, respectively.

4.2 The ldlf 2nfa algorithm 41

Algorithm 1 ldlf2nfa: from ltlf/ldlf formula φ to nfa Aφ
1: input ldlf/ltlf formula φ
2: output nfa Aφ = ⟨2P , Q, q0, δ, F ⟩
3: q0 ← {φ}
4: F ← {∅}
5: if (∂(φ, ϵ) = true) then
6: F ← F ∪ {q0}
7: Q← {q0, ∅}
8: δ ← ∅
9: while (Q or δ change) do

10: for (q ∈ Q) do
11: if (q′ |=

∧
(ψ∈q) ∂(ψ,Π)) then

12: Q← Q ∪ {q′}
13: δ ← δ ∪ {(q,Π, q′)}
14: if (

∧
(ψ∈q′) ∂(ψ, ϵ) = true) then

15: F ← F ∪ {q′}

How ldlf2nfa works
The nfa Aφ for a ldlf formula φ is built in a forward fashion. Until convergence

is reached (i.e. states and transitions do not change), the algorithm visits every
state q seen until now, checks for all the possible transitions from that state and
collects the results, determining the next state q′, the new transition (q,Π, q′) and if
q′ is a final state. Intuitively, the delta function ∂ emulates the semantic behaviour
of every ltlf/ldlf subformula after seeing Π.

States of Aφ are sets of atoms (each atom is a quoted φ subformula) to be
interpreted as conjunctions. The empty conjunction ∅ stands for true. q′ is a
set of quoted subformulas of φ denoting a minimal interpretation such that q′ |=∧

(ψ∈q) ∂(ψ,Π) (notice that we trivially have (∅, p, ∅) ∈ δ for every p ∈ 2P).
The following result holds:

Theorem 4.3 ((De Giacomo and Vardi, 2015)). Algorithm ldlf2nfa is correct,
i.e., for every finite trace π : π |= φ iff π ∈ L(Aφ). Moreover, it terminates in at
most an exponential number of steps, and generates a set of states S whose size is
at most exponential in the size of the formula φ.

In order to obtain a dfa, the nfa Aφ can be determinized in exponential time
(Rabin and Scott, 1959). Thus, we can transform a ltlf/ldlf formula into a dfa
of double exponential size.

Example 4.4. In this example we see a run of the Algorithm 1 with the ltlf
formula □A (A atomic).

0. Set up:

q0 = {□A}
Q = {q0, ∅}
F = {q0, ∅} (because ∂(□A, ϵ) = ∂(falseR¬A, ϵ) = true)
δ = {(∅, {}, ∅), (∅, {A}, ∅)}

4.2 The ldlf 2nfa algorithm 42

1. Iteration: analyze q = {□A}

• with Π = {A} we have

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(□A,Π)

|= ∂(A,Π) ∧ ∂(•□A,Π)

|= true ∧ (“□A” ∨ “□false”)

Notice that true∧ (“□A”∨ “□false”) is a propositional formula with ltlf
formulas as atoms. As a minimal interpretation we have both q′ = {“□A”}
and q′ = {“□false”}. Since in both cases we have that ∂(ψ, ϵ) = true, at
the end of the iteration we have:

q0 = {□A}
Q = {q0, {□false}, ∅}
F = {q0, {□false}, ∅}
δ = {(∅, {}, ∅), (∅, {A}, ∅),

(q0, {A}, q0), (q0, {A}, {□false})}

• with Π = {} we have

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(□A,Π)

|= ∂(A,Π) ∧ ∂(•□A,Π)

|= false ∧ (“□A” ∨ “□false”)

Which is always false. Thus we do not change nothing.

2. Iteration: we already analyzed q = {□A}, so we analyze q = {□false}

• Both with Π = {} and Π = {A} we have that:

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(□false,Π)

|= ∂(false,Π) ∧ ∂(•□false,Π)

|= false ∧ (“□false” ∨ “□false”)

Which is always false. Thus we do not change nothing.

4.2 The ldlf 2nfa algorithm 43

The nfa Aφ = ⟨2{A}, Q, q0, δ, F ⟩ is depicted in Figure 4.1, whereas the associated
dfa is in Figure 4.2.

Figure 4.1. The nfa associated to □A. G(A) stands for □A

Figure 4.2. The dfa associated to □A

Example 4.5. Analogously to what we did in 4.4, we see a run of the Algorithm 1,
with the ltlf formula ♢A (A atomic).

0. Set up:

q0 = {♢A}
Q = {q0, ∅}
F = {∅} (because ∂(♢A, ϵ) = ∂(true U A, ϵ) = false)
δ = {(∅, {}, ∅), (∅, {A}, ∅)}

1. Iteration: analyze q = {♢A}

4.2 The ldlf 2nfa algorithm 44

• with Π = {A} we have

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(♢A,Π)

|= ∂(A,Π) ∨ ∂(◦♢A,Π)

|= true ∨ (“♢A” ∧ “♢true”)

Since the propositional formula is trivially true, as a minimal interpreta-
tion we have q′ = ∅. Considering that the empty conjunction is considered
as true (as explained earlier), at the end of the iteration we have:

q0 = {♢A}
Q = {q0, ∅}
F = {∅}
δ = {(∅, {}, ∅), (∅, {A}, ∅), (q0, {A}, ∅)}

• with Π = {} we have

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(♢A,Π)

|= ∂(A,Π) ∨ ∂(◦♢A,Π)

|= false ∨ (“♢A” ∧ “♢true”)

As a minimal interpretation we have q′ = {“♢A”, “♢true”}. Since
∂(♢A, ϵ) ∧ ∂(♢true, ϵ) = false ∧ false ̸= true, we do not add q′ to the
accepting states F . Thus we have:

q0 = {♢A}
Q = {q0, ∅, {♢A,♢true}}
F = {∅}
δ = {(∅, {}, ∅), (∅, {A}, ∅),

(q0, {A}, ∅),
(q0, {}, {♢A,♢true})}

2. Iteration: we already analyzed q = {♢A}, so we analyze q = {♢A,♢true}

4.2 The ldlf 2nfa algorithm 45

• with Π = {} we have that:

q′ |=
∧

(ψ∈q)
∂(ψ,Π)

|= ∂(♢A,Π) ∧ ∂(♢true,Π)

|= [∂(A,Π) ∨ ∂(◦♢A,Π)] ∧ [∂(true,Π) ∨ ∂(◦♢true,Π)]

|= [∂(A,Π) ∨ (“♢A” ∧ “♢true”)] ∧ [true ∨ (“♢true” ∧ “♢true”)]

|= ∂(A,Π) ∨ (“♢A” ∧ “♢true”)

|= false ∨ (“♢A” ∧ “♢true”)

As in the previous iteration, the minimal model is q′ = {“♢A”, “♢true”}.
Hence we add a new transition ({♢A,♢true}, {}, {♢A,♢true}).

• with Π = {A} the delta-expansion is the same, except for the last step,
where:

q′ |= true ∨ (“♢A” ∧ “♢true”)
The formula is always true, hence the minimal model is q′ = ∅ and we
add a new transition ({♢A,♢true}, {}.∅).

The NFA Aφ is then composed by:

q0 = {♢A}
Q = {q0, ∅, {♢A,♢true}}
F = {∅}
δ = {(∅, {}, ∅), (∅, {A}, ∅),

(q0, {A}, ∅),
(q0, {}, {♢A,♢true})
({♢A,♢true}, {}, {♢A,♢true})
({♢A,♢true}, {}, ∅)}

The nfa Aφ = ⟨2{A}, Q, q0, δ, F ⟩ is depicted in Figure 4.3, whereas the associated
dfa is in Figure 4.4.

Example 4.6. We list other examples of Aφ given a ltlf/ldlf formula φ, obtained
by Algorithm 1:

• Conditional Response: the ltlf formula φ = □(A⇒ ♢B) or equivalently the
ldlf formula φ = [true∗](⟨A⟩tt⇒ ⟨true∗⟩⟨B⟩tt) translates into the automaton
depicted in Figure 4.5.

• Alternating sequence: the ldlf formula φ = ⟨(A;B)∗⟩End translates into the
automaton depicted in Figure 4.6.

4.3 On-the-fly dfa 46

Figure 4.3. The nfa associated to ♢A. F (A) stands for ♢A

Figure 4.4. The dfa associated to ♢A

4.3 On-the-fly dfa
In this section, we describe a way to evaluate a ltlf/ldlf formula without the

need to build the entire automaton Aφ. After that, we devise a new algorithm, a
variant of ldlf2nfa, that avoids the computation of the nfa, but directly translates
the formula into a dfa. We provide some examples to clarify the presented topics.

4.3.1 On-the-fly ltlf/ldlf evaluation
In this section, we describe an alternative method to evaluate a trace on a dfa

without the need for constructing Aφ, that we call on-the-fly (Brafman, De Giacomo,
and Patrizi, 2018). The idea is we progress all possible states that the nfa can be
in after consuming the next trace symbol and accept the trace iff, once it has been
completely read, the set of possible states contains a final state.

4.3 On-the-fly dfa 47

Figure 4.5. The dfa associated to φ = □(A⇒ ♢B)

Figure 4.6. The dfa associated to φ = ⟨(A;B)∗⟩End

More formally, call a set of possible states for the nfa a macrostate, let Q =
{q1, . . . , qn} be the current macrostate (initially Q = Q0 = {q0} = {{φ}}), and let
Π be the next trace symbol. Then, the successor macrostate is the set Q′ defined as
follows:

Q′ = {q′|∃q ∈ Q s.t. q′ |=
∧

(ψ∈q)
∂(ψ,Π)} (4.5)

Notice that the condition q′ |=
∧

(ψ∈q) ∂(ψ,Π) is the same of the one in line 11 of
Algorithm 1. Given an input trace π, we decide whether π |= φ by iterating the
above procedure, starting from the initial state Q = Q0, and accepting π iff the
last state obtained includes {true}, considering their evaluation in the empty trace
(i.e. with ∂(ψ, ϵ)). We denote the evaluation over the empty trace of a macrostate
Q = {q1, . . . , qn} as Qϵ. Formally:

Qϵ = {φ|φ =
∧
ψ∈qi

∂(ψ, ϵ)} (4.6)

4.3 On-the-fly dfa 48

Example 4.7. Consider Example 4.4 with φ = □A, we show how the on-the-fly
evaluation of traces works. At the beginning, we have that

Q = Q0 = {{□A}}

In this example, we ask the following questions:

1. ⟨⟩ |= φ? Does the empty trace π = ⟨⟩ satisfy the formula φ? We expect that
the answer is yes, due to the semantics of □A. With the on-the-fly approach,
we need to compute for each nfa state q ∈ Q the conjunction between every
∂(ψ, ϵ), where ψ ∈ q. As said before, we consider the empty conjunction as
{true}.
In our example, the computation gives us:

Qϵ0 = {{true}}

because ∂(□A, ϵ) = true. Since Qϵ0 contains {true}, Qϵ0 is an accepting state,
hence π |= □A, as expected.

2. ⟨{}⟩ |= φ? This time consider the trace π = ⟨{}⟩ or, equivalently, π = ⟨¬A⟩.
We expect that the on-the-fly evaluation returns false, hence π ̸|= φ. In order
to answer, we need to progress the automaton on-the-fly for each element of the
trace (in this case only one) and check if the last macrostate is an accepting
state by using the procedure explained in the previous case. The next macrostate
Q1 by applying Equation 4.5. Actually, it is computed as we did in Iteration 1
of Example 4.4 with Π = {}.
Since no q′ can be found, Q1 = {}, which is not an accepting state since
{true} /∈ Qϵ1. Hence, π ̸|= φ.

3. ⟨{A}⟩ |= φ? Consider the trace π = ⟨{}⟩. We expect that the on-the-fly
evaluation returns true, hence π |= φ. We proceed, as in the previous case,
to compute the next macrostate Q1 by applying Equation 4.5. Actually, it is
computed as we did in Iteration 1 with Π = {A}. As a minimal interpretation
we have both q′ = {□A} and q′ = {□false}. Hence, the new macrostate is
Q1 = {{□A}, {□false}}.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ1 = {{true}, {true}} = {{true}}. Since {true} ∈ Qϵ1, we can say that
π |= φ.

4. ⟨{A}, {}⟩ |= φ? Consider the trace π = ⟨{A}, {}⟩. We expect that the on-the-fly
evaluation returns false, hence π ̸|= φ. We proceed, as in the previous case,
to compute the next macrostates by applying Equation 4.5. Macrostate Q1 is
the same as we have seen in Case 3. We apply again the progression rule of
Equation 4.5 with Π = π(2) = {}. As a minimal interpretation we have both
q′ = {□A} and q′ = {□false}. Hence, the new macrostate is Q2 = {}. as
we’ve seen in Iteration 2 of Example 4.4.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ2 = {}. Since {true} ̸∈ Qϵ2, we can say that π ̸|= φ.

5. ⟨{}, {A}⟩ |= φ? Consider the trace π = ⟨{}, {A}⟩. We expect that the on-the-fly
evaluation returns false, hence π ̸|= φ. The macrostate Q1 is the same as we
have seen in Case 2, i.e. Q1 = {}. We apply again the progression rule of

4.3 On-the-fly dfa 49

Equation 4.5 with Π = π(2) = {A}. But this is trivially Q2 = {}, by definition
of the progression rule.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ2 = {}. Since {true} ̸∈ Qϵ2, we can say that π ̸|= φ.

Notice how we use the same progression of Algorithm 1, but instead of aiming to
build the entire automaton, we focus only on the states that are relevant for the
satisfaction of the formula, given a trace.

Example 4.8. Analogously as we did in Example 4.7 for Example 4.4, we consider
Example 4.5 with φ = ♢A, and we show how the on-the-fly evaluation of traces also
works in this case. At the beginning, we have that

Q = Q0 = {{♢A}}

In this example, we ask the following questions:

1. ⟨⟩ |= φ? Does the empty trace π = ⟨⟩ satisfy the formula φ? We expect that
the answer is no, due to the semantics of ♢A.
We observe that Qϵ0 = {}, because ∂(♢A, ϵ) = false.
Since Qϵ0 does not contain {true}, Qϵ0 is not an accepting state, hence π ̸|= ♢A,
as expected.

2. ⟨{}⟩ |= φ? This time consider the trace π = ⟨{}⟩ or, equivalently, π = ⟨¬A⟩.
We expect that the on-the-fly evaluation returns false, hence π ̸|= φ. In order
to answer, we need to progress the automaton on the fly for each element
of the trace (in this case only one) and check if the last macrostate is an
accepting state by using the procedure explained in the previous case. The next
macrostate Q1 by applying Equation 4.5. Actually, it is computed as we did in
Iteration 1 of Example 4.5 with Π = {}. As a minimal interpretation, we have
q′ = {♢A,♢true}. Hence, the new macrostate is Q1 = {{♢A,♢true}}.
Now, Qϵ1 = {{false}}, which is not an accepting state since {true} /∈ Qϵ1.
Hence, π ̸|= φ.

3. ⟨{A}⟩ |= φ? Consider the trace π = ⟨{}⟩. We expect that the on-the-fly
evaluation returns true, hence π |= φ. We proceed, as in the previous case,
to compute the next macrostate Q1 by applying Equation 4.5. Actually, it is
computed as we did in Iteration 1 with Π = {A}. As a minimal interpretation,
we have q′ =. Hence, the new macrostate is Q1 = {∅}.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ1 = {{true}}. Since {true} ∈ Qϵ1, we can say that π |= φ.

4. ⟨{A}, {}⟩ |= φ? Consider the trace π = ⟨{A}, {}⟩. We expect that the on-the-fly
evaluation returns true, and so π |= φ. We proceed, as in the previous case,
to compute the next macrostates by applying Equation 4.5. Macrostate Q1 is
the same as we have seen in Case 3. We apply again the progression rule of
Equation 4.5 with Π = π(2) = {}, that leads to the new macrostate is Q2 = {∅}.
Notice that Q1 = Q2.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ2 = {{true}}. Since {true} ∈ Qϵ2, we can say that π |= φ.

4.3 On-the-fly dfa 50

5. ⟨{}, {A}⟩ |= φ? Consider the trace π = ⟨{}, {A}⟩. We expect that the on-the-fly
evaluation returns true, hence π |= φ. The macrostate Q1 is the same as we
have seen in Case 2, i.e. Q1 = {{♢A,♢true}}. We apply again the progression
rule of Equation 4.5 with Π = π(2) = {A}. But this is trivially Q2 = {∅} (as
we’ve seen in Iteration 2 of Example 4.5), by definition of the progression rule.
Since there are no other symbols in the trace π to be processed, we compute
Qϵ2 = {{true}}. Since {true} ∈ Qϵ2, we can say that π |= φ.

Notice how we use the same progression of Algorithm 1, but instead of aiming to
build the entire automaton, we focus only on the states that are relevant for the
satisfaction of the formula, given a trace.

4.3.2 ldlf2dfa: a variant of ldlf2nfa
Example 4.7 and 4.8 suggest a new way to translate ltlf/ldlf formulas to

automata, that is a variant of ldlf2nfa (Algorithm 1). We call it ldlf2dfa, and
directly translate a ltlf/ldlf formula to a dfa, instead of first translating into a
nfa and then computing the dfa by determinization.

Algorithm 2 ldlf2dfa: from ltlf/ldlf formula φ to dfa Aφ
1: input ldlf/ltlf formula φ
2: output dfa Aφ = ⟨2P ,Q, Q0, δ, F ⟩ ▷ Notice: Q is a set of macrostates.
3: Q0 ← {{φ}} ▷ the initial state of Aφ is the initial macrostate
4: F ← ∅
5: Q ← {Q0}
6: δ ← ∅
7: if ({true} ∈ Qϵ0) then
8: F ← F ∪ {Q0}
9: while (Q or δ change) do

10: for (Q ∈ Q,Π ∈ 2P) do
11: Q′ ← {}
12: for (q ∈ Q) do ▷ Conceptually, the same loop of Algorithm 1, line 10
13: if (q′ |=

∧
(ψ∈q) ∂(ψ,Π)) then

14: Q′ ← Q′ ∪ {q′}
15: Q ← Q∪ {Q′} ▷ Add new macrostate Q to the set of macrostates Q
16: δ ← δ ∪ {(Q,Π, Q′)}
17: if ({true} ∈ Q′ϵ) then
18: F ← F ∪ {Q′}

The idea behind Algorithm 2 is the following: build the dfa by doing the
exploration of automaton states and determinization at the same time. Indeed, each
macrostate tracks all the possible paths (according to the trace symbols processed)
of the "implicit" nfa. The computation of the next nfa state, i.e. the for-loop at
line 12, works in the same way of the for-loop in line 10 of Algorithm 1. For a single
macrostate Q, given a propositional interpretation Π, the operation is made for every
nfa state q ∈ Q. The next macrostate Q′ is then composed by all the next nfa states
q′. Given the triple Q,Π, Q′, we actually have a transition of the dfa Aφ. Doing
this operation for every macrostate and every interpretation, until convergence, will
eventually lead to the exploration of every macrostate and transitions among them.

4.3 On-the-fly dfa 51

The main advantage over Algorithm 1 is that we avoid the state explosion due
to the determinization procedure since we only process reachable states of the final
dfa.
Example 4.9. We consider Example 4.4 but using Algorithm 2 for translation of
φ = □A into a dfa.

0. Before the main loop, we have:

Q0 = {{□A}}
Q = {Q0}
δ = ∅
F = {Q0} (because {true} ∈ Qϵ0)

The dfa at this stage is depicted in Figure 4.7a.

1. Iteration: Consider the macrostate Q0. Consider the (unique) nfa state {□A}.
With Π = {A} we generate the new macrostate Q′ = {{□A}, {□false}}. We
add Q′ to Q and (Q0,Π, Q′) to δ. We followed the same steps as we did in
Example 4.7, Case 3.
With Π = {} we generate the new macrostate Q′ = ∅. We add Q′ to Q and
(Q0,Π, Q′) to δ. Since {true} ̸∈ Q′ϵ, we do not add Q′ to F . We followed the
same steps as we did in Example 4.7, Case 2.

The dfa at this stage is depicted in Figure 4.7b.

2. Iteration: We already processed Q = {{□A}}.
Consider the macrostate Q = ∅. Since there exists no q ∈ Q, the for-loop at
line 12, we add to δ all the transitions of the form (∅,Π, ∅), for all Π ∈ 2P .
Now consider the macrostate Q = {{□A}, {□false}}.
Consider Π = {A}. For q = {□A} we generate the sub-macrostate q′ = {□A}
and q′ = {□false}. For q = {□false} we do not generate any sub-macrostate.
Hence, the resulting macrostate is Q′ = {{□A}, {□false}}. Since Q′ ∈ Q, we
only add (Q,Π, Q′) to δ.
Consider Π = {}. For q = {□A}, we do not generate any sub-macrostate. For
q = {□false}, we do not generate any sub-macrostate. Hence, the resulting
macrostate is Q′ = {}. Since Q′ ∈ Q, we only add (Q,Π, Q′) to δ.
Since there are no other macrostates nor propositional interpretation to process,
the algorithm terminates. The final dfa is depicted in Figure 4.7c.

It is interesting to observe that the macrostate Q = {{□A}, {□false}}, where
we end after reading the symbol {A} from the initial state, is the set of nfa states
(Figure 4.1) where we could ends after reading the same symbol from the initial
state, namely {□A} and {□false}. Analogous considerations can be made for other
symbols and other macrostates.

This observation makes clearer the true meaning of Algorithm 2 with respect
to Algorithm 1: that is, the macrostates keep track of all the possible evolutions of
the nfa with respect to a trace π. By reading all the possible symbols from every
macrostate, we will eventually discover all the relevant states of the dfa.

Furthermore, the minimization and trimming of the resulting automaton (shown
in Figure 4.7c) yield the one shown in Figure 4.2, as an evidence of the equivalence
between the two algorithms.

4.3 On-the-fly dfa 52

(a) Iteration 0 (b) Iteration 1

(c) Iteration 2

Figure 4.7. The automaton of Example 4.7, step by step.

4.4 From ltlf to fol using Mona 53

Example 4.10. We consider Example 4.5 but using Algorithm 2 for translation of
φ = ♢A into a dfa.

0. Before the main loop, we have:

Q0 = {{♢A}}
Q = {Q0, ∅}
δ = ∅
F = ∅ (because {true} ̸∈ Qϵ0)

The dfa at this stage is depicted in Figure 4.8a.

1. Iteration: Consider the macrostate Q0. Consider the (unique) nfa state {♢A}.
With Π = {A} we generate the new macrostate Q′ = {∅}. We add Q′ to Q and
(Q0,Π, Q′) to δ. Since {true} ∈ Q′ϵ, we add Q′ to F . We followed the same
steps as we did in Example 4.8, Case 3.
With Π = {} we generate the new macrostate Q′ = {{♢A,♢true}}. We add Q′

to Q and (Q0,Π, Q′) to δ. Since {true} ̸∈ Q′ϵ, we do not add Q′ to F . We
followed the same steps as we did in Example 4.8, Case 2.
The dfa at this stage is depicted in Figure 4.8b.

2. Iteration: We already processed Q = {{□A}}.
Consider the macrostate Q = {∅}. Since the unique successor state of q = ∅ is
q′ = ∅, the next macrostate, for every symbol, is the same. Hence, we add to δ
all the transitions of the form ({∅},Π, {∅}), for all Π ∈ 2P .
Now consider the macrostate Q = {{♢A,♢true}}.
Consider Π = {A}. As we’ve seen in Case 5 of Example 4.8, the next macrostate
is Q′ = {∅}, since that for q = {♢A,♢true} the successor state is q′ = ∅. Since
Q′ ∈ Q, we only add (Q,Π, Q′) to δ.
Consider Π = {}. The successor state of q = {♢A,♢true} is q′ = q. Hence,
the resulting macrostate is Q′ = {{♢A,♢true}}. Since Q′ ∈ Q, we only add
(Q,Π, Q′) to δ. We followed the same steps as we did in Example 4.5, Iteration
2.
Since there are no other macrostates nor propositional interpretation to process,
the algorithm terminates. The final dfa is depicted in Figure 4.8c.

4.4 From ltlf to fol using Mona

In this section, we describe a different technique to transform an ltlf formula
to a dfa, which passes through a first-order formalism and then uses the Mona tool.

4.4.1 Reduction to fol
For an ltlf formula, we can compute an equivalent formula in monadic first-

order logic on finite linearly ordered domains (FO[<], or fol for simplicity), firstly
illustrated in (De Giacomo and Vardi, 2013).

Specifically, we consider a first-order language that is formed by the two binary
predicates succ and < (which we use in the usual infix notation) plus equality, a

4.4 From ltlf to fol using Mona 54

unary predicate for each symbol in P and two constants 0 and last. Then we restrict
our interest to finite linear ordered fol interpretation, which are fol interpretations
of the form I = (∆I , ·I), where the domain is ∆I = {0, . . . , n} with n ∈ N, and the
interpretation function ·I interprets binary predicates and constants in a fixed way:

• succI = {(i, i+ 1) | i ∈ {0, . . . , n− 1}},

• <I= {(i, j) | i, j ∈ {0, . . . , n} and i < j},

• =I= {(i, i) | i ∈ {0, . . . , n}},

• 0I = 0 and lastI = n.

In fact, succ, =, 0 and last can all be defined in terms of <. Specifically:

• succ(x, y)=̇(x < y) ∧ ¬∃z.x < z < y;

• x = y=̇∀z.x < y ≡ y < z;

• 0 can be defined as that x such that ¬∃y.succ(y, x), and last as that x such
that ¬∃y.succ(x, y).

For convenience, we keep these symbols in the language. Also, we use the usual
abbreviation x ≤ y for x < y ∨ x = y.

In spite of the obvious notational differences, it is easy to see that finite linear
ordered fol interpretations and finite traces interpretations are isomorphic. In-
deed, given a finite trace π we define the corresponding finite FOL interpretation
I = (∆I , ·I) as follows: ∆I = {0, . . . , last} (with last = length(π) − 1); with the
obvious, predefined predicates and constants interpretation, and, for each A ∈ P , its
interpretation is AI = {i|A ∈ π(i)}. Conversely, given a finite linear ordered fol
interpretation I = (∆I , ·I), with ∆I = {0, . . . , n}, we define the corresponding trace
π as follows: length(π) = n+ 1; and for each position 0 ≤ i ≤ last, with last = n,
we have π(i) = A | i ∈ AI .

We can then use a translation function fol(φ, x) that, given an ltlf formula φ
and a variable x, returns a corresponding fol formula open in x. We define fol()
by induction on the structure of the ltlf formula:

• fol(A, x) = A(x)

• fol(¬φ, x) = ¬fol(φ, x)

• fol(φ ∧ φ′, x) = fol(φ, x) ∧ fol(φ′, x)

• fol(◦φ, x) = ∃y.succ(x, y) ∧ fol(φ, y)

• fol(φU φ′, x) = ∃y.x ≤ y ≤ last ∧ fol(φ′, y) ∧ ∀z.x ≤ z < y → fol(φ, z)

Theorem 4.11 ((De Giacomo and Vardi, 2013)). Given trace π and a corresponding
finite linear ordered fol interpretation I, we have π, i |= φ iff I, [x/i] |= fol(φ, x),
where [x/i] stands for a variable assignment that assigns to the free variable x of
fol(φ, x) the value i.

4.5 Summary 55

4.4.2 Weak monadic Second-order theory of 1 Successor (WS1S)
It has been known since 1960 that the class of regular languages is linked to

decidability questions in formal logic. In particular, WS1S (Weak monadic Second-
order theory of 1 Successor) is decidable through the automaton-logic connection,
which can be simply stated: the set of satisfying interpretations of a subformula is
represented by a finite-state automaton (Büchi, 1960a; Elgot, 1961). WS1S thus
acts as a notation for regular languages, just as regular expressions do.

The automaton for a formula can be calculated by a simple induction scheme,
where logical connectives correspond to classic automata-theoretic operations such
as product and subset constructions, similarly as presented in Chapter 2 but for
ldlf . Validity and unsatisfiability of the formula can be determined and satisfying
examples and counter-examples can be constructed by analyzing the associated
automaton. Despite its name, WS1S is a simple and natural notation. Being a
variation of first-order logic, WS1S is a formalism with quantifiers and boolean
connectives. Its interpretation, however, is tied to arithmetic, somewhat weakened to
keep the formalism decidable. In WS1S, first-order variables denote natural numbers,
which can be compared and subjected to addition with constants. WS1S also allows
second-order variables while remaining decidable; each such variable is interpreted
as a finite set of numbers.

WS1S can be used to express problems ranging from hardware verification to
formal linguistics. Unfortunately, the space and time requirements for translating
formulas to automata have been shown to be non-elementary (i.e., bounded from
below by a stack of exponentials whose height is proportional to the length of the
formula) (Meyer, 1975). Thus, the decidability property has for many years been
considered intractable for practical use.

One of the major implementations available of such translation is the Mona tool
(Henriksen, Jensen, et al., 1995), which will be described more in detail in Chapter 7.
The work (Zhu, Tabajara, Li, et al., 2017) employs the reduction from ltlf to fol
and then uses Mona to get the minimum dfa.

4.5 Summary
In this chapter, we reported the main results on the relationships between

ltlf/ldlf formulas and finite automata. We started by showing how an ltlf/ldlf
formula can be transformed in linear time to an alternating finite automata. Then,
we saw how we can provide direct transformations by determinizing the afa on-
the-fly; first from ltlf/ldlf to nfa, and then from ltlf/ldlf to dfa. Finally, we
described another known approach that passes through the fol formalism.

4.5 Summary 56

(a) Iteration 0 (b) Iteration 1

(c) Iteration 2

Figure 4.8. The automaton of Example 4.8, step by step.

57

Part II

Compositional Automata
Construction

58

Chapter 5

Compositional approach

The translation from temporal logic to automata is the workhorse algorithm of
several techniques in computer science and AI, such as reactive synthesis, reasoning
about actions, FOND planning with temporal specifications, and reinforcement
learning with non-Markovian rewards, just to name a few. Unfortunately, as we
have seen in Chapter 4, the problem is computationally intractable, requiring the
implementation of several heuristics to make it usable in practice. In this chapter,
following the recent interest in temporal logic formalisms over finite traces, we
present one of the main contributions of the thesis. We describe a compositional
approach for dealing with translations of Linear Temporal Logic and Linear Dynamic
Logic (ldlf) on finite traces into Deterministic Finite Automata dfa. That is,
we inductively transform each ltlf/ldlf subformula into a dfa, and combine
them through automata operators. By relying on efficient semi-symbolic automata
representations, we empirically show the effectiveness of our approach and the
competitiveness with similar tools. Moreover, this is the first work that provides a
scalable and practical tool supporting the translation to dfa not only for ltlf but
also for full ldlf .

The rest of the chapter is structured as follows:

• In Section 5.1, we introduce the state-of-the-art techniques and implementations
of the transformation from ltlf to dfas.

• In Section 5.2, we present the details of our compositional approach. We
provide a formalization, we prove the correctness and analyze its computational
complexity.

• In Section 5.3, we present several examples of the translation approach.

• In Section 5.4 summarizes the content of the chapter and we discuss the
contributions and potential extension of the work.

The contents of this chapter have been published in the conference paper (De
Giacomo and Favorito, 2021).

5.1 Introduction
As we have seen in Chapter 3, reasoning over ltlf/ldlf is usually done by

relying on automata theory. In particular, from a ltlf/ldlf formula φ, we can build
a deterministic finite automaton (dfa) Aφ, whose alphabet is the set of propositional
interpretations P of φ, that is semantically equivalent to the original formula (De

5.1 Introduction 59

Giacomo and Vardi, 2013; De Giacomo and Vardi, 2015). The computational
complexity of such translation has been shown to be doubly exponential time in
the worst case, and indeed Aφ can be double-exponentially larger than the original
formula φ. Nevertheless, in most cases the resulting dfa is actually manageable,
a phenomenon often observed when determinization is applied to automata finite
words (Tabakov and Vardi, 2005). This puts working in the finite traces in sharp
contrast with working with infinite ones, which are hampered by the notorious
intractability of determinization of nondeterministic Büchi automata (Fogarty et al.,
2015).

One of the ingredients of the translation from such logic to dfas is the Mona
tool (Henriksen, Jensen, et al., 1995; Klarlund, 1997; Klarlund and Møller, 2001).
The tool implements the translation from First-Order Logic (fo) and Monadic
Second-Order Logic on finite strings (mso) to deterministic finite automata. Thanks
to its novel and efficient semi-symbolic representation, still explicit in the state
space’s representation but symbolic in the transitions’, Mona has become widely
used in the research community. One of the best practical implementation of the
translation from ltlf to dfa, proposed by (Zhu, Tabajara, Li, et al., 2017). Their
tool Syft encodes ltlf formulae into First-Order Logic formulae, represented as
Mona programs, and uses Mona to perform the actual translation. The Mona output
is then post-processed to produce a fully symbolic representation (i.e. both in the
state space and in the transitions) to perform ltlf synthesis. A more recent work
(Bansal et al., 2020) proposed a hybrid approach to the problem of dfa construction
from ltlf formulae: first, they decompose the outermost conjunction in φ, where φ
is assumed to be in the form φ =

∧n
i=1 φi, in n-subformulae φ1 . . . , φn. Then, they

transform each φi into dfas Aφi in explicit-state representation using Mona. Finally,
they start doing the product between all the automata Aφi ; if at some point the size
of the partial automaton becomes too large and exceeds a user-defined threshold,
the approach converts all the explicit-state automata in symbolic representation and
continues with the products, though forgoing minimization. In this way the tool
is able to scale even in the case the automaton becomes prohibitively large to be
represented explicitly, although not producing a minimal automaton anymore in
this case. Both tools in (Zhu, Tabajara, Li, et al., 2017) and in (Bansal et al.,
2020) perform much better than state of the art tools, such as SPOT (Duret-Lutz
et al., 2016), which implement procedures to translate ltl formulae to automata on
infinite words, and can also be used for ltlf by exploiting its encoding into ltl (De
Giacomo and Vardi, 2013). They implemented a tool called Lisa and LisaSynt, for
dfa translation and synthesis, respectively.

Observe that both tools make use of the translation of fo into dfa, provided
by Mona, which is nonelementary1 in the worst case, due to the necessity of multi-
ple determinizations (each exponential in the worst case) and projections (which
introduces nondeterminism) needed to handle quantifiers and negations. Still, this
non-elementariness does not show in practice (again for the phenomenon of deter-
minization of automata on finite words mentioned above).

Here we take a step further from the compositional approach proposed in (Bansal
et al., 2020). In particular, the contribution of this chapter is a fully compositional
approach to handle both ltlf formulae and ldlf formulae. That is, we do not
make any assumption on the structure of the formula, as done by Bansal et al.
which stops the decomposition step at the outermost conjunction. We process all the

1In computational complexity theory, a nonelementary problem is a problem that is not a member
of the ELEMENTARY class, i.e., the computational time cost of such problems has an unbounded
number of exponentiations.

5.2 Compositional Translation 60

∨

♢ □

φ ψ

.

Aφ Aφ

A♢φ A□ψ

A□ψ ∪ A♢φ

Figure 5.1. The compositional technique for ♢φ ∨□ψ, at a glance. It starts translating
the subformulas that are deepest in the syntax tree, and then compose them backward
according to the logic operators.

subformulae recursively up to the leaves of the syntax tree, and then we compose the
partial dfas of the subformulae using common operations over automata (e.g. union,
intersection, concatenation), according to the ltlf/ldlf operator being processed.

The contribution of this technique is both theoretical and practical. On the
theoretical side, we observe that so far the theory of the correspondence between
ltlf/ldlf and automata theory relied on the transformation of ltlf/ldlf formulae
into alternating automata on finite words (afa), which can be eventually transformed
into nondeterministic finite automata (nfa), and in turn determinized into dfas (De
Giacomo and Vardi, 2013). Instead, we provide a sound and complete technique to
directly transform a formula into a dfa. Despite the worst-case complexity of such
technique is again nonelementary, as Mona’s, we show that it has several practical
advantages with respect to the previous ones, primarily due to the possibility of
applying aggressive minimization to the partial automata, which has already been
argued to be indispensable for scalability (Klarlund and Møller, 2001; Zhu, Tabajara,
Pu, et al., 2021). On the practical side, in Chapter 6 and Chapter 7, we describe
an implementation that employs such a compositional technique and showing its
competitiveness with existing tools (Bansal et al., 2020; Henriksen, Jensen, et al.,
1995). The tool can be used both for ltlf/ldlf -to-dfa construction and as a
ltlf/ldlf synthesis tool. Crucially, this is the first work that provides a scalable
and practical tool supporting the translation to dfa and synthesis not only for ltlf
but also for full ldlf . The tool will be described more in detail in Chapter 7.

This chapter is an extended version of the conference paper in (De Giacomo
and Favorito, 2021).

5.2 Compositional Translation
In this section, we describe the technique inductively translate each basic

ltlf/ldlf formula and operators over them into (minimal) dfas. We call the
technique “compositional” due to its focusing on smaller subproblems and in the
successive composition of partial results. We provide direct transformations from
ldlf to automata; for what concerns ltlf , we apply the transformation rules ex-
plained in the “Preliminaries” section. Finally, we will provide a theoretical analysis
of the technique. In Figure 5.1, it is depicted at a high level how the compositional
translation works.

5.2 Compositional Translation 61

q0

⊤
(a) Att

q0

⊤
(b) Aff

q0

Aφ q1
ϕ

ϕ̄
⊤

(c) A⟨ϕ⟩φ

q0

Aφ q1
ϕ

ϕ̄
⊤

(d) A[ϕ]φ

Figure 5.2. dfas of elementary ldlf formulae.

5.2.1 The Technique
In what follows, we describe the transformation for each elementary formula and

operator of ldlf into an equivalent dfa. The approach is “bottom-up": it computes
the dfa of the deepest subformulae, and combines the partial results depending
on the ldlf operator under transformation. This is in contrast with the previous
techniques known in the literature that are “top-down": they proceed from the root
operator of the formula in order to compute the next states (see e.g. ldlf2nfa in
(De Giacomo and Vardi, 2013; De Giacomo and Vardi, 2015; Brafman, De Giacomo,
and Patrizi, 2018)).
tt and ff : the logical true formula tt is equivalent to a dfa with an unique accepting
state and a loop that accepts all symbols (Figure 5.2a). In other words, it is the
minimal automaton that accepts the language Σ∗. Its dual, ff , is the automaton of
the empty language (Figure 5.2b).
φ1∧φ2, φ1∨φ2 and ¬φ: The boolean operations over ldlf formulae are processed
with the corresponding boolean operations over automata. For conjunction and
disjunction, we use the product construction with respectively conjunction or dis-
junction of states as accepting conditions; for negation, we use the complementation
of automata. The output of these operations might require a further minimization
and completion step.
⟨ϕ⟩φ: the diamond formula with a propositional formula as regular expression is
equivalent to the automaton in Figure 5.2c. With the empty trace, the run fails.
Otherwise, the next input symbol of the trace is read; if it satisfies ϕ, then the run
proceeds with the simulation of the automaton associated to φ (starting from the
state labelled with Aφ), else the run fails and goes to the sink state. Observe that
the operation might require a further minization step, even if Aφ is minimal; e.g.
take φ = ff as example.
[ϕ]φ: the box formula with a propositional formula as regular expression is equiv-
alent to the automaton in Figure 5.2d. With the empty trace, the run succeeds.
Otherwise, the next input symbol of the trace is read; if it satisfies ϕ, then the run

5.2 Compositional Translation 62

proceeds with the simulation of the automaton associated to φ (starting from the
state labelled with Aφ), else the run succeeds and goes to the sink accepting state.
Observe that the operation might require a further minimization step, even if Aφ is
minimal; e.g. take φ = tt as example.
⟨ψ?⟩φ and [ψ?]φ: The formulae can be reduced to ψ ∧φ and ¬ψ ∨φ, respectively.

⟨ρ1;ρ2⟩φ and [ρ1;ρ2]φ: Both formulae are reducible to ⟨ρ1⟩⟨ρ2⟩φ and [ρ1][ρ2]φ,
respectively.
⟨ρ1 + ρ2⟩φ and [ρ1 + ρ2]φ: These formulae can be reduced to ⟨ρ1⟩φ ∨ ⟨ρ2⟩φ and
[ρ1]φ ∧ [ρ2]φ, respectively.
⟨ρ∗⟩φ and [ρ∗]φ: It is enough to translate ⟨ρ∗⟩φ and get the other by the duality
of the diamond operator, i.e. [ρ∗]φ ≡ ¬⟨ρ∗⟩¬φ. Hence, we will only consider ⟨ρ∗⟩φ.
To compute the automaton A⟨ρ∗⟩φ, we first consider the case in which ρ does not
contain any test. In this case, we have that the automaton Aρ of ρ, is equivalent to
the automaton of ⟨ρ⟩end, i.e. Aρ = A⟨ρ⟩end, as the semantics of ldlf formulae of the
form ⟨ρ⟩end is the same of ref formulae ρ. Hence, the automaton A⟨ρ⟩end can be
computed using the well-known construction of dfa from regular expressions (See,
e.g. (Hopcroft, Motwani, and Ullman, 2006)). Then, we compute the Kleene closure
of Aρ, Aρ∗ . Finally, we concatenate Aρ∗ and Aφ to obtain the desired automaton.
This approach can be generalized to handle tests as well in some cases, but not
always since it could happen that the verification of a test ψ? could take more steps
than the regular expression ρ itself. When this happens it is no longer true that
Aρ and A⟨ρ⟩end are equivalent since the presence of end in the second one would
stop the evaluation of the test ψ? too early, changing the semantics of the formula.
Hence when we cannot guarantee that this does not happen, we simply fall back
to using the classical algorithm that computes the afa from ⟨ρ∗⟩φ (De Giacomo
and Vardi, 2013; Brafman, De Giacomo, and Patrizi, 2018), with the only difference
that we recursively pre-compute the dfa Aψ for each test ψ? and the dfa Aφ for
φ, and whenever we go to state ψ? or φ in the afa of ⟨ρ∗⟩φ we actually go to the
initial state of the dfas Aψ and Aφ Then we transform the afa into a nfa as usual
and then determinize it to obtain the desired dfa. The reason why we adopted two
different approaches for ⟨ρ∗⟩φ is that the case when ρ does not contain tests allows
us to better decompose the problem. Intuitively, this happens because of the lack of
universal transitions due to the absence of the test expressions in ρ.

To summarize, in order to compute the dfa Aφ equivalent to an ldlf formula φ,
recursively apply the transformations stated above, one for each syntactic construct
of the formula.

5.2.2 Analysis
Now we analyze the technique, proving correctness, termination, and running

time complexity.

Theorem 5.1. (Correctness) Let φ be an ldlf formula and Aφ the corresponding
dfa. Then for every ltlf -interpretation π we have that π |= φ ⇐⇒ π ∈ L(Aφ).

Proof. We prove a more general statement, that is ∀i.π, i |= φ ⇐⇒ π(i, length(π)) ∈
L(Aφ). Clearly, the claim of the theorem corresponds to the case i = 0. For i > 0,
we proceed by induction on the structure of φ.

• φ = tt. Then, on the one hand, π, i |= tt. On the other hand, π(i, length(π)) ∈
L(φtt), where L(φtt) = Σ∗.

5.2 Compositional Translation 63

• φ = ff . Then, on the one hand, π, i ̸|= ff . On the other hand, π(i, length(π)) ̸∈
L(φff), where L(φff) = ∅.

• φ = ¬φ′. Then, π, i |= φ′, and, by definition, π, i ̸|= φ. By structural induction,
we have that π(i, length(π)) ∈ L(Aφ′) and so π(i, length(π)) ̸∈ L(A¬φ), hence
π(i, length(π)) is not accepted by Aφ = Aφ′ .

• φ = φ1 ∧ φ2. We have both π, i |= φ1 and π, i |= φ2. By structural induction,
we then have that π(i, length(π)) ∈ L(Aφ1) and π(i, length(π)) ∈ L(Aφ2),
which is the condition of acceptance for π(i, length(π)) on Aφ = Aφ1 ∩ Aφ2 .

• φ = φ1∨φ2. We have either π, i |= φ1 or π, i |= φ2. By structural induction, we
then have that π(i, length(π)) ∈ L(Aφ1) or π(i, length(π)) ∈ L(Aφ2), which is
the condition of acceptance for π(i, length(π)) on Aφ = Aφ1 ∪ Aφ2 .

• φ = ⟨ρ⟩φ′. We proceed by induction on ρ, and we show that for every φ′,
π, i |= ⟨ρ⟩φ′ ⇐⇒ π(i, length(π)) ∈ L(A⟨ρ⟩φ′).

– ρ = ϕ. We have that π, i |= ⟨ϕ⟩φ′ iff (i, i+ 1) ∈ R(ϕ, π) and π, i+ 1 |= φ.
Notice also that A⟨ϕ⟩φ′ is of the form shown in Figure 5.2c. Observe
that if i ≥ length(π) then π, i |= ⟨ϕ⟩φ′ is false, and indeed the empty
trace π(i, length(π)) = ϵ is not accepted by A⟨ϕ⟩φ′ . If i < length(π), then
π, i |= ⟨ϕ⟩φ′ iff π(i) |= ϕ and π, i+ 1 |= φ′, which is iff the transition from
q0 and Aφ is taken, and then π(i+ 1, length(π)) ∈ L(Aφ′).

– ρ = ψ?. Observe that ⟨ψ?⟩φ′ ≡ ψ ∧ φ′, thus this case is addressed by
applying the same reasoning as the one for conjunction.

– ρ = ρ1 + ρ2. Observe that ⟨ρ1 + ρ2⟩φ′ ≡ ⟨ρ1⟩φ′ ∨ ⟨ρ2⟩φ′, thus this case is
addressed by applying the same reasoning as the one for disjunction.

– ρ = ρ1; ρ2. Observe that ⟨ρ1; ρ2⟩φ′ ≡ ⟨ρ1⟩⟨ρ2⟩φ′. By induction on ρ2 we
have that π, i |= ⟨ρ2⟩φ′ ⇐⇒ π(i, length(π)) ∈ L(A⟨ρ2⟩φ′). By induc-
tion on ρ1, we have that for all ψ, π, i |= ⟨ρ1⟩ψ ⇐⇒ π(i, length(π)) ∈
L(A⟨ρ1⟩ψ). By replacing ψ with ⟨ρ2⟩φ′, and considering that the automa-
ton A⟨ρ1;ρ2⟩φ′ is by definition A⟨ρ1⟩⟨ρ2⟩φ′ , the thesis follows.

– φ = ⟨ρ∗⟩φ′. We first consider the case where ρ does not contain tests.
We prove this case by induction on n = length(π(i, length(π))).
First, assume n = 0. This implies that i ≥ length(π), and hence
π(i, length(π)) = ϵ, i.e. is the empty trace. Since we are out-of-bounds
and no propositional formulae can be executed, and the only case that
matters is the one with zero repetition of ρ in ρ∗: π, i |= ⟨ρ∗⟩φ′ holds
iff π, i |= φ′. By structural induction, π, i |= φ′ holds iff Aφ′ accepts
π(i, length(π)) = ϵ. Now, consider the construction of A⟨ρ∗⟩φ′ . It is the
concatenation of A⟨ρ∗⟩end and Aφ′ . Since Aρ∗ accepts the empty trace
by construction (it is the Kleene closure of A⟨ρ⟩end), A⟨ρ∗⟩φ′ accepts the
empty trace iff Aφ′ accepts the empty trace.
Now, assume that n > 0 and the claim holds for every n′ < n. From the
semantics of ⟨ρ∗⟩φ, we have that π, i |= ⟨ρ∗⟩φ′ iff exists j ≥ i s.t. either
j = i and π, j |= φ′ or there exists j > i such that (i, k) ∈ R(ρ, π) and
(k, j) ∈ R(ρ∗, π) and π, j |= φ′, with k > i. We want to prove that for
every φ′, π, i |= ⟨ρ∗⟩φ′ iff π(i, length(π)) ∈ L(A⟨ρ∗⟩φ′). We distinguish
two cases; one in which there are zero repetitions of ρ (j = i), and the
other when there are one or more (j > i).

5.2 Compositional Translation 64

In case there are zero repetitions, we have that π(i, length(π)) ∈ L(A⟨ρ∗⟩φ′)
iff π(i, length(π)) ∈ L(Aφ′) by construction, and that π, i |= ⟨ρ∗⟩φ′. iff
π, i |= φ′ by the semantics, so now we need to prove that π(i, length(π)) ∈
L(Aφ′) iff π, i |= φ′, but this is true by structural induction.
In the other case, j > i, we have one or more repetitions of ρ. By con-
struction, there exists a k > i such that π(i, k) ∈ L(A⟨ρ⟩end), π(k, j) ∈
L(A⟨ρ∗⟩end), and π(j, length(π)) ∈ L(Aφ′). We have that π(i, k) ∈
L(A⟨ρ⟩end) iff (i, k) ∈ R(ρ, π) by construction, π(k, j) ∈ L(A⟨ρ∗⟩end) iff
(k, j) ∈ R(ρ∗, π) by induction on the length of the trace, and π(j, length(π)) ∈
L(Aφ′) iff π, j |= φ′ by structural induction. Combining the above equiv-
alences, we get the thesis.
Let us now consider the case in which ρ instead contains tests. Let
ψ1?, . . . , ψn? be all tests in ρ. Let Aψi

be the dfa associated to the test
ψi?. Note that both these dfas as well as Aφ′ are correct by structural
induction. Then we compute the afa Aalt⟨ρ∗⟩φ′ as in (De Giacomo and
Vardi, 2013; Brafman, De Giacomo, and Patrizi, 2018), but with the
difference that states of the form ψi? or φ′ are replaced by the initial states
of Aψi

and Aφ′ , respectively. Moreover, the other states and transitions
of these dfas are added to the states and transitions of Aalt⟨ρ∗⟩φ′ . Then,
we have that π, i |= ⟨ρ∗⟩φ π(i, length(ϕ)) ∈ L(Aalt⟨ρ∗⟩φ′), and since from
Aalt⟨ρ∗⟩φ′ we can obtain an equivalent dfa we get the thesis.

It is also of interest to make some observations on the intermediate automata
generated by the technique. The computation of dfas of simple formulae tt, ff , ⟨ϕ⟩φ
and [ϕ]φ, given the dfa for φ, can be done in constant time, since they don’t depend
directly on the size of ϕ nor φ. Negation consists in changing accepting states to
rejecting states and vice versa. The other boolean operations are translated using
products of dfas, which are polynomial. The computation of A⟨ρ⟩φ without the
occurrence of the ∗ operator can be handled reducing recursively to the previous
cases without introducing any non-determinism. The occurrence of the ∗ instead
prevents us to reduce to the previous cases, and introduces non-determinism due to
the Kleene closure and the concatenation operations, and hence exponential steps
to determinize the resulting automaton (Maslov, 1970; Yu, Zhuang, and Salomaa,
1994). More precisely, let us consider a sub-formula ⟨ρ∗⟩φ. If ρ does not contain
tests2 and does not contains star operators, then computing the dfa A⟨ρ⟩end is
polynomial, and computing the dfa for the Kleene closure, A⟨ρ∗⟩end, is exponential
w.r.t the size of A⟨ρ⟩end. As it is exponential doing the concatenation with Aφ, but
w.r.t. the size of Aφ hence the total contribution is one exponential. If ρ contains star
operators, then for the arguments above those sub-expressions already contribute
with an arbitrary number of exponentials, and the outermost star contributes with
another exponential for the same arguments. If ρ contains tests, then we switch
to the afa construction which contributes with a double-exponential cost due to
transformation to nfa and to determinization to obtain the dfa.

Summarizing, any nested star operation gives, in the worst case, an exponential
blow-up and hence is nonelementary. Although this may sound discouraging, we
observe that practical tools like Mona (Henriksen, Jensen, et al., 1995) implement a
nonelementary technique; yet, they perform very well in practice. We show that also

2Or we are guaranteed that the test is completed within the part of the word scanned by ρ.

5.3 Examples 65

our implementation of the technique is competitive with Mona and other tools. Also,
observe that in our implementation, like in Mona, we aggressively minimize the partial
dfa obtained after each compositional step. Since the cost of dfa minimization for
automata with explicit-state representations can be done in O(n logn) (Hopcroft,
1971), this does not worsen the complexity of the technique, while in practice
enhances it substantially because often the minimal dfa obtained from an nfa is of
size comparable to the nfa itself, instead of being exponential in it. In practice, this
subset construction with only reachable subset states is often linear, not exponential
as it may be feared, as observed in the literature, see e.g. (Basin and Klarlund,
1998).

In any case, since the technique is correct (c.f., Theorem 5.1), by the uniqueness
of minimal dfas, the returned dfa (once minimized) is at most double-exponentially
larger than the ldlf formula (De Giacomo and Vardi, 2013; De Giacomo and Vardi,
2015; Brafman, De Giacomo, and Patrizi, 2018).

5.3 Examples
In this section, we show several examples describing the compositional technique.

Example 5.2. Let φ = ⟨a+ b⟩⟨c; d⟩tt be an ldlf formula. Note that, according to
the translation rules, it can be first translated into:

φ′ = ⟨a⟩⟨c⟩⟨d⟩tt ∨ ⟨b⟩⟨c⟩⟨d⟩tt

with φ ≡ φ′.
We start from processing the right-hand side ⟨a⟩⟨c⟩⟨d⟩tt. We start from the

subformula tt, getting Att (Figure 5.3):

qtt
0 ⊤

tt

Figure 5.3. The automaton for tt.

Then, we process ⟨d⟩tt by using the automaton template shown in Figure 5.2c,
yielding A⟨d⟩tt (Figure 5.4):

qtt
0 ⊤

tt

qd0

qd2

d

d̄

⊤

⟨d⟩tt

Figure 5.4. The automaton for ⟨d⟩tt.

5.3 Examples 66

We proceed similarly for ⟨c⟩⟨d⟩tt and ⟨b⟩⟨c⟩⟨d⟩tt, yielding automata A⟨c⟩⟨d⟩tt and
A⟨b⟩⟨c⟩⟨d⟩tt, depicted in Figure 5.5 and 5.6, respectively:

qtt
0 ⊤

tt

qd0

qd2

d

d̄

⊤

⟨d⟩tt

qc0
c

c̄

⟨c⟩⟨d⟩tt

Figure 5.5. The automaton for ⟨c⟩⟨d⟩tt.

qtt
0 ⊤

tt

qd0

qd2

d

d̄

⊤

⟨d⟩tt

qc0
c

c̄

⟨c⟩⟨d⟩tt

qb0
b

b̄

⟨b⟩⟨c⟩⟨d⟩tt

Figure 5.6. The automaton for ⟨b⟩⟨c⟩⟨d⟩tt.

For the left-hand side of the formula, note that the resulting automaton is the
same of A⟨b⟩⟨c⟩⟨d⟩tt except for the last step, where b has to be replaced with a (Figure
5.7):

qtt
0 ⊤

tt

qd0

qd2

d

d̄

⊤

⟨d⟩tt

qc0
c

c̄

⟨c⟩⟨d⟩tt

qa0
a

ā

⟨a⟩⟨c⟩⟨d⟩tt

Figure 5.7. The automaton for ⟨a⟩⟨c⟩⟨d⟩tt.

5.3 Examples 67

Finally, we compute the automaton of φ′ by taking the union of the automata of
the two subformulas, i.e. Aφ′ = A⟨a⟩⟨c⟩⟨d⟩tt ∪ A⟨b⟩⟨c⟩⟨d⟩tt (Figure 5.8):

q0 q1 q2 q3 ⊤
a ∨ b c d

Figure 5.8. The automaton Aφ′ = A⟨a⟩⟨c⟩⟨d⟩tt ∪ A⟨b⟩⟨c⟩⟨d⟩tt .

Example 5.3. This example shows how the translation works for ⟨ρ⟩ψ when ρ is
test-free. Let φ = [a∗]⟨b⟩tt. As before, we start from the deepest subformula in the
syntax tree, i.e. tt, and then go backward. Therefore we start from Att showed in
Figure 5.9:

qtt
0 ⊤

tt

Figure 5.9. The automaton for tt.

Next, we process ⟨b⟩tt, yielding A⟨b⟩tt (Figure 5.10):

qtt
0 ⊤

tt

qb0

qb2

b

b̄

⊤

⟨b⟩tt

Figure 5.10. The automaton for ⟨b⟩tt.

Now, we consider [a∗]⟨b⟩tt. The translation rules tell us to first convert the
formula into ¬⟨a∗⟩¬(⟨b⟩tt). We first process the innermost negation, ¬(⟨b⟩tt), or
equivalently, [b]ff . In terms of automata operations, this translates into complement-
ing A⟨b⟩tt, i.e. A[b]ff = A⟨b⟩tt (Figure 5.11):

5.3 Examples 68

qff
0 ⊤

ff

qb0

qb2

b

b̄

⊤

[b]ff

Figure 5.11. The automaton for ¬⟨b⟩tt, or equivalently [b]ff , is obtained by complementing
A⟨b⟩tt: A[b]ff = A⟨b⟩tt.

Note that the automaton depicted in Figure 5.11 is equivalent to the formula
[b]ff .

The next step in order to process ⟨a∗⟩φ is to first compute the automaton for
⟨a⟩end (the automaton on the left in Figure 5.12).

qff
0 ⊤

ff

qb0

qb2

b

b̄

⊤

[b]ff

qa0

qa1

qa2

a

ā
⊤

⊤

⟨a⟩end

Figure 5.12. The automata A⟨a⟩end and A[b]ff , respectively.

Next, we compute the Kleene closure of A⟨a⟩end (the automaton on the left in
Figure 5.13):

qff
0 ⊤

ff

qb0

qb2

b

b̄

⊤

[b]ff

qa0 a

a∗

Figure 5.13. The automata A⟨a∗⟩end and A[b]ff , respectively.

Now, we need to compute the concatenation between the two automata, i.e. we
add the ϵ-transition from the accepting states of the first operand to the initial state

5.3 Examples 69

of the second operand (see Section 2.5 for details), which yields the ϵ-nfa AϵN in
Figure 5.14:

qff
0 ⊤

ff

qb0

qb2

b

b̄

⊤

[b]ff

qa0 a

a∗
ϵ

Figure 5.14. The ϵ-nfa that represents the concatenation between A⟨a∗⟩end and A[b]ff .

The next step is to determinize AϵN , yielding A⟨a∗⟩[b]ff (Figure 5.15):

q0

q1

q2

ab

āb̄+ ab̄

āb

⊤

⊤

Figure 5.15. The dfa A⟨a∗⟩[b]ff .

Since our original formula was [a∗]⟨b⟩tt, we have to complement the automaton
A⟨a∗⟩[b]ff in order to obtain the desired result A[a∗]⟨b⟩tt, i.e. A[a∗]⟨b⟩tt = A⟨a∗⟩[b]ff
(Figure 5.16):

q0

q1

q2

ab

āb̄+ ab̄

āb

⊤

⊤

Figure 5.16. The dfa A⟨a∗⟩[b]ff .

5.3 Examples 70

Example 5.4. In this example, we will see how the technique works for formulas of
the type ⟨ρ∗⟩ψ when ρ is not test-free. Let φ = ⟨(⟨a; a⟩tt?; true)∗⟩⟨b⟩tt. The formula
has a test expression ⟨a; a⟩tt, which is non-atomic, i.e. it requires at least two steps
to be verified.

The first step is to precompute automata A⟨a;a⟩tt and A⟨b⟩tt , as prescribed by the
translation rules (Figure 5.17):

qb0 qb1

qb2

b
⊤

b̄

⊤

⟨b⟩tt

qa0 qa1 qa2

qa3

a a

ā ā

⊤

⊤

⟨a; a⟩tt

Figure 5.17. The automata A⟨a,a⟩tt and A⟨b⟩tt , respectively.

Since ρ contains test expressions, we simply fall back to using the classical
algorithm that computes the afa from ⟨ρ∗⟩ψ, AA. We start from the initial state
q0 = φ. We expand q0 using the function ∂:

∂(φ,Π) = ∂(“⟨b⟩tt”,Π) ∨ (∂(“⟨a; a⟩tt”,Π) ∧ ∂(“E(⟨true⟩Fφ”),Π))
= ∂(“⟨b⟩tt”,Π) ∨ (∂(“⟨a; a⟩tt”,Π) ∧ ∂(“⟨true⟩φ)”,Π))

The alternating automaton AA would have the following transitions from q0:

State δA(q0, {a, b}) δA(q0, {a}) δA(q0, {b}) δA(q0, {})
q0 qb1 ∨ (qa1 ∧ q0) qb2 ∨ (qa1 ∧ q0) qb1 ∨ (qa3 ∧ q0) qb2 ∨ (qa3 ∧ q0)

Intuitively, we reinterpret states of A⟨a,a⟩tt and A⟨b⟩tt as if they were states of
alternating automata. The concatenating transitions in Table 5.4 start from q0 and
lead to q0 or states of the two automata in Figure 5.17, according to the read symbol
and to the alternation specified by ∂(φ,Π). Also, note that some transitions lead to
either acceptance (e.g. δA(qa, {a, b}) = true, since qb1 is an accepting sink state) or
rejection (e.g. δA(qa, {}) = false, since qa3 is a rejecting sink state).

The technique guarantees us that the automaton AA is semantically equivalent
to φ. The next step is to determinize AA to obtain a dfa. In Figure 5.18 you can
see the determinized AA, which corresponds to A⟨(⟨a;a⟩tt?;true)∗⟩⟨b⟩tt.

5.4 Summary and Discussion 71

q0 q1

q2

q3

ab̄

b

āb̄

ab

ā

ab̄ ⊤

⊤

Figure 5.18. The automaton A⟨(⟨a;a⟩tt?;true)∗⟩⟨b⟩tt .

5.4 Summary and Discussion
This chapter introduced one of the main theoretical contribution of the thesis:

a compositional approach to transform ltlf/ldlf into dfa. Despite there were
already several transformation approaches in the literature, they do not rely on a
direct translation from ltlf/ldlf formulas into dfa, but go through alternating
automata or other logic formalisms like first-order logic. We formalized the approach
using a structural induction scheme that associates an automata operation with each
formula operation, starting from elementary automata. We proved the correctness
of the technique and analyzed its computational complexity, which we assessed to be
non-elementary in the size of the formula. Although it might sound scary, we observe
that the procedure implemented by a state of the art tool Mona is non-elementary
too, and nevertheless it works surprisingly well in practice. The implementation
and the experimental evalutation of our approach will be the topic of the next two
chapters. In this chapter, we also provided several examples of the technique at
work.

We now discuss specific topics regarding the novel approach, and foresee future
research directions.

5.4.1 Refinement of Complexity Analysis
The compositional approach presented in this chapter has been shown to have

complexity which is non-elementary wrt the size of the formula, due to an arbitrary
number of nested exponential operations. Nevertheless, as we will see in Chapter 7,
an careful implementation exploiting efficient semi-symbolic data structures can
overcome this theoretical limitation, and in fact perform better than other approaches
in practice.

This highlights a recurring topic in classical computational complexity, which is
famous to be exclusively focused on worst-case analysis. Apparently, most of the
ldlf formulas considered in the experiments do not fall in the category of formulas
where the blow-up in state space of the minimal equivalent dfa is doubly-exponential.

As a future work, would be interesting to outline a taxonomy of ldlf formulas
for which the worst-case complexity analysis of the compositional approach can be
improved.

Another idea is to consider a different criterion of complexity, e.g. the average-
case criterion (Bogdanov and Trevisan, 2006). Given a probability distribution over
inputs (i.e. over ldlf formulas), we can pursue a formal analysis on how the most
expensive operations (projections, concatenations, closures etc.) are likely to occur

5.4 Summary and Discussion 72

in practice, and therefore give the right weight to such instances when averaging over
all possible inputs in the analysis. The analysis can then be verified experimentally
by sampling from the distribution over formulas and measure the running time of
the implementation. This is motivated by similar observations in the literature
regarding automata determinization, where it is argued that in practice the state
space size of the dfa is not going to explode and remains tractable (Tabakov and
Vardi, 2005; Basin and Klarlund, 1996; Basin and Klarlund, 1995), especially when
considering the minimized version of the dfa (Zhu, Tabajara, Pu, et al., 2021).

5.4.2 Tailored Rewriting of ldlf Formulas
Many systems in the area of software verification where the manipulation of

formulas is involved do apply some simplfication and rewritings of the input formula
in order to make it suitable for the specific procedures that process it (e.g. see
(Duret-Lutz et al., 2016) or (Henriksen, L. Jensen, et al., 1995)). In our case,
we can devise rewriting rules that preserve the semantic meaning of the formulas
but their output gives some computational advantages from the perspective of the
compositional approach, e.g. whenever it is possible, remove a costly operation that
implies a determinization step.

5.4.3 Design Compositional Translation for Other Formalisms
The compositional approach transforms an ldlf formula into a dfa. In order to

translate an ltlf formula using a compositional approach, one has to first translate
the ltlf formula into an ldlf formula, and then apply the same technique as before.
However, one could think of a direct translation from ltlf into dfas, using an
analogous approach which focuses on compositionality. Intuitively, since ltlf is
strictly less expressive than ldlf , we can conjecture that using direct transformation
rules from ltlf would give practical advantages (despite the complexity being the
same).

Analogously, we can extend the approach to the pure-past versions of ltlf and
ldlf , namely ppltl and ppldl (De Giacomo, Di Stasio, et al., 2020). From a
computational complexity perspective, reasoning with such formalisms is easier than
reasoning with the future fragments ltlf/ldlf . Would be interesting to understand
whether the compositional approach applied to such formalisms could give even
greater performances.

73

Chapter 6

Symoblic Compositional
Approach

In this chapter, we give a more concrete formalization of the compositional
approach presented in Chapter 5, important for efficient implementations of the
technique, as we shall see in Chapter 7.

The chapter is structured as follows:

• In Section 6.1, we introduce a novel technique to represent alternating finite
automata by means of deterministic finite automata with an extended alpha-
bet to represent the alternating transitions, showing its correctness wrt the
semantics.

• In Section 6.2, we describe how we use semi-symbolic automata operations like
concatenation and Kleene closure for the compositional approach, and how we
exploit the novel transformation introduced in Section 6.1 to handle the case
⟨ρ∗⟩φ with ρ non-test-free.

• Section 6.3 concludes the chapter and proposes future research directions.

The contents of this chapter have been partially published in the conference
paper (De Giacomo and Favorito, 2021).

6.1 From afa to dfa using projections
In this section, we describe a novel technique to determinize an afa in semi-

symbolic representation in order to obtain a dfa. This will be crucial in the
implementation in handling the case ⟨ρ∗⟩ψ when ρ contains tests, as a naive imple-
mentation would build the entire afa of the formula and then go through the double
subset construction to first get an nfa and then a dfa, whereas in our case, as we
will see, the new technique allows minimizing more often while in the determinization
process.

Let AA be an afa, and assume it is in semi-symbolic representation, i.e. its
alphabet is Σ = 2P for some set of bits P. Our technique relies on building
intermediate dfas, similarly to what has been done for concatenation and Kleene
closure (see Section 2.6), on a bigger alphabet with only additional existential bits.
Since we need to model universal choice in alternating transitions, we will have
two types of auxiliary bits: existential bits, which model the existential choice,
to be projected via EProject(as before) and universal, which model universal

6.1 From afa to dfa using projections 74

choice, to be projected via UProject. Let q be the current state to expand in the
computation of the afa, and let ϕq the formula over Q that determines the next
transitions. Without loss of generality, assume ϕq is in disjunctive normal form, and
assume that each clause is indexed across all the products and each atom occurrence
is indexed within its clause. Let us call such indices i and j, respectively. We start
the construction of the dfa iteratively, adding states and transitions from the afa.
For each outgoing transition from the afa state q, the construction adds a dfa
state q′ and an outgoing transition for each atom occurrence (i.e. an afa state),
whose guard is determined by the guard of the current transition in conjunction with
the instantiation of the existential and universal bits, corresponding to the binary
representation of the indices i and j, respectively. Intuitively, to obtain the dfa
corresponding to the afa, instead of doing the subset construction on-the-fly (which
would need to keep track of sets of sets of states), we push the representation of the
alternation in the alphabet, through the addition of universal and existential bits.
This exploits the asymmetry of the semi-symbolic representation, which is symbolic
in the transitions and explicit in the states. Hence, it is less costly, in terms of
required space, to add a transition rather than a state. Moreover, this also gives the
opportunity to minimize the resulting dfa, hence saving computational resources
for the following projections and determinizations.

More formally, let AA = ⟨QA, 2P , q0, FA, δA⟩ be a afa in semi-symbolic repre-
sentation over the set of atomic propositions P. Assume without loss of generality
that for every q ∈ Q, and α ∈ 2P , δA(q, α) is in disjunctive normal form (DNF), and
that it is a positive boolean formula (i.e. no negations in front of literals). Before
constructing the intermediate dfa, we need to introduce preliminary concepts and
notations. Let ϕ being a positive propositional formula in DNF; we define:

• A literal of ϕ is an atomic proposition in ϕ;

• A clause is an ordered list of literals; we need the notion of ordering because
we will index the literals within a clause.

• literals(ϕ): all the literals that occur in ϕ;

• |ϕi|: the number of literals that occur in the i-th clause ϕi;

• ϕij : the j-th literal in the i-th clause ϕi, with 1 ≤ j ≤ |ϕi|. We assume there
is an ordering defined over literals, which induces the indexing;

• clauses(ϕ): the ordered list of clauses in ϕ; we need the notion of ordering
because we will index the clauses of ϕ; we assume a lexicographic order over
clauses induced by the ordering over literals;

• |ϕ| = |clauses(ϕ)|: the number of clauses in ϕ;

• ϕi: the i-th clause in ϕ, with 1 ≤ i ≤ |ϕ|;

Let n = maxq,α{|ϕ′| | δ(q, α) = ϕ′} the maximum number of clauses across all
formulas in δ, and let m = maxq,α{|ϕi| | δ(q, α) = ϕ, 1 ≤ i ≤ |ϕ|} the maximum
number of literals within a clause of ϕ. Let also N = ⌈log2 n⌉ and M = ⌈log2m⌉.
Consider the extended set of bits P ′ = P ∪{e1, . . . , eN}∪{u1, . . . , uM}, where e and
u stands for existential and universal bits, respectively. Let binB : N→ {0, 1}B be
the function that transforms an integer number to its binary representation using B
bits (for simplicity, if the number of bits is not enough to represent the integer, then
the function is not defined). Given a (positive) propositional formula ϕ, consider
the extended version of ϕ, called ϕ̃, defined as:

6.1 From afa to dfa using projections 75

ϕ̃ =
|ϕ|∨
i=1

(|ϕi|∧
j=1

ϕij ∧
2M∧

j=|ϕi|+1
true

)
∨

2N∨
i=|ϕ|+1

false (6.1)

The idea is to add trivial true literals to every clause in conjunction with the other
literals in such a way that all the clauses have the same number of literals 2M , and
to add trivial false clauses so to get 2N clauses. Note that ϕ̃ is still in DNF and it
is equivalent to ϕ. Let δ̃(q, α) = ˜δA(q, α), i.e. apply the extension operation to every
δA(q, α). Note that in this case the atoms of the extended formulas are states of the
automaton, i.e. ϕij ∈ QA.

We build an intermediate dfa A′ = ⟨Q′, 2P ′
, q′

0, F
′, δ′⟩ as follows:

• Q′ = QA

• q′
0 = qA,0

• F ′ = FA

• δ′(q, αe1 · · · eNu1 · · ·uM) = δ̃(q, α)i,j , where binN (i) = e1 · · · eN and binM (j) =
u1 · · ·uM .

Intuitively¸ the deterministic function δ′ encodes δ̃ by pushing the alternation
into the binary alphabet. A particular instantiation of the existential bits e1 · · · eN
and the universal bits u1 · · ·uM represents one particular step over some run tree
starting from q after reading the symbol α. Interestingly, it is easy to see that there
is a one-to-one correspondence between run trees of AA and words extended with
existential bits.

The following theorem proves the correctness of the technique when we (univer-
sally) project together all the universal bits, and then we (existentially) project all
the existential bits:

Theorem 6.1. Let AA = ⟨QA, 2P , qA,0, FA, δA⟩ be an alternating automaton in semi-
symbolic representation. Let A′ = ⟨Q′, 2P ′

, q′
0, F

′, δ′⟩ be the dfa as defined above. Let
A = EProject(UProject(A′, {1, . . . ,M}), {1, . . . , N}). Then, L(AA) = L(A).

Proof. The claim can be rewritten as:

∀w : w ∈ L(AA) ⇐⇒ w ∈ L(A)

Note that if δA is deterministic, i.e. |δA(q, α)| = 1 and |δA(q, α)1| = 1 for all q
and α, then n = 1 and m = 1, which means N = ⌈log2 1⌉ = 0 and M = ⌈log2 1⌉ = 0,
and the claim is trivially true. We prove this by induction on the length of the word
w.

• w = ϵ. We have that (i) w ∈ L(AA) iff qA,0 ∈ FA and (ii) w ∈ L(A)
iff {{q0}} ∈ F both by construction, but since FA = F ′ and q0 ∈ F ′ iff
{{q0}} ∈ F , we get the thesis.

• Assume the claim holds for a generic w of length k, and we want to prove the
claim for w′ = wα, with α ∈ 2P . Let q ∈ 22QA be the state resulting from
the run of A over w, i.e. q = δ∗(q0, w). Let ϕ′ = δ∗

A(qA,0, w′) be the formula
describing the (k + 1)-th level of any run tree over AA, and let ϕ̃ be its DNF
form with literals and clauses sorted according to the lexicographic ordering
over the states.

6.2 Semi-symbolic automata operations 76

Sufficient condition: w′ ∈ L(AA)⇒ w′ ∈ L(A). If w′ ∈ L(AA), then there
exist a run tree r such that all nodes at depth (k − 1)-th are labeled by states
in FA. Equivalently, it means that there exist a clause in ϕ̃, say ϕi, such that
all for all literals ϕij ∈ ϕi, either ϕij ∈ FA or ϕij = true. Let e1 · · · eN be the
instantiation of the existential bits such that binN (i) = e1 · · · eN . By construc-
tion of A′, we have that for all possible instantiations of universal bits u1 · · ·uM ,
δ′∗(q′

0, w⟨αe1 · · · eNu1 · · ·uM ⟩) = ϕ̃ij and ϕ̃ij ∈ F ′, with binM (j) = u1 · · ·uM .
Now, let A′′ = UProject(A′, {1, . . . ,M}). By the language-theoretic defini-
tion of UProject (see Equation 2.2) and by the argument above, we have that
w⟨αe1 · · · eN ⟩ ∈ L(A′′) Let A = EProject(A′′, {1, . . . , N}. By the language-
theoretic definition of EProject (see Equation 2.1), we have that wα ∈ L(A)
since there exists the word w⟨αe1 · · · eN ⟩ that belongs to the language L(A′′)
being projected over all the existential bits. Therefore, the thesis holds.

Necessary condition: w′ ∈ L(AA) ⇐ w′ ∈ L(A). If w′ ∈ L(A), then by
definition of EProject there exist a word we = w⟨αe1 · · · eN ⟩ ∈ (2P∪{e1,...eN })∗

such that we ∈ L(A′′), where A′′ is such that A = EProject(A′′, {1, · · · , N}).
Moreover, by definition of UProject, for all u1 · · ·uM , we have that w⟨αe1 · · ·
eNu1 · · ·uM ⟩ ∈ L(A′). By construction of A′, it means that for all ϕ̃ij ∈ ϕ̃i, we
have ϕ̃ij ∈ FA, with binN (i) = e1 · · · eN . But that means there exist a run for
AA obtained as an extension of a run from w with α that has at the (k+ 1)-th
level all the ϕ̃ij states is accepting, and therefore that w′ ∈ L(AA).

In our implementation, we project bits one after the other so to have more
opportunity to minimize the partial results. This does not compromise correctness.

In Section 6.2.3 there will be examples of this determinization technique in the
context of Lydia implementation.

6.2 Semi-symbolic automata operations
In this section, we describe the operations involved and

6.2.1 Existential and Universal Projections
The existential projection of the ith bit (1 ≤ i ≤ k), and the determinization

of its result, denoted as EProject(A, i) converts a dfa A recognizing a language
L to a dfa A′ recognizing the language L′ where L′ is the existential projection
over bit i of L. The process consists of removing the i-th track of the alphabet
and determinizing the resulting non-deterministic automaton via on-the-fly subset
construction. The universal projection, denoted as UProject(A, i), is also based on
the subset construction used by the existential one, however, while in the existential
projection the acceptance is true iff exists a state in the subset that is accepting,
whereas in the universal projection the acceptance is true iff all the states in the
subset are accepting. These two operations will be important building blocks for
other operations.

6.2 Semi-symbolic automata operations 77

6.2.2 Concatenation and Kleene Closure
The technique presented in the previous section requires adding nondeterministic

transitions to the dfa operands of certain operations. In the case of concatenation
between two dfas A1 and A2, the nondeterministic choice is made in the accepting
states of A1, F1, because these states should behave as if they were the initial state of
A2; this can be implemented by adding all the transitions that leave the initial state
of A2, q2

0, to the states of A1 in F1. Analogously, in the case of the Kleene closure
of A, the accepting states F should additionally behave as if they were the initial
state of A, q0, and it can be implemented by adding all the transitions that leave
the accepting state q0 to the states in F . See Section 2.6.3 for a better formalization
of the concatenation operation.

In general, the new transitions might render the automaton nondeterministic.
To represent the existential choice induced by the concatenation or Kleene closure,
we add an auxiliary fresh bit e to the alphabet, and in the states where the non-
deterministic choice happens, we use e to resolve the non-determinism, so to make
the transitions deterministic. For example, in the concatenation described above,
the transitions from each f ∈ F1 that belongs to A1 will have the bit e set to true,
whereas the new transitions will have the bit set to false, ē; similarly, in the Kleene
closure, the old transitions will have the bit e set to true, and the new transitions
will have it set to false ē. This will ensure that the result of those operations is still
a dfa, as eϕ1 ∧ ēϕ2 = ⊥, with ϕ1 and ϕ2 being propositional formulae. Finally, the
desired automaton is A = EProject(A′, ie), where ie is the index of the bit e. See
Section 2.6.3 for a better formalization of the Kleene closure operation.

Example 6.2. Let φ = ⟨a∗⟩⟨b⟩tt. The translation rules specify that the first step is
to compute the automaton for ⟨a⟩end and ⟨b⟩tt separately (Figure 6.1):

qb0

qb1

qb2

b
⊤

b̄

⊤

⟨b⟩tt

qa0

qa1

qa2

a

ā
⊤

⊤

⟨a⟩end

Figure 6.1. On the left the automaton A⟨a⟩end; on the right the automaton A⟨b⟩tt .

Now, we need to compute the Kleene closure of A⟨a⟩end. Similarly as it has been
done in Example 2.5, we proceed by (i) adding an auxiliary existential bit e; (ii)
updating the current transitions with the new bit set to 0; (iii) adding the closure
transitions with the new bit set to 1; and (iv) making the initial state accepting:

6.2 Semi-symbolic automata operations 78

qb0

qb1

qb2

b
⊤

b̄

⊤

⟨b⟩tt

qa0

qa1

qa2

0ea

0eā
0e⊤

0e⊤

1ea

1eā

⟨a⟩end

Figure 6.2. On the left the temporary automatonA′
⟨a⟩end with the Kleene closure transitions

(in red); on the right the automaton A⟨b⟩tt .

The next step is to existentially project bit e in A′
⟨a⟩end, determinize and minimize

the result (Figure 6.3):

qb0

qb1

qb2

b
⊤

b̄

⊤

⟨b⟩tt

qa0 a

a∗

Figure 6.3. On the left the automaton Aa∗ , determinized and minimized; on the right the
automaton A⟨b⟩tt .

We are ready to concatenate Aa∗ and A⟨b⟩tt. First, we add the concatenation
transitions (Figure 6.4):

qb0

qb1

qb2

0eb
0e⊤

0eb̄

0e⊤

⟨b⟩tt

qa0 0ea
a∗

1eb

1eb̄

Figure 6.4. The two automata after the placement of concatenating transitions.

Then, we project the auxiliary bit e, determinize and minimize the result (Fig-
ure 6.5:

6.2 Semi-symbolic automata operations 79

q0

q1

q2

ab̄

b

āb̄

⊤

⊤

Figure 6.5. The automaton A⟨a∗⟩⟨b⟩tt .

6.2.3 Construction of the afa
When we handle the case of ⟨ρ∗⟩φ and ρ ̸≡ ⟨ρ⟩end, because of tests, we need to

resort to constructing an afa, and then determinizing it. Instead of considering the
afas formalism directly, we rely on building intermediate dfas on a bigger alphabet
having two types of auxiliary bits: existential, to be projected via EProject(as
before) and universal, to be projected via UProject, as explained in Section 6.1,
Let q be the current state to expand in the computation of the afa, and let ϕq the
formula over Q that determines the next transitions. Without loss of generality,
assume ϕq is in disjunctive normal form, and assume that each clause is indexed
across all the products and each atom occurrence is indexed within its clause. Let
us call such indices i and j, respectively. Then, the construction adds a transition
for each atom occurrence (i.e. an afa state), whose guard is determined by the
afa transformation rules (De Giacomo and Vardi, 2013; Brafman, De Giacomo, and
Patrizi, 2018) in conjunction with the instantiation of the existential and universal
bits, corresponding to the binary representation of the indices i and j, respectively.

Intuitively, to obtain the dfa corresponding to the afa, instead of doing the
subset construction on-the-fly (which would need to keep track of sets of sets of
states), we push the representation of the alternation in the alphabet, through the
addition of universal and existential bits. This exploits the asymmetry of the Mona
dfa implementation, which is symbolic in the transitions and explicit in the states.
Hence, it is less costly to add a transition rather than a state. Moreover, this also
gives the opportunity to minimize the resulting dfa, hence saving computational
resources for the following projections and determinizations.

A crucial difference with respect to the classic ldlf -to-afa transformation is
that, whenever one of the atom occurrences we come across is either a test expression
ψ? or φ, instead of expanding those nodes as if they were states of the afa, we
concatenate the current state to their dfas. This operation can be seen as a casting
a dfa into a “deterministic afa”, followed by a concatenation between the current
afa under construction and the precomputed automata of the subformulas. This
gives a good amount of compositionality also to this case, which translates into
more opportunity to minimize the partial results, and hence in achieving greater
performances.

Symbolic alternating transitions

A fundamental difference is that, differently from what we have done in Ex-
ample 5.4, we do not consider all possible propositional interpretations Π ∈ 2P

6.2 Semi-symbolic automata operations 80

(see Table 5.4), as it would not be scalable in the number of propositional symbols.
Instead, whenever we need to compute the outgoing transitions from the initial
states of some automaton Aψ? or Aφ, we exploit the Mona dfa representation by
enumerating all the paths from the BDD root node, corresponding to the transition
function starting from the automaton’s initial state, to a leaf node, which identifies
a successor state (see Section 7.1.2). Intuitively, each path encodes a set of propo-
sitional interpretations that would make the automaton transition leading to the
same successor state.

Therefore, in order to compute the successors of an afa state “φ”, we cannot rely
on the afa transition function ∂, as defined in Section 4.1.1, because its evaluation
requires a specific propositional interpretation Π. Hence, we define a variant of ∂
that does not require Π, that we call ∂̂, defined as ∂ except the cases in which Π is
used in its evaluation, i.e.:

∂̂(“⟨ϕ⟩φ”) = “⟨ϕ⟩E(φ)”
∂̂(“[ϕ]φ”) = “[ϕ]E(φ)”

Example 6.3. Let φ = ⟨(⟨a; a⟩tt?; true)∗⟩⟨b⟩tt, as in Example 5.4. The first step is
to precompute automata A⟨a;a⟩tt and A⟨b⟩tt (Figure 5.17). Then, we start building
the afa, with φ as initial state. We expand q0 using the function ∂:

∂̂(φ) = ∂̂(“⟨b⟩tt”) ∨ (∂̂(“⟨a; a⟩tt”) ∧ ∂̂(“⟨true⟩Fφ”))
= “⟨b⟩tt” ∨ (“⟨a; a⟩tt” ∧ “⟨true⟩φ”)

Since the states in ∂̂(φ) are all known, the exploration of the afa AA,φ is complete.
We now want to determinize AA,φ using the technique presented in Section 6.1. We
start by normalizing ∂̂(ψ) for all ψ. The only non-atomic transition formula is
precisely ∂̂(φ) since for the other states ψ ̸= φ, ∂̂(ψ) is deterministic. We have that
n = 2 since we have at most two clauses, and m = 2 since the maximum clause size
is 2. This means we need only N = 1 existential bits and M = 1 universal bits.

We associate each instantiation of e and u to every literal of ˜̂
∂(φ) according to

their clause index and their position within the clause:

˜̂
∂(φ) = (“⟨b⟩tt”

eū
∧ true

eu
) ∨ (“⟨a; a⟩tt”

ēū
∧ “⟨true⟩φ”

ēu
) (6.2)

In other words, from q0 = φ (the current state in this iteration):

• ēū: take all transitions from initial state of A⟨a;a⟩tt;

• ēu: go to φ = q0 (a self-loop)

• eū: take all transitions from initial state of A⟨b⟩tt;

• eu: go to accepting sink;

Figure 6.6 depicts the afa represented as a semi-symbolic dfa with the auxiliary
bits.

6.2 Semi-symbolic automata operations 81

q0

qf⊤

qb0 qb1

qb2

b
⊤

b̄

⊤

⟨b⟩tt

qa0 qa1 qa2

qa3

a a

ā ā

⊤

⊤

⟨a; a⟩tt

ēu

ēū · a

ēū · ā

eū · b

eū · b̄

eu

Figure 6.6. The afa of φ represented as a dfa with additional existential and universal
bits e and u. The transitions that encode the alternation are colored according to
Equation 6.2.

The next steps are the universal projection of bit u and the existential projection
of bit e, in that order. Figure 6.7 shows the result of the minimization of the dfa in
Figure 6.6:

q0

ēu

q1

q2

q3

⊤

⊤

ēūa

eb

else

a

ā

Figure 6.7. The dfa of Figure 6.6, minimized

Then, it follows the universal projection (Figure 6.8):

6.3 Summary and Discussion 82

q0 q1

q2

q3

ēa

⊤

⊤

ēa

eb

else

ēab

else

Figure 6.8. The dfa after the universal projection of bit u.

Then, the existential projection (Figure 6.9), including a final minimization step:

q0 q1

q2

q3

ab̄

b

āb̄

ab

ā

ab̄ ⊤

⊤

Figure 6.9. The final minimized dfa Aφ.

6.3 Summary and Discussion
This chapter explained a more practical formalization of the compositional

approach introduced in Chapter 5. In particular, it is a formalization that it is
suitable for an efficient implementation, as we shall see in Chapter 7.

We first proposed a general technique to represent an alternating automaton
by means of a deterministic finite automaton over a larger alphabet with auxiliary
bits to represent the existential and the universal choices. Then, we saw how we
can use the semi-symbolic dfa representations and operations for our compositional
approach, and how to apply the dfa-representation of the afa. We discussed some
examples of the technique.

We now outline potential future works.

6.3.1 Exploit dfa-representation of afas for other problems
The dfa-representation of the afa which pushes the alternation representation

in the alphabet, as presented in Section 6.1, is very general and not tight to the
compositional approach. We wonder whether such technique can be beneficial for
other use-cases where the afa is involved, especially because the dfa-representation
makes it easy to reduce the state space of a dfa as there are efficient algorithms for
it (e.g. the Hopcroft’s minimization algorithm, which is O(n logn)).

6.3 Summary and Discussion 83

6.3.2 dfa-representation of a Full afa
Instead of relying on the dfa-representation only for the case ⟨ρ∗⟩φ with ρ non

test-free, one could devise the following translation algorithm:

1. given an ltlf/ldlf formula φ, compute the corresponding afa AA.

2. from the AA, compute the dfa-representation of it, A′.

3. Determinize A′ by doing the projections EProject and UProject.

Step 1 can be done in linear time to build the “structure” of the AA, but the
normalization of the transition function δA might require an exponential increase
in the size of the formula. We could consider a smarter approach that, considering
all values δA(q, a), computes whether it is better to normalize using DNF or CNF
for normalization and, in the former case, reverse the order of projections (first
existential, then universal bits). Or, consider a smarter normalization approach that
avoids the exponential blow-up, e.g. analogous to the Tseytin encoding (Tseitin,
1983) for achieving an equisatisfiable encoding of the boolean formula.

Step 3 can be carried out in different ways, each one yielding a variant of the
overall algorithm which, depending on the problem being solved, can be more or
less suited. In particular, we can take one of the following alternatives:

• first project all the universal bits, do the subset construction to determinize,
minimize, then project all the existential bits, determinize and minimize.

• project one auxiliary bit at a time, determinize and minimize after each
projection.

We could also devise a smarter subset construction that determinizes and mini-
mizes starting from the subgraphs of the automaton The intuition is that we can
decompose the determinization and minimization step by considering portions of
the automaton that do not depend on the past.

Finally, would be interesting to draw inspiration and to find the relationships
with the symbolic implementation of afa on infinite traces (Bloem et al., 2007).

6.3.3 Hybrid Compositional Approach
A semi-symbolic representation of the dfa, despite being symbolic in the alphabet,

is still explicit in the representation of the state space. This makes the representation
not scalable in cases which require many states. However, being fully symbolic if
there is no need can worsen the performances for simpler cases due to the added
complexity of the compilation of the representation.

Drawing inspiration from (Bansal et al., 2020), we could devise a fully-compositional
approach that starts with a semi-symbolic representation and, if during the transfor-
mation the explicit state representation becomes a bottleneck, the partial automata
are transformed in a fully-symbolic representation, and the compositional transfor-
mation continues with fully-symbolic operators between dfas. The transition to a
fully-symbolic approach might worsen the performances due to higher computational
costs of the operations (e.g. minimization takes O(n2)), but nevertheless would be
able to scale to bigger automata.

84

Chapter 7

The Lydia and LydiaSynt Tools

This chapter describes the Lydia tool, an efficient implementation of the compo-
sitional approach presented in Chapter 5, and the LydiaSynt tool, which relies on
Lydia to build the dfa and on Syft+ (Zhu, Tabajara, Li, et al., 2017) to perform
ltlf/ldlf synthesis.

The chapter is structured as follows:

• In Section 7.1, we describe the Monadfa Library, foundational building block
of our implementation.

• In Section 7.2, we outline the software architecture of Lydia and LydiaSynt,
with hints on how they work internally.

• In Section 7.3, we provide extensive experimental coverage on DFA construction
times and ltlf synthesis times.

• Section 7.4 concludes the chapter and discusses potential improvements to
bring in the current implementation of the tool.

The contents of this chapter have been published in the conference paper (De
Giacomo and Favorito, 2021).

7.1 Mona dfa Library
In this section, we describe the Mona dfa library, an important building block

of our implementation. In Section 7.1.1 we briefly describe the Mona main features
and capabilities; in Section 7.1.2 we present the Mona automata representation,
which exploits a novel BDD-based data structure introduced by Mona, the Shared
Multi-terminal Binary Decision Diagram (shMBDD).

7.1.1 What is Mona

Mona (Henriksen, Jensen, et al., 1995; Klarlund and Møller, 2001) is an efficient
implementation of the decision procedures for WS1S (see Section 4.4.2). “Efficient”
here means that the tool is fast enough to have been used in a variety of non-trivial
settings. MONA translates WS1S and WS2S formulas (Thatcher and Wright, 1968;
Doner, 1970) into minimum dfas. The automata are represented by shared, multi-
terminal BDDs (Binary Decision Diagrams) (Bryant, 1992). The tool at version 1.4
(Klarlund and Møller, 2001) is several orders of magitude more efficient than the first
experimental versions due to techniques such as BDD representation, DAGification,

7.2 Lydia and LydiaSynt 85

0start 1 211 11

00, 01, 10 00, 01, 10 00, 01, 10, 11

Figure 7.1. Explicit representation of an automaton accepting all strings over B2 with at
least two occurrences of the letter 11.

and formula reductions. In addition, Mona provides many features, such as three-
valued logics and automata, automaton visualization, importing and exporting of
automata, and recursive types.

As mentioned at the beginning of this section, Lydia relies on the Mona dfa
library, which provides a very space efficient data structure for automata construction
and manipulation in semi-symbolic representation.

7.1.2 Mona automata
In Mona, the transitions of a dfa are symbolically represented as a shared multi-

terminal binary decision diagram (Henriksen, Jensen, et al., 1995) (shMBDD), where
the transition relation of a dfa is encoded as a binary decision diagram (BDD) with
multiple terminal nodes. The alphabets of these dfas are the sets of bit vectors
of length k, i.e. Bk, for some k. In our case, each bit is associated to an atomic
proposition appearing in the ldlf formula. In addition to a compact representation
on transitions of dfas, the Mona dfa library provides efficient implementations
of standard automata operations. These operations include product, (existential)
projection, determinization, and minimization. More details on how these operations
are implemented can be found in the Mona whitepaper (Henriksen, Jensen, et al.,
1995) and the user manual (Klarlund and Møller, 2001).

For example, the finite automaton accepting all strings over B2 with at least two
occurrences of the letter 11 is shown in Figure 7.1, and its MONA representation is
in Figure 7.2. The leaves of the BDD are the boxes at the bottom. Every variable
is associated a unique variable index used for the BDD representation. The internal
BDD nodes are round and contain variable indices. Each node has a low successor
denoted by the label lo and a high successor denoted by the label hi.

To see how the transition table is represented, consider state 0 and the letter
10. The next state is gotten as follows: follow the pointer out of the description
of state 0 in the array to the BDD node, which has index 0 corresponding to the
first bit. The value of the first bit is 1, so we go to the high successor, which in
turn is marked 1, denoting the second bit. Then, since this bit is 0, we take the low
successor. r to the next node. That node is a leaf marked with 0. That is the value
of the next state. If the second bit were 1, it would have led to the leaf node marked
as 1, which would have been the new successor state.

7.2 Lydia and LydiaSynt

This section describes the high-level working of Lydia and LydiaSynt.

7.2 Lydia and LydiaSynt 86

lo

hi

lo
hi

lo

hi

lo
hi

false false true

index=
0

index=

index= index=

0

1 1

val= val= val=
0 1 2

0 1 2

Transition function:

Initial state: 0

Accepting states:

Figure 7.2. The Mona dfa equivalent to the automaton in Figure 7.2.

7.2.1 Lydia

We have implemented the compositional approach described in Chapter 5 and
Chapter 6 in tool called Lydia1, written in C++. Lydia is able to parse ltlf and
ldlf using Flex and Bison (Levine, 2009) with a custom grammar2, and represents
the syntactic tree using n-ary trees. ltlf formulas are first translated in ldlf
and then processed using the compositional technique. Lydia uses the Mona dfa
library, described in Section 7.1 to represents dfas and perform operations over
them. Note that we do not use other Mona features related to the mso logic parsing
and manipulation. LydiaSynt is the exension of Lydia that also uses the Syft+
tool to perform ltlf/ldlf synthesis, and will be described in Section 7.2.2. We
extended the Mona dfa library so to include the Kleene closure, the concatenation,
and the universal projection. For the Kleene closure and the concatenation, we got
inspiration from the LibStranger library (Yu, Bultan, et al., 2008; Yu, Alkhalaf,
and Bultan, 2010)3. During the induction over the formula, we adopt aggressive
minimization after every step of the technique. Also, whenever the technique starts
computing a product between n automata, we keep a priority queue to get the next
two smallest operands; the idea is to delay state blow-up of the partial automaton
as much as possible. This is a heuristics already adopted by Bansal et al. and it is
crucial for better scalability.

7.2.2 LydiaSynt

LydiaSynt is the exension of Lydia that also uses the Syft+ tool to perform
ltlf/ldlf synthesis. After the computation of the MONA-based dfa, the Lydia
tool passes it to the Syft+ tool in order to compute the winning-set.

1The source code of Lydia (and LydiaSynt) can be found at https://github.com/whitemech/
lydia.

2https://marcofavorito.me/tl-grammars/
3https://github.com/vlab-cs-ucsb/LibStranger

https://github.com/whitemech/lydia
https://github.com/whitemech/lydia
https://marcofavorito.me/tl-grammars/
https://github.com/vlab-cs-ucsb/LibStranger

7.3 Experimental Evaluation 87

Syft: Symbolic ltlf Synthesis

Syft is the implementation of a technique for doing symbolic ltlf synthesis,
introduced in (Zhu, Tabajara, Li, et al., 2017). They propose a symbolic framework
for ltlf synthesis based on the usual reduction to a DFA game, by following a
symbolic approach based on an encoding of the DFA using boolean formulas, repre-
sented as Binary Decision Diagrams, rather than an explicit representation through
the state graph. Using a symbolic approach allows them to leverage techniques for
boolean synthesis (Fried, Tabajara, and Vardi, 2016) in order to compute the winning
strategy. The synthesis framework employs a fixpoint computation to construct
a formula that expresses the choices of outputs in each state that move the game
towards an accepting state. By giving this formula as input to a boolean synthesis
procedure we can obtain a winning strategy whenever one exists.

Symbolic dfa Construction.

Given an ltlf formula, Syft first converts the formula into a First-Order Logic
formula according to the translation presented in (De Giacomo and Vardi, 2013).
Then, it gives this formula as input to Mona, which returns a dfa A in semi-symbolic
representation based on shared multi-terminal binary decision diagrams (shMTBDD).
Then, from the ShMTBDD of the transition function δ of A, it construct a Multi-
Terminal BDD (MTBDD) for a new transition function δ′, which uses a binary
encoding of the states in Q using ⌈log2 |Q|⌉ new boolean variables. Finally, it
decomposes the MTBDD into a sequence of BDDs B = ⟨B0, B1, . . . , Bn−1⟩, with
n = ⌈log2 |Q|⌉, where each Bi, when evaluated on an interpretation of state variables
and symbol variables, computes the i-th bit in the binary encoding of the successor
state.

The idea of splitting the ShMTBDD into BDDs is illustrated on Figure 7.3. As
shown in this example, bits b0, b1 are used to denote the four states s0, s1, s2, s3. In
step (1), root s0 is substituted by Zs0 that corresponds to the formula (¬b0 ∧ ¬b1).
After replacing all roots with corresponding interpretations, the MTBDD is produced.
In step (2), s0, s1, s2, s3 can be represented by 00, 01, 10, 11 respectively, where b0
denotes the leftmost bit. Bit b0 for both s0 and s1 is 0. So by forcing all paths that
proceed to terminals s0 and s1 in the MTBDD to reach terminal node 0, and all
paths to terminals s2 and s3 to reach terminal node 1, BDD B0 is generated. BDD
B1 is constructed in an analogous way for bit b1.

Then, the symbolic dfa is used for running the symbolic synthesis procedure, as
explained in (Zhu, Tabajara, Li, et al., 2017).

Syft is implemented in C++11 and uses CUDD at version 3.0.0 (Somenzi, 2015)
as the BDD library. Syft+ is an enhanced version of Syft, that enables dynamic
variable ordering, also used by Bansal et al. Lydia uses Syft+ by giving as input
the Mona dfa directly, without passing through the Mona tool to translate the FOL
encoding of the ltlf formula.

7.3 Experimental Evaluation
This section reports some experimental evaluation of Lydia and LydiaSynt,

comparing them with other state of the art tool in ltlf synthesis.

7.3 Experimental Evaluation 88

x1x0 x1

s0 s1 s2 s3

s1 s2 s3

ShMTBDD

⇒

b1

x0 x1 x1

b1

b0

s1

01

s2

10

s3

11

MTBDD

b0

b1 b1

x0 +

x1

10

⇒ x0

b1 b1

b0

x1

10

BDD B0 BDD B1

Figure 7.3. Transformation from ShMTBDD to BDD.

7.3.1 Experimental Methodology.
The evaluation has been designed to compare the performance of Lydia and

LydiaSynt against their respective existing tools and approaches: Mona and Lisa
for ltlf -to-DFA conversion, and Syft+ and Lisa for synthesis. Both ltlf -to-
DFA conversion tools and synthesis tools are compared on runtime and number of
benchmarks solved within a given timeout.

7.3.2 Experiment Setup.
All experiments were conducted on a single laptop equipped with an Intel Core

i7-8665U CPU running at 1.90GHz with 16 GB of RAM, and 300 seconds of time
limit. The correctness of Lydia was empirically verified by comparing the results
with those from all baseline tools. No inconsistencies were encountered for all solved
instances.

We conduct our experiments on a benchmark suite curated from prior works,
spanning classes of realistic and synthetic benchmarks: random conjunctions (400
cases) (Zhu, Tabajara, Li, et al., 2017), single counters (20 cases), double counters
(10 cases) etc. and Nim games (24 cases) (Tabajara and Vardi, 2019b; Bansal et al.,
2020) More details on each class can be found in the supplementary material. In
the case of Lydia, the input ltlf formula is parsed and translated into an ldlf
formula.

7.3 Experimental Evaluation 89

7.3.3 Benchmarks
We conduct our experiments on a benchmark suite curated from prior works,

spanning classes of realistic and synthetic benchmarks: random conjunctions (400
cases) (Zhu, Tabajara, Li, et al., 2017), single counters (20 cases), double counters
(10 cases) and Nim games (24 cases) (Tabajara and Vardi, 2019b; Bansal et al.,
2020)

Random. This benchmark family has 400 instances from (De Giacomo and Fa-
vorito, 2021). The instances in this benchmark family are constructed from basic
cases taken from ltl synthesis datasets Lily (Jobstmann and Bloem, 2006) and
Load balancer (Ehlers, 2010). Formally, a random conjunction formula RC(L) has
the form: RC(L) =

∧
1≤i≤L Pi(v1, v2, ..., vk), where L is the number of conjuncts,

or the length of the formula, and Pi is a randomly selected basic case. Variables
v1, v2, . . . , vk are chosen randomly from a set of m candidate variables. Given L
and m (the size of the candidate variable set), we generate a formula RC(L) in the
following way:

1. Randomly select L basic cases;

2. For each case φ, substitute every variable v with a random new variable v′

chosen from m atomic propositions. If v is an environment-variable in φ,
then v′ is also an environment-variable in RC(L). The same applies to the
agent-variables.

Single-Counter. is a simple example where the behavior of the agent is completely
determined by the actions of the environment. Therefore, the challenge in this family
lies mostly in proving that the specification is realizable. The agent stores an n-bit
counter (where n is the scaling parameter) which it must increment upon a signal
by the environment. The agent wins if the counter eventually overflows to 0. To
guarantee that the game is winning for the agent, the specification assumes that the
environment will send the increment signal at least once every two timesteps.

Double-Counter. is similar to the Single-Counter one, except that in this case
there are two n-bit counters, one incremented by the environment and another by
the agent. The goal of the agent is for its counter to eventually catch up with
the environment’s counter. To guarantee that this is achievable, the specification
assumes that the environment cannot increment its counter twice in a row.

Nim. describes a generalized version of the game of Nim (Bouton, 1901) with n
heaps of m tokens each. The environment and the agent take turns removing any
number of tokens from one of the heaps, and the player who removes the last token
loses.

7.3.4 Results and Analysis
Comparison with Syft+.

Lydia has always better runtimes than Mona/Syft+, for dfa construction and
therefore for the overall synthesis running time. This suggests that working directly
on ltlf/ldlf syntax, rather than passing first through mso or fo and then to dfa,
gives better performances. This can be seen in particular for the dfa construction

7.3 Experimental Evaluation 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Parameter: Number of bits

10−3

10−2

10−1

100

101

102

C
um

ul
at

iv
e

ti
m

e
(s

ec
on

ds
)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 7.4. DFA construction. Runtime for single-counter benchmarks. Plots touching
black line means time/memout. Timeout is at 300 sec.

1 2 3 4 5 6 7 8 9 10
Parameter: Number of bits

10−3

10−2

10−1

100

101

102

C
um

ul
at

iv
e

ti
m

e
(s

ec
on

ds
)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 7.5. DFA construction. Runtime for double-counter benchmarks. Plots touching
black line means time/memout. Timeout is at 300 sec.

7.3 Experimental Evaluation 91

Single Counter (20) Double Counter (10) Nim (24)

Benchmark set

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
um

of
b

en
ch

m
ar

ks
so

lv
ed

Lydia

Syft+

Lisa-symbolic

Lisa-explicit

Lisa

Figure 7.6. Number of benchmarks synthesized from each non-random benchmark class.
Each benchmark has a timeout of 300 seconds.

0 50 100 150 200 250 300 350 400
Number of benchmark solved.

0

100

200

300

400

500

T
im

eo
ut

(s
ec

on
ds

)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 7.7. DFA construction. Cactus plot indicating number of benchmarks each tool
can solve for a given timeout. Each benchmark whose running time was greater than
300 seconds was counted as ∞.

7.3 Experimental Evaluation 92

Benchmark
Name Lydia Mona-

based
Lisa-
expl.

Lisa-
symb.

Lisa

nim_1_1 0.01 0.15 0.07 0.07 0.07
nim_1_2 0.02 — 0.15 0.16 0.16
nim_1_3 0.05 — 0.07 1.43 0.06
nim_1_4 0.09 — 0.14 267.23 0.13
nim_1_5 0.17 — 0.27 — 0.25
nim_1_6 0.30 — 0.63 — 0.54
nim_1_7 0.54 — 1.20 — 1.02
nim_1_8 0.82 — 1.87 — 1.83
nim_2_1 0.05 — 0.14 1.49 0.10
nim_2_2 0.20 — 0.84 — 0.81
nim_2_3 1.47 — 4.95 — 4.95
nim_2_4 7.00 — 26.07 — 24.33
nim_2_5 34.86 — 125.56 — 108.86
nim_2_6 114.87 — — — —
nim_2_7 — — — — —
nim_2_8 — — — — —
nim_3_1 0.40 — 3.15 — 2.67
nim_3_2 9.93 — 84.34 — 78.31
nim_3_3 142.16 — — — —
nim_3_4 — — — — —
nim_4_1 8.97 — 110.10 — 109.79
nim_4_2 — — — — —
nim_5_1 243.62 — — — —
nim_5_2 — — — — —

Table 7.1. Running time (in seconds) for dfa construction on the Nim benchmark set.
In bold the minimum running time for a given benchmark. — means time/memout.
Timeout at 300 sec.

runtime for single counter (Figure 7.4) and double counter benchmarks (Figure 7.5)
and, for what concerns synthesis, in Figure 7.6, where the Mona-based approach, i.e.
Syft+, is never better than LydiaSynt, especially on the Nim benchmark.

Comparison with Lisa.

We observe that Lydia is often better than Lisa. That suggests that for the
explicit part of Lisa, going fully compositional is a better idea. In fact, the assumption
that ltlf formulae are conjunctions of multiple smaller subformulae might not hold
in some cases, especially outside synthesis domains. This can be seen in the running
times for the dfa construction on Nim benchmark (Table 7.1), the cactus plot in
Figure 7.7, and in the first part of the running time of single-counter (Figure 7.4)
and double-counter (Figure 7.5). However, we have to remark that for the last
benchmarks of both the single and double counter, Lisa and Lisa-explicit manage
to construct the dfa, whereas Lydia fails due to memout errors. This is due to
different approaches in the computation of the dfa product: Whilst Lydia uses only

7.4 Discussion and Future Works 93

the Mona dfa library, Lisa relies on Mona for the computation of each subautomaton
and then combines them with SPOT (Duret-Lutz et al., 2016). Moreover, since Lisa
implements a hybrid approach, it is able to choose adaptively the right approach.
Nevertheless, as the cactus plot in Figure 7.7 shows, Lydia yields better running
times than Lisa in the majority of cases (given the timeout of 300 seconds for each
benchmark). In Figure 7.6, LydiaSynt shows to be competitive with state-of-the-art
synthesis tools like Lisa. However, unsurprisingly, when the problem is too large,
also Lydia suffers from the state-space explosion, whereas Lisa are able to manage
such inputs, thanks to their symbolic representation. Consequently, LydiaSynt
suffers from the same limitations of Syft+.

A crucial thing to keep in mind is that Lydia processes the ltlf formula by
translating it into ldlf and operating over it. Despite working on a more expressive
logic formalisms, the overall performances are very good. That suggests this approach
is pretty promising, and we believe that using direct transformations rules from ltlf
to dfa would give us even better performances.

7.4 Discussion and Future Works
This chapter presented one of the main practical contributions of this thesis.

We first described the Mona dfa Library, a fundamental building block of our
implementation as it provides efficient and optimized implementations of dfas in
semi-symbolic representation and operations over them. Then, we described at high-
level Lydia and LydiaSynt, their purposes, how they are structured and a glance
on how they work internally. We presented extensive benchmark from the ltlf
synthesis literature, showing that the approach is very promising and competitive
with state-of-the-art tools for ltlf synthesis and automata construction.

We now discuss future work directions regarding the implementation and better
benchmarking of the performances.

7.4.1 Get rid of the Mona dfa Library
The Mona tool, and in particular the dfa library, has been designed and optimized

with in mind the translation procedure of WS1S, and it has shown to be quite efficient
and time-proven. For a good survey of implementation secrets in the MONA library
that made it successful, you can refer to (Klarlund and Møller, 2001). Nevertheless,
a careful rethinking of the data structures involved, and in particular in how the
Mona dfa is represented, in order to make it suited for our use case of ltlf/ldlf
translation, can bring several benefits to future versions of the Lydia tool. Crucially,
one limitation is that there is no dynamic reordering of the BDD variables available in
the Mona BDD library, although it is well known that having such feature very often
improves the performances of BDD-based systems (Rudell, 1993). A state-of-the-art
library like CUDD (Somenzi, 2015) supports this. Similarly, we can use Algebriac
Binary Decision Diagrams (ABDD) (Bahar et al., 1997) as a replacement of the
shared multi-terminal BDD of Mona in order to represent the transition function.

A completely different approach would be to try to use semi-symbolic automata
based on SAT or SMT solvers in order to compactly reason over the symbolic alphabet,
instead of using knowledge compilation techniques. The theory of such symbolic
automata4, as called by the authors, has been developed in several publications

4Note that their automata formalization is still explicit in the state space, and considering the
proposed taxonomy in Section 2.5, they would fall in the category of semi-symbolic dfas but with

7.4 Discussion and Future Works 94

(D’Antoni and Veanes, 2017; D’Antoni and Veanes, 2021; Tamm and Veanes, 2018)5.
Would be very interesting, as a future work, to rely on such theory and see how it
compares with the current BDD-based approach.

7.4.2 Improve Experimental Coverage
The benchmark described in Section 7.3 evaluates dfa construction and synthesis

from ltlf formulas taken from the literature of ltlf synthesis. However, the
compositional approach deals with any ltlf/ldlf formula, potentially coming from
any domain of applications. Would be interesting to consider different domains
of applications. For example, in the context of software verification (Bouajjani,
Habermehl, and Vojnar, 2004), text processing (Alur, D’Antoni, and Raghothaman,
2015), computational linguistics (Mohri, 1997), regular expressions matching (Veanes,
Bjørner, and Moura, 2010) and program analysis (Veanes, De Halleux, and Tillmann,
2010).

As we said, our approach bypasses the formalisms WS1S and directly uses the
Mona dfa library. Would be interesting to encode ldlf into an equivalent formula
of Monadic Second-order Logic (mso) (which is possible since ldlf and mso have
the same expressive power), translate the formula into a Mona program and give it
as input of the Mona tool to get the dfa. We can conjecture that this approach is
still slower than ours due to the detour to the mso formalism.

7.4.3 Optimizations
There are several possible optimizations that can be included in our implementa-

tion. First of all, we can implement more advanced simplification rules for the input
formulas, as done by several other analogous tools such as Mona and SPOT (Duret-
Lutz et al., 2016). Moreover, we can exploit an hash-consing data structure so to
avoid to compute multiple times the same sub-automaton originated from the same
subformula. Finally, the last step can be further improved by taking into account
signature equivalences between formulas. This is an optimization already used by
Mona for WS1S formulas, in the context of the DAG construction of the formula
(see Section 4.1 of (Klarlund and Møller, 2001)). That is, at the beginning of the
process, the formula is represented using a directed acyclic graph where each node
represents either a leaf formula or an operator whose leaves are its operands. If
two nodes of the DAG, representing formulas φ1 and φ2 respectively, represent the
same formula modulo renaming of the variables involved, i.e. they are isomorphic
since only the node indices differ, then these nodes can be merged into one. The
automaton associated to this node can then be used to compute the dfa of one
of the subformulas φ1 and φ2, and then compute the other by just reordering the
variables.

the transition function using SMT.
5https://pages.cs.wisc.edu/~loris/symbolicautomata.html

https://pages.cs.wisc.edu/~loris/symbolicautomata.html

95

Part III

Reinforcement Learning with
ltlf/ldlf Specifications

96

Chapter 8

Background on Reinforcement
Learning

In this chapter, we give the background knowledge on the topics of classical
Reinforcement Learning and Reinforcement Learning with non-Markovian rewards
specified by temporal logic specifications.

The chapter is structured as follows:

• In Section 8.1, we summarize the framework of Reinforcement Learning.

• In Section 8.2, we briefly introduce Markov Decision Processes (MDP), the
most popular assumed model of the environment in classical Reinforcement
Learning.

• In Section 8.3, we revise the main temporal difference (TD) learning algorithms,
in particular Q-Learning, SARSA and their extension with eligibility traces.

• In Section 8.5, we introduce an important extension of the MDP model, the
Non-Markovian Reward Decision Process (NMRDP), an important model for
later topics in this part of the thesis.

• In Section 8.6, we consider NMRDPs when the non-Markovian reward function
is specified by temporal logic specifications, e.g. using ltlf/ldlf formu-
las (Brafman, De Giacomo, and Patrizi, 2018).

• Section 8.7 concludes the chapter.

8.1 Reinforcement Learning
Reinforcement Learning (Sutton and Barto, 1998) is a sort of optimization

problem where an agent interacts with an environment and obtains a reward for
each action he chooses and the new observed state. The task is to maximize a
numerical reward signal obtained after each action during the interaction with the
environment. The agent does not know a priori how the environment works (i.e. the
effects of his actions), but he can make observations in order to know the new state
and the reward. Hence, learning is made in a trial-and-error fashion. Moreover, it is
worth to notice that in many situation reward might not be affected only from the
last action but from an indefinite number of the previous actions. In other words,
the reward can be delayed, i.e. the agent should be able to foresee the effect of his

8.2 Markov Decision Process (MDP) 97

Figure 8.1. The agent and its interaction with the environment in Reinforcement Learning

actions in terms of future expected reward. Figure 8.1 represent the interaction
between the agent and the environment in this setting.

In the next sections, we introduce some of the classical mathematical frameworks
for RL: Markov Decision Process (MDP) and Non-Markovian Reward Decision
Process (NMRDP).

8.2 Markov Decision Process (MDP)
A Markov Decision Process (MDP) M is a tuple ⟨S,A, T,R, γ⟩ containing a set

of states S, a set of actions A, a transition function T : S × A → Prob(S) that
returns for every pair state-action a probability distribution over the states, a reward
function R : S ×A× S → R that returns the reward received by the agent when he
performs action a in s and transitions in s′, and a discount factor γ, with 0 ≤ γ ≤ 1,
that indicates the present value of future rewards. With T (s, a, s′) we denote the
probability to end in state s′ given the action a from s.

The discount factor γ deserves some attention. Its value highly influences the
MDP, its solution, and how the agent interprets rewards. Indeed, if γ = 0, we are in
the pure greedy setting, i.e. the agent is shortsighted and looks only at the reward
that it might obtain in the next step, by doing a single action. The higher γ, the
longer the sight horizon, or the foresight, of the agent: the far rewards are taken into
account for the current action choice. If γ < 1 we are in the finite horizon setting:
namely, the agent is intrinsically motivated to obtain rewards as fast as possible,
depending on how γ is far from 1. When γ = 1 we are in the infinite horizon setting,
which means that the agent considers far rewards as they can be obtained in the
next step. In other words, we may think the agent as immortal, since the time the
agent spend to reach rewards does not matter anymore.

A policy ρ : S → A for an MDP M is a mapping from states to actions, and
represents a solution for M. Given a sequence of rewards Rt+1, Rt+2, . . . , RT , the
expected discounted return Gt at time step t is defined as:

Gt :=
T∑

k=t+1
γk−t−1Rk (8.1)

where can be T =∞ and γ = 1 (but not both).
The value function of a state s, the state-value function vρ(s) is defined as the

8.2 Markov Decision Process (MDP) 98

expected return when starting in s and following policy ρ, i.e.:

vρ(s) := Eρ[Gt|St = s], ∀s ∈ S (8.2)

Similarly, we define qρ, the action-value function for policy ρ, as:

qρ(s, a) := Eρ[Gt|St = s,At = a], ,∀s ∈ S,∀a ∈ A (8.3)

Notice that we can rewrite 8.2 and 8.3 recursively, yielding the Bellman equation:

vρ(s) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γv(s′)] (8.4)

where we used the definition of the transition function:

T (s, a, s′) = P (s′|s, a) (8.5)

We define the optimal state-value function and the optimal action-value function
as follows:

v∗(s) := max
ρ

vρ(s),∀s ∈ S (8.6)

q∗(s, a) := max
ρ

qρ(s, a), ∀s ∈ S, ∀a ∈ A (8.7)

Notice that with 8.6 and 8.7 we can show the correlation between v∗
ρ(s) and

q∗
ρ(s, a):

q∗(s, a) = Eρ[Rt+1 + γv∗
ρ(St+1)|St = s,At = a] (8.8)

We can define a partial order over policies using value functions, i.e. ∀s ∈ S.ρ ≥
ρ′ ⇐⇒ vρ(s) ≥ vρ′(s). Now we give the definition of optimal policy:

Definition 8.1. An optimal policy ρ∗ is a policy such that ρ∗ ≥ ρ for all ρ.

Given an MDP M, a typical reinforcement learning problem is the following:
find an optimal policy for M, without knowing T and R. Notice that instead
of explicit specification of the transition probabilities and rewards, the transition
probabilities are accessed through a simulator that is restarted many times from a
fixed or uniformly random initial state s0 ∈ S. We call this way of structuring the
learning process episodic reinforcement learning. Usually, in episodic reinforcement
learning, we require the presence of one or more goal states where the simulation of
the MDP ends and the task is considered completed, or a maximum time limit T
for the number of actions that can be taken by the agent in one single episode, and
the overcoming of T determines the end of the episode. Optionally, failure states
can be also defined, where the episode ends similarly to goal states, but the task is
considered failed.

Examples

Many dynamic systems can be modeled as Markov Decision Processes.

Example 8.2 (Gridworld). Perhaps the most simple MDP used as a toy ex-
ample is Gridworld, depicted in Figure 8.2. There are 3 × 4 cells, i.e. states of
the MDP S = {s11, s12, . . . , s34} \ {s22}. The agent can do four actions: A =
{Right, Left, Up,Down}. The initial state is fixed and is s0 = s11 and the agent
can move in any of the adjacent and free cells from the current state. Assuming

8.2 Markov Decision Process (MDP) 99

an episodic task, the goal is to reach s34, and s24 represent a failure state. The
state transition function T can be deterministic, i.e. the agent always succeeds in
performing actions, or non-deterministic, i.e. the effect of an action is determined
by the probabilistic distribution returned by T (s, a). An example of non-deterministic
T is to give 90% of success (the agent moves in the chosen direction) and 10% of fail
(the agent moves at either the right or left angle to the intended direction). If the
move would make the agent walk into a wall (borders of the grid and s22), the agent
stays in the same place as before. The reward function R(s, a, s′) is defined as −1 if
s′ = s24, as 1 if s′ = s34, and −0.01 otherwise. The small negative reward given at
each transition is a popular mean for reward function design: it is called step reward
and its purpose is to encourage the agent to finish the episode as fast as possible,
with a priority proportional to the absolute value of the reward. The discount factor
γ should be strictly higher than 0 because more than one step is needed to reach the
goal state.

Figure 8.2. The Gridworld environment

An example of an optimal policy is shown in Figure 8.3. As the reader can notice,
the arrows represent the action that should be taken in a certain cell, in order to
maximize the expected return. We observe that the optimal action in s13, according
to the policy, is not the one to take the shortest path to the goal, i.e. the Up action
. This is because there is a small probability to ens in s24, the failure state, and be
punished with a high negative reward. In terms of expected reward, it is better to
take the longer path, at the price of collect small negative rewards, but avoiding the
risk to fail miserably.

Example 8.3 (Breakout). Breakout is a well-known arcade video game developed

Figure 8.3. An example of optimal policy for the Gridworld environment
.

8.2 Markov Decision Process (MDP) 100

by Atari. In this work, we implemented a clone of the original Breakout. Figure
8.4 shows a screenshot of the game. On the screen, there is a paddle at the bottom,
many bricks at the top arranged in a grid layout with n rows and m columns (in
the figure 3× 3 = 9 bricks), and a ball that is free to move across the screen. The
ball bounces when it hits a wall, a brick or the paddle. When the ball hits a brick,
that brick is broke down and is removed from the screen. The paddle (the agent)
can move left, move right or do nothing. The goal is to remove all the bricks while
avoiding that the paddle misses the rebound of the ball (failure).

The relevant features are: position of the paddle px, position of the ball bx, by,
speed of the ball vx, vy and status of each brick (booleans) bij. This features of the
system gives all the needed information to predict the next state from the current
state. Hence we can build an MDP where: S is the set of all the possible values
of the sequence of features ⟨px, bx, by, vx, vy, b11, . . . , bnm⟩, A = {Right, Left,No-
op}, transition function T determined by the rules of the game. We give reward
R(s, a, s′) = 10 if a particular brick in s′ has been removed for the first time, plus
100 if that brick was the last (i.e. goal reached).

Figure 8.4. A screenshot from the video game Breakout
.

Violation of the Markov property considering a smaller set of features:
Notice that considering a strict subset of the set of features for S leads to violating
the Markov property of T . Indeed, consider the case when we remove vx and vy from
the set of features. In this setting, we removed the pieces of information about the
dynamics of the system. More precisely, we cannot predict, knowing only the current
state, the value of the features bx and by for the next step, because we do not know
where the ball is going (up-left, down-right and so on). In order to correctly predict
the next position of the ball, we should know whether earlier in the episode the ball
was coming from the bottom or from the top. But this fact clearly shows that the
Markovian assumption is violated. Similar arguments apply in the case where we
remove the status of the bricks b11, . . . , bnm: indeed, if the ball in the next step is
near to a brick, knowing about the status of the brick is determinant to predict if the
ball will continue its trajectory (the case when the brick is absent) or it will break
down the brick and bounce, changing the direction of its motion (the case when the
brick is present).

8.3 Temporal Difference Learning 101

8.3 Temporal Difference Learning
Temporal difference learning (TD) (Sutton, 1988) refers to a class of model-free

reinforcement learning methods which learn by bootstrapping from the current
estimate of the value function. These methods sample from the environment, like
Monte Carlo (MC) methods, and perform updates based on current estimates, like
dynamic programming methods (DP) (Bellman, 1957). We do not discuss MC and
DP methods here.

Q-Learning (Watkins, 1989; Watkins and Dayan, 1992) and SARSA (Rummery
and Niranjan, 1994; Sutton, 1995) are such a methods. They update Q(s, a), i.e.
the estimation of q∗(s, a) at each transition (s, a)→ (s′, r). The update rule is the
following:

Q(s, a)← Q(s, a) + αδ (8.9)
where δ is the temporal difference. In Sarsa, it is defined as:

δ = r + γQ(s′, a′)−Q(s, a) (8.10)

whereas in Q-Learning:

δ = r + γmax
a′

Q(s′, a′)−Q(s, a) (8.11)

TD(λ) is an algorithm which uses eligibility traces. It is generally believed
to outperform simple one-step TD algorithms, since it uses single experiences to
update evaluations of multiple state/action pairs that have occurred in the past.
The parameter λ refers to the use of an eligibility trace. The algorithm generalizes
MC methods and TD learning, obtained respectively by setting λ = 1 and λ = 0.
Intermediate values of λ yield methods that are often better of the extreme methods.
Q-Learning and Sarsa that has been shown before can be rephrased with this new
formalism as Q-Learning(0) and Sarsa(0), special cases of Watkin’s Q(λ) and Sarsa(λ)
respectively. In this setting, Equation 8.9 is modified as follows:

Q(s, a)← Q(s, a) + αδe(s, a) (8.12)

Where e(s, a) ∈ [0, 1], the eligibility of the pair (s, a), determines how much
the temporal difference δ should be weighted. Sarsa(λ) is reported in Algorithm 3,
whereas Watkin’s Q(λ) in Algorithm 4, both in the variants using replacing eligibility
traces (see line 9 and line 10, respectively).

8.4 Reward Shaping (RS)
Reward Shaping (Ng, Harada, and Russell, 1999) is a technique to cope with

learning on MDPs with sparse rewards, i.e., which occur rarely. The purpose of RS
is to guide the agent by exploiting some prior knowledge in the form of additional
rewards: Rs(s, a, s′) := R(s, a, s′) + F (s, a, s′), with F the shaping function. A
desirable requirement of RS is that the additional rewards should not modify the
set of optimal policies. This is guaranteed by Potential-Based RS (Ng, Harada, and
Russell, 1999) (simply called “Reward Shaping" from now on) which adopts potential
functions of the form:

F (s.a.s′) := γΦ(s′)− Φ(s) (8.13)
In the infinite-horizon case, equation 8.13 guarantees that the set of optimal policies
for M and M s = ⟨S,A, T,Rs, γ⟩ coincide, for any Φ : S → R.

8.4 Reward Shaping (RS) 102

Algorithm 3 Sarsa(λ) (Singh and Sutton, 1996)
1: Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2: repeat{for each episode}
3: initialize s
4: Choose a from s using policy derived from Q (e.g. e-greedy)
5: repeat{for each step of episode}
6: Take action a, observe reward r and new state s′

7: Choose a′ from s′ using policy derived from Q
8: δ ← r + γQ(s′, a′)−Q(s, a)
9: e(s, a)← 1 ▷ replacing traces

10: for all s, a do
11: Q(s, a)← Q(s, a) + αδe(s, a)
12: e(s, a)← γλe(s, a)
13: s← s′, a← a′

14: until state s is terminal
15: until

Algorithm 4 Watkin’s Q(λ) (Watkins, 1989)
1: Initialize Q(s, a) arbitrarily and e(s, a) = 0 for all s, a
2: repeat{for each episode}
3: initialize s
4: Choose a from s using policy derived from Q (e.g. e-greedy)
5: repeat{for each step of episode}
6: Take action a, observe reward r and new state s′

7: Choose a′ from s′ using policy derived from Q (e.g. e-greedy)
8: a∗ ← arg maxaQ(s′, a) (if a′ ties for max, then a∗ ← a′)
9: δ ← r + γQ(s′, a∗)−Q(s, a)

10: e(s, a)← 1 ▷ replacing traces
11: for all s, a do
12: Q(s, a)← Q(s, a) + αδe(s, a)
13: if a′ = a∗ then
14: e(s, a)← γλe(s, a)
15: else
16: e(s, a)← 0
17: e(s, a)← γλe(s, a)
18: s← s′, a← a′

19: until state s is terminal
20: until

8.5 Non-Markovian Reward Decision Process (NMRDP) 103

Theorem 8.4 ((Ng, Harada, and Russell, 1999)). Let M be an MDP and let M s be
the same as M but with the reward function Rs, for some Φ. Then, ρ is an optimal
policy for M iff ρ is an optimal policy for M s.

8.5 Non-Markovian Reward Decision Process (NMRDP)
For some goals, it might be the case that the Markovian assumption of the

reward function R – that reward depends only on the current state, and not on
history – does not hold. Indeed, for many problems, it is not effective that the
reward is limited to depend only on a single transition (s, a, s′); instead, it might
be extended to depend on trajectories (i.e. ⟨s0, a0, . . . , sn−1, an−1, sn⟩), e.g. when
we want to reward the agent for some (temporally extended) behaviors, opposed to
simply reaching certain states.

This idea of rewarding behaviours has been proposed by (Bacchus, Boutilier, and
Grove, 1996) where they defined a new mathematical model, namely Non-Markovian
Reward Decision Process (NMRDP), and showed how to construct optimal policies
in this case.

In the next subsections, we give the main definitions to reason in this new setting.
Then we show the solution proposed in (Bacchus, Boutilier, and Grove, 1996).

8.5.1 Preliminaries
Now follows the definition of NMRDP, which is similar to the MDP definition

given in Section 8.2.

Definition 8.5. A Non-Markovian Reward Decision Process (NMRDP) (Bacchus,
Boutilier, and Grove, 1996) N is a tuple ⟨S,A, T, R̄, γ⟩ where S,A, T and γ are
defined as in the MDP, and R̄ : S∗ → R is the non-Markovian reward function, where
S∗ = {⟨s0, s1, . . . , sn⟩n≥0,si∈S} is the set of all the possible traces, i.e. projection of
trajectories ⟨s0, a0, . . . , sn−1, an−1, sn⟩

Given a trace π = ⟨s0, s1, . . . , sn⟩, the value of π is:

v(π) =
|π|∑
i=1

γi−1R̄(⟨s0, s1, . . . , sn⟩) (8.14)

where |π| denotes the number of transitions (i.e. of actions).
The policy ρ̄ in this setting is defined over sequences of states, i.e. ρ̄ : S∗ → A.

The value of ρ̄ given an initial state s0 is defined as:

vρ̄(s) = Eπ∼N ,ρ̄,s0 [v(π)] (8.15)
i.e. the expected value in state s considering the distribution of traces defined

by the transition function of N , the policy ρ̄ and the initial state s0.
We are interested in two problems, that we will study in the next sections:

• Find an optimal (non-Markovian) policy ρ̄ for an NMRDP N (Definition 8.5);

• Define the non-Markovian reward function for the domain of interest.

8.5 Non-Markovian Reward Decision Process (NMRDP) 104

8.5.2 Find an optimal policy ρ̄ for NMRDPs
The key difficulty with non-Markovian rewards is that standard optimization

techniques, most based on Bellman’s (Bellman, 1957) dynamic programming princi-
ple, cannot be used. Indeed, this requires one to resort to optimization over a policy
space that maps histories (rather than states) into actions, a process that would
incur a great computational expense. (Bacchus, Boutilier, and Grove, 1996) give the
definition of a decision problem equivalent to an NMRDP in which the rewards are
Markovian. This construction is the key element to solve our problem, i.e. find an
optimal policy for an NMRDP.

Equivalent MDP

Now we give the definition of equivalent MDP of an NMRDP, and state an
important result.

Definition 8.6 ((Bacchus, Boutilier, and Grove, 1996)). An NMRDP N = ⟨S,A, T, R̄, γ⟩
is equivalent to an extended MDP M = ⟨S′, A, T ′, R′, γ⟩ if there exist two functions
τ : S′ → S and σ : S → S′ such that

1. ∀s ∈ S : τ(σ(s)) = s;

2. ∀s1, s2 ∈ S and s′
1 ∈ S′: if T (s1, a, s2) > 0 and τ(s′

1) = s1, there exists a
unique s′

2 ∈ S′ such that τ(s′
2) = s2 and T ′(s′

1, a, s
′
2) = T (s1, a, s2);

3. For any feasible trace ⟨s0, s1, . . . , sn⟩ of N and ⟨s′
0, s

′
1, . . . , s

′
n⟩ of M associated

to the trajectories ⟨s0, a0, . . . , sn−1, an−1, sn⟩ and ⟨s′
0, a0, . . . , s

′
n−1, an−1, s

′
n⟩,

such that τ(s′
i) = si and σ(s0) = s′

0, we have R(⟨s0, s1, . . . , sn⟩) = R′(sn−1, an−1, s
′
n).

Given the Definition 8.6, we give the definition of corresponding policy:

Definition 8.7 ((Bacchus, Boutilier, and Grove, 1996)). Let N be an NMRDP and
let M be the equivalent MDP as defined in Definition 8.6. Let ρ be a policy for M.
The corresponding policy for N is defined as ρ̄(⟨s0, . . . , sn⟩) = ρ(s′

n), where for the
sequence ⟨s′

0, . . . , s
′
n⟩ we have τ(s′

i) = si ∀i and σ(s0) = s′
0

From definitions 8.6 and 8.7, and since that for all policy ρ ofM the corresponding
policy ρ̄ of N is such that ∀s.vρ(s) = vρ̄(σ(s)), the following theorem holds:

Theorem 8.8 ((Bacchus, Boutilier, and Grove, 1996)). Let ρ be an optimal policy
for MDP M. Then the corresponding policy is optimal for NMRDP N .

The Theorem 8.8 allows us to learn an optimal policy ρ̄ for NMRDP by learning a
policy ρ over an equivalent MDP, which can be done by resorting on any off-the-shelf
algorithm (e.g. see Section 8.3). Moreover, obtaining the corresponding policy for
the original NMRDP is straightforward, although in practice is not needed, since it
is enough to run the policy ρ over the MDP.

In other words, the problem of finding an optimal policy for an NMRDP reduces
to find an optimal policy for an equivalent MDP such that Condition 1, 2 and 3 of
Definition 8.6 hold.

8.6 RL for NMRDP with ltlf /ldlf Rewards 105

8.5.3 Define the non-Markovian reward function R̄

To reward agents for (temporally extended) behaviours, as opposed to simply
reaching certain states, we need a way to specify rewards for specific trajectories
through the state space. Specifying a non-Markovian reward function explicitly
is quite hard and unintuitive, impossible if we are in an infinite-horizon setting.
Instead, we can define properties over trajectories and reward only the ones which
satisfy some of them, in contrast to enumerate all the possible trajectories.

Temporal logics presented in Chapter 3 gives an effective way to do this. Indeed,
in order to speak about a desired behavior, i.e. fulfillment of properties that might
change over time, we can define a formula φ (or more formulas) in some suited
temporal logic formalism semantically defined over trajectories π, speaking about a
set of properties P such that each state s ∈ S is associated to a set of propositions
(S ⊆ 2P). In this way, a trajectory π = ⟨s0, a0, . . . , sn−1, an−1, sn⟩ is rewarded with
ri iff π |= φi, where ri is the reward value associated to the fulfillment of behaviours
signified by φi.

8.5.4 Using pltl
In (Bacchus, Boutilier, and Grove, 1996) the temporal logic formalism is Past

Linear Temporal Logic (pltl), which is a past version of ltl (Section 3.1). As
explained before, using the declarativeness of pltl, is possible to specify the desired
behaviour (expressed in terms of the properties P) that should be satisfied by the
experienced trajectories and reward only them, hence obtaining a non-Markovian
reward function. More formally, given a finite set Φ of pltl reward formulas, and
for each ϕi ∈ Φ a real-valued reward ri, the temporally extended reward function R̄
is defined as:

R̄(⟨s0, s1, . . . , sn⟩) =
∑

ϕi∈Φ:⟨s0,s1,...,sn⟩|=ϕi

ri (8.16)

In order to run the actual learning task, (Bacchus, Boutilier, and Grove, 1996)
proposed a transformation from the NMRDP to an equivalent MDP with the state
space expaneded which allows to label each state s ∈ S. The idea is that the labels
should keep track in some way the (partial) satisfaction of the temporal formulas
ϕi ∈ Φ. A state s in the transformed state space is replicated multiple times, marking
the difference between different (relevant) histories terminating in state s.

In this way, they obtained a compact representation of the required history-
dependent policy by considering only relevant history, and can produce this policy
using computationally-effective MDP algorithms. In other words, the states of the
NMRDP can be mapped into those of the expanded MDP, in such a way that
corresponding states yield same transition probabilities and corresponding traces
have same rewards.

8.6 RL for NMRDP with ltlf/ldlf Rewards
In this section, we explain the main contribution of this chapter and one of the

main contribution of the thesis. We devise a natural extension of the construction
explained in (Brafman, De Giacomo, and Patrizi, 2018) for a reinforcement learning
task. That is, we show that it is possible to do reinforcement learning for non-
Markovian rewards, expressed in ltlf/ldlf formulas, by applying an extension of
the state space of the agent S, analogously to the one described in Section 8.5.4.
In the first section, we describe the approach proposed by (Brafman, De Giacomo,

8.6 RL for NMRDP with ltlf /ldlf Rewards 106

and Patrizi, 2018); then, we observe that the expanded MDP can be used to do
reinforcement learning to optimize ltlf/ldlf non-Markovian rewards.

8.6.1 NMRDP with ltlf/ldlf rewards
In this section, we explain how to specify non-Markovian rewards with ltlf/ldlf

formulas (instead of pltl) and how the associated MDP expansion works (Brafman,
De Giacomo, and Patrizi, 2018), analogously to what we saw with pltl (Section
8.5.4).

The temporally extended reward function R̄ is similar to Equation 8.16, but
instead of using pltl formula we use ltlf/ldlf formulas. Formally, given a set of
pairs {(φi, ri)mi=1} (where φi denotes the ltlf/ldlf formula for specifying a desired
behavior, and ri denotes the reward associated to the satisfaction of φi, and given a
(partial) trace π = ⟨s0, s1, . . . , sn⟩, we define R̄ as:

R̄(π) =
∑

1≤i≤m:π|=φi

ri (8.17)

For the sake of clarity, in the following we use {(φi, ri)mi=1} to denote R̄.
Now we describe the MDP expansion for doing learning in this setting, as proposed

in (Brafman, De Giacomo, and Patrizi, 2018). Without loss of generality, we assume
that every NMRDP N is reduced into another NMRDP N ′ = ⟨S′, A′, T ′, R′, γ⟩:

S′ = S ∪ {sinit}
A′ = A ∪ {start}

T ′(s, a, s′) =

1 if s = sinit, a = start, s′ = s0
0 if s = sinit and (a ̸= start or s′ ̸= s0)
T (s, a, s′) otherwise

R′(⟨sinit, s0, . . . , sn⟩) = R(⟨s0, s1, . . . , sn⟩)
(8.18)

and sinit is the new initial state. In other words, we prefix to every feasible
trajectory N the pair ⟨sinit, start⟩, denoting the beginning of the episode. We do
this for two reasons: allow to evaluate formulas in s0 and make it compliant with
the most general definition of the reward, namely R(s, a, s′), also when there is no
true action that is done (i.e. empty trace).

Definition 8.9 ((Brafman, De Giacomo, and Patrizi, 2018)). Given an NM-
RDP N = ⟨S,A, T, {(φi, ri)mi=1, γ}⟩ (i.e. with non-Markovian rewards specified
by ltlf/ldlf formulas) it is possible to build an M = ⟨S′, A, T ′, R′, γ⟩ that is equiv-
alent (in the sense of Definition 8.6) to N . Denoting with Aφi = ⟨2P , Qi, qi0, δi, Fi⟩
(notice that S ⊆ 2P and δi is total) the dfa associated with φi (see Chapter 4), the
equivalent MDP M is built as follows:

• S′ = Q1 × · · · ×Qm × S is the set of states;
• T ′ : S′ ×A× S′ → [0, 1] is defined as follows:

Tr ′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) ={
Tr(s, a, s′) if ∀i : δi(qi, s′) = q′

i
0 otherwise;

8.6 RL for NMRDP with ltlf /ldlf Rewards 107

• R′ : S′ ×A× S′ → R is defined as:

R′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) =
∑

i:q′
i∈Fi

ri

Theorem 8.10 ((Brafman, De Giacomo, and Patrizi, 2018)). The NMRDP N =
⟨S,A, T, {(φi, ri)}mi=1, γ⟩ is equivalent to the MDP M = ⟨S′, A, T ′, R′, γ⟩ defined in
Definition 8.9.

Proof. Recall that every s′ ∈ S′ has the form (q1, . . . , qm, s). Define τ(q1, . . . , qm, s) =
s. Define σ(s) = (q10, . . . , qm0, s). We have τ(σ(s)) = s, hence Condition 1 is verified.
Condition 2 of Definition 8.6 is easily verifiable by inspection. For Condition 3,
consider a possible trace π = ⟨s0, s1, . . . , sn⟩. We use σ to obtain s′

0 = σ(s0) and
given si, we define s′

i (for 1 ≤ i ≤ n) to be the unique state (q1,i, . . . , qm,i, si) such
that qj,i = δ(qj,i−1, si) for all 1 ≤ j ≤ m. Moreover, we require that, without loss
of generality, every trajectory in the new MDP starts from sinit and now have a
corresponding possible trace ofM , i.e., π = ⟨s′

0, s
′
1, . . . , s

′
n⟩. This is the only feasible

trajectory ofM that satisfies Condition 3. The reward at π = ⟨s0, s1, . . . , sn⟩ depends
only on whether or not each formula φi is satisfied by π. However, by construction
of the automaton Aφi and the transition function T , π |= φi iff s′

n = (q1, . . . , qm, sn)
and qi ∈ Fi

Let ρ′ be a (Markovian) policy forM. It is easy to define an corresponding policy
on N , i.e., a policy that guarantees the same rewards, by using τ and σ mappings
defined in Theorem 8.10 and the result shown in Theorem 8.7.

Lemma 8.11 ((Brafman, De Giacomo, and Patrizi, 2018)). Given an NMRDP M
and an equivalent MDP M′, every policy ρ′ for M′ has an equivalent policy ρ̄ for
M and viceversa.

Obviously, typical learning techniques, such as Q-learning or Sarsa, are applicable
on the expanded M and so we can learn an optimal policy ρ for M. Thus, an
optimal policy for N can be learnt on M. Of course, none of these structures is
(completely) known to the learning agent, and the above transformation is never
done explicitly. Rather, the agent carries out the learning process by assuming that
the underlying model is M instead of N (applying the fix introduced in Definition
8.18).

Observe that the state space of M′ is the product of the state spaces of N and
Aφi , and that the reward R′ is Markovian. In other words, the (stateful) structure
of the ltlf/ldlf formulas φi used in the (non-Markovian) reward of N is compiled
into the states of M.

Why should we use ldlf
ldlf formalism (introduced in Section 3.4) has the advantage of enhanced

expressive power over other proposals, as discussed in (Brafman, De Giacomo, and
Patrizi, 2018). Indeed, we move from linear-time temporal logics to ldlf , paying no
additional (worst-case) complexity costs. ldlf can encode in polynomial time ltlf ,
regular expressions (re) and the past ltl (pltl) of (Bacchus, Boutilier, and Grove,
1996). Moreover, ldlf can naturally represent "procedural constraints" (Baier, Fritz,
Bienvenu, et al., 2008), i.e., sequencing constraints expressed as programs, using "if"
and "while", hence allowing to express more complex properties.

8.7 Summary 108

8.7 Summary
In this chapter, we introduced the topic of Reinforcement Learning, as well as

foundational definitions (MDP, policy ρ, state-value function vρ) and algorithms
(Q(λ), Sarsa(λ)). Then we presented the notion of NMRDP and a technique to build
an equivalent MDP, by specifying non-Markovian reward function with ltlf/ldlf
formalisms.

109

Chapter 9

Restraining Bolts

In this chapter. we investigate on the concept of “restraining bolt”, as envisioned
in Science Fiction. Specifically, we introduce a novel problem in AI. We have two
distinct sets of features extracted from the world, one by the agent and one by the
authority imposing restraining specifications (the “restraining bolt”). The two sets
are apparently unrelated since of interest to independent parties, however they both
account for (aspects of) the same world. We consider the case in which the agent is a
reinforcement learning agent on the first set of features, while the restraining bolt is
specified logically using linear time logic on finite traces ltlf/ldlf over the second
set of features. We show formally, and illustrate with examples, that, under general
circumstances, the agent can learn while shaping its goals to suitably conform (as
much as possible) to the restraining bolt specifications.

• In Section 9.1, we introduce the context of the work.

• In Section 9.2, we give a formalization of the problem, and prove the main
result.

• In Section 9.3, we propose an abstract automata-based reward shaping scheme
as a mean to improve learning efficiency.

• In Section 9.4, we present several examples showing applications of restraining
bolts.

• Section 9.5 concludes the chapter and discusses future research directions.

The contents of this chapter have been published in the conference paper (De
Giacomo, Iocchi, et al., 2019).

9.1 Introduction
This work starts a scientific investigation on the concept of “restraining bolt”, as

envisioned in Science Fiction. A restraining bolt is a “device that restricts a droid’s
[agent’s] actions when connected to its systems. Droid owners install restraining
bolts to limit actions to a set of desired behaviors.”1 The concept of restraining bolt
introduces a new problem in AI. We have two distinct representations of the world,
one by the agent and one by the authority imposing restraining specifications, i.e.,
the bolt. Such representations are apparently unrelated as developed by independent

1https://www.starwars.com/databank/restraining-bolt

https://www.starwars.com/databank/restraining-bolt

9.1 Introduction 110

parties, but both model (aspects of) the same world. We want the agent to conform
(as much as possible) to the restraining specifications, even if these are not expressed
in terms of the agent’s world representation.

Studying this problem from a classical Knowledge Representation perspective
(Reiter, 2001) would require to establish some sort of “glue” between the representa-
tion by the agent and that by the restraining bolt. Instead, we bypass dealing with
such a “glue” by studying this problem in the context of Reinforcement Learning
(RL) (Puterman, 1994; Sutton and Barto, 1998), which is currently of great interest
to develop components with forms of decision making, possibly coupled with deep
learning techniques (Mnih et al., 2015; Silver et al., 2017).

Specifically, we consider an agent and a restraining bolt of different nature. The
agent is a reinforcement learning agent whose “model” of the world is a hidden,
factorized, Markov Decision Processes (MDP) over a certain set of world features.
That is, the state is factorized in a set of features observable to the agent, while
transition function and reward function are hidden. The restraining bolt consists in
a logical specification of traces that are considered desirable. The world features
that are used to represent states in these traces are disjoint from those used by the
agent. More concretely such specifications are expressed in full-fledged temporal
logics over finite traces, ltlf and its extension ldlf (De Giacomo and Vardi, 2013;
De Giacomo and Rubin, 2018; Brafman, De Giacomo, and Patrizi, 2018). Notice
that the restraining bolt does not have an explicit model of the dynamics of the
world, nor of the agent. Still it can assess if a given trace generated by the execution
of the agent in the world is desiderabile, and give additional rewards when it does.

The connection between the agent and the restraining bolt is loose: the bolt
provides additional reward to the agent and only needs to know the order of
magnitude of the original rewards of the agent to suitably fix a scaling factor2 for its
own additional rewards. In addition, it provides to the agent additional information
to allow the agent to know at what stage of the satisfaction of temporal formulas
the world is so that the agent can choose its policy accordingly. Without them,
the agent would not be able to act differently at different stages to get the rewards
according to the temporal specifications.

The main result of this chapter is that, in spite of the loose connection between
the two models, under general circumstances, the agent can learn to act so as to
conform as much as possible to the ltlf/ldlf specifications. Observe that we deal
with two separate representations (i.e., two distinct sets of features), one for the
agent and one for the bolt, which are apparently unrelated, but in reality, correlated
by the world itself, cf., (Brooks, 1991). The crucial point is that, in order to perform
RL effectively in presence of a restraining bolt such a correlation does not need to be
formalized.

For example, consider a service robot serving drinks and snacks at a party. The
robot knows the locations where it can grasp drink and snack items and the locations
of people that can receive such items. The robot can execute actions to move in
the environment, to grasp objects and to deliver them to people. With rewards
associated to effective deliver, the robot can learn how to serve something to a
specific person. Now, suppose we want to impose the following restraining bolt
specification: serve exactly one drink and one snack to every person, and do not
serve alcoholic drinks to minors. To express this specification (e.g., as an ltlf/ldlf
formula), a representation of the status of each person (i.e., identity, age and received
items) is needed, even though these features are not available to the learning agent

2Note that finding the right scaling factor is an important issue in RL (Simsek and Barto, 2006),
but out of the scope of this work.

9.2 RL with ltlf /ldlf restraining specifications 111

LEARNING AGENT

WORLD

LA
Features
Extractor

RESTRAINING
BOLT

l

s

q a

RB
Features
Extractor

w

R

r

s

Figure 9.1. Learning Agent and Restraining Bolt

(but only to the restraining bolt).
Notice that the presence of ltlf/ldlf specification makes the whole system

formed by the agent and the restraining bolt non-Markovian. Recently, interest in
non-Markovian Reward Decision Processes NMRDPs (Bacchus, Boutilier, and Grove,
1996; Whitehead and Lin, 1995), and in particular on expressing rewards using linear-
time temporal logic has been revived and motivated by the difficulty in rewarding
complex behaviors directly on MDPs (Littman, 2015a; Littman et al., 2017). In this
context, the use of linear time logics over finite traces such as ltlf or its extension
ldlf has been recently advocated (Camacho, Chen, et al., 2017a; Brafman, De
Giacomo, and Patrizi, 2018; Icarte, Klassen, et al., 2018b). Notably, both ltlf and
ldlf formulas can be transformed into deterministic finite state automata tracking
the stage of satisfaction of the formulas (De Giacomo and Vardi, 2013). This, in turn,
allows for transforming an NMRDP with non-Markovian ltlf/ldlf rewards into an
equivalent MDP over an extended state space, obtained as the crossproduct of the
states of the NMRDP and the states of the automaton. This transformation is of
particular interest in RL with temporally specified rewards expressed in ltlf/ldlf ,
since it allows to do RL on an equivalent MDP whose (optimal) policies are also
(optimal) policies for the original problem, and viceversa (Brafman, De Giacomo,
and Patrizi, 2018). This provides the basis for our development here.

Summarizing, in this chapter, we set the framework for the problem of restraining
bolt in RL context and provide proofs and practical evidence, through various
examples, that an RL agent can learn policies that optimize conformance to the
ltlf/ldlf restraining specifications, without including in the agent’s state space
representation the features needed to evaluate the ltlf/ldlf formula. Our work
can also be seen as a contribution to the research providing safety guarantees to AI
techniques based on learning. We take up this point in a brief discussion at the end
of the chapter.

9.2 RL with ltlf/ldlf restraining specifications
We now focus on the restraining bolt problem, i.e., how to do RL with restraining

specifications expressed in ltlf/ldlf .
We are given:

• A learning agent modeled by the MDP Mag = ⟨S,A, Trag, Rag⟩, with S
denoting the set of configurations of the features observable by the agent,
transitions Trag and rewards Rag hidden, but sampled from the environment.

• A restraining bolt RB = ⟨L, {(φi, ri)}mi=1⟩ where:

– L = 2F is the set of possible fluents’ configurations observable by the

9.2 RL with ltlf /ldlf restraining specifications 112

bolt. Fluents in F are not among the features that form the states S of
the learning agent Mag.

– {(φi, ri)}mi=1 is a set of restraining specifications with
∗ φi, an ltlf/ldlf formula over F . Each φi selects sequences of

fluents’ configurations ℓ1, · · · , ℓn (ℓk ∈ L) whose relationship with
the sequences of states s1, . . . , sn (sk ∈ S) of Mag is unknown.

∗ ri, the reward associated with φi. A reward ri is assigned to sequences
of configurations ℓ1, · · · , ℓn satisfying φi.

The agent receives rewards based on Rag and the pairs (φi, ri). In fact, often we
have to handle tasks of episodic nature. That is, the world can reach a configuration
in which no action can change its configuration nor generate new rewards, e.g., a
final configuration in a game. In this case we assume that the restraining bolt fluents
F include a special fluent Done that denotes reaching the final configuration. This
fluent can be used in ltlf/ldlf formulas to reward the agent only at the end of
the episode. When the episode ends and a new episode is started, a new trace is
generated on which ltlf/ldlf formulas are evaluated again.

Notice that while the agent can see the features that the reward Rag depends on,
it cannot see those that affect ri. Both S and L are features’ configurations, in the
sense of representing world properties. However, they capture different facets of the
world. Let W be the set of real world states. A feature is a function fj : W → Dj

that maps world states to another domain Dj , such as reals, enumerations, booleans,
etc. The feature vector of a world state wh is the vector f(wh) = ⟨f1(wh), . . . , fd(wh)⟩
of feature values corresponding to wh. Given a world state wh, the corresponding
configuration sh of the learning agent Mag consists in those components of f(wh)
that produce the agent’s state, while the corresponding configuration of fluents ℓh is
formed by the components that assign truth values to the fluents. That is, a subset
of the world features describes the agent states sh and another subset (for simplicity,
assumed disjoint from the previous one) is used to evaluate the fluents in ℓh. Hence,
a sequence w1, . . . , wn of world states defines both a sequence of learning agent states
s1, . . . , sn and a sequence of fluent configurations ℓ1, . . . , ℓn. While Rag depends on
the former, each φi and ri depend on the latter. Consequently, by executing a policy
and hence by repeatedly choosing actions in A, the agent visits a sequence of world
states, collecting for each of them, the sum of the rewards Rag and ri. The point
to resolve is defining on the base of which observations the agent can choose its
next actions. Obviously, the agent can in principle accumulate all its observations
s1, . . . , sn, but on the other hand it cannot see the fluents configurations ℓ1, . . . , ℓn.
In order to drive the learning process, we want to equip the agent with some means
to establish the stage of satisfaction of the formulas φi. Such a notion, as mentioned
above, can be captured by considering the minimal dfa Aφi = ⟨2P , Qi, qi0, δi, Fi⟩
corresponding to formula φi. Notice that such a dfa is unique. Hence we equip
the agent with additional observable features Q1 × . . .×Qm corresponding to the
states of Aφi . Such features are going to be provided by the restraining bolt.3 Note
that this does not give away fluents configurations ℓ1, . . . , ℓn which remain hidden
to the agent, see Figure9.1. Moreover, to keep the RL agent’s state representation
independent from the bolt, only an encoding of the features Q1 × . . . × Qm are

3Notice that coming up with the Q1, . . . , Qn and assigning the rewards to some of them, while
can perhaps be possible in very simple cases, without a principled and systematic technique as the
one presented here it is virtually impossible. Indeed, to express directly ltlf /ldlf properties in
the MDP, one may need exponential additional features, assuming a factorized representation, since
the corresponding dfa may be doubly exponential in the formula.

9.2 RL with ltlf /ldlf restraining specifications 113

provided (e.g., an m-tuple of integer numbers). In other words, the RL agent does
not need to know semantic information about the state of the bolt (i.e., the state of
satisfactions of the ltlf/ldlf formulas), thus Qi does not need to be expressed in
terms of fluents in F . Indeed, any encoding allowing to distinguish different states
of the dfa each other is sufficient.

Hence, in general, we consider possibly non-Markovian policies of the form

ρ̄ : (Q1 × . . .×Qm × S)∗ → A

and thus define the expected (discounted) cumulative reward of a possibly non-
Markovian policy ρ̄ as the expected reward of infinite traces starting in the initial
state s0, induced by the policy itself (obtained as the expected sum of the collected
rewards Rag and ri).
Problem definition. (An instance of) the RL problem with ltlf/ldlf restraining
specifications is a pair M rb

ag = ⟨Mag, RB⟩, where: Mag = ⟨S,A, Trag, Rag⟩ is a
learning agent with Trag and Rag hidden, and RB = ⟨L, {(φi, ri)}mi=1⟩ is a restraining
bolt formed by a set of ltlf/ldlf formulas φi over L with associated rewards ri. A
solution to the problem is a (possibly non-Markovian) policy ρ̄ : (Q1 × . . .×Qm ×
S)∗ → A that maximizes the expected cumulative reward.

To devise a solution technique, we assume that the agent actions in A induce a
transition distribution over the features and fluents configuration, i.e.:4

Trrbag : S × L×A→ Prob(S × L).

Such a transition distribution, together with the initial values of the fluents ℓ0 and of
the agent state s0, allow us to describe a probabilistic transition system accounting
for the dynamics of the fluents and agent states. Moreover, when Trrbag is projected
on S only, i.e., the L components are marginalized, we get Trag of Mag. Obviously,
both Trrbag and Trag are hidden to the learning agent. On the other hand, in response
to an agent action ah performed in the current state wh (in the state sh of the agent
and the configuration ℓh of the fluents), the world changes into wh+1 from which
sh+1 and ℓh+1 are obtained. This is all we need to proceed.

GivenM rb
ag = ⟨Mag, RB⟩ withMag = ⟨S,A, Trag, Rag⟩ andRB = ⟨L, {(φi, ri)}mi=1⟩,

we define an NMRDPMn
ag = ⟨S×L, A, Trrbag, {(φi, ri)}mi=1∪{(φs, Rag(s, a, s′))}s∈S,a∈A,s′∈S⟩,

where:

• states are pairs (s, ℓ) formed by an agent configuration s and a fluents configu-
ration ℓ;

• φi are as before;

• φs = ♢(s ∧ a ∧◦(Last ∧ s′));

• Trrbag, ri and Rag(s, a, s′) are hidden and sampled from the environment.

Formulas φi are as before, in particular they are continuously evaluated on the
(partial) trace produced so far. Though, they may use the special fluent Done
to give the reward associated to the formula at the end of the episode (modulo
reward shaping). Formulas ♢(s ∧ a ∧◦(Last ∧ s′)), one per (s, a, s′), which require
that both states s and action a are followed by s′, are evaluated at the end of

4Notice that this assumption is quite loose, as we can arbitrarily enlarge L to define T rrb
ag. In the

construction below only the fluents in L that occur in the ltlf /ldlf formulas play an active role.

9.2 RL with ltlf /ldlf restraining specifications 114

the current (partial) trace (recall that Last denotes the last element of the trace,
c.f. Preliminaries). In this case, the reward Rag(s, a, s′) from Mag associated with
(s, a, s′) is given.5

Observe that policies for Mn
ag have the form (S × L)∗ → A which needs to be

restricted to have the form required by our problem M rb
ag. A policy ρ̄ : (S × L)∗ →

A has the form ρ̄ : (Q1 × . . . × Qm × S)∗ → A when ρ̄(⟨s1, ℓ1⟩ · · · ⟨sn, ℓn⟩) =
ρ̄(⟨q11, . . . , qm1, s1, ⟩ · · · ⟨q1n, . . . , qmn, sn, ⟩) with qij = δj(ℓ1, . . . , ℓi, qj0). In other
words, a policy ρ̄ : (S × L)∗ → A has the form ρ̄ : (Q1 × . . .×Qm × S)∗ → A when
the fluents L are not directly accessible but are used only to progress the dfas Aφi

corresponding to formulas φi. We can now state the following result.

Lemma 9.1. RL with ltlf/ldlf restraining specifications M rb
ag = ⟨Mag, RB⟩ with

Mag = ⟨S,A, Trag, Rag⟩ and RB = ⟨L, {(φi, ri)}mi=1⟩ can be reduced to RL over the
NMRDP Mn

ag = ⟨S × L, A, Trrbag, {(φi, ri)}mi=1 ∪ {(φs, Rag(s, a, s′))}s∈S,a∈A,s′∈S⟩, by
restricting the policy to learn to have the form ρ̄ : (Q1 × . . .×Qm × S)∗ → A.

Proof. By construction.

As a second step, we apply the construction of the previous section and obtain a
new MDP learning agent. In such construction, because of their triviality, we do
not need to keep track of the state of the automata associated with each φs, but
just offer the reward Rag(s, a, s′) associated with (s, a, s′). Instead, we do need to
keep track of state of each dfa Aφi = ⟨2P , Qi, qi0, δi, Fi⟩ corresponding to φi. Hence,
from Mn

ag, we obtain an MDP M ′
ag = ⟨S′, A, Tr′

ag, R
′
ag⟩ where:

• S′ = Q1 × · · · ×Qm × S × L is the set of states;

• Tr ′
ag : S′ ×A× S′ → [0, 1] is defined as follows:

Tr′
ag(q1, . . . , qm, s, ℓ, a, q

′
1, . . . , q

′
m, s

′, ℓ′) ={
Trag(s, ℓ, a, s′, ℓ′) if ∀i : δi(qi, ℓ′) = q′

i
0 otherwise;

• R′
ag : S′ ×A× S′ → R is defined as:

R′
ag(q1, . . . , qm, s, ℓ, a, q

′
1, . . . , q

′
m, s

′, ℓ′) =∑
i:q′

i∈Fi
ri +Rag(s, a, s′)

Observe that, besides the rewards Rag(s, a, s′) of the original learning agent, the envi-
ronment now offers the rewards ri associated with the formulas φi, thus guiding the
agent towards the satisfaction of the φi (by progressing correctly the corresponding
dfas Aφi).

By Theorem 8.10, it follows that the NMRDP Mn
ag and the MDP M ′

ag are
equivalent. Hence, by Lemma 8.11, any policy of Mn

ag has an equivalent policy
(hence guaranteeing the same reward) in M ′

ag, and viceversa. We can thus learn a
policy on M ′

ag instead of Mn
ag. We can thus refine Lemma 9.1 into the following.

Lemma 9.2. RL with ltlf/ldlf restraining specifications M rb
ag = ⟨Mag, RB⟩ with

Mag = ⟨S,A, Trag, Rag⟩ and RB = ⟨L, {(φi, ri)}mi=1⟩ can be reduced to RL over the
5Notice that we have as many of such formulas as transitions (s, a, s′), this causes an exponential

blow-up being S factorized in features. However, we will get rid of them later.

9.2 RL with ltlf /ldlf restraining specifications 115

MDP M ′
ag = ⟨S′, A, Tr′

ag, R
′
ag⟩, by restricting the policy to learn to have the form

Q1 × . . .×Qn × S → A.

Proof. By construction.

This Lemma allows for restricting, without loss of generality, non-Markovian
policies (Q1 × . . .×Qn × S)∗ → A to Markovian policies Q1 × . . .×Qn × S → A.

As a last step, we solve the original RL task on M rb
ag by performing RL on a new

MDP M q
ag = ⟨Q1 × · · · ×Qm × S,A, Tr′′

ag, R
′′
ag⟩, where:

• The transition distribution Tr′′
ag is the marginalization of Tr′

ag wrt L, and is
unknown;

• The reward R′′
ag is defined as:

R′′
ag(q1, . . . , qm, s, a, q

′
1, . . . , q

′
m, s

′)=
∑

i:q′
i∈Fi

ri+Rag(s, a, s′).

• The states qi of the dfas Aφi are progressed correctly by the environment.

Thus, we finally obtain our main result.

Theorem 9.3. RL with ltlf/ldlf restraining specifications M rb
ag = ⟨Mag, RB⟩ with

Mag = ⟨S,A, Trag, Rag⟩ and RB = ⟨L, {(φi, ri)}mi=1⟩ can be reduced to RL over the
MDP M q

ag = ⟨Q1 × · · · ×Qm × S,A, Tr′′
ag, R

′′
ag⟩ and optimal policies ρnewag for M rb

ag
can be learned by learning corresponding optimal policies for M q

ag.

Proof. For brevity we use q to denote q1, . . . , qm. By Lemma 9.2 we can focus on
RL over the MDP M ′

ag = ⟨S′, A, Tr′
ag, R

′
ag⟩ under the restriction that the policy to

learn has the form Q1 × . . .×Qn × S → A.
Notice that from the definitions of R′ and R′′, we have that for all ℓ, ℓ′ ∈

L, R′(q, s, ℓ, a,q′, s′, ℓ′) = R′′(q, s, a,q′, s′) =
∑
i:q′

i∈Fi
ri+R(s, a, s′). The crux of

the proof is to show that for any optimal policy ρ the values vρ(q, s, ℓ) of the
state value function for M′

ag do not depend on ℓ. That is, it is necessary that
∀ℓ1, ℓ2.vρ(q1, . . . , qm, s, ℓ1) = vρ(q1, . . . , qm, s, ℓ2).

To see this, let T ′
ag(s, a, s′) = P (s′|s, a), then the Bellman equation in our case

is:

vρ(q, s, ℓ) =
∑

q′,s′,ℓ′

P (q′, s′, ℓ′|q, s, ℓ, a)[R′(q, s, ℓ, a,q′, s′, ℓ′) + γvρ(q′, s′, ℓ′)].

By using the equality between R′ and R′′ we have:

vρ(q, s, ℓ) =
∑

q′,s′,ℓ′

P (q′, s′, ℓ′|q, s, ℓ, a)[R′′(q, s, a,q′, s′) + γvρ(q′, s′, ℓ′)].

On the other hand, observe that we can compute q′ from q and ℓ′, that is we do not
need ℓ. Hence: P (q′, s′, ℓ′|q, s, ℓ, a) = P (q′, s′, ℓ′|q, s, a). So we can write:

vρ(q, s, ℓ) =
∑

q′,s′,ℓ′

P (q′, s′, ℓ′|q, s, a)[R′′(q, s, a,q′, s′) + γvρ(q′, s′, ℓ′)].

9.3 Automata-based reward shaping 116

At this point, we see that vρ does not depend from ℓ, hence we can safely drop ℓ as
argument for vρ. Indeed, we get:

vρ(q, s) =
∑
q′,s′

[R′′(q, s, a,q′, s′) + γvρ(q′, s′)]
∑
ℓ′

P (q′, s′, ℓ′|q, s, a)

and by marginalizing the distribution P (q′, s′, ℓ′|q, s, a) over ℓ′, we get:

vρ(q, s) =
∑
q′,s′

P (q′, s′|q, s, a)[R′′(q, s, a,q′, s′) + γvρ(q′, s′)].

This is Bellman’s equation for M q
ag, hence the thesis.

This theorem provides us with a technique to learn the optimal policy for RL
with ltlf/ldlf restraining specification by minimizing the intervention on the
learning agent: essentially we need to feed it with the rewards ri at suitable times,
and we need to allow the learning agent to keep track of the stage of satisfaction of
the restraining bolt formulas by feeding it with new features for Q1, . . . , Qn.

9.3 Automata-based reward shaping
Reward shaping is a well-known technique to guide the agent during the learning

process and so reduce the time needed to learn. The possibility of using reward
shaping in the context of RL for ltlf/ldlf rewards has been exploited in (Camacho,
Chen, et al., 2017a). The idea is to supply additional rewards in a proper manner
such that the optimal policy is the same of the original MDP. Formally, the original
reward R(s, a, s′) is replaced by R′(s, a, s′) = R(s, a, s′)+F (s, a, s′), where F (s, a, s′)
is the shaping reward function. In (Ng, Harada, and Russell, 1999) it has been shown
that potential-based reward shaping of the form F (s, a, s′) = γΦ(s′)−Φ(s), for some
Φ : S → R, is a necessary and sufficient condition for policy invariance under this
kind of reward transformation, i.e. the optimal and near-optimal MDP solutions are
preserved.

We observe that, the use of reward shaping when using ltlf/ldlf rewards φ
can be automatized. Given a ltlf/ldlf formula φ, we build the associated dfa
Aφ. This operation is made off-line, i.e. before the learning process. Then we
associate automatically to the states of the dfa a potential function Φ(q) whose
value decreases proportionally with the minimum distance between the automaton
state q and any accepting state. The potential function gives a positive reward when
the agent performs an action leading to a q′ that is one step closer to an accepting
state, and a negative one in the opposite case. Moreover, with γ < 1, a penalty is
given if Φ(q) = Φ(q′).

Reward shaping can also be used when the dfas of the ltlf/ldlf formulas are
constructed on-the-fly (Brafman, De Giacomo, and Patrizi, 2018) so as to avoid to
compute the entire automaton off-line. To do so we can rely on dynamic reward
shaping (Devlin and Kudenko, 2012). The idea is to build Aφ progressively while
learning. During the learning process, at every step, the value of the fluents ℓ ∈ L
is observed and the successor state q′ of the current state q of the dfa on-the-fly
is computed. Then, the transition and the new state just observed are added into
the “built" automaton at time t, Aφ,t, yielding Aφ,t′ . The potential function Φ for
Aφ,t′ is recomputed for the new version of the automaton. In this case, the shaping
reward function takes the following form:

F (q, t, a, q′, t′) = γΦ(q′, t′)− Φ(q, t)

9.4 Implementation and Examples 117

Figure 9.2. Experimental scenarios: Breakout, Sapientino, CocktailParty

where Φ(q, t) is the same of the off-line variant (with some additional heuristics) but
computed on the automaton Aφ,t. Optimality and near-optimality guarantees are
still preserved as explained in (Devlin and Kudenko, 2012).

Theorem 9.4. Automata-based reward shaping, both in off-line and on-the-fly
variants, preserves optimality and near-optimality of the MDP solutions.

Proof. For the off-line case, the shaping-reward function Φ is, by construction,
potential based, hence fulfilling the premises of theorems in (Ng, Harada, and
Russell, 1999) and (Grześ, 2017). Also for the on-the-fly variant, we observe that
our construction is compliant with the requirements shown in (Devlin and Kudenko,
2012).

9.4 Implementation and Examples
Implementation of agents learning policies with restraining specifications is

performed by assuming a learning phase in simulation and an execution phase on the
real world. The learning phase is obtained by combining three software components:
1) a simulator of the dynamic system, 2) a restraining bolt (RB) process, 3) a
reinforcement learning (RL) agent. All these components are modular (i.e., they can
be properly connected with each other or replaced by other similar components).
The simulator is responsible for computing the evolution of the dynamic system
under study: it receives decisions (actions to be executed) by the RL agent and
communicates: i) the current state of the system to both the RL agent and the RB
process, and ii) the current reward value to the RL agent. The RB process receives
the current state from the simulator, evaluates the ltlf/ldlf formulas denoting
the restraining specifications and sends to the RL agent an encoding of the progress
of the dfa representing the formulas and reward values associated to their evolution.
Finally, the RL agent receives the simulator state, the RB state, and the rewards
and decides the actions to be executed, while computing an optimal policy. By using
such a simulator, the RL agent can learn a policy that maximizes the cumulative
discounted reward by taking into account the rewards from both the environment
and the RB. In general, when enough training is allowed, the computed policy, when
executed on the real world, will satisfy the RB specifications.

As mentioned, the RL agent and the RB process have different sensors to perceive
different aspects of the state of the world (or of the simulator). So we assume that
they are implemented with real sensors (when attached to the real world) and
corresponding virtual sensors (when attached to the simulator). We also assume
that the simulator is able to model all the relevant evolutions of the world that are
needed to learn the specific task with restraining specifications.

Next we show the implementation of such components in three examples (Fig-
ure 9.2). The first one uses a video-game simulator, while the other two consider
robotic tasks and their corresponding models in a simulator. The core software for
the RL agent and for the RB process are domain-independent, while the (virtual)
sensors and the ltlf/ldlf specifications are domain-dependent. Since all examples

9.4 Implementation and Examples 118

are of episodic nature, the learning phase is managed by an execution system that
resets episodes when any of the following conditions is verified: 1) a state of the
dfa where the formula is satisfied is reached, 2) a failure state of the dfa (i.e., a
state from which it is not possible to satisfy any formula) is reached, 3) a maximum
number of actions have been executed (to avoid infinite loops).

To speed up learning, the implementation of the bolt monitors the progress of
the dfa corresponding to the restraining specifications and applies a kind of reward
shaping by exploiting the dfa structure

Through reward shaping we can anticipate part of the reward coming from
temporal specifications without waiting for the formulas to become true.

Each experiment (i.e., a sequence of episodes to learn a policy) terminates after
a time limit that is different for each problem (see next sections) and chosen to
guarantee that a policy consistent with the specifications is always found, although
in general not optimal. All the problems described below have been solved with
n-step Sarsa algorithm, configured with γ = 0.999, ϵ = 0.2, n = 100. The trend of
the solutions is anyway not sensitive to these parameters.

Algorithms have been implemented as single-thread non-optimized Python pro-
cedures, in a modular and abstract way to operate on every problem. More details
about the experimental configurations, source code of the implementation allowing
for reproducing the results contained in this paper, and videos of the found policies
are available in www.diag.uniroma1.it/restraining-bolt.
Breakout. Breakout has been widely used to demonstrate RL approaches. The
goal of the agent is to control the paddle in order to drive a ball to hit all the bricks
in the screen. In this example, we have considered two agents with different abilities:
move: the agent moves sideways to bounce the ball; move +fire: the agent can
both move and fire straight up to remove bricks. Agent’s state representation uses
the following features: fx: x position of the paddle; fbx, fby, fdx, fdy: position and
direction of movement of the ball6. Reward is given to the agent when a brick is hit.
With this specification a RL algorithm can find a policy to remove all the bricks
and complete the game for both the agents.
Restraining bolt. We want to provide the agents with the following specification:
the bricks must be removed from left to right, i.e., all the bricks in column i must
be removed before completing any other column j > i. This specification can be
expressed with an ltlf/ldlf formula and to evaluate such a formula, the bolt
needs a representation fr(i,j) of the status of each brick ri,j (present or removed).
The agents, after receiving in input from the bolt an encoding of the status of the
ltlf/ldlf formula and associated rewards, can use the same RL algorithm to learn
a new policy that will complete the task (i.e., remove all the bricks) following the
restraining bolt specification (i.e., from left to right).

Notice that the same restraining bolt is applied to the two different agents and
they will both learn the behavior specified by the ltlf/ldlf formula, obviously with
different policies. Rows 1 and 2 in Figure 9.3 show the results of two experiments in
the Breakout scenario with the following configurations: Breakout 4x6 move + fire
(5 minutes), Breakout 4x5 move (1 hour). Left plots show the average reward over
the number of iterations, while right plots show the score (i.e., number of columns
correctly broken) of the best policy computed so far (i.e., the results obtained in
runs without exploration). The figures show how the agent is able to progressively
learn how to progress over the states of the dfa corresponding to the ltlf/ldlf
specification. Similar results are obtained in different configurations (e.g., different

6Other state representations are also suitable to learn the task.

www.diag.uniroma1.it/restraining-bolt

9.4 Implementation and Examples 119

sizes of the bricks). reported in the columns is encoded with the first letter being
either M for move and F for fire actions available, and the second letter being
either L for local and G for global for the sensor modality.
Sapientino. Sapientino Doc is an educational game for 5-8 y.o. children where a
small mobile robot has to be programmed to visit specific cells in a 5x7 grid. Some
cells contain concepts that must be matched by the children (e.g., a colored animal,
a color, the first letter of the animal’s name), while other cells are empty. The robot
executes sequences of actions given in input by children with a keyboard on the
robot’s top side. During execution, the robot moves on the grid and executes an
action (actually a bip) to announce that the current cell has been reached (this is
called a visit of a cell). A pair of consecutive visits are correct when they refer to
cells containing matching concepts. As in the real game, we consider a 5x7 grid
with 7 triplets of colored cells, each triplet representing three matching concepts.
State representation is defined by the following features: fx, fy, fθ reporting the
pose of the agent in the grid. In this scenario, we consider two different agents:
omni: omni-directional movements (actions: up, down, left, right), differential:
differential drive (actions: forward, backward, turn left, turn right). With this
specification, the agent can just learn how to move in the grid, but it cannot match
related concepts.
Restraining bolt. Consider now the specifications S2: visit at least two cells of the
same color for each color, in a given order among the colors (the order of the colors
is predefined: first C1, then C2, and so on) and S3: visit all the triplets of each color,
in a given order among the colors. The following additional features are needed to
express and evaluate the corresponding formula: fb reporting that a bip action has
just been executed and fc reporting the color of the current cell.

The restraining specifications for these games can be expressed with ltlf formulas.
A fragment of ltlf formula for the first game relative to the first color C1 is

¬bipU(
∨
j=1,2,3 cellC1,j ∧ bip) ∧∧

j=1,2,3 □(cellC1,j ∧ bip→◦□(bip→¬cellC1,j)) ∧∨
j=1,2,3 □(cellC1,j ∧ bip→◦(¬bipU

∨
k ̸=j cellC1,k ∧ bip)

For other colors Ci+1, we use a similar formula, but requiring that
∨
j=1,2,3 cellCi,j∧bip

has already been satisfied.
Two agents and two restraining bolts can be combined to form 4 different learning

situations. We show only two of them. Rows 3 and 4 of Figure 9.3 show the agents’
learning ability (score = 14 for S2 specs, score = 21 for the S3 specs). Similar results
are obtained in different configurations.
Cocktail party. For a service robot involved in a cocktail party we consider a
representation of the state in terms of robot’s pose and objects’ (drinks and snacks)
and people’s location. The agent can move in the environment, grasp and deliver
items to people, and get a reward when a delivery task is completed. The robot has
no sophisticated people perception capabilities, and no memory is available in the
underlying MDP modeling the domain, so the robot cannot get information about
individual people or remember who received what. The robot in this scenario will
just learn how to bring one item to any person (choosing the shortest path).
Restraining bolt. Consider the following specification: serve exactly one drink and
one snack to every person, but do not serve alcoholic drinks to minors. As in the
previous examples, the restraining bolt works on separate features, namely identity,
age and received items7 and uses an ltlf/ldlf formula to model this specification.

7In practice, services like Microsoft Cognitive Services Face API can be integrated into the bolt

9.5 Summary and Discussion 120

operating scenario. We assume the map of the environment to be known, people
sitting at tables in predefined known positions and locations of snack and drink
items also known. From these information we can instantiate a simulator for the
robot to navigate in this environment and reach the different locations8.

For learning this task, we considered a problem with two people and two different
kinds of drinks and snacks (4 tasks to be executed in total) and we implemented an
abstract simulator reproducing the scenario of RoboCup@Home competition. The
results of learning the restrained task in the simulator are depicted in Row 5 of
Figure 9.3 (score = 4 means that the 2 persons have received one drink and one
snack each). As shown, after about 1 minute of simulation9, the RL agent converged
to a policy satisfying the RB specifications.
Minecraft. As an example of our approach’s modularity, we used the same agent
of Sapientino in a Minecraft scenario. Here the agent has to accomplish 10
tasks (described with non-Markovian rewards via an ltlf/ldlf formula). The two
agents share the same state representation S but differ in the action set A, the fluent
configurations L, and the component progressing the dfas. Results (not shown
here) confirm that a general-purpose agent can learn several tasks by only receiving
information from its restraining bolt.

9.5 Summary and Discussion
In this chapter, we presented the novel concept of Restraining Bolts, where an

authority imposes a restraining specifications to the learning agent, but they have
different representations of the world. We formalized the problem in the case the
agent is a Reinforcement Learning agent and the restraining specification is written
in a ltlf/ldlf formula φ, and showed that in fact the agent, despite ha has no
access to the authority’s world representation (i.e. the alphabet of φ), he can aim
at optimizing the reward coming from the temporal logic specification, at the cost
of handling an additional feature in its state space needed to keep track of the
partial satisfaction of the temporal specification (i.e. the automaton state during
the evalutation of the trace). However, there is no guarantee that the agent will
actually able to satisfy it as it depends on the capabilities of the agent. We discussed
possible improvements in terms of sampling efficiency by means of automatic reward
shaping techniques, and provided several examples showing the relevance and the
usefulness of the approach.

We have shown how to perform RL with ltlf/ldlf restraining specifications by
resorting to typical RL techniques based on MDPs. Notably, we have shown that
the features needed to evaluate ltlf/ldlf formulas can be kept separated from
those directly accessible to the learning agent.

The work presented in this chapter can be ascribed to that part of research
generated by the urgency of providing safety guarantees to AI techniques based on
learning (Amodei et al., 2016; Hadfield-Menell et al., 2017; Orseau and Armstrong,
2016). In particular, it shares similarities with recent work on constraining the RL
agent to satisfy certain safety conditions (Wen, Ehlers, and Topcu, 2015; Achiam
et al., 2017; Alshiekh et al., 2018). There are however important differences. First,
in enforcing the restraining bolt we consider the learning agent essentially as a black
box. That is, the restraining bolt does not need to know the internals S of the

to provide this information.
8Specifically, we used Stage simulator in ROS with standard navigation stack.
9This time can be drastically reduced using optimized code.

9.5 Summary and Discussion 121

learning agent, and specifies the desired constraints using only its world features
L. On the other hand, we do not guarantee the satisfaction of the restraining bolt
constraints during training, as in (Achiam et al., 2017). In fact, differently from
(Wen, Ehlers, and Topcu, 2015; Alshiekh et al., 2018), we do not guarantee the
hard satisfaction of constraints even after training. After all “You can’t teach pigs
to fly”! and we may very well ask to do so in our restraining bolts, being these
completely unrestricted in the selection of world features and in the kind of formulas
they specify over such features. If we want to check formally that the optimal policy
satisfies the restraining bolt specification, we first need to model how actions affect
the restraining bolt’s features L, i.e., we need to link the learning agent’s features
S to L, and then we can use, e.g., model checking. Notably, for doing RL we do
not need to specify such a link, but we can simply allow the (possibly simulated)
world to act as the link, in line with what advocated, e.g., in (Brooks, 1991), and
very differently from what typically considered in knowledge representation (Reiter,
2001).

Clearly, the two separate representations (i.e., the two sets of features) need to
be somehow correlated in reality. The crucial point, however, is that in order to
perform RL effectively, such a correlation does not need to be formalized. In this
work, we set this framework and provide proofs and experimental evidence that an
learning agent can learn policies that optimize the conformance to the ltlf/ldlf
goals without including in the state space representation the features needed to
evaluate the corresponding ltlf/ldlf formula (more details can be found in (De
Giacomo, Iocchi, et al., 2018).) Using these results, we can envision that once the
agent is equipped with the restraining bolt, by simulating in its mind how to act
(i.e., applying RL), it will deliberate a course of actions that automatically conform
(as much as possible) to the restraining rules.

Apart from restraining bolts, the interest in having separate representations is
manifold. The learning agent feature space can be designed separately from the
features needed to express the goal, thus promoting separation of concerns which, in
turn, facilitates the design, providing for modularity and reuse of representations
(the same agent can learn from different bolts and the same bolt can be applied to
different agents). Also, a reduced agent’s feature space allows for realizing simpler
agents (think, e.g., of a mobile robot platform, where one can avoid specific sensors
and perception routines), while preserving the possibility of acting according to
complex declarative specifications which cannot be represented in the agent’s feature
space. We plan to investigate this separation further in the future.

We now consider several directions for future work.

9.5.1 Learning ltlf/ldlf goals
One interesting direction is to learn the ltlf/ldlf goals. This is related to what

in Business Process Management is called (declarative) process mining (Aalst, 2011;
Pesic, Schonenberg, and Aalst, 2007), but also to so-called model learning (Angluin,
1987; Angluin, Eisenstat, and Fisman, 2015; Vaandrager, 2017). ltlf has also been
used to model advice to guide the exploration of the RL algorithm (Icarte, Klassen,
et al., 2017). This is an interesting aspect that could be considered in our case as
well.

9.5.2 POMDPs
Our approach for RL for ltlf/ldlf goals with reduced features space is different

from RL for Partially Observable Markov Decision Processes (POMDP) (Kaelbling,

9.5 Summary and Discussion 122

Littman, and Cassandra, 1998), where the features for evaluation the ltlf/ldlf
formulas are not directly accessible, but can be probabilistically estimated through
observations. Instead, in our work, such features remain visible but are simply not
used by the RL agent. Obviously, devising effective techniques for RL on POMDPs
with ltlf/ldlf rewards, by exploiting the connection with automata, is of great
interest.

9.5.3 Quantitative Interpretation of Temporal Formulas
Another interesting direction for future work is to consider goals specified in

logics that have a quantitative interpretation of temporal formulas (Almagor, Boker,
and Kupferman, 2016; Kupferman, 2016). These kind of logics have been used with
success in the context of Model Predictive Control (Raman et al., 2014).

9.5.4 Automata-based Reward Shaping
In Section 9.3, we described a generic approach to apply reward shaping based on

the automaton state of the dfa. In particular, the automata-based reward shaping
scheme requires the specification of a potential function Φ : Q → R that will be
used in potential-based reward shaping. As a future work, we could devise different
strategies to compute such function, e.g.:

• give to a state q of the automaton A a potential Φ(q) corresponding to the
minimum distance from an accepting state, possibly scaled by a constant factor
c.

• the same as above, but consider the maximum (or worst-case) distance from
any accepting state.

• instead of a constant leap between consecutive states in the same path toward
an accepting state, we could consider a discount factor λ ∈ (0, 1), where
Φ(q) = λd, where d is the distance from an accepting state.

• use value-iteration over the dfa as if it were an MDP, and let Φ = V ∗ (e.g.
see (Camacho, Icarte, et al., 2019)).

Most importantly, these approaches are automatic, i.e. they only require in input
the dfa of the temporal logic specification. Then, would be interesting to benchmark
all of these alternatives on common RL benchmark environments.

Another direction is to design Φ in an environment-dependent way, and take
into account the state s ∈ S in the potential function Φ(s, q).

9.5.5 Restraining Bolts with Clocks
One of the strongest assumption we made is that the sampling of the features

and of the fluents is simultaneous. This makes very hard to use the ◦ operator in
restraining bolts. Therefore, we could devise a new device, called clock, which gives
the designer of the system more flexibility on how fluents should be sampled and can
be seen by the restraining bolt. The clock is, in general, a function from a history
of fluents to a boolean, which is true if the last fluent configuration can be seen by
the restraining bolts. The clock itself could be specified by a temporal logic formula
φclock.

9.5 Summary and Discussion 123

More generally, as future work, we plan to study the theoretical properties for
this separation to be effective, as well as to use this insight to facilitate the design
of actual robots embedded in real environments.

9.5 Summary and Discussion 124

Figure 9.3. Average reward and scores over number of iterations. Row 1: Breakout move
+ fire 4x6 bricks (5 minutes); Row 2: Breakout move only 4x5 bricks (1 hour); Row 3:
Sapientino S2 omni (3 minutes); Row 4: Sapientino S3 differential (1 hour); Row 5:
Cocktail Party (3 minutes).

125

Chapter 10

Imitation Learning over
Heterogeneous Agents

A common problem in Reinforcement Learning (RL) is that the reward function
is hard to express. This can be overcome by resorting to Inverse Reinforcement
Learning (IRL), which consists in first obtaining a reward function from a set of
execution traces generated by an expert agent, and then making the learning agent
learn the expert’s behavior –this is known as Imitation Learning (IL). Typical IRL
solutions rely on a numerical representation of the reward function, which raises
problems related to the adopted optimization procedures.

We describe an IL method where the execution traces generated by the expert
agent, possibly via planning, are used to produce a logical (as opposed to numerical)
specification of the reward function, to be incorporated into a device known as
Restraining Bolt (RB). The RB can be attached to the learning agent to drive the
learning process and ultimately make it imitate the expert. We show that IL can
be applied to heterogeneous agents, with the expert, the learner and the RB using
different representations of the environment’s actions and states, without specifying
mappings among their representations.

The rest of the chapter is structured as follows:

• In Section 10.1, we introduce the problem of interest and the motivations.

• In Section 10.2, we consider related works.

• In Section 10.3, we formalize the problem using Restraining Bolts and model
learning.

• In Section 10.4, we provide a solution using Angluin’s L∗ algorithm.

• In Section 10.5, we present several case studies.

• Section 10.6 concludes the chapter.

The contents of this chapter have been published in the conference paper (De
Giacomo, Favorito, Iocchi, and Patrizi, 2020).

10.1 Introduction
Inverse Reinforcement Learning (IRL) consists in estimating a reward function

from a set of traces captured during the execution of an agent’s policy. IRL can be

10.2 Related work 126

used in many application domains to implement forms of Imitation Learning (IL). In
IL, an expert agent executes a possibly optimal policy, generating a set of execution
traces which are exploited by a learning agent to reconstruct the reward function,
in turn used to learn a (possibly optimal) policy that imitates the expert behavior.
Providing examples of the (optimal) policy is a very convenient way to specify goals
for the learning agent, in contrast to defining a reward function, which is typically
cumbersome. Interestingly, expert and learner may be different kinds of agents, e.g.,
human and robot, executing tasks in different ways, i.e., with different action and
perception abilities. Unfortunately, this prevents an off-the-shelf application of the
IRL approach as, in the classical IRL setting, the expert and the learner must share
the representation space (e.g., states and actions).

In this chapter, expert and learner may have different capabilities representations
of states and actions; thus, the learner cannot interpret the traces generated by
the expert. To deal with this, we exploit the idea of Restraining Bolt (RB) (De
Giacomo, Iocchi, et al., 2019): a device, with its own sensors, that can be attached
to a Reinforcement Learning (RL) agent, to constrain its behavior and make it fulfill
desired temporal high-level goals. Such goals are expressed as formulas of linear-time
temporal logic over finite traces, ldlf (De Giacomo and Vardi, 2013), over a set of
fluents, generally different from the features used by the RL agent.

We consider a setting where the expert agent executes its policy, producing
desired and undesired traces at its own representation level. From these traces,
we obtain a deterministic finite-state automaton (DFA) accepting all the positive
(desired) traces and rejecting all the negative (undesired) ones. The DFA thus
represents (an approximation of) the expert’s behavior. Then, based on a well-
known equivalence between ldlf and DFAs (De Giacomo and Vardi, 2013), the DFA
is incorporated into a RB attached to the RL agent, to make it learn a (possibly
optimal) policy that imitates the expert’s behavior.

The ability of the RB to guide learning for a RL agent, when both use different
representations and with no explicit mapping between them, has been proven in
(De Giacomo, Iocchi, et al., 2019). Here, we exploit that result to implement an IL
procedure where the specification of the transferred behavior is provided at a higher
level wrt the states of the MDP. In other words, the low-level traces generated by
the expert are transformed into high-level traces from the RB sensors. Once the
high-level behavior is learned, this can be transferred to an agent with different
capabilities. This process can be seen as IRL at the RB representation level: instead
of estimating the reward function, we reconstruct the DFA associated with the goal
formula and then use it for learning.

The main advantage of this setting is a higher modularity, as agents and RBs can
be combined to form complex IL systems with minimal effort. Indeed, as discussed
in (De Giacomo, Iocchi, et al., 2019), a RL agent can be extended to receive signals
from a RB in a domain-independent way, by simply extending its state with an
integer variable to store (an encoding of) the current state of the RB’s DFA.

Summarizing, our contribution is an IL technique for agents with completely
different state-action representations. The technique is based on the use of a RB to
specify a high-level behavior and does not require any explicit mapping between the
different representations.

10.2 Related work
Most IRL solutions model the reward function in parametric form (e.g., a

weighted sum of reward features) and use some optimization or regression method

10.3 Problem definition 127

Figure 10.1. The RB setting

to optimize the parameter values (see (Arora and Doshi, 2018) for a recent survey
of IRL solutions). The main issue with these approaches is that the optimization
problem is essentially ill-posed, as many reward functions exist (including that
with all null values) that can explain the observations, and defining metrics for
their comparison is difficult (Ng and Russell, 2000). E.g., two reward functions
differing only in one state-action pair may produce considerably different behaviors.
Although these solutions solve several issues in IRL, estimating numerical reward
functions from execution traces remains an open problem. This work aims, instead,
at synthesizing the reward function at a logical level (the RB’s representation level),
avoiding numerical optimization and regression, thus overcoming their respective
limitations. The proposed approach allows also for dealing with non-Markovian
rewards.

Two broad classes of approaches, passive and active, exist to learn a (temporal)
formula/DFA from sets of positive and negative traces. In passive approaches the
formula/DFA is learned from a fixed set of positive and negative traces. Examples
include (Camacho and McIlraith, 2019b) and (Heule and Verwer, 2010). In the
former, an ltlf formula satisfied by all positive traces and by no negative trace is
generated. In the latter, the problem is compiled into SAT and then, by exploiting
the SAT technology, a minimum-size DFA (wrt number of states) accepting all
positive and no negative traces is obtained. In active learning, the set of traces
is produced as the result of an interaction between the learner and the expert.
The distinctive feature of this approaches is the fact that the expert knows the
target formula/automaton (which is not the case in this work). Angluin’s L∗

algorithm (Angluin, 1987) (and later extensions) offers an example of this. While
our work is agnostic to the learning technique, which is used in a black-box fashion,
we resort to active learning, specifically Angluin’s technique, using some care to
overcome the fact that the expert does not know the target formula/automaton.

10.3 Problem definition
A Restraining Bolt (RB) is a tuple RB = ⟨L, {(φi, ri)}mi=1⟩ where each φi is an

ldlf formula over a set of fluents L and each ri is a reward value. Fig. 10.1 illustrates
the basic RB setting. This is a standard RL scenario, with the environment, the
RL agent, its features and the reward function, extended with the RB, i.e., a device
that observes the environment and, based on its own fluents, offers rewards to the
agent. Fluents constitute the RB’s representation of the environment state and need
not match the RL agent features (and typically they do not). Formulas φi specify
the behaviors that should be rewarded, each with its respective ri. As known (De
Giacomo and Vardi, 2013) ldlf formulas can be equivalently represented as DFAs.

10.4 Solution method 128

Figure 10.2. Trace generation for RB-IRL

We use this representation. RBs were introduced in (De Giacomo, Iocchi, et al.,
2019), to constrain an agent’s behavior to fulfill high-level (i.e., fluent-based) goals.
We refer to that work for further details.

We use RBs to address the problem of transferring a task from an expert to a
learner agent. The task is represented by a formula φ in a RB or, more precisely, by
the corresponding DFA Q. As a result, we consider RBs of the form ⟨L, Q, r⟩, where
Q is a DFA representing an ltlf/ldlf formula and r is a reward value associated
with the accepting states of Q.

Consider now an expert agent defined on an MDP Me = ⟨Se, Ae, T re, Re⟩. The
agent can execute optimal policies of a given target task represented by a DFA
Q, but cannot make the corresponding reward function explicit; in other words,
the agent knows how to accomplish the task but cannot describe it. As the agent
executes the policy, some traces are produced, some of which are desirable (posiive)
and some other are not. The expert can correctly classify the traces as positive or
negative, based on its own state representation.

On the other hand, the traces can also be seen from the RB perspective, through
the RB sensors. Thus, from each state, the fluents can be extracted to produce the
corresponding representation in the RB space. Notice the expert does not know
anything about fluents, in particular, it cannot interpret them, as belonging to a
different representation space. In fact, the expert is not even aware of the RB. This
scenario is illustrated in Figure 10.2. Let T be a set of fluent traces collected while
observing the behavior of the expert. The problem we address in this work is that
of reconstructing a DFA QT that is consistent with T , i.e., that accepts all of its
positive traces and none of its negative. The approach proposed in this work allows
for generating a new RB RB = ⟨L, QT , r⟩, where QT is the DFA built from T , and
r is a reward value associated with the accepting states of QT . After the training
phase, the generated RB can be placed on a learner agent to drive the learning
process of a behaviour imitating the expert’s.

Consider a learner agent defined on Ml = ⟨Sl, Al, T rl, Rl⟩, with Trl and Rl
unknown, equipped with the RB that encodes the behavior of the expert agent in
performing the given task. The system MRB

l = ⟨Ml, RB⟩ can be used to learn an
optimal policy driven by RB, as explained in (De Giacomo, Iocchi, et al., 2019).
In this way, the behavior of the learner agent imitates that of the expert, when
considering the evolution at the RB level.

Notice again that the state representations of Se and Sl, as well as the set of
actions Ae and Al, may be completely different (e.g., states may come from different
sets of state variables), as long as they allow to solve the task. Moreover, no explicit
mapping between them is required.

10.4 Solution method
The core problem of our approach is extracting the DFA (or the formula) from

the set T of (positive and negative) traces, to be incorporated in the RB used by

10.4 Solution method 129

Figure 10.3. RB’s DFA learning setting

the learning agent to learn the expert’s behavior. This is illustrated in Fig. 10.3.
Notice that the target DFA is unknown, even to the expert. As a result, the best we
can hope for is to come up with an approximation. For this reason, we search for a
DFA that accepts all positive and no negative traces, according to T .

Since we aim at generalizing over the data T , the obtained DFA must accept more
traces than exactly the positive ones, and possibly reject more than the negative
ones. As typical in learning, in order to guarantee a certain degree of generalization,
some bias must be introduced. One reasonable approach is to check smaller DFAs
(in terms of number of states) first. This is motivated by the intuition that smaller
DFAs are less selective and tend to accept more traces than those with a large
number of states. As a result, we expect them to generalize better than large ones.

As discussed, several approaches exist for extracting a DFA from a set of labelled
traces. In our case, any is a reasonable candidate. For simplicity, we have selected
L∗ (Angluin, 1987). The choice was due to the following reasons. Firstly, the
algorithm returns a DFA (not a formula) that can be used as-is when executing the
RB –in the case of a formula, instead, this should be translated into its equivalent
DFA representation first. Secondly, the algorithm produces increasingly larger DFAs,
thus satisfying the generalization requirement discussed above –though it is not
guaranteed to return the minimal DFA. Thirdly, the technique has been implemented
in a reliable software framework, LearnLib, actively tested and maintained, which
has proven extremely convenient for the implementation step1. We remark that our
approach is agnostic to the specific DFA/formula extraction technique.

The algorithm works as follows. The learner poses membership queries (“is this a
positive trace?”) and equivalence queries (“is this the target formula/automaton?”)
to the expert, which answers respectively with a “yes/no” and a “yes” or a coun-
terexample (“no, because this trace should be/not be accepted”). The learner
uses membership queries to produce a candidate DFA. Once done with this, the
learner asks the expert whether the candidate solution is the target DFA. If the
expert answers “yes”, the DFA has been found and no other work is required; if
the expert answers “no”, it also returns a counterexample which is used by the
learner, together with possible additional membership queries, to produce a new
candidate solution to be checked for equivalence, and so on. The algorithm is shown
to terminate and find the target DFA in polynomial time wrt both the size of the
minimal DFA equivalent to the target DFA and the maximum length of any returned
counterexample (Angluin, 1987).

Unfortunately, in our case, the expert executes the policy offline, thus cannot be
asked whether a certain trace is positive or negative, and, more critically, does not
know the target DFA, thus cannot perform the equivalence check. As a consequence,
the expert cannot act as the oracle required by L∗ to answer the queries. Nonetheless,
using the dataset T , the oracle can be simulated in such a way that L∗ generates
a suitable approximation of the target DFA. This is done as follows: when a
membership query is posed, the (simulated) oracle answers “no”, if the input trace is
classified as negative in T , otherwise it answers “yes”; when an equivalence check is

1https://learnlib.de

https://learnlib.de

10.5 Case studies 130

to be performed, the oracle answers “yes ” if the candidate DFA accepts all positive
traces and no negative trace from T , and “no” otherwise, returning also one of the
traces that made the test fail.

As it can be easily seen, with this trick we can simulate the required oracle
and thus apply the algorithm. Also, by the choices above, the returned DFA is an
approximation of the (unknown) target DFA, in the sense discussed above. Notice
that we are potentially accepting all traces that are not explicitly forbidden by T .
Obviously, this is not the only option and other are possible (e.g., classify randomly
the traces not in T), yet it is a possible way to achieve a generalization wrt the data
set.

10.5 Case studies
We showcase our approach in three scenarios: Breakout (De Giacomo, Iocchi,

et al., 2019), Sapientino (De Giacomo, Iocchi, et al., 2019) and Minecraft (Icarte,
Klassen, et al., 2018b) (see Figure 10.4). For each scenario, we proceeded as follows.

Firstly, we fixed a restraining bolt in ltlf/ldlf , representing the target task,
and we played a simplified version the game (that we call variant A), recording
its traces (projected on fluents only) and labeling the good or bad according to
the satisfaction of the formula. In this way, we generate an “expert behavior" that
can be used later for assessing the quality of the policy learned. Then, we used
the collected traces to generate a DFA that captures the expert’s behavior, using
the LearnLib implementation of Angluin’s algorithm, as described in the previous
section. Such a DFA typically is not the same as the ltlf/ldlf formula but it is
close enough. Next, the learner learns a policy in the more complex game (variant
B) using the learned DFA as the restraining bolt, using the same approach described
in (De Giacomo, Iocchi, et al., 2019). Finally, to assess policy learned we simulate
its execution together with the original ltlf/ldlf DFA checking when we reach its
final states.

Notice that for each scenario, the features and the actions in variant A and
variant B are different. In particular, in variant A actions are stronger making the
game easier. Notice that there must be a relationship (but not an isomorphism)
between the actions in the two variants for making the approach effective in practice,
but such a relationship can be quite loose and can remain unexpressed. Note also
that actions are not used in the alphabet to progress the DFA and hence are not
part of the reward given by the restraining bolt. This allows us to have different
actions in the two variants. What is crucial for our approach to work is to have
enough good and bad high-level traces to learn an accurate DFA. Once we get DFA,
we assign a reward to the final states, and apply the restraining bolt techniques (De
Giacomo, Iocchi, et al., 2019).

We next describe each, scenario together with the corresponding variants and
the target task. In all cases, the generated DFA was consistent with the target task
and the learner was able to learn the task. The code can be found at https://github.
com/whitemech/Imitation-Learning-over-Heterogeneous-Agents-with-Restraining-Bolts.
Breakout. This is the popular Atari game where a brick wall must be destroyed.
In the original version, bricks can be removed by hitting them with a ball driven
by a paddle placed at the bottom of the screen, that can move only horizontally.
As variant A, we considered the game where there is no ball and the paddle can
fire bullets to break the bricks. In this case, the state representation of the expert
consists in the paddle position only. Notice that the brick configuration is not
accessible to the agent (and neither is, consequently, the configuration of columns).

https://github.com/whitemech/Imitation-Learning-over-Heterogeneous-Agents-with-Restraining-Bolts
https://github.com/whitemech/Imitation-Learning-over-Heterogeneous-Agents-with-Restraining-Bolts

10.6 Summary and Discussion 131

Figure 10.4. Experimental scenarios: Breakout, Sapientino, Minecraft

As variant B, instead, we used the original version. In this variant, the learner can
hit the ball with the paddle (but cannot fire) and can access the ball velocity and
position. The target task is: all bricks must be removed, completing the columns
from left to right, i.e., all the bricks in column i must be removed before completing
any other column j > i. This task can be expressed with an ldlf formula, using a
fluent to represent the state of each column (completed or not).
Sapientino. Sapientino is an educational game for 5-8 y.o. children where a small
mobile robot must be programmed to visit specific cells in a 5x7 grid. Some cells
contain concepts that must be matched by the children (e.g., a colored animal, a
color, the first letter of the animal’s name), while other cells are empty. The robot
executes sequences of actions given in input by children with a keyboard on the
robot’s top side. During execution, the robot moves on the grid and executes an
action (actually a beep) to announce that the current cell has been reached (this is
called a visit of a cell).

As variant A, we took the scenario where the (expert) robot can move omni-
directionally (actions: up, down, left, right). As variant B, we took the scenario
where the (learner) robot can move differentially (actions: forward, backward, turn
left, turn right). In both variants, the robot cannot see its position on the grid, nor
can sense colors and/or concepts on the cells. The target task is: visit a sequence of
colors in a given order without bad beeps between the visits.
Minecraft. In this scenario, an agent has to accomplish a task consisting in a
sequence of get resource and use tool actions. A requirement to get resources and
use tools is that the robot be on the cell associated with the resource or tool.

In variant A, the expert is endowed with "teleporting" capabilities (e.g. "go
to a resource/tool"). In variant B, the learner can move only on the grid using
differential drive, similarly variant B of Sapientino.

Results of learning variant B tasks are similar to the ones presented in (De
Giacomo, Iocchi, et al., 2019) and are thus not reported here.

10.6 Summary and Discussion
We have shown an approach based on the use of Restraining Bolts to perform

Imitation Learning in a scenario where heterogeneous agents are involved, i.e., where,
in particular, the expert and the agent do not share the same state representation
nor a mapping between them. We do so by applying an approach based on Inverse
Reinforcement Learning, where the behavior of the expert agent is learned and
represented as a DFA that is then incorporated in a RB, in turn used by the learner
at training time. Interestingly, the DFA constitutes a logical representation of the
reward function, thus avoiding a number of problems arising when a numerical
representation is adopted. We have performed experiments on several use-cases to
show the effectiveness of our approach. Despite the differences in the state-action
representation space, in all cases our approach was successful in transferring a task
from the expert to the learner.

10.6 Summary and Discussion 132

Future directions include testing different approaches to the generation of the
DFA from a set of traces, as well as other approximation criteria.

133

Chapter 11

Temporal Logic Monitoring
Rewards via Transducers

In Markov Decision Processes (MDPs), rewards are assigned according to a
function of the last state and action. This is often limiting, when the considered
domain is not naturally Markovian, but becomes so after careful engineering of
an extended state space. The extended states record information from the past
that is sufficient to assign rewards by looking just at the last state and action.
Non-Markovian Reward Decision Processes (NMRDPs) extend MDPs by allowing
for non-Markovian rewards, which depend on the history of states and actions.
Non-Markovian rewards can be specified in temporal logics on finite traces such as
ltlf/ldlf , with the great advantage of a higher abstraction and succinctness; they
can then be automatically compiled into an MDP with an extended state space. In
this chapter, we contribute to the techniques to handle temporal rewards and to the
solutions to engineer them. The chapter is structured as follows:

• Section 11.1 provides the context of this work and the motivations.

• Section 11.2 provides background knowledge: transducers, NMRDPs and
Runtime Monitoring1.

• In Section 11.3, we formally define reward transducers, and the operations
of sum and direct sum over them. In particular, we show how to compile
temporal rewards which merges the formula automata into a single transducer,
sometimes saving up to an exponential number of states.

• In Section 11.4, we extend MDPs using reward transducers; the reward trans-
ducers fully represent the reward function of the MDP.

• In Section 11.5, we show how temporal specifications can capture any Markovian
reward function, and reward functions expressed by reward transducers.

• In Section 11.6, we introduce a novel type of temporal logic specification,
which draws inspiration from the runtime monitoring community. We define
monitoring rewards, which add a further level of abstraction to temporal
rewards by adopting the four-valued conditions of runtime monitoring; we argue
that our compilation technique allows for an efficient handling of monitoring
rewards.

1Some topics, although already present elsewhere in the thesis, are reproposed as they give the
notation for the rest of the chapter.

11.1 Introduction 134

• In Section 11.7, we discuss some applications of monitoring rewards in the
context of Reinforcement Learning classical problems.

• Section 11.8 concludes the chapter.

The contents of this chapter have been published in the conference paper (De
Giacomo, De Masellis, et al., 2020).

11.1 Introduction
In a Markov Decision Process (MDP) (Puterman, 1994) the transition probability

function and the reward function are Markovian, i.e., they depend only on the last
state and action. However, this limitation does not allow for rewarding behaviours
that extend overtime; alternatively, it requires to engineer an extended state space
where states record enough information from the past. To overcome such limitations,
non-Markovian Reward Decision Processed (NMRDP) have been proposed (Bacchus,
Boutilier, and Grove, 1996; Thiébaux et al., 2006). In particular, the idea is to
encode non-Markovian rewards into an MDP by extending the state space, with
minimality guarantees of the resulting MDP.

The same idea, with some variations, has been investigated in more recent works.
In (Icarte, Klassen, et al., 2018a; Camacho, Icarte, et al., 2019; Icarte, Waldie,
et al., 2019), the authors introduce the concept of reward machine, an automata-
based formalism to encode non-Markovian rewards. In (Quint et al., 2019), formal
languages are used to specify soft and hard constraints on actions, by enforcing
constraints on the action space, called action shaping. In (Alshiekh et al., 2018),
an approach based on temporal logic has been used to monitor the actions of an
agent and to prevent the violation of critical safety specifications. In (Brafman, De
Giacomo, and Patrizi, 2018; De Giacomo, Iocchi, et al., 2019), rewards are specified in
the temporal logics ltlf/ldlf (De Giacomo and Vardi, 2013; De Giacomo and Vardi,
2015; De Giacomo and Vardi, 2016). Here the construction of the extended MDP is
based on the correspondence between such logics and finite-state automata (Rabin
and Scott, 1959). Specifically, the extended MDP is obtained as the synchronous
product of a formula’s automata with the automata underlying the NMRDP. All of
these techniques are examples of how much Knowledge Representation can be of
great help for reward specification.

A crucial property of such techniques is the overhead required to handle the non-
Markovianity. Such overhead is introduced in the original state space to generate the
extended MDP over which the learning is performed. It is desirable that the overhead
is the minimum possible since it affects the effectiveness of learning algorithms (e.g.
the exploration phase in Reinforcement Learning (Sutton and Barto, 1998)).

In this work, we want to extend the approach in (Brafman, De Giacomo, and
Patrizi, 2018) while keeping such overhead to the minimum. To do so, we merge
automata of the various formulas used for the rewards into a single transducer
from traces to rewards (i.e. outputs a reward for every prefix of the trace), which
encodes all the temporal specifications in a single finite-state machine. This gives
us further opportunities of minimizations if we do not care from the satisfaction of
which formula a given reward is obtained. Indeed, we show that by giving up this
information, the transducer can be exponentially (in fact factorially) smaller than
the minimal automaton in (Brafman, De Giacomo, and Patrizi, 2018), and never
worse in general. Then, inspired by the literature on monitoring (Bauer, Leucker,
and Schallhart, 2010; Ly et al., 2013; De Giacomo, Masellis, Grasso, et al., 2014),
we devise a way of specifying rewards using ltlf/ldlf which associates reward

11.2 Background 135

not to simply the satisfaction of the formula, but to the four classical monitoring
conditions: the formula is temporarily true, temporarily false, permanently true, and
permanently false. We illustrate the convenience of this kind of ltlf/ldlf reward
specifications and show that these four conditions can be monitored at no additional
cost w.r.t. to satisfaction only, through the use of transducers. Finally, we discuss the
use of such kind of ltlf/ldlf -based reward specifications in reinforcement learning
of non-Markovian specifications.

11.2 Background
MDPs and RL. A Markov Decision Process (MDP) M = ⟨S,A, Tr,R⟩ contains
a set S of states, a set A of actions, a transition function Tr : S × A → Prob(S)
that returns for every state s and action a a distribution over the next state, and a
reward function R : S ×A→ R that specifies the reward (a real value) received by
the agent when transitioning from state s to state s′ by applying action a. We see
states S as truth assignments to a set P of propositional atoms. A solution to an
MDP is a function, called a policy, assigning an action to each state, possibly with a
dependency on past states and actions. The value of a policy ρ at state s, denoted
vρ(s), is the expected sum of (possibly discounted by a factor γ, with 0 ≤ γ ≤ 1)
rewards when starting at state s and selecting actions based on ρ. Typically, the
MDP is assumed to start in an initial state s0, so policy optimality is evaluated w.r.t.
vρ(s0). Every MDP has an optimal policy ρ∗. In discounted cumulative settings,
there exists an optimal policy that is Markovian ρ : S → A, i.e., ρ depends only on
the current state, and deterministic (Puterman, 1994).

Reinforcement Learning (RL) is the task of learning a possibly optimal policy,
from an initial state s0, on an MDP where only S and A are known, while Tr and
R are not—see, e.g., (Sutton and Barto, 1998).

Automata. A (finite-state) automaton is a computational model with limited
capabilities. It can read input strings in a given alphabet, it keeps track of its current
state among finitely many, and it can produce output strings. An automaton whose
output response is limited to a simple ‘yes’ or ‘no’ is called an acceptor. A more
general automaton, capable of producing strings of symbols as output, is called a
transducer.

The most basic kind of automata are deterministic finite automata (DFA) (Rabin
and Scott, 1959). A DFA is a 5-tuple A = ⟨Q,Σ, q0, F, δ⟩ where Q is the (non-empty)
finite set of states, Σ is the set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q × Σ → Q is the transition function. The
extended transition function δ∗ of A is δ∗(q, ε) = q and δ∗(q, wa) = δ(δ∗(q, w), a).
Automaton A accepts a word w if δ∗(q0, w) ∈ F . The language of A, written L(A),
is the set of words that A accepts.

Two fundamental kinds of transducers are Moore machines and Mealy machines.
A Moore machine (Moore, 1956) is a tuple Mo = ⟨Q,Σ,Γ, q0, δ, θ⟩ where Q is the
set of states, Σ is the set of the input symbols, Γ is the set of the output symbols,
q0 is the initial state, δ : Q×Σ→ Q is the transition function, and θ : Q→ Γ is the
output function that maps states to output symbols. The output of Mo on word
a1 . . . an is θ(q0) θ(δ∗(q0, a1)) . . . θ(δ∗(q0, a1, . . . , an)). A Mealy machine Me (Mealy,
1955) is like a Moore machine except that its output function θ : Q× Σ→ Γ maps
transitions to output symbols, instead of states. Hence the output of Me on word
a1 . . . an is θ(q0, a1) θ(δ∗(q0, a1), a2) . . . θ(δ∗(q0, a1, . . . , an−1), an). Note that, for a
Moore machine and a Mealy machine performing the same number of transitions,

11.2 Background 136

the output of a Mealy has one symbol less. A Moore/Mealy machineM corresponds
to the transduction function FM : Σ∗ → Γ∗ that maps its input to its output. That
is, such machines translate words on the input alphabet Σ to words on the output
alphabet Γ. It can be shown that Moore machines and Mealy machines have the
same expressivity, that is, for a Moore machine there exist an equivalent Mealy
machine, and vice versa (Linz, 2006).

An important property that we will use in the next sections is that both DFAs and
Moore/Mealy machines can be minimised, and the resulting minimal automata are
unique (modulo state renaming) for the language they recognise or the transduction
function they represent, respectively.

NMRDPs. A non-Markovian reward decision process (NMRDP) (Bacchus, Boutilier,
and Grove, 1996) is a tuple ⟨S,A, Tr, R̄⟩, where S,A and Tr are as in an MDP
(with each in S being an assignment for propositions P), but the reward R̄ is a
real-valued function over finite state-action sequences (referred to as traces), i.e.,
R̄ : (S × A)∗ → R. Given a (possibly infinite) trace π = ⟨s0, a1, . . . , sn−1, an⟩, the
value of π is: v(π) =

∑|π|
i=1 R̄(⟨π(1), π(2), . . . , π(i)⟩), where π(i) denotes the pair

(si−1, ai). In NMRDPs, policies are also non-Markovian ρ̄ : S∗ → A. Since every
policy induces a distribution over the set of possible infinite traces, we can define
the value of a policy ρ̄, given an initial state s, as: vρ̄(s) = Eπ∼M,ρ̄,sv(π). That is,
vρ̄(s) is the expected value of infinite traces, where the distribution over traces is
defined by the initial state s, the transition function Tr, and the policy ρ̄.

Specifying a non-Markovian reward function explicitly is cumbersome and un-
intuitive, even if only a finite number of traces are to be rewarded. ltlf/ldlf
provides an intuitive and convenient language for non-Markovian rewards (Camacho,
Chen, et al., 2017b; Brafman, De Giacomo, and Patrizi, 2018). Following (Brafman,
De Giacomo, and Patrizi, 2018) we can specify R̄ using a set of pairs {(φi, ri)}mi=1,
where each φi is an ltlf/ldlf formula over the propositions P that selects the
traces to reward, and ri the reward assigned to those traces. When the current
(partial) trace is π = ⟨s0, a1, . . . , sn−1, an⟩, the agent receives at sn each reward ri
whose formula φi is satisfied by π.

From NMRDPs to MDPs. In (Brafman, De Giacomo, and Patrizi, 2018) it is
shown that for any NMRDP M = ⟨S,A, Tr, {(φi, ri)}mi=1⟩, with φi being ltlf/ldlf
formulas, there exists an MDP M ′ = ⟨S′, A, Tr′, R′⟩ that is equivalent to M in the
sense that the states of M can be (injectively) mapped into those of M ′ in such
a way that corresponding (under the mapping) states yield the same transition
probabilities, and corresponding traces have the same rewards (Bacchus, Boutilier,
and Grove, 1996). Denoting with Aφi = ⟨Qi, 2P ×A, qi0, δi, Fi⟩ (notice that S ⊆ 2P

and δi is total) the DFA associated with φi, the equivalent MDP M ′ is as follows:

• S′ = Q1 × · · · ×Qm × S;

• Tr ′ : S′ ×A× S′ → [0, 1] is defined as:

Tr ′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) ={
Tr(s, a, s′) if ∀i : δi(qi, (s, a)) = q′

i
0 otherwise;

11.2 Background 137

• R′ : S′ ×A→ R is defined as:

R′(q1, . . . , qm, s, a) =
∑

i:δi(qi,(s,a))∈Fi

ri

Observe that the state space of M ′ is the product of the state spaces of M and Aφi ,
and that the reward R′ is Markovian. In other words, the (stateful) structure of the
ltlf/ldlf formulas φi used in the (non-Markovian) reward of M is compiled into
the states of M ′.

Theorem 11.1 ((Brafman, De Giacomo, and Patrizi, 2018)). The NMRDP M =
⟨S,A, Tr, {(φi, ri)}mi=1⟩ is equivalent to the MDP M ′ = ⟨S′, A, Tr′, R′⟩ defined above.

Actually this theorem can be refined into a stronger lemma. A policy ρ for
an NMRDP M and a policy ρ′ for an equivalent MDP M ′ are equivalent if they
guarantee the same rewards. Assume M ′ is constructed as above and let ρ′ be
a policy for M ′. Consider a trace π = ⟨s0, a1, s1, . . . , sn−1, an⟩ of M and assume
it leads to state sn. Further, let qin be the state of Aφi on input π. We define
the (non-Markovian) policy ρ̄ equivalent to ρ′ as ρ̄(s0, . . . , sn) = ρ′(q1

n, . . . , q
m
n , sn).

Similarly, given a policy ρ for M , by just tracking the state of the DFAs Aφi , it is
immediate to define the equivalent policy ρ′ for M ′. Hence we have:

Lemma 11.2 ((Brafman, De Giacomo, and Patrizi, 2018)). Given an NMRDP M
and an equivalent MDP M ′, every policy ρ′ for M ′ has an equivalent policy ρ̄ for M
and vice versa.

Moreover, as observed by (De Giacomo, Iocchi, et al., 2019), it is possible to
do RL over the M ′ equivalent to M . Being M ′ an MDP, this can be done by
off-the-shelf RL algorithms (e.g., Q-learning and SARSA). Of course, neither M nor
M ′ are (completely) known to the learning agent, and the transformation is never
done explicitly. Rather, during the learning process, the agent assumes that the
underlying model has the form of M ′ instead of that of M .

Theorem 11.3 ((De Giacomo, Iocchi, et al., 2019)). RL for ltlf/ldlf rewards
over an NMRDP M = ⟨S,A, Tr, {(φi, ri)}mi=1⟩, with Tr and {(φi, ri)}mi=1 hidden to
the learning agent can be reduced to RL over the MDP M ′ = ⟨S′, A, Tr′, R′⟩ defined
above, with Tr′ and R′ hidden to the learning agent.

Runtime Monitoring. We will borrow the four-valued semantics of runtime
monitoring on finite traces (Bauer, Leucker, and Schallhart, 2010; Ly et al., 2013;
De Giacomo, Masellis, Grasso, et al., 2014). Given an ltlf/ldlf formula φ and a
trace π, we say that:

• φ is temporarily true in π if π satisfies φ and there is a continuation of π that
does not satisfy φ, and we write π |= Jφ = temp_trueK;

• φ is temporarily false in π if π does not satisfy φ and there is a continuation
of π that satisfies φ, and we write π |= Jφ = temp_falseK;

• φ is permanently true in π if π and all its continuations satisfy φ, and we write
π |= Jφ = perm_trueK;

• φ is permanently false in π if π and all its continuations do not satisfy φ, and
we write π |= Jφ = perm_falseK.

11.3 Reward Transducers 138

11.3 Reward Transducers
In the literature, several approaches have been proposed to automatically extend

MDPs so to capture non-Markovian or temporally-extended rewards. The central idea
is to extend states with sufficient information from the past. In (Bacchus, Boutilier,
and Grove, 1996; Thiébaux et al., 2006) rewards are expressed by using variants of
ltl, and states are extended by suitably annotating them exploiting the structure
of the reward formulas. In (Littman, 2015b; Littman et al., 2017) the necessity of
a declarative mechanism for expressing complex rewards was again brought about
to tame the difficulty of reward engineering in complex systems. In (Brafman, De
Giacomo, and Patrizi, 2018) rewards where expressed using ltlf/ldlf temporal
logic on finite traces, which are first translated into DFAs, and then the extended
MDP is obtained as the cross product of such DFAs with the original MDP—as
discussed in Chapter 8. This approach is applied to reinforcement learning in (De
Giacomo, Iocchi, et al., 2019).

In (Icarte, Klassen, et al., 2018a; Camacho, Icarte, et al., 2019) the idea of
handling non-Markovian rewards through a finite machine (as a DFA) is decoupled
from where the machine comes from (e.g., from an ltlf specification) and the focus
becomes the machine itself, called “reward machine”.

In this work we first focus on reward machines directly as in (Icarte, Klassen,
et al., 2018a; Camacho, Icarte, et al., 2019), introducing the general notion of reward
transducers; then later we will show some advanced way of declaratively specifying
such transducers that extend the ideas in (Bacchus, Boutilier, and Grove, 1996;
Thiébaux et al., 2006; Brafman, De Giacomo, and Patrizi, 2018).

In our context, a reward transducer maps MDP traces of the form π = ⟨(s0, a1), (s1, a2), . . . , (sn−1, an)⟩
to sequences of rewards r1, r2, . . . , rn (i.e. it outputs a reward for every prefix of the
trace).

Definition 11.4. For states S and actions A, a reward transducer is a transducer
with input alphabet S ×A and output alphabet R ⊂ R. A Moore (or Mealy) reward
machine is a reward transducer that is a Moore (Mealy) machine.

Thus, we can define any non-Markovian reward function R̄ as a transduction
function and we can implement it as a transducer. We observe that a temporal
specification (φ, r) can be transformed into an equivalent reward transducer. Indeed,
we can transform the associated DFA Aφ into the Moore machine Mφ

o = ⟨Q, 2P ×
A, {0, r}, q0, δ, θo⟩ where Q, q0 and δ are defined as in Aφ, and θo(q) = 0 if q ̸∈ F ,
θo(q) = r otherwise. That is, the Moore machine outputs 0 for every prefix that
does not satisfy φ and outputs r for every prefix that satisfies it. Analogously we
can define a Mealy machine Mφ

e = ⟨Q, 2P × A, {0, r}, q0, δ, θe⟩ where everything
is defined like in the Moore machine but θe(q, (s, a)) = r if δ(q, (s, a)) ∈ F , and 0
otherwise.

Sum of Reward Transducers. We now define the sum of two Moore reward
machines M1

o = ⟨Q1,Σ,R1, q10, δ1, θ1⟩ and M2
o = ⟨Q2,Σ,R2, q20, δ2, θ2⟩, which is a

Moore reward machine outputting the sum of the rewards of the two initial machines.
Formally, the sum machine M′

o =M1
o +M2

o is ⟨Q,Σ,R, q0, δ, θo⟩ where:

• Q = Q1 ×Q2;

• R = {r1 + r2 | r1 ∈ R1, r2 ∈ R2};

• q0 = (q10, q20);

11.4 Extending MDPs via Reward Transducers 139

q0, 0start

q1, 1

¬a

a

true

(a) M1
o

q0, 2start

q1, 0

¬b

b

true

(b) M2
o

q00, 2start

q10, 3

q01, 0

q11, 1

¬a ∧ b
b

¬a

true

a ∧ b

¬a ∧ ¬b

a ∧ ¬b

¬b

a

(c) M′
o =M1

o +M2
o

Figure 11.1. In Figure (a), the Moore reward machine M1
o for the temporal specification

(♢a,+1). In Figure (b), Moore reward machine M2
o for the temporal specification

(□b,+2). In Figure (c), the Moore machine of the sum of M1
o and M2

o.

• δ = {(q1, q2) σ−→ (q′
1, q

′
2) | ∀i ∈ {1, 2}. qi

σ−→ q′
i ∈ δi};

• θo = {(q1, q2) 7→ r1 + r2 | ∀i ∈ {1, 2}. θi(qi) = ri}.

It is a standard cross-product construction, where the output of each new state is the
sum of the outputs of the corresponding old states. As a result of the construction,
the transduction function implemented by M1

o +M2
o is the sum of the functions of

M1
o andM2

o, i.e., FM1
o+M2

o
= FM1

o
+FM2

o
. The sum of two Mealy reward machines

is defined very similarly to the sum of two Moore reward machines. The only thing
that changes is how the output function is built:

θe = {((q1, q2), σ) 7→ r1 + r2 | ∀i ∈ {1, 2}. θi(qi, σ) = ri}.

Direct Sum of Reward Transducers. If the two machines are basically the same
machine except for the output function, then we can build a sum machine simply by
taking the sum of their output function. In this case we call the two machines shape-
equivalent—a notion inspired by the shape-equivalence for DFAs in (De Giacomo,
De Masellis, et al., 2020). Specifically, M1

o and M2
o are shape-equivalent if differ

only in their output, or in other words have the same states, input alphabet, initial
state, and transition function. For such machines, we can then define the direct sum
machineM1

o⊕M2
o = ⟨Q,Σ,R, q0, δ, θ⟩ where Q, Σ, q0, and δ are the common states,

input alphabet, initial state, and transition function, respectively, R is defined as
for M1

o ⊕M2
o, and θ = θ1 + θ2. It is again the case that FM1

o⊕M2
o

= FM1
o

+ FM2
o
.

Whenever in the following we take the sum of two machines, we can instead take
their direct sum if we know that they are shape-equivalent. The same definition
applies to the Mealy reward machines, except that the transition function depends
on a state-symbol pair, rather than just a state.

In Figure 11.1, we show the Moore reward machines for the temporal specifications
(♢a,+1) and (□b,+2) and their sum. In Figure 11.2, we show the equivalent Mealy
reward machines.

11.4 Extending MDPs via Reward Transducers
Rewarding complex behaviours is a challenging task, and temporal logic provides

the right level of abstraction to address the problem (Littman, 2015b; Littman et al.,

11.4 Extending MDPs via Reward Transducers 140

q0start

q1

¬a/0

a/1

true/1

(a) M1
e

q0start

q1

b/1

¬b/0

true/0

(b) M2
e

q00start

q10

q01

q11

¬a ∧ b/2

b/3

¬a/0

true/1
a ∧ b/3

¬a ∧ ¬b/0

a ∧ ¬b/1

¬b/1

a/1

(c) M′
e =M1

e +M2
e

Figure 11.2. Here we show the same specifications depicted in Figure11.1, but implemented
as Mealy reward machines. In Figure (a), the Mealy reward machine M1

e for the
temporal specification (♢a,+1). In Figure (b), Moore reward machine M2

e for the
temporal specification (□b,+2). In Figure (c), the Mealy machine of the sum of M1

e

and M2
e.

2017). This is the philosophy behind NMRDPs with ltlf/ldlf rewards (Brafman,
De Giacomo, and Patrizi, 2018). NMRDPs can be reduced to MDPs, and hence
solved using off-the-shelf algorithms for MDPs. This comes, however, at the cost of
an extension of the state space, which is required to keep track of the state of partial
satisfaction of the temporal rewards. Such an extension introduces an overhead
which is necessary to deal with non-Markovianity, but it is a computational cost for
the algorithm that has to solve the resulting MDP. It is then important to keep such
an overhead to a minimum.

Definition 11.5. Given an NMRDP M with state space S and an equivalent MDP
M ′ with state space S′, the state overhead of M ′ on M is |S′| − |S|.

In this section, we propose a novel construction for the extended MDP, that
achieves a significantly smaller state overhead by using reward transducers introduced
in the previous section, instead of DFAs, to assign rewards. In particular, we can
define an MDP that plays the same role as the one described in (Brafman, De
Giacomo, and Patrizi, 2018), with the exception that it does not keep track of which
formula the reward comes from. We use a Moore reward machine, which is the sum
of the Moore machines for the single rewards—rather than the cross product of the
DFAs for the reward formulas.

Consider an NMRDP M = ⟨S,A, Tr, {(φi, ri)}mi=1⟩, and let Mi
o be the Moore

reward machine for (φi, ri). We defineMo = ⟨Qo, 2P×A,Ro, q0, δo, θo⟩ as the Moore
reward machine obtained by minimising the sum of all the other Moore reward
machines, i.e., Mo is the minimum machine equivalent to M1

o + · · · +Mm
o . We

derive the new MDP Mo = ⟨So, A, Tro, Ro⟩ as follows:

• So = S ×Qo;

• Tro : So ×A× So → [0, 1] is defined as:

Tro((q, s), a, (q′, s′)) ={
Tr(s, a, s′) if δo(q, (s, a)) = q′

0 otherwise;

11.4 Extending MDPs via Reward Transducers 141

• Ro : So ×A→ R is defined as:

Ro((q, s), a) = θo(δo(q, (s, a)))

We have that Mo is equivalent to M ′ as for Theorem 11.1, and hence to M . We
formalize this observation in the following theorem.

Theorem 11.6. The NMRDP M and the MDP Mo are equivalent.

Proof. We need to prove that Mo is equivalent to M ′, since the equivalence between
M and M ′ is a consequence of Theorem 11.1. Notice that, by construction, So is
isomorphic to S′, and so is Tro to Tr′, due to the definition of δ. Finally, notice
that θo(q) =

∑
i θ
i
o(qi), where θio(qi) = ri when qi ∈ Fi, so Ro is simply a compact

representation of R′.

The minimisation step in the construction above is important. Even assuming
that the machines Mi

o are minimum, their sum machine may not be; thus, the
minimisation step is required to minimise the state space of the resulting MDP Mo,
hence the state overhead of Mo on M .

Now that we have defined the extended MDP construction based on Moore
machines we show that such a construction can significantly reduce the state overhead.
In fact, it can achieve an exponential improvement (in fact, factorial), as argued in
the following theorem.

Theorem 11.7. For every n ≥ 1, there is an NMRDP M such that (i) the equivalent
MDP M (as in Theorem 11.1) has state overhead Ω(n!) on M , and (ii) the equivalent
MDP Mo (as introduced this section) has state overhead O(n) on M .

Proof. Consider a set of propositions P = {p1, . . . , pn} and an NMRDP M =
⟨2P , {ins, del} × P, T r, {(φi, 1)}ni=1} where each φi is of the form:

◦i(¬p1 ∧ · · · ∧ ¬pi−1 ∧ pi ∧ ¬pi+1 ∧ · · · ∧ ¬pn)

and Tr consists of transitions

(s, (ins, p)) 7→ (s ∪ {p}) and (s, (del, p)) 7→ (s \ {p}).

for each p ∈ P and each s ∈ 2P . Intuitively, we can insert and delete propositions
to/from states, and at the i-th step we get rewarded if pi is true and the other
propositions are false. The minimum DFA for φi has Ω(i) states. As a result, the
MDP M ′ has state overhead Ω(n!). Now we argue that the state overhead of Mo is
O(n). A Moore reward machineMi

o for (φi, 1) has states s0, . . . , si, and a transition
from sj to sj+1 for each j ≤ i − 1 and each input symbol, and it outputs 0 in all
transitions but the last one, where it outputs 1 if it reads {pi}. The minimum reward
machine Mo equivalent to the sum of the machines Mi

o has states s0, . . . , sn, and
transitions from sj to sj+1 for each j ≤ n − 1 and each input symbol, with the
output at the i-th transition being 1 for input {pi}, and 0 otherwise.

Moreover the approach based on transducers never does worse than the one
based on DFAs.

Theorem 11.8. For every NMRDP M , the equivalent MDP Mo (as introduced in
this section) has state overhead smaller than or equal to the state overhead of the
MDP M ′ (as in Theorem 11.1).

11.5 Rewards as Temporal Specifications 142

Proof. It suffices to notice that in both cases we can build an extended state space
based on the cross product of the states of automata for the reward formulas.

Considering that our goal is to keep the state overhead to a minimum, we
next focus on Mealy reward machines. Mealy machines will allow us to save on
states, since they can represent Moore machines using possibly less states and
never more. In particular, we define a construction that leverages Mealy reward
machines, instead of Moore reward machines. Note that every Moore machine can
be transformed into a Mealy machine by composing its output function with its
transition function. Hence, from the MDP Mo = ⟨So, A, Tro, Ro⟩, we can construct
a new MDP Me = ⟨Se, A, Tre, Re⟩ where everything is defined as in Mo except
Re : Se ×A→ R that is defined as:

Re((q, s), a) = θe(δo(q, (s, a)))

Theorem 11.9. The NMRDP M and the MDP Me are equivalent.

Proof. By construction, Me is equivalent to Mo, and by Theorem 11.6 and Theorem
11.1, the thesis follows.

11.5 Rewards as Temporal Specifications
In this section we argue for the case of the temporal logics ldlf/ltlf as an

appropriate language to specify rewards. In particular, they capture Markovian
rewards without loss of efficiency (using transducers) and they can be more succinct.

Capturing Markovian rewards. We start by showing how any MDP M can be
represented as an NMRDP Mnmr without loss of efficiency in terms of number of
states. Specifically, we mean that Mnmr has the same states as M , and Mnmr can
be automatically encoded back into an MDP M ′ which has again the same states
of the original MDP M . Consider an MDP M = ⟨S,A, Tr,R⟩. Such an MDP is
captured by the following NMRDP:

Mnmr = ⟨S,A, Tr, {(φ(s,a), R(s, a))}s∈S,a∈A⟩

where φ(s,a) has the form ♢(s∧a∧Last)—note that R(s, a) is the Markovian reward
when the last state and action are s and a, respectively. First, we argue that Mnmr
correctly encodes the given MDP M .

Theorem 11.10. The MDP M and the NMRDP Mnmr are equivalent.

Proof. By construction, the non-Markovian rewards depend only on the last state-
action pair, i.e., they are Markovian, although formalized as non-Markovian. Hence,
from a non-Markovian policy ρ̄, we can build an equivalent Markovian policy ρ by
ignoring the history but the last state. Analogously, from ρ we can define a ρ̄ such
that for all the possible traces π = ⟨(s0, a1), . . . , (sn−1, an)⟩ that end up in state sn,
we have ρ̄(s0, . . . , sn) = ρ(sn).

For further clarity, in Figure 11.3 is depicted the DFA corresponding to a generic
φ(s,a). Then, we can convert the NMRDP Mnmr into an equivalent MDP Me using
a construction based on a Mealy machine, as discussed in Section 11.3. The involved

11.5 Rewards as Temporal Specifications 143

q0start q1

¬s ∨ ¬a

s ∧ a

s ∧ a

¬s ∨ ¬a

Figure 11.3. Automaton corresponding to φ(s,a) = ♢(s ∧ a ∧ last)

Mealy machine is a straightforward state-less encoding of R, and it is depicted in
Figure 11.4. Most importantly, Me has state space Se = S × Qe = S × {q0} that
is isomorphic to the original state space S, given the fact that Qe is a singleton.
This shows two points in favour of our transducer-based approach: (i) it is able
to fully capture Markovian reward functions, at no cost of additional states; (ii) it
is a significant improvement over the construction based on DFAs (Brafman, De
Giacomo, and Patrizi, 2018) (see Theorem 11.1 in the background section), since it
allows to handle Markovian rewards seamlessly without incurring an exponential
blow-up of the state space (which in the DFA-based approach is due to the Cartesian
product of the reward automata Aφi).

Capturing reward transducers. Temporal specifications capture Moore (and
Mealy) reward machines. To see this, consider a Moore reward machine Mo =
⟨Q,Σ,R, q0, δ, θo⟩. For each q ∈ Q, let Aq be the DFA ⟨Q,Σ, q0, {q}, δ⟩, and let
φq = ⟨ϱq⟩End with ϱq a regular expression that captures the language L(Aq). Notice
that Mo is captured by the temporal specification {(φq, θo(q))}q∈Q. Mealy reward
machines can be captured as well, since they can be converted into Moore reward
machines. On the other hand, specifications can always be compiled into a reward
transducer, as discussed in Section 11.3. Furthermore, temporal specifications can be
more succinct than Moore (and Mealy) reward machines, as shown in the following
theorem.

Theorem 11.11. There is a family of non-Markovian rewards R̄n that admit an
ltlf specification of size O(n2) and only reward machines of size Ω(22n).

Proof. Consider a set A of at least two actions that an agent can perform. In
addition, the agent can perform an action e(nd) that marks the end of a sequence of
actions, and can observe a c(ommand). We use a construction from (Kupferman
and Vardi, 2005), adapted to finite traces in (De Giacomo and Rubin, 2018). The
construction consists of the regular language

Ln = {(A+ e)∗ · e · s · e · (A+ e)∗ · c · s · e+ | s ∈ An}

and of its ltlf specification

φn =
(
¬cU

(
c ∧

∧n
i=1◦i (∨a∈A a) ∧◦n+1□e

))
∧

♢
(
e ∧

∧n
i=1

∨
a∈A◦ia ∧□

(
c→ ◦ia))

.

The construction has two key properties: (i) the size of φn is O(n2), and (ii) the
size of the minimum DFA for Ln is Ω(22n) (Chandra, Kozen, and Stockmeyer,
1981). Consider now the reward function R̄n that assigns reward 1 to traces in Ln.
Intuitively, we reward the agent to initially perform sequences of actions from A with
each sequence ended by the action e, and then, upon seeing the command c, perform

11.6 Monitoring Rewards 144

q0start

s0 ∧ a0/R(s0, a0)
. . .

sN ∧ aM/R(sN , aM)

Figure 11.4. Mealy reward machine that encodes the Markovian reward function R. It
has a unique state with a self-loop for each domain value of R.

a sequence s of length n already performed before. The reward R̄n is captured by
the specification (φn, 1) which has size O(n2), and every reward machine for R̄n has
size Ω(22n) since it is at least as big the minimum DFA for Ln.

Specifying common rewards in logic. It is often the case that we can represent
the same transition-based reward function R with much less effort, by specifying
a non-Markovian reward fully specified by a much more intelligible ltlf formula.
For example, consider the Mountain Car environment (Moore, 1991) a well-known
problem in the RL literature and in the research community. The traditional
transition-based reward function R is usually implemented using the If-This-Then-
That pattern (IFTTT), namely “as long as the car has not reached the goal, give
reward -1.0". Such statement in natural language can be formalized into a temporal
specification, whilst being relatively close in terms of readability to its original
formulation. By Theorem 11.10, we know we can always represent such reward
function with temporal specifications. The reward function of that environment
can be represented by the specification (φ,−1.0) where φ = ¬♢p and p means the
car has reached the goal, a proposition opportunely extracted from the state space.
By translating the formula into a DFA Aφ and employing the compilation into the
equivalent MDP as explained in Section 11.2, we make such non-Markovian reward
learnable by classic RL algorithms. Thus, we can specify rewards using high-level
formal specifications, and then compile them automatically into standard models
compatible with solvers.

To pursue the analogy with software engineering: the “raw” R is binary language,
the equivalent {(φ(s,a), R(s, a))}s∈S,a∈A is the decompiled program in a high-level
language, say the C++ language, and the ltlf formulas are programs written in that
language. We advocate that temporal specifications using proper formal languages
becomes the standard for reward engineering.

11.6 Monitoring Rewards
In this section, we define monitoring rewards, an extension of temporal rewards

based on the four satisfaction conditions from runtime monitoring on finite traces
(De Giacomo, Masellis, Grasso, et al., 2014). They provide an additional layer of
abstraction which allows one to focus on one condition φ and to assign different
rewards based on how the current trace satisfies φ. Furthermore, in some cases,
monitoring rewards allow one to derive the value of future rewards, giving additional
guidance to the learning process.

Example 11.12. The condition “never p or eventually q” can be temporarily true,
temporarily false, or permanently true. We can define a monitoring reward that

11.6 Monitoring Rewards 145

returns 1 when the condition is temporarily true, −1 when temporarily false, and 10
when permanently true.

Definition 11.13. A monitoring reward is a 5-tuple ⟨φ, r, c, s, f⟩ where φ is a
temporal formula and r, c, s, f are integers; we call φ the reward formula and
r, c, s, f the reward values.

When a monitoring reward of the form above is specified, an agent receives a
reward value r (reward) when φ is temporarily true in the current partial trace, c
(cost) when it is temporarily false, s (success) when permanently true, and f (failure)
when permanently false. We call each of the former cases a reward condition. If not
stated otherwise, we assume that r ≥ 0, s ≥ 0, c ≤ 0 and f ≤ 0, as we consider this
the natural interpretation of the four conditions. If multiple monitoring rewards are
given at the same time, then the agent receives the sum of the values computed for
each monitoring reward. We can now formalise the monitoring reward given in the
previous example.

Example 11.14. Consider the monitoring reward:

⟨(□¬p) ∨ (♢q), 1,−1, 10, 0⟩.

If p does not hold anytime in the current trace, and the same holds for q, then the
agent receives reward 1. If p does hold sometimes in the current trace, and q does
not hold anytime, then the agent receives −1. If q holds sometimes in the current
trace, then the agent receives 10.

We have that exactly one of the reward conditions is true at any moment,
because a formula is either temporarily true, temporarily false, permanently true, or
permanently false in a trace.

Theorem 11.15. π |= Jφ = T K holds for exactly one T from {temp_true, temp_false, perm_true, perm_false}.

Proof. We have that π |= φ implies that either π |= Jφ = temp_trueK or π |= Jφ =
perm_trueK, and similarly for the dual case π ̸|= φ. Then, the theorem follows from
the fact that either π |= φ or π ̸|= φ.

When the reward condition is permanently true (or false) in the current trace,
the agent will keep receiving the same reward value. In fact, the reward condition
will be permanently true (resp., false) at any future step, and in particular will not
become temporarily true or false.

Theorem 11.16. For T ∈ {perm_true, perm_false}, we have that π |= Jφ = T K
implies ππ′ |= Jφ = T K for every trace extension π′—and hence ππ′ ̸|= Jφ = T ′K for
T ′ ∈ {temp_true, temp_false}.

As a consequence of the previous theorem, if we are interested in traces of a fixed
length (e.g., episodes in RL), the total reward value on a trace can be computed as
soon as the reward condition becomes permanently true or false. This ability can be
used to better guide the learning process.

Each monitoring reward (φ, r, c, s, f) admits the equivalent dual form (¬φ, c, r, f, s),
where we negate the formula and swap values for reward and cost, and for success and
failure. To see the equivalence, it suffices to note that a φ is temporarily/permanently
true iff ¬φ is temporarily/permanently false.

Theorem 11.17. Monitoring rewards (φ, r, c, s, f) and (¬φ, c, r, f, s) return the
same value on every trace.

11.6 Monitoring Rewards 146

q0, rstart q1, r

q2, c

q3, s

q4, fa ∧ ¬b

true

true

true

a ∧ ¬b

b

¬a ∧ ¬b
b

¬a ∧ ¬b

Figure 11.5. Moore machine for ⟨•(aU b), r, c, s, f⟩. States are color-coded based on
the condition they monitor: purple for temp_true, yellow for temp_false, green for
perm_true, and red for perm_false.

Monitoring rewards capture ldlf/ltlf specifications as in (Brafman, De Gi-
acomo, and Patrizi, 2018). Specifically, a specification (φ, r) can be restated as
the monitoring reward (φ, r, 0, r, 0). What is less obvious is that each monitoring
reward can be expressed as a set of four ldlf specifications. In fact, the four reward
conditions can be directly expressed in ldlf without any meta-logical machinery (De
Giacomo, Masellis, Grasso, et al., 2014).2 So a reward (φ, r, c, s, f) can be restated
as a set of specifications {(φr, r), (φc, c)(φs, s), (φf , f)}.

Since ldlf rewards capture monitoring rewards, we can turn an NMRDP with
monitoring rewards into an equivalent MDP using the extended MDP construction
based on DFAs (Brafman, De Giacomo, and Patrizi, 2018). We argue that this
construction introduces an unnecessary state overhead in the case of monitoring
rewards. In fact, the formulas φr, φc, φs, φf (and also φ) admit shape-equivalent
DFAs, as an immediate consequence of Theorem 3 and Corollary 1 of (De Giacomo,
De Masellis, et al., 2020). Thus, the corresponding Moore reward machines can
be combined into a single machine by taking the direct sum—see Section 11.3. In
particular, the resulting reward machine has the same number of states as the DFA
for φ, and hence we have the same state overhead of a simple reward specification
(φ, rφ).

Example 11.18. Consider the monitoring reward:

⟨•(aU b), r, c, s, f⟩.

In Figure 11.5 we show the equivalent Moore reward machine. This is the result of a
direct sum between 4 Moore machines, where each of them models one condition at
a time. The conditions are highlighted with different colors per state.

As a result, monitoring rewards introduce no additional state overhead compared
to simple temporal rewards.

Theorem 11.19. If an NMRDP ⟨S,A, Tr, (φ, rφ)⟩ admits an equivalent MDP which
introduces a state overhead n, then every NMRDP of the form ⟨S,A, Tr, (φ, r, c, s, f)⟩
admits an equivalent MDP which introduces state overhead n.

2Note that we need ldlf and not simply ltlf because we need to represent prefixes of traces.

11.7 Applications in RL 147

Figure 11.6. An RL scenario with monitoring rewards.

11.7 Applications in RL
One field that can benefit from the approach described is Reinforcement Learning.

Indeed, most RL algorithms assume the underlying hidden model to be an MDP.
Hence, the approach described in the previous sections can be very useful for RL.
The idea is that we can give a specification at a high level of abstraction on how
to give rewards. The rewards are then given by the induced reward transducer, as
explained earlier in this work. Moreover, being the overhead the smallest possible,
algorithms on such MDPs are more effective.

Reward engineering is a very crucial task when devising RL domains. The
specification of reward functions can be cumbersome and error-prone, breaking RL
algorithms in surprising, counterintuitive ways. This phenomenon is known in the
community as reward hacking (Amodei et al., 2016). An illustrative example is
shown in (Clark and Amodei, 2016). Here, we propose that the experiment designer
can specify monitoring of temporal specification to have a finer control on the reward
given to the agent, despite having a concise, human-friendly language like ltlf/ldlf .
We argue that is more convenient to think in terms of monitoring rewards of the
form (φ, r, c, s, f) than temporal specifications of the form (φ, r).

In Figure 11.6 is depicted the scenario we have in mind. The world states are
described by propositional features. The agent acts in an environment and observes
such features to take the next action. Each observation is passed to a monitor that
interpret the observation, updates its state and produces a reward signal that is
then given to the agent. In this way, the agent’s behaviour is implicitly driven by
the monitor via rewards, specified at high-level by the designer. In the rest of this

11.7 Applications in RL 148

q0start

q1

¬goal/c

goal/s

true/s

(a) ♢goal

q0start

q1

¬failure/r

failure/f

true/f

(b) □¬failure

q0start

q1 q2

¬cliff ∧ ¬goal/c

goal/s cliff /f

true/s true/s

(c) ¬cliff U goal

Figure 11.7. In (a) the Mealy reward machine for (♢goal, r, c, s, f), in (b) the Mealy
reward machine for (□¬failure, r, c, s, f), and in (c) the Mealy reward machine for
(¬cliff U goal, r, c, s, f).

section, we will describe potential applications of our approach.

Mountain Car. The Mountain Car environment (Moore, 1991) is a classic RL
problem. The state space is the set of pairs ⟨position, velocity⟩. A reward of −1
is given at each timestep. The goal state is when position ≥ 0.5. We model the
reward function with a monitoring temporal specification (♢goal, 0,−1, 0, 0), where
goal is a fluent that is true when (position ≥ 0.5), false otherwise. The training
is performed over the extended MDP, where the state space is the cross product
between the original MDP state space and the Mealy reward machine, shown in
Figure 11.7a. Notice that the reward assignment is completely handled by the
framework, according to the current simulation of the machine, in a given episode.
Specifications of the form ♢p, when p is a state formula, are useful to capture
achievement goals, i.e. a condition that must be satisfied in the future, before the
end of the trace.

Cart Pole. In the Cart Pole environment (Barto, Sutton, and Anderson, 1983),
the goal is to prevent a pendulum from falling over. The state space is the set of
tuples ⟨position, velocity, pole_angle, pole_velocity⟩. A reward signal of +1 is given
at each time step. The failure states are the ones satisfying |pole_angle| ≥ 12◦

or |position| ≥ 2.4. We model the reward function with a monitoring temporal
specification (□¬failure,+1, 0, 0, 0), where failure is true in failure states. The
associated Mealy reward machine is shown in Figure 11.7b. Specifications of the
form □q, when q is a state formula, are useful to capture maintenance goals, i.e.,
conditions that must be satisfied until the end of the trace.

Cliff Walking. A task that is both achievement and maintenance is the approach-
avoid task, expressed by the formula ¬failure U goal. An instance of such task is the
Cliff Walking environment in Ch. 6 of (Sutton and Barto, 1998). In this kind of
gridworld, the reward is -1 on all transitions except those into a special region at the
bottom of the grid, representing “the cliff". Stepping into this region incurs a reward
of -100 and makes the simulation to fail. The goal is to reach a specific goal state,
whereas the cliff region constitutes the set of failure states. Such reward function
can be captured by the monitoring specification (¬cliff U goal, 0,−1,+1,−100).
Other examples of environments that can be modeled in the same way are Frozen
Lake (OpenAI, 2016), the 4x3 world in Ch. 21 of (Russell and Norvig, 2010), and
WaterWorld domain (Karpathy, 2015).

11.8 Summary and Discussion 149

Taxi domain. In the Taxi domain (Dietterich, 2000) there are 4 locations and
the goal is to pick up the passenger at one location (the taxi itself is a possible
location) and drop him off in another. The reward is +20 points for a successful
drop-off, and -1 point for every timestep it takes. There is also a -10 reward signal
for illegal pick-up and drop-off actions. The goal state is when the passenger is
dropped off at the right place. We can model the Taxi problem as a sequence
task: (♢(p ∧ ♢q), 0,−1,+20, 0), where p means “pick up the passenger" and q
means “drop-off the passenger to the right location". The bad action penalty is
another temporal specification (♢bad_action,−10, 0, 0, 0). Although we use two
temporal specification, we remind that both get compiled into a more compact
single Mealy reward machine. Other RL environments that have sequential tasks are
the Minecraft environment (andreas2017modular), the task to break columns in
order in Breakout or to visit colors in Sapientino (De Giacomo, Iocchi, et al., 2019).

11.8 Summary and Discussion
In this work we have formalised the notion of overhead as the state extension

introduced to describe an NMRDP in the form of an MDP. We have considered
the overhead introduced by approaches that directly use the DFAs for the reward
formulas (Brafman, De Giacomo, and Patrizi, 2018), and argued that part of that
overhead is unnecessary if we are not interested to know which reward specifications
are accountable for the rewards assigned at any given moment. We have shown
that, giving up that information, approaches based on reward machines can build
exponentially (in fact factorially) smaller extended MDPs, while never doing worse
than direct use of DFAs. We have argued that the temporal logics ldlf/ltlf are an
appropriate language to specify rewards, and then extended temporal specifications
to monitoring specifications, which build on the four classic monitoring conditions
allowing a reward designer to assign rewards based on temporary/permanent satisfac-
tion of a temporal formula. We have shown how transducer-based approaches allow
for implementing monitoring specifications at no extra cost compared to reward
specifications; in other words, the extension from one condition to four conditions
comes for free. Finally, we have applied monitoring rewards to reinforcement learn-
ing, showing how they can be used to capture the reward functions of popular RL
environments. As a future work, we would like to provide a reasoning service that
reports to the user whether one of the monitoring condition cannot be satisfied.

150

Chapter 12

Domain-independent reward
machines for modular
integration of planning and
learning

Integrating planning and learning components has many advantages in practical
applications, as it allows for combining the different benefits of the two approaches:
prediction of future states from planning with adaptivity to current situations from
learning. However, a problem with is approach is that the two components should
share a common representation of the information about the environment (e.g., states
and actions). Previous work addresses this problem in the case where planning and
learning are defined over different state variables, by defining a joint state space and
a mapping between the two representations. In this chapter, we present a method
for integrating planning and reinforcement learning using a modular design where
the two components can use their own representation formalism, without requiring
an explicit mapping between them. More specifically, we introduce the concept of
domain-independent reward machines, generated by a goal-oriented planning system
and use them to drive a reinforcement learning agent to reach a goal state. Moreover,
we show how to automatically generate and use sub task decomposition to speed up
the reinforcement learning process.

The rest of this chapter is structured as follows:

• Section 12.1 introduces the problem and gives the motivations for the work.

• Section 12.2 briefly surveys relevant and similar work.

• Section 12.3 formalizes the problem,

• Section 12.4 provides a solution to the problem.

• Section 12.5 shows the advantages of the approach in several use cases.

• Section 12.6 concludes the chapter.

The contents of this chapter have been published in the workshop paper (De
Giacomo, Favorito, Iocchi, et al., 2021).

12.1 Introduction 151

12.1 Introduction
Reinforcement Learning (RL) (Sutton and Barto, 1998) is a powerful tool for

computing optimal behaviors of an agent, by collecting experience during the
execution of some task and without requiring any knowledge about the environment’s
model. Many algorithms have been developed to explore the environment in an
efficient way. Some model-based approaches aim at reconstructing the underlying
dynamic system, typically a Markov Decision Process (MDP), during the learning
phase. A more recent one also aims at extracting knowledge (using a symbolic
formalism) from RL trials.

Hierarchical RL (HRL) is an extension of RL, where the problem is organized
in a hierarchy of sub-problems, with the aim of speeding up the learning process.
The use of factored MDPs, i.e., where states are modeled using state variables, in
model-based RL allows for introducing a-priori knowledge expressed in a symbolic
formalism.

In these approaches, the model is fully specified, and this includes mappings
that relate the various hierarchical levels. However, HRL typically takes advantage
of Knowledge Engineering (i.e., knowledge representation and reasoning tools) to
speedup the learning process, rather than for specifying goals.

Very recent works have adopted logical specifications to express (temporal) goals.
When temporal logics, such as LTL , are used, problems involving Non-Markovian
rewards can easily be formalized (i.e., Non-Markovian Reward Decision Processes,
NMRDP). Examples of such approaches include Reward Machines (Icarte, Klassen,
et al., 2018b) and Restraining Bolts (De Giacomo, Iocchi, et al., 2019), which exploit
finite-state machines as a way to specify RL agents’ rewards.

When hierarchical structures are considered, several mechanisms to speed up the
learning process can be used, such as options (Sutton, Precup, and Singh, 1999),
policy sketches (Andreas, Klein, and Levine, 2017), etc. However, such previous
approaches require additional modelling effort and, in hierarchical settings, also a
mapping between the different representation layers. Automatic generation of sub
tasks in HRL is still an open problem.

In this work, we start from the work described in (Icarte, Klassen, et al., 2018b),
where HRL, non-Markovian rewards, and task decomposition, are combined into
the Reward Machine framework. Similarly to that, we also consider two separate
representation layers, one for the goal and one for the learning agent, but do not
require any mapping between them. Specifically, we consider the setting depicted
in Fig. 12.1, where three distinct modules are used to learn an optimal behavior
(policy) over the environment:

• a planning module, which performs high-level offline reasoning and generates
a plan π, used to guide, and speedup, the learning process;

• a reward machine, which is, essentially, a runtime monitor that observes the
environment from the high-level perspective and returns a signal σ whenever
the input plan π advances one step towards the goal;

• a learning module, which observes the environment from a low-level perspective,
interacting with it through actions and possible rewards, and receiving the
signals σ from the reward machine.

The two perspectives of the environment are based on the use of two independent
sets of sensors, S1 and S2, each extracting its own state variables (or features) of
the environment.

12.1 Introduction 152

Figure 12.1. Architectural schema

Notice that the planning module operates offline and state variables observed
by S1 are used to detect the initial state I (dashed line in Fig. 12.1) to start the
plan generation process. At plan execution time, the state variables observed by the
reward machine through S1 take values consistently with the observations of the
learning agent through S2.

As said, this setting is very similar to that of (Icarte, Klassen, et al., 2018b),
with the crucial difference that we do not require an explicit mapping between the
two representation layers and thus the reward machine does not need to be an input
for the RL algorithm but can be kept as a separate component. In other words,
in our work the RL agent does not know the reward machine, but it just receives
domain-independent signals from it. Of course, an implicit mapping exists, as the
two representations derive from observations of the same environment, however it is
not necessary to make this mapping explicit to the RL agent and thus the proposed
approach does not require additional modeling efforts. Nonetheless, in some cases,
in order to ensure such implicit relation, we may require the set of sensors to be
synchronized (i.e., the components should share a common clock).

Since the learning component does not require a representation of the domain
model specified at the planning level and, consequently, the reward machine can
produce only signals not depending on the state representations used by the planning
and learning modules, both components are referred to as domain-independent. Such
domain-independent components can thus be designed and implemented separately,
allowing the system to be highly modular. For example, planner modules with

12.2 Related work 153

different representations of states and actions can be interchanged without requiring
any modification of the implementation of the learning module; the same reward
machine can be applied to different learning agents with different representations of
states and actions without requiring any modification on the agent.

In this work, we show that, although the planning and learning modules are
loosely linked with domain-independent signals only, they can still cooperate to
reach a common goal, as they observe and act (directly or indirectly) on the same
environment. We also discuss how such mechanism allows for an easy way to
automatically define and exploit sub task decomposition, to speedup the learning
process and, finally, report on experimental results. The original contributions of
this work are the following.

Firstly, we propose an approach for the integration of a planning component
(or more in general a reasoning system) with a RL agent, in a setting where the
components use different representation formalisms (for example, different state
variables and different actions), without requiring an explicit mapping. This simplifies
the previous approach based on reward machines (Icarte, Klassen, et al., 2018b) as
reducing the required modeling effort and, more importantly, broadens the range of
applicability of the approach, to those situations where a mapping is not simple to
define or not possible at all.

Secondly, we present a mechanism to automatically generate sub task decom-
position, that can be used to speedup the learning process, by extending previous
work on restraining bolts (De Giacomo, Iocchi, et al., 2019), demonstrating faster
convergence when sub task decompositions are considered.

12.2 Related work
A general approach for integrating planning and learning is given by model-based

RL where the goal is to reconstruct the model of the environment while learning.
Dyna (Sutton, 1990) and R-Max (Brafman and Tennenholtz, 2002) are example
of such methods in which the learning experience is used to build a model of the
environment and such a model is used to generate policies followed during the
learning process. The use of inaccurate models and few real trials to speed-up
learning is also presented in (Abbeel, Quigley, and Ng, 2006). In all these works the
behavior of the agent is guided by a reward function that is assumed to be available
and sampled during agent execution.

The use of a planner to drive the RL process is shown for example in (Grzes
and Kudenko, 2008; Efthymiadis and Kudenko, 2014) where it is used to define a
reward shaping functions to drive the agent along the plan, and in (Leonetti, Iocchi,
and Stone, 2016) to constrain the exploration space of the agent, by defining partial
policies in which each state is associated with a set of possible actions that will be
considered during the exploration phase of RL. In these works, the planning domain
is defined on the same state representation that is used by the RL algorithm and it
is thus deeply linked to it.

Hierarchical Reinforcement Learning (HRL) and options (Sutton, Precup, and
Singh, 1999) are also commonly used to speed-up the learning process. While,
in general, the models used at the layers of the hierarchical architecture and the
options are manually defined, there have been some approaches to generate them
automatically with a planning component, such as (Grounds and Kudenko, 2007;
Yang et al., 2018). Also in these cases, either the planning and the learning
components share the same representation of the states, or an explicit mapping
between these representations is required.

12.3 Problem formulation 154

Finally, more general approaches to drive the RL process of an agent, considering
also temporal goals and non-Markovian rewards are reward machines (Icarte, Klassen,
et al., 2018b) and restraining bolts (De Giacomo, Iocchi, et al., 2019). The use of an
automated planner to generate controllers for reward machines is also presented in
(Leon Illanes et al., 2019), but again an explicit mapping between the representations
used by the planner component and the learning agent is required. While the
restraining bolts described in (De Giacomo, Iocchi, et al., 2019) use a different
representation with respect to the one used by the agent, without requiring an
explicit mapping between such representations. However, this work does not describe
the generation of the bolt that is assumed to be given.

The method described in this work combines the advantages of previous works
by defining a framework for automatic generation of a reward machine using model-
based and goal-oriented planning, in order to drive the RL agent to learn a policy
following the desired plan, thus achieving the desired goal. We solve this problem in
the setting in which the planning component and the learning component use different
representations of states and actions involved in the task and a mapping between
such representation is not required. Such a reward machine, whose states must not be
mapped to the states of the learning agent, is called in this work domain-independent
to emphasize its modularity. Indeed, as shown later, a domain-independent reward
machine communicates with the RL agent through domain-independent messages
(i.e., messages not expressed in terms of the representation used to formalize the
planning problem). Consequently, a domain-independent reward machine can be
placed on any RL agent without requiring additional specifications or modifications
of such an agent.

12.3 Problem formulation
The hierarchical architecture we consider is reported in Fig. 12.1. A planning

module generates a plan π, given a domain model and a goal G. The plan is then
used to generate a reward machine (see below), to guide the learning process of a
learning agent, by providing suitable signals σ during the learning process. We next
introduce the basic components.

Planning module. A (deterministic) planning domain is a tuple P = ⟨V,AD⟩,
with V a finite set of boolean state variables and AD a set of action descriptions
(e.g., in terms of preconditions and effects over V). A state W of P is a (total)
assignment to the variables in V , represented as a set W ∈ 2V , s.t. W ∈ V is true
iff W ∈ q. Actions are intended to be executed in a state W and lead to exactly
one (in the deterministic setting) successor state W ′. Given a planning domain
P, an initial state I and a goal G (expressed as a formula over V), an automatic
planner generates, if any, a plan π = α0, α1, . . . , αn, i.e., a finite sequence of actions
that, when executed from the initial state I, takes P to a state satisfying G. In our
setting, the values stored in variables from V are consistent with the values returned
by the sensors in S1, which observe the environment. In this work we consider offline
planning. However, the proposed approach is not limited to this case and can be
adapted to online planning and replanning. In this case, the RL agent will adapt to
new plans, and thus new reward machines, through experience (this requires that
changes in plans occur much less frequently than RL agent’s action executions).

Reinforcement learning module. A Markov Decision Process (MDP) is a tuple
M = ⟨S,A, Tr,R⟩ containing: a set S of states; a set A of actions; a transition

12.4 Solution 155

function Tr : P (s′|s, a) returning, for every state s and action a, a probability
distribution over the next state s′; and a reward function R : S ×A× S → ℜ that
specifies the reward (a real value) received by the agent when transitioning from
state s to state s′ by applying action a. The states S of the MDP are observed with
a set of sensors S2 that are in general different from those in S1, used at the planning
level. A solution to an MDP is a function ρ : S 7→ A, called policy, assigning an
action to each state. The value of a policy ρ at state s, denoted vρ(s), is the expected
sum of the rewards obtained when starting at state s and selecting actions based
on ρ (possibly discounted by a factor γ, with 0 ≤ γ ≤ 1). Reinforcement learning
agents are designed to find optimal polices over MDPs.

Reward machine. In this work, planning and learning are integrated through the
definition of a reward machine (Icarte, Klassen, et al., 2018b) over the state variables
V . This machine acts as a runtime monitor observing the running environment
from the same (high-level) perspective as the planning module, and sending suitable
signals σ to the learning module, depending on the advancement of the environment
state wrt the plan π returned by the planning module. Formally, a reward machine
is a tuple RM = ⟨Q, q0, δq, δr⟩, where: Q is a finite set of states; q0 ∈ Q is an initial
state; δq : Q × 2V 7→ Q is a state-transition function; and δr : Q × Q 7→ ℜ is a
reward-transition function. The reward machine is automatically generated from
a plan π, as described in (Leon Illanes et al., 2019). However, in contrast with
that work, we do not require: i) to define a (new) joint space state including both
V from the planning module and S from the learning module, or ii) to explicitly
relate S and V . Consequently, our RM is defined by only considering elements at
the planning level (i.e., only using the state variables V captured by sensors S1),
without relating them to states S and actions A used by the learning agent. More
specifically, Qπ ⊆ 2V contains all the states traversed during the execution of plan π,
q0 = I is the initial state, δq is defined over transitions of state variables in V and δr
is associated only to transitions in Q.

The problem In this work we address the problem of learning an optimal policy
over the MDP M, using the architecture described above, in particular without
requiring any explicit mapping to connect the various layers. The proposed solution
defines information σ to be shared between these two modules, that is domain-
independent, i.e., not based on V or S.

12.4 Solution
The solution is based on the creation of a reward machine that controls the

learning process of the RL agent by using only domain-independent signals. Below,
we describe the steps to generate the machine and the use of options associated with
it.

12.4.1 Reward machine generation
The reward machine is automatically obtained by first deriving a transition graph

from the plan π generated by the planner and then by associating reward values
with state transitions. Specifically, a plan π can be transformed into a transition
graph Tπ = ⟨Qπ, q0π, Eπ⟩ where: Qπ ⊆ 2V is the set of states traversed during the
execution of π over the planning domain P; q0π = I ∈ Qπ is the initial state of the
planning problem; and Eπ ⊆ Qπ ×Qπ is the set of edges (i.e., the actions occurring

12.4 Solution 156

in π) connecting two states in Qπ, according to the execution of π. By exploiting
the reasoning capabilities of the planning system, it is possible to associate each
state q ∈ Qπ with a formula ϕ(q) over state variables V denoting the set of states
that can be reached after the execution of the plan up to that state. Since we focus
on classical planners generating sequential plans, the transition graph Tπ is a linear
graph with initial node I, one edge for each action αi, and a final node where the
goal G is satisfied.

A reward machine RMπ can now be derived from the transition graph Tπ by just
adding a mechanism to associate rewards with state transitions. A straightforward
implementation consists in assigning a high positive rewards to the transitions
reaching a goal state and zero to the other transitions. Thus,RMπ = ⟨Qπ, q0π , δq, δr⟩,
where δq(q, ϕ(q′)) = q′ iff (q, q′) ∈ Eπ and ϕ(q′) denotes the set of states denoted by
the formula ϕ(q′) (i.e., states reached after the execution of the plan up to state q′),
and δr(q, q′) > 0 if q′ ∈ G is a goal state, 0 otherwise. In practice, forms of reward
shaping applied to the reward machine can help in speeding up the learning process
(Camacho, Icarte, et al., 2019).

12.4.2 Use of the reward machine for RL
The reward machine continuously monitors the evolution of the plan and reports

to the underlying RL agent the information necessary to guarantee that the RL
agent would converge to a policy that will reach a goal state. To this end, the RM
checks occurrence of a transition δq(qt, ϕ(qt+1)) = qt+1 in the current state qt. When
ϕ(qt+1) becomes true (as observed through sensors S1), then a state transition is
detected and communicated to the RL agent. Upon detecting a state-transition,
the RM performs the following operations: 1) updates current and past states:
qt−1 ← qt, qt ← qt+1, 2) sends signal σt = ⟨q̂t, rt⟩ to the RL agent, where: q̂t is an
encoding of the current machine’s state qt, and rt = δr(qt−1, qt) is the reward value
associated with the current machine’s transition.

Importantly, observe that the encoding q̂t can be any, as long as not expressed
in terms of V , but in a domain-independent way. For example, it can be an integer
corresponding to the index of qt in some enumeration of Qπ.

In order to accept such information, the RL agent must be extended with
a single variable to represent the encoding of the state of the reward machine
(for example, an integer variable) and must take into account additional rewards
coming from the reward machine. Therefore, the RL agent will act on a new MDP
M′ = ⟨S × Q̂, A, Tr′, R′⟩, where S × Q̂ is the extended space state including the
encoding Q̂ of the state of the reward machine (e.g., an integer value), Tr′ and R′

are the extended transition and reward functions that are unknown to the agent and
thus we do not need to specify them. Notice that R′ is extended by summing rewards
rt coming from the reward machine, in addition to the rewards coming from the
environment. In order to guarantee reaching plan goals, we require rewards coming
from the reward machine to be (significantly) higher than the rewards coming from
the environment. When achieving the planning goal is the only objective of the
agent, we can set to zero all the rewards coming from the environment.

We observe that the notion of RMs is essentially analogous to that of Restraining
Bolts (RB) proposed in (De Giacomo, Iocchi, et al., 2019), i.e., runtime monitors
offering rewards when favorable state transitions occur. In fact, the whole setting
we consider here is analogous to that of (De Giacomo, Iocchi, et al., 2019), thus we
can take advantage of the results reported there. In particular, Th. 6 states that if
the RL agent can accept rewards from the RB and can keep track of the RB current
state, then any RL algorithm is successful in making the agent learn an optimal

12.4 Solution 157

policy that enforces the RB (i.e., that achieves a goal state, in our case). Since,
as it can be easily seen, the MDP M′ defind above captures exactly this situation
(the reward includes the RM’s and the agent state is extended to accommodate a
representation of the current RM state), it turns out that we can learn an optimal
policy by operating on M′.

12.4.3 Automatic sub task decomposition
In this work we follow the sub-task decomposition induced by the reward machine,

as proposed in (Icarte, Klassen, et al., 2018b), by associating different q functions to
the states of the RM. However, as a difference with QRM algorithm proposed in
(Icarte, Klassen, et al., 2018b), in this work we focus on single task scenarios and
we use an on-policy method. Possible use of off-policy methods to learn in parallel
multiple reward machines associated to different tasks is left as future work.

Moreover, in our framework, we exploit domain-independent specifications of the
RM and of the RL agent to implement a mechanism to enable/disable exploration
for each sub-task, in order to speed-up convergence. This mechanism is similar to
options (Sutton, Precup, and Singh, 1999) or other techniques for learning sub-tasks
in hierarchical RL (Hengst, 2010)

In our implementation, sub-tasks are defined as pairs of transition (qt−1, qt) of
the RM and the RL agent can detect start and end of a sub-task from the signals
σ emitted by the RM. Therefore, each signal received by the RL agent from the
RM indicates the end of the previous sub-task and the start of a new one. At this
moment, the RL agent can decide to enable/disable exploration for this sub-task
until the next signal. When exploration is disabled, the agent actually exploits the
current policy to achieve the current sub task, while when exploration is enabled,
the agent learns how to improve its policy for the current sub task. This mechanism
allows for speeding up the learning process by avoiding exploration steps for sub
tasks for which the current policy is good enough (or optimal).

We can define different criteria for deciding when to enable/disable exploration for
sub tasks, ranging from ϵ-greedy to more informed probabilistic selections. Possible
criteria include: A) a constant ϵ-greedy approach, B) a variable ϵ-greedy approach
considering the number of visits of the transition (qt−1, qt), C) a probabilistic choice
based on percentage of success in the transition (qt−1, qt). In this work, we focus on
evaluation of criterion C, since we consider environments with failure states in the
reward machine that prevent the agent to proceed towards the goal and thus make
the percentage of success in a transition a relevant choice.

The full procedure for extending a RL algorithm to control sub task exploration is
described through the following snippets of algorithms. Here we refer to an on-policy
method where the decision of enabling/disabling exploration for a sub task is applied
to the policy being learned.

We make use of a variable exploration_ON that denotes whether exploration
(i.e., choosing actions not only according to the best values of the current policy) is
enabled for the current task or not. This choice is kept for the entire execution of
the current sub task. On receiving a message from the reward machine, the agent
chooses how to operate for the next sub task.

Variable exploration_ON // exploration is enabled

Function choose_action():
if exploration_ON then
ϵ-greedy choice

12.5 Experimental results 158

else
choose_best_action

Function on_receive(σt):
exploration_ON = subtask_expl_criterion()

Function subtask_expl_criterion():
p = Success(qt−1, qt)/V isits(qt−1, qt)
return random_value(0, 1) > p

12.5 Experimental results
To show the effectiveness of the proposed method we performed some experiments

in three settings already used in previous works in RL: Breakout, Sapientino and
Minecraft. These experimental scenarios have been used in (De Giacomo, Iocchi,
et al., 2019) to evaluate restraining bolts, while here we consider a more general
setting in which reward machines are generated by automated planning procedures.
The tasks to be learned (see (De Giacomo, Iocchi, et al., 2019) for details) require the
agents to perform sequences of actions. The problems can be easily modelled with a
planning language and corresponding plans can be generated by suitable planners.
More specifically, in Breakout we consider the goal of breaking the columns of bricks
in a given order (e.g., from left to right), so the high-level plan is a sequence of
actions break_column_i. In Sapientino, a particular sequence of actions (bip) must
be executed according to the colors of the cells in which the little robot is, so the
plan is a proper sequence of goto_xy and bip actions. Finally, the goal of Minecraft
is to achieve 10 sub-goals by combining proper sequences of actions that must be
executed in the environment at proper locations.

Notice that in these examples, state variables observed at the different layers
(reward machine and RL agent) are disjoint (more details) below, but we do not need
to modify the state representations of the RL agent according to the specific reward
machine. In order to use existing algorithms (e.g., QRM (Icarte, Klassen, et al.,
2018b)) in these domains, additional modelling and modifications are necessary: 1)
extend the state representation of the RL agent by considering the state variables
used in the reward machine, 2) provide the labelling function bewteen states of the
RL agent and state variables of the RM.

More specifically, in Breakout the state representation contains the paddle
position, ball position and velocity, but not the configuration of the bricks, while
available actions are just to move left or right. In Sapientino and Minecraft, the agent
only knows its position in the grid (but not the color of the cells for Sapientino or
the presence of resources or tools for Minecraft) and actions are one-step movements
on the grid.

The plots in Figure 12.2 show learning performance in the three domains.
In the top row, we see an example of different reward machines applied to the

same agent. The Breakout agent can move in the environment to intercept a ball
and break the bricks in the environment. The two reward machines differ in the plan
they represent: in the first case (plot in the left), the plan is to break four columns
from left to right, in the second case (plot in the right), the plan is to break the
columns from right to left.

In the middle row we show an example of using the same reward machine on two
different agents: the reward machine drives the agents to learn a policy in which cells

12.6 Summary and Discussion 159

of the grid are visited in a specified order, the two Sapientino agents differ in the state
representations and actions available. In particular, the first agent (plot on the left)
is an omni-directional robot moving in the four cardinal directions, while the second
agent (plot on the right) is a differential drive robot moving forward/backward and
turning left/right. The second agent includes also orientation as state variable. As
shown in the figure, both agents are able to learn a policy according to the same
reward machine, although with different low-level capabilities.

Finally, the bottom row shows the same reward machine applied to different
Minecraft agents: omni-directional and differential drive. The state representation
of the RL agent for Minecraft is exactly the same as the one used in Sapientino,
while the set of actions are different in the two cases. Notice that an agent with the
same state representation can learn Sapientino or Minecraft tasks only based on
information received by the reward machine without requiring to change its state
representations.

In all the situations, the RL agent learns a policy that achieve the goal as specified
by the planning module. Moreover, learning is improved when using automatic sub
task decomposition (blue curves) with respect to the standard RL algorithm (red
curves).

These experimental results thus show convergence to a policy reaching the goal
and improved performance when using sub task decomposition. Moreover, the results
have been obtained in a modular way, as results reported in left and right plots
have been obtained by just composing different instances of reward machine and RL
agent, without changing their internal representations.

Finally, consider that, when explicit mapping is required, any combinatin of RM
and RL agent requires a specific modeling effort. Thus, to execute the 6 experiments
reported above, a total of 12 (6 RM + 6 RL) components must be devised. Our
approach, instead, allows for re-using and combining existing components, without
any additional modeling effort. Specifically, wrt the 6 experiments above, we have
defined only 3 RL agents (1 for Breakout and 2 for both Sapientino and Minecraft)
and 4 RM (2 for Breakout and 1 for each other problem), for a total of 7 components.

12.6 Summary and Discussion
Integration of planning and learning can benefit from modularity and separation

of design and implementation of the relative components. In this chapter, we have
shown that state and action representations of the two layers can be kept completely
separated and only domain-independent signals are needed to ensure to drive the
learning process through a desired plan to reach a given goal.

Future work includes extension of the formalism to more complex forms of
plans, such a partial order plans, hierarchical task networks, conditional plans, and
plans represented through Petri nets that would allow to generate compact reward
machines for complex tasks.

We believe that design and development of modular planning and learning
components will be convenient in many application domains, making the integration
of planning and learning easier and more effective.

12.6 Summary and Discussion 160

Figure 12.2. Average reward over experimental time. Breakout (top), Sapientino (middle),
Minecraft (bottom), with sub task decomposition (blue), without sub task decomposition
(red).

161

Part IV

Forward ltlf Synthesis

162

Chapter 13

Background on ltlf Synthesis

This chapter gives background knowledge required for the contribution of Forward
ltlf Synthesis, that will presented in Chapter 14.

• In Section 13.1, we revise linear temporal logic on finite traces, but with a
variant of the syntax that (i) supports empty traces, and (ii) generates formulas
in Negation Normal Form (i.e. negation only in front of propositional symbols).

• In Section 13.2, we give the definition of the problem of ltlf synthesis, and
provide a general automata-theoretic solution based on dfa games.

• In Section 13.3, we introduce the topic of AND-OR graph search, a general-
ization of the classical graph search in which the OR nodes behave like the
search nodes in classical sarch, and the AND nodes require the agent to find a
solution for all their children;

• In Section 13.4, we introduce Sentential Decision Diagrams (SDD), a knowledge
compilation technique that generalizes Binary Decision Diagrams, and its
reduced and compressed form achieves canonicity wrt a hierarchy of variables
(rather than an order of variables, as in BDDs).

• Section 13.5 concludes the chapter.

The contents of this chapter have been published in the conference paper (De
Giacomo, Favorito, Jianwen, et al., 2022).

13.1 ltlf Basics
In this section, differently from Chapter 3, we define a syntactic variant of ltlf

which only generates NNF formulas (without loss of generality). We also give further
definitions useful for the next chapters.

Syntax. We require ltlf formulas are in Negation Normal Form (NNF), i.e.,
negations only occur in front of atomic propositions):

φ ::= tt | ff | p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | ◦φ | •φ | φ1 U φ2 | φ1Rφ2.

where tt is always true, ff is always false; p ∈ P is an atom, and ¬p is a negated
atom (a literal l is an atom or the negation of an atom); ∧ (AND) and ∨ (OR) are

13.1 ltlf Basics 163

the Booelean connectives; and ◦ (Next), • (Weak Next), U (Until) and R (Release)
are temporal connectives. We use the abbreviations true := p ∨ ¬p, false := p ∧ ¬p,
♢φ := true U φ and □φ := falseRφ. Also for convenience we consider traces
π ∈ (2P)∗, that is we consider also empty traces ϵ as in (Brafman, De Giacomo,
and Patrizi, 2018). We have that ϵ |= φ if φ is tt, a R-formula or •-formula, hence
ϵ |= □false. ϵ ̸|= φ if φ is ff , an atom p or its negation ¬p, U -formula or ◦-formula,
hence ϵ ̸|= ♢true.

A trace π = π[0], π[1], . . . is a sequence, possibly empty, of propositional inter-
pretations (sets), in which π[m] ∈ 2P (0 ≤ m < |π|) is the m-th interpretation of
π, and |π| represents the length of π. Intuitively, π[m] is interpreted as the set of
propositions which are true at instant m. We denote by π(i, j) = πi, πi+1, . . . , πj−1,
the segment of the trace π starting at the i-th step and ending at thej-th step (ex-
cluded). If j > |π| then π(i, j) = π(i, |π|). For every j ≤ i, we have π(i, j) = ϵ, i.e.,
the empty trace. Trace π is an infinite trace if |π| =∞, which is formally denoted
as π ∈ (2P)ω; otherwise π is a finite trace, denoted as π ∈ (2P)∗. ltlf formulas
are interpreted over finite traces. Given a finite trace π and an ltlf formula φ, we
inductively define when φ is true for π at point i (0 ≤ i < |π|), written π, i |= φ, as
follows:

• π, i |= tt and π, i ̸|= ff ;

• π, i |= p iff p ∈ π[i];

• π, i |= ¬p iff p /∈ π[i];

• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;

• π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2;

• π, i |= ◦φ iff 0 ≤ i < |π| − 1 and π, i+ 1 |= φ;

• π, i |= •φ iff 0 ≤ i < |π| implies π, i+ 1 |= φ;

• π, i |= φ1 U φ2 iff there exists j with i ≤ j < |π| such that π, j |= φ2, and for
all k such that i ≤ k < j we have π, k |= φ1;

• π, i |= φ1Rφ2 iff for all j with i ≤ j < |π| either we have π, j |= φ2, or for
some k such that i ≤ k < j we have π, k |= φ1.

Moreover, for i ≥ |π|, hence e.g., for π = ϵ we get:

• π, i |= tt;

• π, i ̸|= ff ;

• π, i ̸|= φ if φ is a literal;

• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;

• π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2;

• π, i ̸|= ◦φ;

• π, i |= •φ;

• π, i ̸|= φ1 U φ2;

13.2 ltlf Synthesis 164

• π, i |= φ1Rφ2.

An ltlf formula φ is true for π, denoted by π |= φ, if and only if π, 0 |= φ. In
particular, we have ϵ |= □false and ϵ ̸|= ♢true. The set of finite traces that satisfy
ltlf formula φ is the language of φ, denoted as L(φ) = {π ∈ (2P)∗ | π |= φ}.

We denote by cl(φ) the set of subformulas of φ, including tt and ff . We denote
by pa(φ) ⊆ cl(φ) the set of literals and temporal subformulas of φ whose primary
connective is temporal (Li, Rozier, et al., 2019). Formally, for an ltlf formula φ in
NNF, we have pa(φ) = {φ} if φ is a literal or temporal formula; and pa(φ) = pa(φ1)∪
pa(φ2) if φ = (φ1 ∧ φ2) or φ = (φ1 ∨ φ2). Having ltlf formula φ, replacing every
temporal formula ψ ∈ pa(φ) with a propositional variable aψ gives us a propositional
formula φp. As a consequence, two formulas φ1 and φ2 are propositionally equivalent,
denoted by φ1 ∼p φ2, if, C |= φp1 ↔ C |= φp2 holds for every propositional assignment
C ∈ 2pa(φ1)∪pa(φ2). The equivalence class of a formula ψ ∈ cl(φ) is denoted by [ψ]∼p

and defined as [ψ]∼p = {y ∈ cl(φ) | ψ∼py}. The quotient set of a subset C ⊆ cl(φ)
is denoted by C/∼p and defined as C/∼p = {[ψ]∼p | ψ ∈ C}.

Next Normal Form (xnf) Here we introduce the neXt Normal Form (xnf) (Li,
Rozier, et al., 2019) of an ltlf formula, that will be useful later in the chapter.
Intuitively, the xnf of an ltlf formula separates the “current-timestep" and “next-
timestep" parts of the formula.

Definition 13.1. A formula φ is in neXt Normal Form (xnf) if pa(φ) only includes
literals, ◦- and •-formulas.

For example, φ = (aU b) is not in xnf, while (b ∨ (a ∧ (X(aU b)))) is in xnf.
Note that xnf transformation rules presented in prior works (Li, Rozier, et al., 2019;
Xiao et al., 2021) does apply to full-fledged ltlf . We thus present complete rules
here. For an ltlf formula φ in NNF, the transformation function xnf(φ) is defined
as follows:

• xnf(φ) = φ if φ is a literal, □false, ♢true, ◦-formula, or •-formula;

• xnf(φ1 ∧ φ2) = xnf(φ1) ∧ xnf(φ2);

• xnf(φ1 ∨ φ2) = xnf(φ1) ∨ xnf(φ2);

• xnf(φ1 U φ2) = (xnf(φ2) ∧ ♢true) ∨ (xnf(φ1) ∧◦(φ1 U φ2));

• xnf(φ1Rφ2) = (xnf(φ2) ∨□false) ∧ (xnf(φ1) ∨•(φ1Rφ2)).

Theorem 13.2 ((Li, Rozier, et al., 2019)). Every ltlf formula φ in NNFcan be
converted, with linear time in the formula size, to an equivalent formula in xnf,
denoted by xnf(φ).

13.2 ltlf Synthesis
The classical synthesis problem (Church, 1963; Vardi, 1995) consists in automati-

cally constructing systems from logical specifications, such as formulas of a temporal
logic. Because synthesis eliminates the need for a manual implementation, it has
the potential to revolutionize the development process for reactive systems. And
indeed, synthesis has, over the past few years, found applications in several areas of
systems engineering, notably in the construction of circuits and device drivers and
in the synthesis of controllers for robots and manufacturing plants.

13.2 ltlf Synthesis 165

In the infinite setting, reactive synthesis has been thoroughly investigated, starting
from (Pnueli and Rosner, 1989). Unfortunately, while theoretically well investigated,
algorithmically it still appears to be prohibitive in the infinite setting, not so much
due to the high complexity of the problem, which is 2EXPTIME-complete, but for
the difficulties of finding good algorithms for automata determinization, a crucial
step in the solution, see, e.g., (Fogarty et al., 2015).

In the finite setting, the problem has been studied in (De Giacomo and Vardi,
2015). One of the best advantages is that the difficulties of automta determinization
disappear and hence a theoretical solution to this problem actually promises to be
appealing for effective practical implementation.

The synthesis problem is described follows. The set P of propositions into two
disjoint sets X and Y. We assume to have no control on the truth value of the
propositions in X , while we can control those in Y. The problem then becomes:
can we control the values of Y in such a way that for all possible values of X a
certain ltlf/ldlf formula φ remains true? More precisely, traces now assume the
form π = (X0, Y0)(X1, Y1)(X2, Y2) · · · (Xn, Yn), where (Xi, Yi) is the propositional
interpretation at the i-th position in π, now partitioned in the propositional interpre-
tation Xi for X and Yi for Y . Let us denote by πX |u the interpretation π projected
only on X and truncated at the i-th element (included), i.e., πX | i = X0X1 · · ·Xi.
The realizability problem checks the existence of a function f : (2X)∗ → 2Y such
that for all π with Yi = f(πX |i), we have that π satisfies the formula φ. The
synthesis problem consists of actually computing such a function. Observe that in
realizability/synthesis we have no way of constraining the value assumed by the
propositions in X : the function we are looking for only acts on propositions in Y.
Realizability and synthesis for ltl on infinite traces has been introduced in (Pnueli
and Rosner, 1989) and shown to be 2EXPTIME-complete for arbitrary LTL formulas

dfa Games. dfa games are games between two players, here called respectively
the environment and the controller, that are specified by a dfa. We have a set of X
of uncontrollable propositions, which are under the control of the environment, and
a set Y of controllable propositions, which are under the control of the controller.
A round of the game consists of both the controller and the environment setting
the values of the propositions they control. A (complete) play is a word in (2X ∪Y)∗

describing how the controller and environment set their propositions at each round
till the game stops. The specification of the game is given by a dfa G of the form
G = ⟨Q, 2X ×Y , q0, δ, F), where:

• Q are the states of the game;

• 2X ×Y is the alphabet of the game;

• q0 is the initial state of the game;

• δ : Q × 2X ∪Y → Q is the transition function of the game: given the current
state s and a choice of propositions X and Y , respectively for the enviroment
and the controller, δ(q, (X,Y)) = q′ is the resulting state of the game;

• F are the final states of the game, where the game can be considered terminated.

A play is winning for the controller if such a play leads from the initial to a
final state. A strategy for the controller is a function f : (2X)∗ → 2Y that, given
a history of choices from the environment, decides which propositions Y to set to
true/false next. A winning strategy is a strategy f : (2X)∗ → 2Y such that for all

13.2 ltlf Synthesis 166

π with Yi = f(πX | i) we have that π leads to a final state of G. The realizability
problem consists of checking whether there exists a winning strategy. The synthesis
problem amounts to actually computing such a strategy.

We now give a sound and complete technique to solve realizability for dfa games.
We start by defining the controllable preimage PreC(E) of a set E of states of G as
the set of states q such that there exists a choice of values for propositions Y such
that for all choices of values for propositions X, game G progresses to states in E .
Formally:

PreC(E) = q ∈ Q | ∃Y ∈ 2Y .∀X ∈ 2X .δ(q, (X,Y)) ∈ E
Using such a notion, we define the set Win(G) of winning states of a DFA game

G, i.e., the set formed by the states from which the controller can win the DFA game
G. Specifically, we define Win(G) as a least-fixpoint, making use of approximates
Wini(G) denoting all states where the controller wins in at most i steps:

• Win0(G) = F (the final states of G);

• Wini+1(G) = Wini(G) ∪ PreC(Wini(G)).
Then, Win(G) =

⋃
iWini(G). Notice that computing Win(G) requires linear

time in the number of states in G. Indeed, after at most a linear number of steps
Wini+1(G) = Wini(G) = Win(G).
Theorem 13.3 ((De Giacomo and Vardi, 2015)). A dfa game G admits a winning
strategy iff q0 ∈Win(G).

Next, we turn to actually computing the strategy. To do so, we define a strategy
generator based on the winning sets Wini(G). This is a nondeterministic transducer,
where nondeterminism is of the kind “don’t-care”: all nondeterministic choices are
equally good. The strategy generator TG = ⟨Q, 2X ×Y , q0, δ, ω⟩ is as follows:

• Q are the states of the transducer;

• 2X ×Y is the alphabet of the transducer;

• q0 is the initial state;

• δ : Q × 2X → 2Q is the transition function such that δ(q,X) = {q′ | q′ =
δ(q, (X,Y)) and Y ∈ ω(q)};

• ω : Q→ 2Y is the output function such that ω(q) = {Y | if q ∈Wini+1(G)−
Wini(G) then ∀X.δ(q, (X,Y)) ∈Wini(G)}.

The transducer TG generates strategies in the following sense: for every way of
further restricting ω(q) to return only one of its values (chosen arbitrarily), we get a
strategy.

Automata-based Synthesis in LTLf and LDLf. To do synthesis in ltlf or
ldlf , we translate an ltlf/ldlf specification φ into an afa Aφ, as explained
in Chapter 4. Then, we determinize to get a DFA Adφ. This will cost us two
exponentials. At this point we view the resulting dfa Adφ as a dfa game, considering
exactly the separation between controllable and uncontrollable propositions in the
original ltlf/ldlf specification, and we solve it by computing Win(Adφ) and the
corresponding strategy generator TAd

φ
. This is a linear step.

Theorem 13.4 ((De Giacomo and Vardi, 2015)). Realizability (and synthesis) in
ltlf/ldlf is 2EXPTIME-hard.

13.3 AND-OR Graph Search 167

13.3 AND-OR Graph Search
Being a popular topic in AI, AND-OR graph search has attracted extensive

studies. Following (Nilsson, 1971), an AND-OR graph can be considered as a
generalization of a directed graph, where there are a set of nodes V and generalized
connectors (edges) between nodes. Every connector links one single node v ∈ V to
a set of nodes V ⊆ V, where n is the number of nodes in the graph. A connector
is called an AND (resp. OR) connector, if there is a logical AND (resp. OR)
relationship among V . It should be noted that in this work we only focus on specific
AND-OR graphs, where every node has only one connector leading to its successor
nodes. Therefore, we have AND-nodes with an AND connector, and OR-nodes with
an OR connector. Moreover, the set of goal nodes Vg only consists of OR-nodes.

The AND-OR graph search problem was first introduced in (Nilsson, 1971).
Intuitively speaking, the searching procedure aims to find a winning plan that
encodes a path leading from the initial node to goal nodes. It is possible to involve
both kinds of nodes in the winning plan, therefore, the plan lists one outgoing option
at OR-nodes, and all outgoing options at AND-nodes leading to branches. Therefore,
a winning plan is essentially a tree such that all leaves are goal nodes. There has
been extensive studies on AND-OR graph search techniques (Mahanti and Bagchi,
1985; Jiménez and Torras, 2000), and have been utilized in a lot of applications,
e.g., FOND planning (Mattmüller et al., 2010; Mattmüller, 2013; Geffner and Bonet,
2013).

13.4 Sentential Decision Diagrams (SDDs)
SDDs (Darwiche, 2011) is a Knowledge Compilation (KC) technique designed for

an efficient representation and manipulation of Boolean functions. In order to repre-
sent a Boolean function, the classical method is applying Shannon decomposition,
as done in Ordered Binary Decision Diagrams (BDDs) (Bryant, 1992). Intuitively,
BDD decomposes Boolean functions with one variable at a time. Let f be a Boolean
function over Y ∪ X , where Y = {y1, y2} and X = {x1, x2} such that Y,X are non-
intersecting sets of variables. BDD considers Y ∪ X as a single set {y1, x1, y2, x2},
instead of an (Y,X)-partition, such that obtaining (y1, f |y1), (¬y1, f(¬y1)) in the
first decomposition, where y1 and ¬y1 are disjoint. In the next round of decomposi-
tion, we get (y1∧x1, f |(y1∧x1)), (y1∧¬x1, f |(y1∧¬x1)), (¬y1∧x1, f(¬y1, x1)), (¬y1∧
¬x1, f |(¬y1 ∧ ¬x1)) and so on. Therefore, the canonicity of BDD is determined
referring to a specific ordering of variables, that the decomposition procedure follows.

SDD, instead, utilizes a more general decomposition that decomposes a set of
variables at each round. Given an (Y,X)-partition, where Y variables are considered
primary and X variables are considered subsequent. The SDD of f , with respect
to the (Y,X)-partition, can be written as

∨n
i=1[primei(Y) ∧ subi(X)]. Intuitively,

SDD decomposes f into n children, each of which consists of Boolean functions
primei(Y) (what are satisfied in primary) and subi(X) (what should be satisfied in
subsequent, according to primei(Y)). In particular, besides that all the primes are
disjoint and covering, i.e., primei ∧ primej = false for i ̸= j, and

∨n
i=1 primei = true,

SDD also guarantees that all the subs are compressed, i.e., subi(X) ̸= subj(X)
for i ̸= j. Hence, the canonicity of SDDs is determined wrt a specific partition
of variables, represented as an ordered full binary tree, called vtree, as shown
in Figure 13.1 1.

1Example is from (Darwiche, 2011)

13.5 Summary 168

Figure 13.1. Function f = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

The leaves of a vtree have a one-to-one correspondence with variables. Here, each
internal node partitions the variables into those in the left subtree (Y) and those
in the right subtree (X). SDDs, similarly to BDDs, can be reduced to a canonical
representation by merging identical substructures. In particular, given a vtree, for
any Boolean function f , there is a unique reduced SDD that represents f (Darwiche,
2011).

13.5 Summary
This section provided preliminary knowledge for the following chapter on forward

ltlf synthesis. We first introduced a version of ltlf that also supports empty traces
and it is only in Negation Normal Form. Then, we presented the standard definition
of ltlf synthesis, and a solution based on dfa games. We then presented the topic
of AND-OR graph search, a variant of graph search suitable for ltlf synthesis, as
we shall see in the next chapter, and Sentiential Decision Diagrams, a knowledge
compilation technique that will be useful in our forward ltlf synthesis approach.

169

Chapter 14

ltlf Synthesis as AND-OR
Graph Search

Synthesis techniques for temporal logic specifications are typically based on ex-
ploiting symbolic techniques, as done in model checking. These symbolic techniques
typically use backward fixpoint computation. Planning, which can be seen as a
specific form of synthesis, is a witness of the success of forward search approaches. In
this chapter, we develop a forward-search approach to full-fledged Linear Temporal
Logic on finite traces (ltlf) synthesis. We show how to compute the Determin-
istic Finite Automaton (DFA) of an ltlf formula on-the-fly, while performing an
adversarial forward search towards the final states, by considering the DFA as a
sort of AND-OR graph. Our approach is characterized by branching on suitable
propositional formulas, instead of individual evaluations, hence radically reducing the
branching factor of the search space. Specifically, we take advantage of techniques
developed for knowledge compilation, such as Sentential Decision Diagrams (SDDs),
to implement the approach efficiently.

The rest of the chapter is structured as follows:

• In Section 14.1, we introduce the problem and give the motivations for this
work.

• In Section 14.2 we introduce a novel technique to build a dfa based on ltlf
formula progression.

• In Section 14.3, we reduce the problem of ltlf synthesis to AND-OR graph
search. We propose an abstract depth-first algorithm that can be instantiated
depending on how the successor transitions are computed from a search node
(the Expand “abstract” function).

• In Section 14.4, we review related work, highlighting the differences with our
approach.

• Section 14.5 concludes the chapter, discusses the results and give insights on
potential future works.

The contents of this chapter have been published in the conference paper (De
Giacomo, Favorito, Jianwen, et al., 2022).

14.1 Introduction 170

14.1 Introduction
Program synthesis aims at automatically generating a program from declarative

specifications expressed in temporal logic (Pnueli and Rosner, 1989; Ehlers et al.,
2017). A commonly used logic for program synthesis is Linear Temporal Logic (ltl),
typically used also in model checking (Baier and Katoen, 2008). Recently, synthesis
has been investigated for specifications expressed in ltlf , a finite-trace variant of
ltl (De Giacomo and Vardi, 2013). Roughly speaking, we consider an alphabet of
propositions partitioned into those controlled by the agent (one may think of these
as a binary encoding of agent actions) and those controlled by the environment (one
may think of these as fluents), and then we use ltlf to specify which finite traces
are desirable. The outcome of the synthesis procedure is a program (a finite-state
controller) that at every time step, given the values of the environment propositions
in the history so far, sets the next value of the agent propositions so that the traces
generated satisfy the ltlf specification (De Giacomo and Vardi, 2015).

ltlf synthesis has been proven to be one of the most successful synthesis settings
so far. Several tools have been developed recently, among which Lisa (Bansal et al.,
2020) and Lydia (De Giacomo and Favorito, 2021) are possibly the best performing
ones to date. Both these tools are based on first constructing a dfa corresponding
to the ltlf specification, and then considering it as a game arena where the agent
tries to get to an accepting state in spite that the environment tries to avoid it. A
winning strategy, which is a finite controller returned by the synthesis procedure, can
be obtained through a backward fixpoint computation for adversarial reachability of
the dfa accepting states (De Giacomo and Vardi, 2015). The main difficulty of this
approach is that it requires computing the entire dfa of the ltlf specification, which
can be, in the worst case, doubly exponential in the size of the specification (De
Giacomo and Vardi, 2015). Hence, even though the backward fixpoint computation
can be performed symbolically, enabling scalable performance (Zhu, Tabajara, Li,
et al., 2017), the DFA construction step can become a significant bottleneck (Zhu,
Pu, and Vardi, 2019).

An alternative approach is to expand the arena while searching for the accepting
states via forward search (Xiao et al., 2021), which is analogous to the approach
taken by most work in adversarial Planning with fully observable nondeterministic
domains (FOND), where the agent controls the actions and the environment controls
the fluents (Ghallab, S. Nau, and Traverso, 2004; Geffner and Bonet, 2013). The
agent has to reach the goal, despite that the environment may choose adversarially
the effects of the agent actions (strong plans in FOND) (Cimatti, Roveri, and
Traverso, 1998; Cimatti, Pistore, et al., 2003; Geffner and Bonet, 2013). The typical
way to deal with this kind of planning is through forward search on an AND-OR
graph (Nilsson, 1971), where the OR-nodes correspond to the choices (quantified
existentially) of the agent and the AND-nodes correspond to the choices (quantified
universally) of the environment (Mattmüller et al., 2010; Mattmüller, 2013; Geffner
and Bonet, 2013). Note that the search space generated for FOND planning with
a compactly represented domain, say, in PDDL (Haslum et al., 2019), is at most
single-exponential (Rintanen, 2004).

Instead, to handle ltlf synthesis, we need to deal with a state space that can
be of double-exponential size. Searching over a double-exponential state space has
been studied in Planning in partially observable nondeterministic domains (POND),
aka contingent planning, where the search procedure must be performed over the
belief-states (Reif, 1984; Goldman and Boddy, 1996; Bertoli et al., 2006; Geffner
and Bonet, 2013). However, belief-states have a specific structure (Bertoli et al.,
2006; Thanh To, Pontelli, and Cao Son, 2009), the techniques utilized in contingent

14.2 DFA Construction from ltlf 171

planning cannot be directly applied to ltlf synthesis.
In this work, we investigate ltlf forward synthesis adopting an AND-OR graph

search as in FOND Planning (Mattmüller et al., 2010; Mattmüller, 2013), but over a
doubly exponential search space, as for contingent planning (Bertoli et al., 2006). We
do not rely on an encoding into PDDL, as (Camacho, Baier, et al., 2018; Camacho
and McIlraith, 2019b), which may result into a PDDL specification with exponential
size. Instead, we develop specific techniques to create the search space on-the-fly
while exploring it, such that we can possibly decide realizability/unrealizability
before reaching the worst-case double-exponential blowup.

In details, we propose a technique to create on-the-fly the dfa corresponding to
the ltlf specification. This technique avoids a detour to automata theory and in-
stead builds directly deterministic transitions from a current state. In particular, this
technique exploits ltl formula progression (Emerson, 1990; Bacchus and Kabanza,
1998) to separate what happens now (label) and what should happen next accord-
ingly (successor state). Crucially, we exploit the structure that formula progression
provides to branch on propositional formulas (representing several evaluations),
instead of individual evaluations. This drastically reduces the branching factor of
the AND-OR graph to be searched (recall that in ltlf synthesis, both the agent
choices and the environment choices can be exponentially many). More specifically,
we label transitions/edges with propositional formulas on propositions controlled
by the agent (for OR-nodes) and by the environment (for AND-nodes). Every such
propositional formula captures a set of evaluations leading to the same successor
node. We leverage Knowledge Compilation (KC) techniques, and in particular
Sentential Decision Diagrams (SDDs) (Darwiche, 2011), to effectively generate such
propositional formulas for OR-nodes and AND-nodes, and thus reduce the branching
factor of the search space. We implemented our approach in a tool called Cynthia
and conducted comprehensive experiments by comparing to existing ltlf synthesis
tools, including Lisa, Lydia and Ltlfsyn from (Xiao et al., 2021) and demonstrate the
merits of our approach.

14.2 DFA Construction from ltlf
The classical approach to ltlf synthesis first constructs the complete DFA, and

then solves an adversarial reachability game through a backward fixpoint computation
on this DFA (De Giacomo and Vardi, 2015). An alternative approach presented
in (Xiao et al., 2021) is an on-the-fly synthesis technique that is able to construct the
automaton while solving the game in a forward way. Yet, the game arena generated
there is explicit, s.t. during search, there can be an exponential number of options to
explore at every state, leading to a major drawback for scalability. We now present a
new DFA construction based on an incremental technique called formula progression
that is suitable for exploiting SDDs.
ltlf Formula Progression. Consider an ltlf formula φ over P and a finite trace
π = π[0], π[1], . . . ∈ (2P)∗, in order to have π |= φ, we can start from φ, progress or
push φ through π. The idea behind formula progression is to consider ltlf formula
φ into a requirement about now π[i], which can be checked straightaway, and a
requirement about the future that has to hold on the yet unavailable suffix. That
is to say, formula progression looks at π[i] and φ, and progresses a new formula
fp(φ, π[i]) such that π, i |= φ iff π, i+ 1 |= fp(φ, π[i]). This procedure is analogous
to DFA reading trace π, where reaching accepting states is essentially achieved
by taking one transition after another. Formula progression has been studied in
prior work, cf. (Emerson, 1990; Bacchus and Kabanza, 1998). Here we use it for

14.2 DFA Construction from ltlf 172

constructing DFA from ltlf formulas.
Note that, since π is a finite trace, it is necessary to clarify when the trace ends.

To do so, we introduce two new formulas □false and ♢true, which, intuitively, refer
to finite trace ends and finite trace not ends, respectively. For simplicity, we enrich
cl(φ), the set of proper subformulas of φ, to include them such that cl(φ) is reloaded
as cl(φ) ∪ cl(♢true) ∪ cl(□false).

Definition 14.1 (ltlf Formula Progression). For an ltlf formula φ in NNF, the
progression function fp(φ, σ), where σ ∈ 2P , is defined as follows:

• fp(tt, σ) = tt and fp(ff , σ) = ff ;

• fp(p, σ) = tt if p ∈ σ, otherwise ff ;

• fp(¬p, σ) = tt if p /∈ σ, otherwise ff ;

• fp(φ1 ∧ φ2, σ) = fp(φ1, σ) ∧ fp(φ2, σ);

• fp(φ1 ∨ φ2, σ) = fp(φ1, σ) ∨ fp(φ2, σ);

• fp(◦φ, σ) = φ ∧ ♢true;

• fp(•φ, σ) = φ ∨□false;

• fp(φ1Uφ2, σ)= fp(φ2, σ) ∨ (fp(φ1, σ) ∧ fp(◦(φ1Uφ2), σ));

• fp(φ1Rφ2, σ)= fp(φ2, σ) ∧ (fp(φ1, σ) ∨ fp(•(φ1Rφ2), σ)).

Note that fp(φ, σ) is a positive Boolean formula on cl(φ), i.e., fp(φ, σ)∈B+(cl(φ)).
The following two lemmas show that fp(φ, σ) strictly follows ltlf semantics and

retains the propositional behavior of ltlf formulas.

Lemma 14.2. Let φ be an ltlf formula over P in NNF, π be a finite nonempty
trace, fp(φ, σ) be as above. We have that π, i |= φ iff π, i+ 1 |= fp(φ, π[i]).

Proof. We prove by structural induction on the formula.

• φ = tt. Note that fp(tt, π[i]) = tt. Therefore, we have π, i |= tt iff π, i+ 1 |=
fp(tt, π[i]) = tt.

• φ = ff . Note that fp(ff , π[i]) = ff . Therefore, we have π, i |= ff iff π, i+ 1 |=
fp(ff , π[i]) = ff .

• φ = p. Note that either fp(p, π[i]) = tt or fp(p, π[i]) = false. We now have that
π, i |= p iff p ∈ π[i] iff fp(p, π[i]) = tt iff π, i+ 1 |= tt.

• φ = ¬p. Note that either fp(¬p, π[i]) = tt or fp(¬p, π[i]) = false We have that
π, i |= ¬p iff p ̸∈ π[i] iff fp(¬p, π[i]) = tt iff π, i+ 1 |= tt.

• φ = φ1∧φ2. Note that π, i |= φ1∧φ2 iff π, i |= φ1 and π, i |= φ2. By induction
hypotheses, we have iff π, i+ 1 |= fp(φ1, π[i]) and π, i+ 1 |= fp(φ2, π[i]). By
definition of fp, we have that iff π, i+ 1 |= fp(φ1, π[i]) ∧ fp(φ2, π[i]), and thus
iff π, i+ 1 |= fp(φ1 ∧ φ2, π[i]).

• φ = φ1 ∨ φ2. Note that π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2. By induction
hypotheses, we have iff π, i + 1 |= fp(φ1, π[i]) or π, i + 1 |= fp(φ2, π[i]). By
definition of fp, we have that iff π, i+ 1 |= fp(φ1, π[i]) ∨ fp(φ2, π[i]), and thus
iff π, i+ 1 |= fp(φ1 ∨ φ2, π[i]).

14.2 DFA Construction from ltlf 173

• φ = ◦ψ. Note that φ = ◦ψ iff π, i + 1 |= ψ and i + 1 < |π| iff π, i + 1 |=
ψ ∧ π, i+ 1 |= ♢true, since ♢true ⇐⇒ i+ 1 < |π|, i.e. ♢true requires another
step to be read. By definition of fp, we have that iff π, i+ 1 |= fp(◦ψ, π[i]).

• φ = •ψ. Note that φ = •ψ iff π, i+ 1 |= ψ or ¬(i+ 1 < |π|) iff π, i+ 1 |= ψ or
π, i+ 1 |= □false, since □false ⇐⇒ ¬(i+ 1 < |π|), i.e. the trace is empty.
By definition of fp, we have that iff π, i+ 1 |= fp(•ψ, π[i]).

• φ = φ1 U φ2. Note that φ = φ1 U φ2 iff π, i |= φ2 ∨ (φ1 ∧ ◦(φ1 U φ2)) iff
π, i |= φ2 ∨ (π, i |= φ1 ∧ π, i + 1 |= φ1 U φ2 ∧ π, i + 1 |= ♢true) (note that
the addition of the term with ♢true does not change the meaning of the
formula, as it is subsumed by φ1 U φ2). By induction hypotheses, we have iff
π, i+1 |= fp(φ2, π[i])∨(fp(φ1, π[i])∧fp(◦(φ1 U φ2), π[i])). By definition, we have
iff π, i+1 |= fp(φ2, π[i])∨ (π, i+1 |= fp(φ1, π[i])∧π, i+1 |= φ1 U φ2∧π, i+1 |=
♢true) iff π, i+ 1 |= fp(φ1 U φ2, π[i]).

• φ = φ1Rφ2. Note that φ = φ1Rφ2 iff π, i |= φ2 ∧ (φ1 ∨ •(φ1Rφ2)) iff
π, i |= φ2 ∨ (π, i |= φ1 ∧ π, i + 1 |= φ1Rφ2 ∨ π, i + 1 |= □false) (note
that the addition of the term with □false does not change the meaning
of the formula, as it is subsumed by φ1Rφ2). By induction hypotheses,
we have iff π, i + 1 |= fp(φ2, π[i]) ∧ (fp(φ1, π[i]) ∨ fp(•(φ1Rφ2), π[i])). By
definition, we have iff π, i+ 1 |= fp(φ2, π[i])∧ (π, i+ 1 |= fp(φ1, π[i])∨π, i+ 1 |=
φ1Rφ2 ∨ π, i+ 1 |= □false) iff π, i+ 1 |= fp(φ1Rφ2, π[i]).

Lemma 14.3. Let φ and ψ be two ltlf formulas over P in NNFs.t. φ ∼p ψ, and
σ ∈ 2P . Then fp(φ, σ) ∼p fp(ψ, σ) holds.

Proof. Since φ and ψ are propositionally equivalent, the propositional semantics thus
maps φ and ψ to the same monotone Boolean function over alphabet of pa(φ)∪pa(ψ).
By definition, fp(φ, σ) can be considered as the result of replacing the occurrences
of θ ∈ pa(φ) ∪ pa(ψ) with fp(θ, σ), without changing any disjunction or conjunction.
This is the same for fp(ψ, σ). Therefore, fp preserves the propositional equivalence,
and thus fp(φ, σ) ∼p fp(ψ, σ) holds.

We generalize ltlf formula progression from single instants to finite traces by
defining fp(φ, ϵ) = φ, and fp(φ, σu) = fp(fp(φ, σ), u), where σ ∈ 2P and u ∈ (2P)∗.

Lemma 14.4. Let φ be an ltlf formula over P in NNF, π be a finite trace. We
have that π |= φ iff ϵ |= fp(φ, π).

Proof. Let n denote the length of π such that n = |π|. From Lemma 14.2, we have
that π |= φ iff π, 1 |= fp(φ, π[0]), moreover iff π, n |= fp(fp(φ, πn−2), π[n− 1]) is true.
That is to say, iff ϵ |= fp(φ, π) holds.

Given an ltlf formula φ, we can consider it as the initial state, and recursively
apply formula progression to obtain all reachable states (through deterministic
transitions), denoted by Reach(φ) = {fp(φ, π) | π ∈ (2P)∗}. Note that once
applying propositional equivalence, there can only be 22|cl(φ)| elements in Reach(φ)/∼p .
Lemma 14.4 shows that a state ψ ∈ Reach(φ)/∼p can be recognized as accepting
iff ϵ |= ψ, indicating that there exists a trace π such that ψ = fp(φ, π) and π is
completely “consumed" by formula progression, returning a formula, corresponding
to an accepting state, that holds on the empty trace ϵ. In particular, given that
every state ψ is actually a positive Boolean formula on cl(φ), checking ϵ |= ψ only
requires dealing with Boolean operators of disjunction and conjunction, which can

14.3 ltlf Synthesis as AND-OR Graph Search 174

be done in linear time. The correctness and complexity of our DFA construction are
stated below.

Theorem 14.5. Given ltlf formula φ, the following DFA recognizes L(φ): A =
(2P , S, s0, δ, Acc), where the states S = Reach(φ)/∼p, the initial state s0 = φ∼p,
the transition function δ([ψ]∼p , σ) = fp([ψ]∼p , σ), ∀σ ∈ 2P and the accepting states
Acc = {ψ | ϵ |= ψ}.

Proof. In order to prove L(A) = L(φ), it is enough to show that every finite trace
π |= φ iff π ∈ L(A). Let π ∈ (2P)∗ be a finite trace, and |π| = n such that n ≥ 0.

(⇒) We perform this part of the proof in two cases over the value of n.
• If n = 0 (i.e., π = ϵ), ϵ |= φ implies that the initial state φ ∈ Acc. So it holds

that ϵ is accepted by A, i.e., π ∈ L(A).
• If n > 0, there exists a run r = s0, . . . , sn over A on π such that s0 = φ is the

initial and δ(si, π[i]) = si+1 holds for 0 ≤ i < n. We first prove that π, i |= si
for 0 ≤ i ≤ n by induction over the value of i.
Basis. π |= φ i.e., π, 0 |= s0 holds basically.
Induction. The induction hypothesis is π, i |= si holds where 0 ≤ i < n. By
the induction hypothesis and Lemma 14.2 we can get π, i+1 |= fp(si, π[i]).Note
that fp(si, π[i]) = δ(si, π[i]) = si+1, so it holds that π, i+ 1 |= si+1.
Therefore, we have π, n |= sn. Since π, n = ϵ, sn ∈ Acc is an accepting state.
So it holds that π is accepted by A, i.e., π ∈ L(A).

(⇐) π ∈ L(A) implies that there exists a run r = s0, . . . , sn over A on π such
that δ(si, π[i]) = si+1 holds for 0 ≤ i < n and sn ∈ Acc.

We first prove that π ∈ L(A) implies π, n − i |= sn−i holds for 0 ≤ i ≤ n by
induction over the value of i.

Basis. sn ∈ Acc implies that ϵ |= sn, i.e., π, n− 0 |= sn−0.
Induction. The induction hypothesis is that π, n− i |= sn−i holds for 0 ≤ i < n.

Note that δ(sn−(i+1), π[n − (i + 1)]) = sn−i = fp(sn−(i+1), π[n − (i + 1)]). So the
induction hypothesis is equivalent to π, n − i |= fp(sn−(i+1), π[n − (i + 1)]). By
Lemma 14.2, we can get that π, n− (i+ 1) |= sn−(i+1).

Now we have proved that π ∈ L(A) implies π, n− i |= sn−i holds for 0 ≤ i ≤ n.
Then we can have π |= φ (i.e., π, n− n |= sn−n) holds when i = n.

Theorem 14.6. Let φ be an ltlf formula, the constructed DFA A can have, in the
worst case, 22|cl(φ)| states.

Proof. Having cl(φ), there is only 2cl(φ) possible models. Every state in Reach(φ)/∼p

corresponds to a subset of 2cl(φ) possible models. That is to say, Reach(φ)/∼p can
have, in the worst case, 22|cl(φ)| states that are not propositional equivalent. We thus
show that A can have, in the worst case, 22|cl(φ)| states.

14.3 ltlf Synthesis as AND-OR Graph Search
Recall that ltlf synthesis can be viewed as an adversarial reachability game on

the DFA of the given formula. Interestingly, this game can actually be considered
as an AND-OR graph, where the OR-nodes indicate the agent actions (quantified
existentially), and the AND-nodes indicate the environment responses (quantified
universally). In this case, the DFA construction approach described in the previous
section allows us to solve ltlf synthesis via on-the-fly AND-OR graph search.
Now, we present our approach of solving ltlf synthesis via on-the-fly AND-OR

14.3 ltlf Synthesis as AND-OR Graph Search 175

graph search, and explain how to leverage KC techniques, Sentential Decision
Diagrams (SDDs) (Darwiche, 2011) to significantly reduce the branching factor of
the constructed graph.

14.3.1 Synthesis Algorithm
Given problem (φ,X ,Y), our synthesis algorithm searches for a strategy by

exploring the constructed AND-OR graph on the fly. This algorithm is basically
a top-down traversal of the search space, proceeding forward from the initial, and
excluding strategies that lead to loops. Since we apply the crucial step of propositional
equivalence check whenever computing a new state, for simplicity, we omit the
propositional equivalence symbol ∼p and denote every newly constructed DFA state
by ψ, instead of [ψ]∼p , e.g., the initial state is denoted by φ, instead of [φ]∼p .
Every DFA state is stored as an OR-node, each outgoing transition (or-arc) leads
to an AND-node. Every or-arc is stored as an action-AndNode pair (act,AndNd).
Every outgoing transition (and-arc) of an AND-node is stored as a response-OrNode
pair (resp, n). A strategy is stored as a set of state-action pairs. If φ is unrealizable,
we obtain strategy as an empty set. In order to avoid exploring the same state over
and over, we assign a tag to its associated OR-node n after exploring it. More
specifically, n is tagged as success if the corresponding DFA state ψ is accepting
or there exists an act such that, regardless of what the environment resp is, all
corresponding followup OR-nodes are already tagged as success. In this case, we
also add state-action pair (ψ, act) to strategy. If such act does not exist, n is tagged
as failure. Moreover, we also put a loop tag on an OR-node n if a loop is detected
on n, which is considered as temporary failure.

14.3 ltlf Synthesis as AND-OR Graph Search 176

Algorithm 5 SDD-based Forward Synthesis
1: function Synthesis(φ) return strategy
2: if IsAccepting(φ) then
3: AddToStrategy(φ, true)
4: return GetStrategy()
5: InitialGraph(φ)
6: n := GetGraphRoot()
7: found := Search(n, ∅)
8: if found then return GetStrategy()
9: return EmptyStrategy() ▷ φ is unrealizable

10: function Search(n, path) return True/False
11: if IsSuccessNode(n) then return True
12: if IsFailureNode(n) then return False
13: if InPath(n, path) then ▷ We found a loop
14: TagLoop(n) return False
15: ψ :=FormulaOfNode(n)
16: if IsAccepting(ψ) then
17: TagSuccessNode(n)
18: AddToStrategy(ψ, true)
19: return True
20: Expand (n) ▷ Uses SDD to partition ψ wrt Y and X
21: for (act, AndNd) ∈GetOrArcs(n) do
22: for (resp, succ) ∈GetAndArcs(AndNd) do
23: found :=Search(succ, [path|n])
24: if ¬found then Break
25: if found then
26: TagSuccessNode(n)
27: AddToStrategy(ψ, act)
28: if IsTagLoop(n) then
29: BackProp(n)
30: return True
31: TagFailureNode(n)
32: return False

14.3 ltlf Synthesis as AND-OR Graph Search 177

Algorithm 6 Propagate Success Backwards
1: function BackProp(n)
2: N := Enqueue(EpQueue,
3: while !IsEmpty(N) do
4: np := Dequeue(N)
5: for (act, AndNd) ∈GetOrArcs(np) do
6: if AllChildrenSuccess(AndNd) then
7: TagSuccessNode(np)
8: ψ :=FormulaOfNode(np)
9: AddToStrategy(ψ, act)

10: Ns :=Enqueue (N , FailurePNs(np))
11: Break

As shown in Algorithm 5, the Synthesis procedure takes a given ltlf formula
φ as input (X ,Y are omitted for simplicity), and first checks whether the initial
state φ is accepting. If this is the case, state-action pair (φ, true) is added to strategy
and returned (Line 4). This is because the agent can do whatever it wants (i.e.,
assign any value to its variables Y) after reaching an accepting state. Otherwise, we
initialize the graph by creating an OR-node n out of φ, and start the main procedure
Search. The Search procedure is a recursive routine, taking an OR-node n and
the path leading to n as inputs, returning True (resp. False) indicating that a strategy
is (resp. isn’t) found by the current recursion. Hence, if the outmost Search returns
True, a strategy consisting of all state-action pairs added until then is returned (Line
8). Otherwise, an empty strategy is returned.

Search processes an OR-node n by first checking whether n is tagged already, if
so, it returns True for success tag, and False for failure tag. Then, if n exists on path
thus leading to a loop, we put a loop tag on node n, and return False. Intuitively,
when a loop is detected at node n, the procedure returns False, temporally considering
n as a failure node. Note that we do not tag n as failure, since it is unknown here
whether all the or-arcs of n are explored. Indeed, the returned False will be taken
into account when tagging the ancestor nodes of n. Therefore, when later n is tagged
as success, this information needs to be propagated back to the ancestor nodes of n.

Later on, the procedure continues by checking whether the associated DFA
state ψ of n is accepting, if so, n is tagged as success, and (ψ, true) is added to
the strategy. If none of these checks succeeds, n is expanded by Expand, which
constructs all its or-arcs (act,AndNd), and and-arcs (resp, succ) of every AndNd.
The crucial constraint is that all the agent actions acts of OR-node n should be
disjoint and covering, the same with environment responses resp of every AndNd.
Indeed, Expand is based on SDDs, see Section 14.3.2. As a side-effect, the Expand
function stores the newly constructed nodes and arcs from n. We explore OR-node
n, by iteratively processing the list of AND-nodes AndNd connected to n, until a
strategy is found (Lines 21-32). In Line 23, we recursively call Search with the
by n extended path. For every AndNd, once False is detected for searching some
succ, we give up on the current AndNd and proceed with the next one (Line 24). If
searching every succ of AndNd returns True (Line 25), n is tagged as success, and
the corresponding state-action pair (ψ, act) is stored. Moreover, if n carries a loop
tag, it is easy to see that n has been temporally considered as a failure node, and
this information has been taken into account when tagging the ancestor nodes of n.
Therefore, it is necessary to propagate this success information from n backwards to

14.3 ltlf Synthesis as AND-OR Graph Search 178

the ancestor nodes of n (Lines 28-29). If no strategy is found after exploring n, we
tag it as failure, and Search returns False. It should be noted that, in a forward
search on an AND-OR graph, it is critical to handle loops with the assistance of
this backward propagation, by BackProp, as illustrated in (Scutellà, 1990).

As shown in Algorithm 6, BackProp is basically a bottom-up traversal of the
subgraph rooted at n, that starts from the leaves, and propagates success backwards.
In particular, only the nodes that are tagged as failure must be considered. This
is because once a node n is tagged as success, it indicates that n is not affected
by any temporary failure of its children. We start from the direct parents of n,
and put them in a queue N . For every direct failure parent node np of n, np can
be tagged as success only if there exists an or-arc (act,AndNd), such that all the
followup OR-nodes are already tagged as success. In this case, the corresponding
state-action pair (ψ, act) is stored. Moreover, the success information of np should
also be propagated, since np was tagged as failure, which could have affected the
tag information of the direct parent nodes of np. Therefore, we add the failure
nodes of them to N . The propagation continues until N gets empty. It is easy
to see that the backward propagation does not change the forward nature of the
Search procedure, since the backward propagation has to be considered only as an
instrument to correctly propagate the success whenever needed, i.e., in the presence
of loops.

A major challenge arises, however, when looking into the branching factor of
this AND-OR graph. Note that, in Expand, if we simply use Y ∈ 2Y as act for
every OR-node n, and X ∈ 2X as resp for every AndNd connected to n, there can
be far too many directions to explore, which leads to crucial performance limitation.
Another challenge comes from the propositional equivalence check, which needs to be
performed whenever computing a new state. We now explain how to use Sentential
Decision Diagrams (SDDs) (Darwiche, 2011) to tackle both these challenges.

Algorithm 7 SDD-based ExpandGraph from An OrNode
1: function Expand(n)
2: ψ :=FormulaOfNode(n)
3: T := SDDRepresentation(xnf(ψ))
4: for child ∈ GetSddChildren(T) do
5: act := GetSDDPrime(child)
6: AndNd := GetSDDSub(child)
7: AddOrArcs(n, act, AndNd)
8: for child ∈ GetSDDChildren(AndNd) do
9: resp := GetSDDPrime(child)

10: sub := GetSDDSub(child)
11: succ := RmNext (sub)
12: AddAndArcs(AndNd, resp, succ)

14.3.2 SDD-based Expand
The crucial reason of adopting SDDs in the implementation of Expand (Algo-

rithm 7), rather than other KC techniques, e.g., BDDs, is that, while maintaining
canonicity to check propositional equivalence in constant time, SDDs can provide a
disjoint, covering and compressed partition of a Boolean function, wrt a hierarchy

14.3 ltlf Synthesis as AND-OR Graph Search 179

of (Y,X)-partition. This allows us to easily partition the transition labels into dis-
joint agent moves and disjoint environment moves, compressed as much as possible,
and so labeling transitions symbolically by propositional formulas. Let ψ be the
associated DFA state of n, the input of Expand(n). The algorithm starts from
computing xnf(ψ), which is equivalent to ψ, and intuitively, encodes all the possibili-
ties of what happens now, expressed by Y ∪ X variables, and what happens next
accordingly, expressed by variables Z =

⋃
θ∈cl(φ){zα|α ∈ pa(xnf(θ)), α not literal}.

Note that it is crucial to consider the closure of the original ltlf formula φ, instead
of the current state ψ, as the propositional equivalence check between two states
requires their SDDs to be defined over the same set of variables.

In Line 3, we represent xnf(ψ), considering it as a propositional formula over
pa(xnf(ψ)), into an SDD T :=

∨n
i=1[primei(Y)∧ subi(X ∪Z)] such that all Y s leading

to the same set of possible successors subi(X ∪ Z) (X is not decided yet) are
clustered into a propositional formula primei(Y). primei(Y) and subi(X ∪ Z) are
extracted as act and corresponding AndNd, respectively (Lines 5&6). Moreover,
subi(X ∪ Z) =

∨m
j=1[primei,j(X) ∧ subi,j(Z)] is such that all Xs leading to the same

successor are clustered into formula primej(X), and subi,j(Z) refers to the successor
state of agent-env choices (primei(Y), primei,j(X)). They are extracted as resp and
corresponding succ, respectively (Lines 9-11). Note that SDDs guarantee that all
disjuncts generated are disjoint, covering and compressed, hence we can use SDDs to
reduce the branching factor as much as possible. In particular, every successor state
succ is obtained by stripping ◦ and •, introduced by xnf, through the remove-next
function RmNext, defined below:

• RmNext(♢true) = tt;

• RmNext(□false) = ff ;

• RmNext(φ1 ∧ φ2) = RmNext(φ1) ∧RmNext(φ2);

• RmNext(φ1 ∨ φ2) = RmNext(φ1) ∨RmNext(φ2);

• RmNext(◦φ) = φ ∧ ♢true;

• RmNext(•φ) = φ ∨□false.

Note that RmNext applies to neither U -,R- formulas, since they do not appear
in xnf, nor literals (p, ¬p), since its input is a propositional formula over variables
Z that does not contain literals.

Proposition 14.7. Given an ltlf formula φ in NNF, ∀σ ∈ 2P :

fp(φ, σ) ≡ RmNext(xnf(φ)p|σ)

where xnf(φ)p|σ stands for evaluating σ on xnf(φ)p.

Proof. We prove by a structural induction on φ.

• φ = tt. We have that fp(tt, σ) ≡ tt which is equivalent to RmNext(xnf(tt)p|σ),
since xnf(tt) = tt by definition.

• φ = ff . We have that fp(ff , σ) ≡ ff which is equivalent to RmNext(xnf(ff)|σ),
since xnf(ff) = ff by definition.

• φ = p. We have that fp(p, σ) ≡ tt iff p ∈ σ which is equivalent to RmNext(xnf(p)p|σ),
since xnf(p) = p and p|σ ≡ true iff p ∈ σ.

14.3 ltlf Synthesis as AND-OR Graph Search 180

• φ = ¬p. We have that fp(¬p, σ) ≡ tt iff p /∈ σ which is equivalent to
RmNext(xnf(¬p)p|σ), since xnf(¬p) = ¬p and (¬p)|σ ≡ true iff ¬p ∈ σ.

• φ = φ1 ∧φ2. Note that fp(φ1 ∧φ2, σ) ≡ fp(φ1, σ)∧ fp(φ2, σ). By induction hy-
potheses, fp(φ1, σ) ≡ RmNext(xnf(φ1)p|σ), and fp(φ2, σ) ≡ RmNext(xnf(φ2)p|σ).
Thus fp(φ1 ∧ φ2, σ) ≡ RmNext(xnf(φ1 ∧ φ2)p|σ).

• φ = φ1 ∨φ2. Note that fp(φ1 ∨φ2, σ) ≡ fp(φ1, σ)∨ fp(φ2, σ). By induction hy-
potheses, fp(φ1, σ) ≡ RmNext(xnf(φ1)p|σ), and fp(φ2, σ) ≡ RmNext(xnf(φ2)p|σ).
Thus fp(φ1 ∨ φ2, σ) ≡ RmNext(xnf(φ1 ∨ φ2)p|σ).

• φ = ◦ψ. We have that fp(◦ψ, σ) = ψ ∧ ♢true. By definition, we have that
RmNext(xnf(◦ψ)p|σ) = ψ ∧ ♢true, since xnf(◦ψ) = ◦ψ and by definition of
RmNext. Thus fp(◦ψ, σ) ≡ RmNext(xnf(◦ψ)p|σ).

• φ = •ψ. We have that fp(•ψ, σ) = ψ ∨□false. By definition, we have that
RmNext(xnf(•ψ)p|σ) = ψ ∨□false, since xnf(•ψ) = •ψ and by definition
of RmNext. Thus fp(•ψ, σ) ≡ RmNext(xnf(•ψ)p|σ).

• φ = φ1 U φ2. We have that fp(φ1 U φ2, σ) = fp(φ2, σ)∨(fp(φ1, σ)∧fp(◦(φ1 U φ2), σ)),
which is equivalent to fp(φ2, σ) ∨ (fp(φ1, σ) ∧ φ1 U φ2 ∧ ♢true). By definition,
we have that RmNext(xnf(φ1 U φ2)p|σ) = RmNext(((xnf(φ2)p ∧ ♢true) ∨
(xnf(φ1)p ∧ ◦(φ1 U φ2)))|σ). By definition of RmNext, this is equivalent to
(RmNext(xnf(φ2)p|σ) ∧RmNext(xnf(♢true)p|σ)) ∨ (RmNext(xnf(φ1)p)|σ ∧
RmNext(xnf(◦(φ1 U φ2))p|σ)), which is equivalent to RmNext(xnf(φ2)p|σ)∨
(RmNext(xnf(φ1)p)|σ ∧ φ1 U φ2 ∧ ♢true). The ♢true in the first clause dis-
appeared from the expression because RmNext(♢true) = tt. The statement
follows by structural induction and by syntactic equivalence.

• φ = φ1Rφ2. We have that fp(φ1Rφ2, σ) = fp(φ2, σ)∧(fp(φ1, σ)∨fp(•(φ1Rφ2), σ)),
which is equivalent to fp(φ2, σ)∧ (fp(φ1, σ)∨φ1Rφ2 ∨□false). By definition,
we have that RmNext(xnf(φ1Rφ2)p|σ) = RmNext(((xnf(φ2)p ∨ □false) ∧
(xnf(φ1)p ∨•(φ1Rφ2)))|σ). By definition of RmNext, this is equivalent to
RmNext(xnf(φ2)p|σ)∧(RmNext(xnf(φ1)p)|σ∨RmNext(•(φ1Rφ2))), which
is equivalent to RmNext(xnf(φ2)p|σ) ∧ (RmNext(xnf(φ1)p)|σ ∨ φ1Rφ2 ∨
□false). □false disappeared from the expression because RmNext(□false) =
ff . The statement follows by structural induction and by syntactic equiva-
lence.

Proposition 14.8. Let φ be an ltlf formula, the constructed DFA A using SDD-
based Expand can have, in the worst case, 22|cl(φ)| states.

Proof. Note that in the SDD-based construction, we index every constructed state
ψ (OR-node) by the SDD of xnf(φ)p. Moreover, the SDD variables consist of
Y ∪ X ∪ Z, where Z =

⋃
θ∈cl(φ){zα|α ∈ pa(xnf(θ)), α not literal}. Therefore, it is

guaranteed that Y ∪ X ∪ Z is the same size as cl(φ). Note that by the definition of
transformation function xnf() and pa(), Y ∪ X ∪ Z can be obtained from cl(φ) by
simply replacing θ ∈ cl(φ) by ◦θ, if θ is an U -formula, and θ ∈ cl(φ) by •θ, if θ is a
R-formula. Again, every SDD-based constructed state corresponds to a subset of
2Y∪X ∪Z possible models. That is to say, there can be, in the worst case, 22|Y∪X ∪Z|

states that are not propositional equivalent. We thus show that A constructed using
SDD-based Expand can have, in the worst case, 22|cl(φ)| states.

14.3 ltlf Synthesis as AND-OR Graph Search 181

Lemma 14.9. Algorithm 7 is correct, i.e., given an OR node n, Expand correctly
expands the search graph.

Proof. By definition, the expected outcome of the Efunction is that constructs from
n all its or-arcs (act,AndNd), and and-arcs (resp, succ) of every AndNd, and that all
the agent actions acts of OR-node n must be disjoint, covering and compressed, the
same with environment responses resp of every AndNd connected to n. Moreover,
we have to prove that for every σ ∈ 2Y∪X , we have that there exists only one triple
(acti, respi,j , succi,j), i.e. a path from n to succ that passes through the i-th or-arc
(acti,AndNdj) and the j-th and-arc of AND-node AndNdi, such that σ|Y |= acti,
σ|X |= respi,j , and succi,j = δ([ψ]∼p, σ). In order to be correct, Algorithm 2 must
satisfy all the above conditions.

Let ψ be the formula associated to n. By construction, the SDD representation
of xnf(ψ) is T =

∨n
i=1[primei(Y) ∧ subi(X ∪ Z)], and by Algorithm 2 we have

acti = primei(Y) and AndNdi = subi(X ∪Z). Again by construction, subi(X ∪Z) =∨m
j=1[primei,j(X)∧ subi,j(Z)], and by Algorithm 2 we have respi,j = primei,j(X) and

succi,j = RmNext(subi,j(Z)). By the properties of the SDD compilation, all the
acti, i.e. the set of primes primei of T , are disjoint and covering; that is, for all
Y ∈ 2Y there exists only one i such that Y |= acti. Moreover, for the same arguments
applied to subi(X ∪ Z), once i is fixed, for all X ∈ 2X , there is only one j such
that X |= respi,j . This means that for every σ ∈ 2Y∪X there exists only one pair
(acti, respi,j) such that Y |= acti, where Y = σ|Y , and X |= respi,j , where X = σ|X .
Furthermore, the guarantee that all the subs are compressed implies that there
cannot be less (acti,AndNdi pairs and, given i, there cannot be less (respi,j , succi,j)
pairs.

Given a pair (acti, respi,j) of agent-env moves, let succi,j be the associated
successor OR-node extracted by the algorithm. To prove that succi,j is indeed the
right successor from node n after moves (acti, respi,j), we note that by Lemma 14.7,
we have that for every σ ∈ 2P ,

δ([ψ]∼p, σ) = RmNext(xnf(ψ)p |σ) (14.1)

From Equation 14.1, it follows that succi,j = RmNext(subi,j(Z)) is indeed the
correct successor OR-node starting from node n following from agent move acti and
environment move respi,j . Together with Proposition 14.8, Expand also retains the
doubly exponential blowup, we thus conclude that Expand is correct.

Follows an example on how Lemma 14.9 can be applied:

Example 14.10. Consider the ltlf formula φ = aU b, where Y = {b} and X = {a}.
For the sake of simplicity, in this example we only consider one state variable,
i.e., Z = {◦(aU b)}. The vtree is shown in Figure 14.1a. The disjoint outgoing
transitions from state sφ can be found by inspecting the SDD of xnf(φ), depicted
in Figure 14.1b. In particular, the left child of the root (with index 1) describes
the transition from the current OR-node, associated to formula φ, to the AND-
node AndNd1, represented by the SDD rooted at index 3, via agent move ¬b. From
AndNd1, the environment can do moves either a (left child) or ¬a (right child). In the
former case, the environment move a leads to corresponding sub z◦aU b, that yields a
successor OR-node associated to formula RmNext(z◦aU b) = (aU b)∧♢true. In the
latter case, the environment move ¬a leads to the successor OR-node associated to
formula ff (⊥). which is a failure state, as expected. The right child of the original
root (with index 1) describes the transition from the current OR-node, associated
to formula φ, to the SDD denoting formula tt (⊤) with agent move b (note, the

14.3 ltlf Synthesis as AND-OR Graph Search 182

0

B
1

2

A
3

C
4

(a)

3

A C ¬A⊥

1

¬B B ⊤

(b)

Figure 14.1. In Figure 14.1a, the vtree for φ = aU b, with Y = {B}, X = {A}, Z = {C}
and A = a, B = b, C = ◦(aU b). For the sake of presentation, we only consider the
state variable relevant in one step, and not all the subformulas of φ. In Figure 14.1b,
the SDD of the formula xnf(φ) = b ∨ (a ∧◦(aU b)).

environment has no choice to prevent this). From the SDD denoting formula tt (⊤),
we extract the corresponding successor OR-node by means of the RmNext function,
giving tt = RmNext(tt).

Theorem 14.11. Algorithm 5 terminates in at most double-exponential time, in
the size of φ of problem (φ,X ,Y).

Proof. (Sketch) This is guaranteed by the fact that the number of recursive calls in
Search is bounded by the worst-case doubly-exponential number of states in the
constructed DFA via the SDD-based technique. Note that every recursive call first
checks for success, failure, and loop (Lines 11-19). Then if the recursive call gets
to Line 20, it will eventually tag the current node as success or failure. Therefore,
every node is explored only once in a forward manner. Note that if a success node n
was also tagged loop, BackProp is called before completing the current recursive
call. BackProp is essentially a Breadth First Search (BFS) on the subgraph rooted
at n. Since there can be at most linear number of (n1, (act, resp), n2) edges in this
subgraph, and every (n1, (act, resp), n2) edge is visited only once during the BFS,
BackProp terminates in linear time in the size of the subgraph rooted at n. Hence,
we conclude that Algorithm 5 terminates in at most double-exponential time, in the
size of φ of problem (φ,X ,Y).

Theorem 14.12. Algorithm 5 is correct, i.e., it returns a non-empty strategy iff the
given synthesis problem is realizable.

Proof. (Sketch) We prove by showing the main recursive procedure Search is
correct. If Search does not detect any loops on the graph, we can see that once
an OR-node n is tagged, the tag is stored until the algorithm terminates. n is
tagged as success if either n is detected as accepting, or there exists an agent act,
following which, all the successors are also tagged as success, regardless of what the
environment resp is, and the current recursion returns True. Note that, only in this
case, the corresponding state-action pair is added to strategy. If neither condition
happens, n is tagged as failure, and the current recursion returns False.

14.4 Related Work 183

If Search detects a loop on n in the graph, the presence of the loop leads to
temporary failure. It could happen that a parent node np (also further ancestor
nodes) of n is tagged as failure due to this temporary failure of n. Therefore,
once n is tagged as success, the success tag should be propagated in the loops
through BackProp. BackProp is correct, since the tag of a parent node np (also
further ancestor nodes) changes from failure to success iff there exists an agent act,
following which, all the successors are also tagged as success, regardless of what
the environment resp is. Therefore, BackProp is able to eliminate the temporary
failure caused by loops. Hence, if a failure tag stays until the algorithm terminates,
this is a confirmed failure that is not affected by any temporary failure. As a
result, Algorithm 5 terminates with the initial node tagged as success and returns a
non-empty strategy iff the given synthesis problem is realizable.

14.4 Related Work
Previous results on forward synthesis An attempt of applying forward ltlf
synthesis approach has been presented in (Xiao et al., 2021). That work presents
an on-the-fly synthesis approach via conducting a so-called Transition-based Deter-
ministic Finite Automata (TDFA) game, where the acceptance condition is defined
on transitions, instead of states. Moreover, the game arena is constructed using
SAT-based techniques. While that work successfully initiated research on on-the-
fly ltlf synthesis, its weaknesses motivated us to explore a different approach to
forward-synthesis techniques. First, the transitions generated there are explicit, such
that during search for every state, there can be an exponential number of options to
explore. Second, due to the fact that the acceptance condition is defined on tran-
sitions, every generated transition has to be checked for acceptance. Furthermore,
every state is represented explicitly as a Boolean formula, and thus the propositional
equivalence check between two states leads to heavy cost, and there can be, in the
worst case, doubly exponential number of states. Although both of the acceptance
check and the propositional equivalence check can be done by utilizing sophisticated
SAT-based techniques, the SAT solver is invoked in every single step, leading to
unavoidable resource consumption.

POND planning Beyond FOND planning, another relevant work is planning in
partially observable nondeterministic domains (POND), aka contingent planning,
where the agent is only able to observe partly the current world state (Reif, 1984;
Goldman and Boddy, 1996; Bonet and Geffner, 2000; Geffner and Bonet, 2013). In
this case, the search space is no longer the set of the world states, but its powerset,
a space of belief-states, which is in doubly-exponential size. In order to tackle this
problem, several approaches have been employed, we look into three of them. The
first one (Bertoli et al., 2006) leverages KC techniques to generate a symbolic, BDD-
based representation of the planning domain, together with BDD representations
of belief-states. In particular, when expanding the search space from a given node,
one needs to evaluate the node on the domain BDD to obtain all of its possible
outgoing edges, also represented as a BDD, which is then traversed to abstract
the set of disjoint and covering outgoing edges. Note that in our approach, the
search space is expanded by representing the XNF of the ltlf formula relating
to the current node as an SDD, which implicitly encodes the set of disjoint and
covering outgoing edges. Representing the XNF formula in BDDs is also possible,
since BDD is, in fact, a special case of SDD. The crucial benefit of using SDD
is that, apart from representing propositional formulas, the disjoint, covering and

14.5 Summary and Discussion 184

compressed partition (can be exponential size in the number of propositions) is
naturally provided by SDD, without explicitly traversing its structure. It is indeed
interesting to try different KC techniques in the future. The second approach to
contingent planning, does not employ an explicit representation of belief-states during
the computation, and instead represents a belief-state by an action-observation path
leading to it (Hoffmann and Brafman, 2005). Therefore, the belief-state construction
requires the knowledge of actions and the corresponding effects, which does not
apply to the case of ltlf synthesis. Another approach to contingent planning applies
an explicit disjunctive representation of belief-states (Thanh To, Pontelli, and Cao
Son, 2009), since every belief-state is naturally a disjunction of conjuncted fluents.
It should be noted that, ltlf formulas, even in NNF, allows arbitrary nesting of
disjunctions and conjunctions. For that reason, one cannot directly apply their
approach to ltlf synthesis.

14.5 Summary and Discussion
It presents a novel approach to solve ltlf synthesis. The proposed approach

reduces the problem to AND-OR graph search, rather than first computing the
dfa and then solving the dfa game (Chapter 13). This has the most important
advantage that bypasses the full construction of the dfa of the ltlf formula,
the major bottleneck for the synthesis solutions based on it. Instead, a forward
approach only explores a subgraph of the full automaton. We observed that even
an uninformed search, i.e., without heuristics, is able to drastically improve the
synthesis capability in several cases. Crucially, it is important to be symbolic in the
transition representation as otherwise the explicit representation of an alphabet over
binary propositions does not scale with the number of propositions. That is why
using techniques to reduce the branching factor at the minimum are necessary, and
using SDDs is one of those, as we have shown.

There are different future research directions.

14.5.1 Informed Search
Instead of using a blind AND/OR search algorithm, one can use informed

variants of AND/OR graph search algorithms, that make use of heuristics, like
AO∗ (J. Nilsson, 1982; Pearl, 1984); in particular, the variants that also works
for graphs with cycles (Mattmüller, 2013; Jiménez and Torras, 2000; Mahanti and
Bagchi, 1985). This can lead to development of an entirely new research topic
dealing with the study and discovery of good heuristics, either problem dependent
or problem independent, that work well for the problem of ltlf synthesis.

14.5.2 Different Strategies to implement Expand
In the approach presented in this chapter, we use SDDs in the implementation

of the Expand function (Algorithm 7). Of course, it is not the unique approach.
One can still use BDDs, although their usage requires custom graph navigation in
order to discover the disjoint and covering transitions. Instead of using knowledge
compilation techniques, one can use SAT-based approaches to iteratively branch on
formulas, hence avoiding to generate all the children nodes at once, leveraging the
recent successes of the last two decades in the SAT solvers (Silva and Sakallah, 1996);
or alternatively, design a custom DPLL-like search algorithm to explore disjoint and
covering agent-env move pairs.

14.5 Summary and Discussion 185

14.5.3 Extension to ldlf , ppltl, ppldl
The technique is readily extendible to ldlf and to the computationally more

tractable fragments of ppltl and ppldl. The computational advantage could be
used for a straightforward symbolic state representation, where the bits are in
one-to-one correspondence with the formula closure.

14.5.4 Other optimizations
Among other optimizations applicable, there are: on-the-fly minimization of

the sub-dfa discovered during the search, and find smarter heuristics similar to
look-ahead realizability and unrealizability checks.

186

Chapter 15

Cynthia

This chapter presents Cynthia, an implementation of the approach presented in
Chapter 14.

The chapter is structured as follows:

• In Section 15.1, we briefly describe the software architecture and the internal
working of Cynthia.

• In Section 15.2, we evaluate the implemented tool on ltlf synthesis bench-
marks.

• Section 15.4 concludes the chapter, proposing future research directions.

15.1 Implementation
We implemented the forward synthesis problem presented in Section 14.3 in a tool

called Cynthia in C++ 1. Cynthia is able to take an ltlf synthesis problem (φ,X ,Y)
and constructs a strategy that realizes φ if one exists. The ltlf formula is parsed
using Flex and Bison (Levine, 2009) with a custom grammar2, and the syntactic tree is
represented using n-ary trees. The partition of the variables is specified in a separate
file. We make use of library SDD-2.0 (http://reasoning.cs.ucla.edu/sdd) to
handle all SDD related operations.
Optimizations. Cynthia applies some optimizations to speed up the synthesis
procedure. First, right before Expand an OR-node n, we perform the pre-processing
techniques described in (Xiao et al., 2021). More specifically, we check: (i) there
exists a one-step strategy that reaches accepting states from n, then n is tagged
as success; or (ii) there does not exist an agent move that can avoid sink state (a
non-accepting state only going back to itself) from n, then n is tagged as failure.
Moreover, despite being a depth-first search, the SDD-based Expand(n), in fact,
constructs all the connected AndNd of n, and followup OR-nodes succ at once, which
allows us to conduct a “look-ahead" check. More specifically, this “look-ahead" check
tries to tag constructed succ by the pre-processing techniques to speed up further
search.

1Tool available at https://whitemech.github.io/cynthia.
2https://marcofavorito.me/tl-grammars/

http://reasoning.cs.ucla.edu/sdd
https://marcofavorito.me/tl-grammars/

15.2 Empirical Evaluation 187

15.2 Empirical Evaluation
Experimental Methodology. We evaluated the efficiency of Cynthia, by comparing
against the following tools: Lisa (Bansal et al., 2020) and Lydia (De Giacomo and
Favorito, 2021) are state-of-the-art backward ltlf synthesis approaches. Both tools
compute the complete DFA first, and then solve an adversarial reachability game
following the symbolic backward computation technique described in (Zhu, Tabajara,
Li, et al., 2017). Ltlfsyn (Xiao et al., 2021) implements a SAT-based on-the-fly
forward synthesis approach.
Experiment Setup. Experiments were run on a computer cluster, where each
instance took exclusive access to a computing node with Intel-Xeon processor running
at 2.6 GHz, with 8GB of memory and 300 seconds of time limit. The correctness
of Cynthia was empirically verified by comparing the results with those from all
baseline tools. No inconsistencies were encountered for all solved instances.

15.3 Empirical Evaluations
15.3.1 Benchmarks

We collected, in total, 1494 ltlf synthesis instances from literature, consisting
of 3 benchmark families: 40 patterned instances from the Patterns benchmark
family (Xiao et al., 2021), split into the GF -pattern and U -pattern datasets; 54
instances from the Two-player-Games benchmark family (Tabajara and Vardi, 2019a;
Bansal et al., 2020), split into Single-Counter, Double-Counters and Nim datasets.
Since the formulation there assumes that the environment acts first, the ltlf
instances had to be modified slightly to adapt to our setting, where the agent acts
first; 1400 randomly conjuncted instances taken from (Zhu, Tabajara, Li, et al., 2017;
De Giacomo and Favorito, 2021).

Patterns. There are 20 unrealizable GF -pattern instances, and 20 realizable
U -pattern instances, constructed in the following ways, respectively.

GF (n) = G(p1) ∧ F (q2) ∧ F (q3) ∧ . . . ∧ F (qn)
U(n) = p1U(p2U(. . . pn−1Upn))

More specifically, G stands for □ (Always), F stands for ♢ (Eventually), and U
stands for U (Until). The variables in the formulas are roughly equally partitioned
into X and Y at random. In particular, for GF -pattern instances, the first variable
p1 is always assigned as environment variable such that all generated instances are
guaranteed to be unrealizable. Moreover, for U -pattern instances, the last variable
pn (n ≥ 2) is always assigned as agent variable such that all generated instances are
guaranteed to be realizable.

Random. This benchmark family has 1400 instances, from which there are 1000
instances from (Zhu, Tabajara, Li, et al., 2017), and 400 instances from (De Giacomo
and Favorito, 2021). The instances in this benchmark family are constructed from
basic cases taken from ltl synthesis datasets Lily (Jobstmann and Bloem, 2006)
and Load balancer (Ehlers, 2010). Formally, a random conjunction formula RC(L)
has the form: RC(L) =

∧
1≤i≤L Pi(v1, v2, ..., vk), where L is the number of conjuncts,

or the length of the formula, and Pi is a randomly selected basic case. Variables
v1, v2, . . . , vk are chosen randomly from a set of m candidate variables. Given L

15.3 Empirical Evaluations 188

and m (the size of the candidate variable set), we generate a formula RC(L) in the
following way:

1. Randomly select L basic cases;

2. For each case φ, substitute every variable v with a random new variable v′

chosen from m atomic propositions. If v is an environment-variable in φ,
then v′ is also an environment-variable in RC(L). The same applies to the
agent-variables.

For the descriptions of Single-Counter, Double-Counter, Nim and Random see
Section 7.3.3.

Plots. For better readability, we show the plots of experimental results in larger
size here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Parameter: Number of variables

10−4

10−3

10−2

10−1

100

101

102

T
im

e
co

st
(s

ec
on

ds
)

Lydia

Cynthia

Ltlfsyn

Lisa-symbolic

Lisa

Lisa-explicit

Figure 15.1. Results on GF -pattern.

Results. Figure 15.1 and Figure 15.2 show the running time of each tool on every
instance of the GF -, and U -pattern, respectively. Across these instances, we observe
that Cynthia is able to solve all instances with much less time comparing to backward
approaches, represented by Lisa and Lydia.

Comparing to Ltlfsyn, Cynthia is able to achieve comparative performance on the
GF -pattern instances, with time cost difference of <1 second (y-axis is in log scale),
see Figure 15.1. On the U -pattern instances, Cynthia shows significantly better
performance, see Figure 15.2. Detailed running times can be found in Table 15.1 for
GF -pattern and in Table 15.2 for U -pattern instances.

On the Two-player-Games benchmarks, see Figure 15.3, we observe that Cynthia
is able to dominate all other tools on the Nim instances. Yet, on both Counter(s)
instances, backward approaches show better performance over all forward approaches,

15.3 Empirical Evaluations 189

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Parameter: Number of variables

10−4

10−3

10−2

10−1

100

101

102
T

im
e

co
st

(s
ec

on
ds

)

Lydia

Cynthia

Ltlfsyn

Lisa-symbolic

Lisa

Lisa-explicit

Figure 15.2. Results on U -pattern.

and Cynthia is almost on par with Ltlfsyn. Detailed running times can be found
in Table 15.3 for Nim instances and in Table 15.4 and in Table 15.5 for single
counters and double counters benchmark, respectively.

On the Random benchmarks, Cynthia, in general, performs better than Ltlfsyn,
by solving more instances with less time, see Figure 15.4. Nevertheless, Cynthia
cannot beat backward approaches.
Analysis. It is clear from the plots that Cynthia, in general, shows an overall
better performance than Ltlfsyn, illustrating the efficiency and better scalability of
our approach. In particular, there is a notable outperformance of Cynthia on the
U -pattern instances, see Figure 15.2. The challenge in the U -pattern instances lies
mostly in proving realizable, and can be achieved by just satisfying variables under
control. Since every variable appears only once on the right side of the U operator,
our approach is able to compress the branching labels as propositional formulas,
such that highly reducing the branching factor and thus speeding up the search
procedure.

When comparing Cynthia with backward approaches integrated tools, it should
be noted that, in general, forward approaches perform well on the instances where
the result can be obtained far before exploring the whole search space.

In our benchmarks, this is exactly what happens for Nim and Pattern instances,
where Cynthia shows dominating performance over all tools, which demonstrates the
promising efficiency of forward synthesis.

On the other hand, backward approaches perform better when it is necessary to
explore the entire search space.

In the case of the Counter(s) instances, due to their specific structure, in order
to obtain a strategy, the searching space to explore grows exponentially fast. In
particular, the branching factor of AND-nodes, even after clustering, can remain

15.4 Summary and Discussion 190

Single Counter (20) Double Counter (10) Nim (24)

Benchmark set

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
um

of
b

en
ch

m
ar

ks
so

lv
ed

Cynthia

Ltlfsyn

Lydia

Lisa-symbolic

Lisa-explicit

Lisa

Figure 15.3. Results on Two-player-Games.

exponential in the number of environment variables, and so leaving no space to further
reduce. Nevertheless, backward approaches can leverage powerful minimization to
highly reduce the searching space such that achieving better performance, as also
observed in (Tabajara and Vardi, 2019a).

For the Random instances, which are randomly conjuncted ltlf formulas, the
advantage of possibly being lucky and finding a solution quickly without exploring the
entire search space is overwhelmed by the fact that backward approaches integrated
with composition techniques (Bansal et al., 2020; De Giacomo and Favorito, 2021)
are able to first decompose the conjuncted formula into smaller pieces, obtain the
minimized DFA of each conjunct and then compose them for final game solving.
It might be possible that similar composition ideas could be leveraged to forward
synthesis approaches as well, although further research is necessary in this direction.

15.4 Summary and Discussion
This chapter described Cynthia, an implementation of forward ltlf synthesis

based on Sentential Decision Diagrams for minimizing the branching factor of
AND/OR search graph induced by agent’s and environment’s moves. Experimental
evaluation shows how it is superior than the other tool for forward ltlf synthesis,
Ltlfsyn, which trivially evaluates all possible agent’s and environment’s moves, and
it is competitive with the state-of-the-art tools Lydia and Lisa. As often happens in
computer science, for hard problems, there is no “one size that fits all”; the best
solution for ltlf synthesis would embrace the trade-off coming from forward search
and backward search and chose the approach, or a mixture of them, that best fits
the current problem.

Among future improvements of Cynthia, we would like to consider and address
the following limitations:

15.4 Summary and Discussion 191

0 200 400 600 800 1000 1200 1400
Number of solved instances

0

50

100

150

200

250

300
T

im
eo

ut
(s

ec
on

ds
)

Lydia

Cynthia

Ltlfsyn

Lisa-symbolic

Lisa

Lisa-explicit

Figure 15.4. Results on Random.

• despite the SDD-based approach for computing all the node successors showed
to be beneficial, there are cases in which the SDD compilation to compute
the available moves and successors becomes the bottleneck of the procedure.
Different strategies to solve this issue could be: (i) find better variable ordering;
(ii) only consider the SDD state variables at the current level of decomposition,
not all the state variables.

• From a design perspective, in the current implementation, the search procedure
and the decomposition procedure are intertwined. This should be decoupled as
much as possible, so to make the whole software architecture more modular and
so easy to perform benchmarks across different versions of the same modules.

• Run more thorough benchmarks, considering different AND/OR search algo-
rithms and benchmarks that highlight the trade-off between backward and
forward search.

15.4 Summary and Discussion 192

Table 15.1. Results on GF -pattern, time in milliseconds.

name Cynthia Ltlfsyn Lydia Lisa Lisa-explicit Lisa-symbolic
gfand01 0.41 0.18 6.39 0.04 0.04 0.05
gfand02 0.88 0.21 6.38 0.05 0.05 0.07
gfand03 1.41 0.28 9.69 0.06 0.06 0.07
gfand04 2.78 0.75 8.39 10.06 0.07 0.11
gfand05 2.71 0.35 9.13 10.06 0.06 0.13
gfand06 4.45 0.35 10.46 0.06 0.06 0.13
gfand07 5.12 0.47 15.16 0.11 0.13 0.17
gfand08 6.07 0.42 18.49 10.31 0.29 10.11
gfand09 7.18 0.54 34.99 10.68 10.70 0.15
gfand10 6.64 0.52 66.73 20.58 20.57 20.27
gfand11 8.80 0.58 141.08 82.34 72.39 20.49
gfand12 2.78 0.80 291.40 283.73 273.11 10.95
gfand13 9.92 0.78 660.43 62.95 1134.83 12.14
gfand14 10.95 1.13 1443.26 77.90 N/A 15.24
gfand15 12.31 1.20 3493.02 114.79 N/A 42.58
gfand16 14.31 1.28 7954.64 406.03 N/A 102.66
gfand17 15.67 2.55 20196.53 554.40 N/A 247.74
gfand18 15.71 2.18 46037.30 1639.00 N/A 637.70
gfand19 1.87 4.00 117824.24 158406.40 N/A 2043.10
gfand20 16.37 4.78 282788.90 N/A N/A 6639.74

Table 15.2. Results on U -pattern, time in milliseconds.

name Cynthia Ltlfsyn Lydia Lisa Lisa-explicit Lisa-symbolic
uright01 0.42 0.18 5.90 0.05 0.07 0.05
uright02 0.41 0.27 11.29 0.07 0.06 0.06
uright03 0.46 0.39 19.27 0.07 0.05 10.06
uright04 0.48 0.46 17.10 10.04 0.04 0.05
uright05 0.50 0.83 8.45 10.04 10.04 10.04
uright06 0.51 0.87 8.63 20.04 20.04 20.04
uright07 0.58 1.98 16.80 90.06 80.05 90.04
uright08 0.62 2.56 13.17 0.12 0.13 0.10
uright09 0.63 5.43 16.64 0.17 0.19 0.19
uright10 0.63 5.61 25.07 0.24 0.21 0.19
uright11 0.66 16.26 66.65 0.31 0.32 0.35
uright12 1.18 17.51 142.48 0.42 0.46 0.39
uright13 0.75 55.34 308.67 0.68 0.62 0.78
uright14 0.82 60.44 692.79 1.15 1.14 1.17
uright15 0.79 293.86 1680.48 2.22 2.05 2.05
uright16 0.83 294.41 4090.18 3.66 3.74 3.61
uright17 0.88 1596.28 15064.68 7.16 7.16 7.09
uright18 0.88 1623.28 N/A 14.42 14.16 15.01
uright19 0.82 11520.30 N/A N/A N/A N/A
uright20 0.73 11448.30 N/A N/A N/A N/A

15.4 Summary and Discussion 193

Table 15.3. Results on Nim, time in milliseconds.

name Cynthia Ltlfsyn Lydia Lisa Lisa-explicit Lisa-symbolic
nim_1_1 36.70 N/A 15.72 0.06 0.06 0.46
nim_1_2 57.50 N/A 24.89 10.16 10.16 10.64
nim_1_3 63.94 N/A 45.02 20.25 20.29 30.99
nim_1_4 55.30 N/A 182.58 60.33 40.42 51.31
nim_1_5 70.19 N/A 888.22 120.47 110.47 121.85
nim_1_6 89.09 N/A 4594.25 250.65 250.63 252.54
nim_1_7 126.13 N/A 16304.63 510.76 500.75 513.77
nim_1_8 173.29 N/A 50293.76 N/A N/A N/A
nim_2_1 110.86 63304.90 37.41 20.34 10.67 44.55
nim_2_2 525.35 N/A 378.10 150.86 131.11 237.44
nim_2_3 756.25 N/A 7236.98 821.78 811.78 962.45
nim_2_4 4696.17 N/A 66607.41 3383.80 3393.82 3728.46
nim_2_5 21709.21 N/A N/A N/A N/A N/A
nim_2_6 34876.06 N/A N/A N/A N/A N/A
nim_2_7 20660.01 N/A N/A N/A N/A N/A
nim_2_8 205167.27 N/A N/A N/A N/A N/A
nim_3_1 466.88 N/A 373.48 360.14 300.15 636.95
nim_3_2 10816.32 N/A 47814.58 5654.51 5666.39 7779.32
nim_3_3 N/A N/A N/A N/A N/A N/A
nim_3_4 N/A N/A N/A N/A N/A N/A
nim_4_1 7895.97 N/A 21373.38 7183.50 7213.57 13724.89
nim_4_2 N/A N/A N/A N/A N/A N/A
nim_5_1 259369.96 N/A N/A 162875.08 184813.46 N/A
nim_5_2 N/A N/A N/A N/A N/A N/A

Table 15.4. Results on Single-Counter, time in milliseconds.

name Cynthia Ltlfsyn Lydia Lisa Lisa-explicit Lisa-symbolic
counter_01 46.93 12.70 7.99 10.09 10.09 10.22
counter_02 300.26 321.19 11.16 50.21 60.22 51.27
counter_03 714.14 19255.70 16.86 520.59 520.56 532.52
counter_04 3249.34 N/A 37.86 12.50 22.56 232.32
counter_05 N/A N/A 84.93 95.76 41.15 2488.26
counter_06 N/A N/A 264.65 589.94 144.03 25401.00
counter_07 N/A N/A 887.72 5129.60 773.66 256830.00
counter_08 N/A N/A 4042.69 201722.00 5024.00 N/A
counter_09 N/A N/A 21789.13 N/A 44492.40 N/A
counter_10 N/A N/A 102739.97 N/A N/A N/A
counter_11 N/A N/A N/A N/A N/A N/A
counter_12 N/A N/A N/A N/A N/A N/A
counter_13 N/A N/A N/A N/A N/A N/A
counter_14 N/A N/A N/A N/A N/A N/A
counter_15 N/A N/A N/A N/A N/A N/A
counter_16 N/A N/A N/A N/A N/A N/A
counter_17 N/A N/A N/A N/A N/A N/A
counter_18 N/A N/A N/A N/A N/A N/A
counter_19 N/A N/A N/A N/A N/A N/A
counter_20 N/A N/A N/A N/A N/A N/A

Table 15.5. Results on Double-Counter, time in milliseconds.

name Cynthia Ltlfsyn Lydia Lisa Lisa-explicit Lisa-symbolic
counters_01 61.29 9.61 14.68 80.13 80.13 60.45
counters_02 3496.84 463.86 41.02 10.95 20.77 24.91
counters_03 N/A 100060.00 219.92 132.98 81.72 216.96
counters_04 N/A N/A 2353.53 1263.96 446.48 2590.23
counters_05 N/A N/A 41203.34 23491.22 2532.84 70869.70
counters_06 N/A N/A N/A N/A N/A N/A
counters_07 N/A N/A N/A N/A N/A N/A
counters_08 N/A N/A N/A N/A N/A N/A
counters_09 N/A N/A N/A N/A N/A N/A
counters_10 N/A N/A N/A N/A N/A N/A

194

Chapter 16

Conclusions

As we have seen in Chapter 1, there is a lot of interest in applying temporal
logics on finite traces to many relevant AI problems. In line with the recent interest
in applying temporal logic on finite traces to AI problems, this thesis is about the
advancement of the techniques based on the temporal logics ltlf/ldlf , as well as the
formalization of novel interesting AI problems, and solutions based on applications
of the aforementioned techniques. This thesis addressed several important topics in
this field.

Regarding the construction of the dfa from an ltlf/ldlf formula, we proposed a
novel translation approach, which we call compositional due to its way of decomposing
formulas up to base cases and handle them in a bottom-up fashion. Despite its
computational complexity is non-elementary, which is worse than the classical
translation that relies on the encoding in an alternating finite automaton followed by
a determinization step, we showed that in practice this is not the case, thanks also to
the opportunity of applying aggressive minimization after the computation of every
partial result. Then, we formalized a more concrete variant of the approach that relies
on automata representations and operations that are semi-symbolic, i.e. still explicit
in the state space representation, but symbolic in the alphabet representation. This
was a fundamental constrain to guarantee the scalability to big formulas, especially
with respect to the number of variables. Finally, we implemented the semi-symbolic
compositional approach in the tool Lydia, and showed how it is competitive with
other state-of-the-art tools, both for dfa construction and for compositional ltlf
synthesis.

This contribution can make a big impact in the AI community that deals with
temporal logics such as ltlf/ldlf , due to its foundational nature. Any tecnhique or
algorithm that relies on the ltlf/ldlf -dfa connection can promptly benefit from
our work. Moreover, it opens several future directions of research, e.g. by applying
the compositional approach for other translations like ltlf , ppltl and ppldl, and
developments of optimizations for more efficient algorithms.

Then, we contributed to the problem of reinforcement learning with temporal
logic specifications. In particular, we introduced the novel concept of Restraining
Bolts, in the case where the agent is a reinforcement learning agent and the restraining
specifications are ltlf/ldlf formulas. We developed a technique to reduce the
problem to classical reinforcement learning with an extended agent’s state space,
and formally proved that the correlation between the representations used for the
features and the fluents of the authority does not need to be formalized in order
for the agent to learn to satisfy the specification. We also contributed to how to
engineer such temporal reward specifications by means of transducers, which reduce

195

the overhead at minimum, and allow to have a finer-grained control to the conditions
that allow an agent to be rewarded, using the known conditions in the runtime
monitoring literature. Among other applications, we developed an imitation learning
method for heterogeneous agents, and a way to integrate a planning model with a
learning agent in a domain-independent way.

Our contributions have the potential to open many new applications and theo-
retical developments to the employment of ltlf/ldlf for reinforcement learning.
Indeed, these high-level languages like ltlf/ldlf might be useful as intermediate
formats that are somewhat easy for people to write, but also somewhat easy for
machines to interpret, in contrast with the “low-level programming” of transition-
based rewards. The specification of rewards by means of temporal logics has been
advocated by top scientists in reinforcement learning, like Michael Littman (Littman,
2015b; Littman, 2022), witnessing how it is of paramount importance finding good
formalisms and approaches to synthetize a reward function in order to instruct the
agent to learn to perform the desired task, whilst making sure the agent perofrms the
task as intended. The recent literature in RL started to be sensible to this problem,
as happened for an observed phenomenon like reward hacking (Clark and Amodei,
2016), where the agent exploits a misspecified reward function to gain more rewards
in an unintended way. More generally, our contribution can be very useful to the
recent interest in AI safety for reinforcement learning agents (Amodei et al., 2016;
Garcia and Fernandez, 2015; Leike et al., 2017; Ray, Achiam, and Amodei, 2019),
and some work already started using temporal logics for safe reinforcement learning,
e.g. shielding (Alshiekh et al., 2018). The use of temporal logics in RL can be also
important for improving sample efficiency and to inject prior knowledge to the task
of the agent, by providing shaping rewards in a systematic and sound way (Grzes,
2010).

Finally, besides compositional ltlf synthesis, this thesis made another contri-
bution contributes to the problem of ltlf synthesis by studying a very promising
approach based on forward AND-OR graph search. Indeed, we reduced ltlf syn-
thesis to an instance of AND/OR graph search with cycles, and showed how to
rely on knowledge compilation technique to make the search procedure over the
implicit graph more practical, by clustering together equivalent agent’s moves and
environment’s moves, and by allowing fast constant-time checking of state (syntactic)
equivalence. We also provided an implementation, Cynthia, and experimentally
proved how a forward approach can be beneficial to this problem for many instances.

As we said, the synthesis problem in finite settings is similar to reactive synthesis,
except that the interaction of the agent with the environment is guaranteed to
terminate. This fact makes finite-trace formalisms better suitable for modeling AI
problems, where usually the task is guaranteed to terminate. However, despite having
an elegant theory, much work has to be done to make such techniques of practical
use. In fact, development of good algorithmic solutions is fundamental for coping
with the intractability of the problem, whose complexity is 2EXPTIME-complete.
The deeper connection between ltlf synthesis and forward search opens countless
developments, especially regarding the analogies with FOND planning. As we have
shown, for several instances, it is actually easier to look for a winning strategy
starting from the initial state of the system and move forward rather than starting
from the winning states and going backward by using least-fixpoint computation.
This observation, combined with a more efficient compilation of the search graph,
and a development of suitable heuristics for this specific problem, possibly exploiting
the structure of the formula, and so by using informed search algorithms, suggests
many avenues for future research, with the potential of being very impactful.

196

Bibliography

Aalst, Wil M. P. van der. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011.

Abadi, Eden and Ronen I. Brafman. “Learning and Solving Regular Decision Pro-
cesses”. In: IJCAI. ijcai.org, 2020, pp. 1948–1954.

Abbeel, Pieter, Morgan Quigley, and Andrew Y. Ng. “Using inaccurate models
in reinforcement learning”. In: Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA,
June 25-29, 2006. 2006, pp. 1–8. doi: 10.1145/1143844.1143845. url: https:
//doi.org/10.1145/1143844.1143845.

Abiteboul, Serge, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

Achiam, Joshua et al. “Constrained Policy Optimization”. In: ICML. 2017, pp. 22–31.
Aksaray, Derya et al. “Q-Learning for robust satisfaction of signal temporal logic

specifications”. In: CDC. IEEE, 2016, pp. 6565–6570.
Almagor, Shaull, Udi Boker, and Orna Kupferman. “Formally Reasoning About

Quality”. In: J. ACM 63.3 (2016), 24:1–24:56.
Alshiekh, Mohammed et al. “Safe Reinforcement Learning via Shielding”. In: AAAI.

AAAI Press, 2018, pp. 2669–2678.
Althoff, Christoph Schulte, Wolfgang Thomas, and Nico Wallmeier. “Observations

on Determinization of Büchi Automata”. In: CIAA. Vol. 3845. Lecture Notes in
Computer Science. Springer, 2005, pp. 262–272.

Alur, Rajeev, Loris D’Antoni, and Mukund Raghothaman. “DReX: A Declarative
Language for Efficiently Evaluating Regular String Transformations”. In: POPL.
ACM, 2015, pp. 125–137.

Aminof, Benjamin, Giuseppe De Giacomo, Alessio Lomuscio, et al. “Synthesizing
Best-effort Strategies under Multiple Environment Specifications”. In: KR. 2021,
pp. 42–51.

— “Synthesizing strategies under expected and exceptional environment behaviors”.
In: IJCAI. ijcai.org, 2020, pp. 1674–1680.

Aminof, Benjamin, Giuseppe De Giacomo, Aniello Murano, et al. “Planning under
LTL Environment Specifications”. In: ICAPS. AAAI Press, 2019, pp. 31–39.

Aminof, Benjamin, Giuseppe De Giacomo, and Sasha Rubin. “Best-Effort Synthesis:
Doing Your Best Is Not Harder Than Giving Up”. In: IJCAI. ijcai.org, 2021,
pp. 1766–1772.

Amodei, Dario et al. “Concrete Problems in AI Safety”. In: CoRR abs/1606.06565
(2016).

Andreas, Jacob, Dan Klein, and Sergey Levine. “Modular Multitask Reinforcement
Learning with Policy Sketches”. In: ICML. Vol. 70. Proceedings of Machine
Learning Research. PMLR, 2017, pp. 166–175.

Angluin, Dana. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87–106.

https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/1143844.1143845

Bibliography 197

Angluin, Dana, Sarah Eisenstat, and Dana Fisman. “Learning Regular Languages
via Alternating Automata”. In: IJCAI. 2015.

Arora, Saurabh and Prashant Doshi. A Survey of Inverse Reinforcement Learning:
Challenges, Methods and Progress. 2018. arXiv: 1806.06877 [cs.LG].

Bacchus, Fahiem, Craig Boutilier, and Adam J. Grove. “Rewarding Behaviors”. In:
AAAI/IAAI, Vol. 2. AAAI Press / The MIT Press, 1996, pp. 1160–1167.

Bacchus, Fahiem and Froduald Kabanza. “Planning for Temporally Extended Goals”.
In: AAAI/IAAI, Vol. 2. AAAI Press / The MIT Press, 1996, pp. 1215–1222.

— “Planning for temporally extended goals”. In: Annals of Mathematics and Artifi-
cial Intelligence 22.1 (1998), pp. 5–27.

— “Using temporal logics to express search control knowledge for planning”. In:
Artif. Intell. 116.1-2 (2000), pp. 123–191.

Bahar, R. Iris et al. “Algebraic Decision Diagrams and Their Applications”. In:
Formal Methods Syst. Des. 10.2/3 (1997), pp. 171–206.

Baier, C. and JP. Katoen. Principles of model checking. 2008.
Baier, Jorge A., Christian Fritz, Meghyn Bienvenu, et al. “Beyond Classical Planning:

Procedural Control Knowledge and Preferences in State-of-the-art Planners”. In:
Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3.
AAAI’08. Chicago, Illinois: AAAI Press, 2008, pp. 1509–1512. isbn: 978-1-57735-
368-3. url: http://dl.acm.org/citation.cfm?id=1620270.1620321.

Baier, Jorge A., Christian Fritz, and Sheila A. McIlraith. “Exploiting Procedural
Domain Control Knowledge in State-of-the-Art Planners”. In: ICAPS. AAAI,
2007, pp. 26–33.

Baier, Jorge A. and Sheila A. McIlraith. “Planning with First-Order Temporally
Extended Goals using Heuristic Search”. In: Proc. of AAAI. 2006, pp. 788–795.

Bansal, Suguman et al. “Hybrid Compositional Reasoning for Reactive Synthesis
from Finite-Horizon Specifications”. In: AAAI. AAAI Press, 2020, pp. 9766–9774.

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson. “Neuronlike
adaptive elements that can solve difficult learning control problems”. In: IEEE
Trans. Syst. Man Cybern. 13 (Sept. 1983), pp. 834–846.

Basin, David and Nils Klarlund. “Automata based symbolic reasoning in hardware
verification”. In: Formal Methods In System Design 13.3 (1998), pp. 253–286.

— “Beyond the finite in automatic hardware verification”. In: Technical Report
(1996).

Basin, David A. and Nils Klarlund. “Hardware Verification using Monadic Second-
Order Logic”. In: CAV. Vol. 939. Lecture Notes in Computer Science. Springer,
1995, pp. 31–41.

Bauer, Andreas, Martin Leucker, and Christian Schallhart. “Comparing LTL Se-
mantics for Runtime Verification”. In: J. Log. Comput. 20.3 (2010), pp. 651–
674.

Bellman, Richard. Dynamic Programming. 1st ed. Princeton, NJ, USA: Princeton Uni-
versity Press, 1957. url: http://books.google.com/books?id=fyVtp3EMxasC&
pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#
v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false.

Bertoli, P. et al. “Strong planning under partial observability”. In: Artif. Intell.
170.4-5 (2006).

Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. “Planning with Quali-
tative Temporal Preferences”. In: Proceedings, Tenth International Conference
on Principles of Knowledge Representation and Reasoning, Lake District of the
United Kingdom, June 2-5, 2006. Ed. by Patrick Doherty, John Mylopoulos, and
Christopher A. Welty. AAAI Press, 2006.

https://arxiv.org/abs/1806.06877
http://dl.acm.org/citation.cfm?id=1620270.1620321
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false

Bibliography 198

Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. “Specifying and com-
puting preferred plans”. In: Artif. Intell. 175.7-8 (2011), pp. 1308–1345.

Bloem, Roderick et al. “Symbolic Implementation of Alternating Automata”. In: Int.
J. Found. Comput. Sci. 18.4 (2007), pp. 727–743.

Bogdanov, Andrej and Luca Trevisan. “Average-Case Complexity”. In: Found. Trends
Theor. Comput. Sci. 2.1 (2006).

Bonet, B. and H. Geffner. “Planning with Incomplete Information as Heuristic Search
in Belief Space”. In: AIPS. 2000.

Bouajjani, Ahmed, Peter Habermehl, and Tomás Vojnar. “Abstract Regular Model
Checking”. In: CAV. Vol. 3114. Lecture Notes in Computer Science. Springer,
2004, pp. 372–386.

Bouton, C. L. “Nim, A Game with a Complete Mathematical Theory”. In: Annals
of Mathematics 3 (1901).

Brachman, Ronald J. and Hector J. Levesque. Knowledge Representation and Rea-
soning. Elsevier, 2004. isbn: [’9781558609327’]. doi: 10.1016/b978-1-55860-
932-7.x5083-3. url: http://dx.doi.org/10.1016/b978-1-55860-932-
7.x5083-3.

Brafman, R. I., G. De Giacomo, and F. Patrizi. “LTLf/LDLf Non-Markovian
Rewards”. In: AAAI. 2018.

Brafman, Ronen I and Giuseppe De Giacomo. “Regular Decision Processes: A Model
for Non-Markovian Domains.” In: IJCAI. 2019, pp. 5516–5522.

— “Planning for LTLf /LDLf Goals in Non-Markovian Fully Observable Nondeter-
ministic Domains”. In: IJCAI. Ed. by Sarit Kraus. 2019.

Brafman, Ronen I., Giuseppe De Giacomo, and Fabio Patrizi. “Specifying Non-
Markovian Rewards in MDPs Using LDL on Finite Traces (Preliminary Version)”.
In: CoRR abs/1706.08100 (2017).

Brafman, Ronen I. and Moshe Tennenholtz. “R-MAX - A General Polynomial Time
Algorithm for Near-Optimal Reinforcement Learning”. In: J. Mach. Learn. Res.
3 (2002), pp. 213–231. url: http://jmlr.org/papers/v3/brafman02a.html.

Brooks, Rodney A. “Intelligence without Representation”. In: Artif. Intell. 47.1-3
(1991), pp. 139–159.

Bryant, Randal E. “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams”. In: ACM Comput. Surv. 24.3 (1992), pp. 293–318.

Brzozowski, Janusz A. and Ernst L. Leiss. “On Equations for Regular Languages,
Finite Automata, and Sequential Networks”. In: Theor. Comput. Sci. 10 (1980),
pp. 19–35.

Buchi, J. Richard and Lawrence H. Landweber. “Solving Sequential Conditions by
Finite-State Strategies”. In: Transactions of the American Mathematical Society
138 (1969), pp. 295–311. issn: 00029947. url: http://www.jstor.org/stable/
1994916 (visited on 05/29/2022).

Büchi, J Richard. “Weak second-order arithmetic and finite automata”. In: Mathe-
matical Logic Quarterly 6.1-6 (1960).

Büchi, Richard J. “Weak Second-Order Arithmetic and Finite Automata”. In:
Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92. doi: 10.1002/malq.
19600060105. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
malq.19600060105. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/malq.19600060105.

Burch, Jerry R. et al. “Symbolic Model Checking: 1020 States and Beyond”. In: Inf.
Comput. 98.2 (1992), pp. 142–170.

Calvanese, Diego, Giuseppe De Giacomo, and Moshe Y. Vardi. “Reasoning about
Actions and Planning in LTL Action Theories”. In: KR. 2002, pp. 593–602.

https://doi.org/10.1016/b978-1-55860-932-7.x5083-3
https://doi.org/10.1016/b978-1-55860-932-7.x5083-3
http://dx.doi.org/10.1016/b978-1-55860-932-7.x5083-3
http://dx.doi.org/10.1016/b978-1-55860-932-7.x5083-3
http://jmlr.org/papers/v3/brafman02a.html
http://www.jstor.org/stable/1994916
http://www.jstor.org/stable/1994916
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19600060105

Bibliography 199

Camacho, Alberto, Jorge A. Baier, et al. “Finite LTL Synthesis as Planning”. In:
ICAPS. 2018, pp. 29–38.

Camacho, Alberto, Meghyn Bienvenu, and Sheila A. McIlraith. “Finite LTL Synthesis
with Environment Assumptions and Quality Measures”. In: KR. AAAI Press,
2018, pp. 454–463.

Camacho, Alberto, Oscar Chen, et al. “Decision-Making with Non-Markovian Re-
wards: From LTL to automata-based reward shaping”. In: RLDM. 2017, pp. 279–
283.

— “Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shap-
ing”. In: SOC. 2017, pp. 159–160.

Camacho, Alberto, Rodrigo Toro Icarte, et al. “LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement Learning”. In: IJCAI.
ijcai.org, 2019, pp. 6065–6073.

Camacho, Alberto and Sheila A McIlraith. “Strong Fully Observable Non-Deterministic
Planning with LTL and LTLf Goals.” In: IJCAI. 2019, pp. 5523–5531.

— “Learning Interpretable Models Expressed in Linear Temporal Logic”. In: Proceed-
ings of the Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019. 2019, pp. 621–
630. url: https://aaai.org/ojs/index.php/ICAPS/article/view/3529.

Camacho, Alberto, Eleni Triantafillou, et al. “Non-Deterministic Planning with
Temporally Extended Goals: LTL over Finite and Infinite Traces”. In: AAAI.
2017.

Chandra, Ashok K., Dexter Kozen, and Larry J. Stockmeyer. “Alternation”. In: J.
ACM 28.1 (1981), pp. 114–133.

Church, Alonzo. “A note on the Entscheidungsproblem”. In: The journal of symbolic
logic 1.1 (1936), pp. 40–41.

— “Application of recursive arithmetic to the problem of circuit synthesis”. In:
Journal of Symbolic Logic 28.4 (1963).

— “Logic, arithmetic, and automata”. In: Journal of Symbolic Logic 29.4 (1964).
Cimatti, A., M. Pistore, et al. “Weak, Strong, and Strong Cyclic Planning via

Symbolic Model Checking.” In: Artificial Intelligence 1–2.147 (2003).
Cimatti, A., M. Roveri, and P. Traverso. “Strong Planning in Non-Deterministic

Domains Via Model Checking”. In: AIPS. 1998.
Cimatti, Alessandro, Fausto Giunchiglia, et al. “Planning via Model Checking: A

Decision Procedure for AR”. In: ECP. Vol. 1348. Lecture Notes in Computer
Science. Springer, 1997, pp. 130–142.

Ciolek, Daniel Alfredo et al. “Multi-Tier Automated Planning for Adaptive Behavior”.
In: ICAPS. AAAI Press, 2020, pp. 66–74.

Clark, Jack and Dario Amodei. “Faulty reward functions in the wild”. In: Internet:
https://blog.openai.com/clark2016faultys (2016).

Clarke, Edmund M., E. Allen Emerson, and A. Prasad Sistla. “Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifications”. In:
ACM Trans. Program. Lang. Syst. 8.2 (1986), pp. 244–263.

Clarke Jr., Edmund M., Orna Grumberg, and Doron A. Peled. Model Checking.
Cambridge, MA, USA: MIT Press, 1999. isbn: 0-262-03270-8.

D’Antoni, Loris and Margus Veanes. “Automata modulo theories”. In: Commun.
ACM 64.5 (2021), pp. 86–95. doi: 10.1145/3419404. url: https://doi.org/
10.1145/3419404.

— “The Power of Symbolic Automata and Transducers”. In: CAV (1). Vol. 10426.
Lecture Notes in Computer Science. Springer, 2017, pp. 47–67.

Darwiche, A. “SDD: A New Canonical Representation of Propositional Knowledge
Bases”. In: IJCAI. 2011.

https://aaai.org/ojs/index.php/ICAPS/article/view/3529
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3419404

Bibliography 200

Davis, Martin. “Influences of mathematical logic on computer science”. In: A half-
century survey on The Universal Turing Machine. 1988, pp. 315–326.

— The universal computer: The road from Leibniz to Turing. AK Peters/CRC Press,
2018.

De Giacomo, G. and M. Y. Vardi. “Automata-Theoretic Approach to Planning
for Temporally Extended Goals”. In: Recent Advances in AI Planning, 5th
European Conference on Planning, ECP’99, Durham, UK, September 8-10, 1999,
Proceedings. Vol. 1809. Lecture Notes in Computer Science. Springer, 1999.

De Giacomo, Giuseppe, Riccardo De Masellis, and Marco Montali. “Reasoning on LTL
on Finite Traces: Insensitivity to Infiniteness”. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence. AAAI’14. Québec
City, Québec, Canada: AAAI Press, 2014, pp. 1027–1033. url: http:
//dl.acm.org/citation.cfm?id=2893873.2894033.

De Giacomo, Giuseppe, Riccardo De Masellis, et al. “Monitoring Constraints and
Metaconstraints with Temporal Logics on Finite Traces”. In: CoRR abs/2004.01859
(2020).

De Giacomo, Giuseppe, Antonio Di Stasio, et al. “Pure-Past Linear Temporal and
Dynamic Logic on Finite Traces”. In: IJCAI. 2020.

De Giacomo, Giuseppe and Marco Favorito. “Compositional Approach to Translate
LTLf/LDLf into Deterministic Finite Automata”. In: ICAPS. AAAI Press, 2021,
pp. 122–130.

De Giacomo, Giuseppe, Marco Favorito, and Francesco Fuggitti. “Planning for
Temporally Extended Goals in Pure-Past Linear Temporal Logic: A Polynomial
Reduction to Standard Planning”. In: arXiv preprint arXiv:2204.09960 (2022).

De Giacomo, Giuseppe, Marco Favorito, Luca Iocchi, and Fabio Patrizi. “Imitation
Learning over Heterogeneous Agents with Restraining Bolts”. In: ICAPS. AAAI
Press, 2020, pp. 517–521.

De Giacomo, Giuseppe, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro
Ronca. “Temporal Logic Monitoring Rewards via Transducers”. In: KR. 2020,
pp. 860–870.

De Giacomo, Giuseppe, Marco Favorito, Luca Iocchi, et al. “Domain-independent
reward machines for modular integration of planning and learning”. In: (2021).

De Giacomo, Giuseppe, Marco Favorito, Li Jianwen, et al. “LTLf Synthesis as
AND-OR Graph Search”. In: IJCAI (to appear). 2022.

De Giacomo, Giuseppe, Luca Iocchi, et al. “Foundations for Restraining Bolts:
Reinforcement Learning with LTLf/LDLf Restraining Specifications”. In: ICAPS.
AAAI Press, 2019, pp. 128–136.

— “Reinforcement Learning for LTLf/LDLf Goals”. In: CoRR arXiv:1807.06333
(2018).

De Giacomo, Giuseppe, Fabrizio Maria Maggi, et al. “On the Disruptive Effectiveness
of Automated Planning for LTLf -Based Trace Alignment”. In: AAAI. AAAI
Press, 2017, pp. 3555–3561.

De Giacomo, Giuseppe, Riccardo De Masellis, Marco Grasso, et al. “Monitoring
Business Metaconstraints Based on LTL and LDL for Finite Traces”. In: BPM.
Vol. 8659. Lecture Notes in Computer Science. Springer, 2014, pp. 1–17.

De Giacomo, Giuseppe, Riccardo De Masellis, and Marco Montali. “Reasoning on
LTL on Finite Traces: Insensitivity to Infiniteness”. In: AAAI. AAAI Press, 2014,
pp. 1027–1033.

De Giacomo, Giuseppe and Sasha Rubin. “Automata-Theoretic Foundations of
FOND Planning for LTLf and LDLf Goals”. In: IJCAI. ijcai.org, 2018, pp. 4729–
4735.

http://dl.acm.org/citation.cfm?id=2893873.2894033
http://dl.acm.org/citation.cfm?id=2893873.2894033

Bibliography 201

De Giacomo, Giuseppe, Antonio Di Stasio, Giuseppe Perelli, et al. “Synthesis with
Mandatory Stop Actions”. In: KR. 2021, pp. 237–246.

De Giacomo, Giuseppe, Antonio Di Stasio, Lucas M. Tabajara, et al. “Finite-Trace
and Generalized-Reactivity Specifications in Temporal Synthesis”. In: IJCAI.
ijcai.org, 2021, pp. 1852–1858.

De Giacomo, Giuseppe, Antonio Di Stasio, Moshe Y. Vardi, et al. “Two-Stage
Technique for LTLf Synthesis Under LTL Assumptions”. In: KR. 2020, pp. 304–
314.

De Giacomo, Giuseppe and Moshe Y. Vardi. “Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces”. In: IJCAI. IJCAI/AAAI, 2013, pp. 854–860.

— “LTLf and LDLf Synthesis under Partial Observability”. In: IJCAI. IJCAI/AAAI
Press, 2016, pp. 1044–1050.

— “Synthesis for LTL and LDL on Finite Traces”. In: IJCAI. AAAI Press, 2015,
pp. 1558–1564.

Devlin, Sam and Daniel Kudenko. “Dynamic Potential-based Reward Shaping”. In:
Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 1. AAMAS ’12. Valencia, Spain: International
Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 433–440.
isbn: 0-9817381-1-7, 978-0-9817381-1-6. url: http://dl.acm.org/citation.
cfm?id=2343576.2343638.

Dietterich, Thomas G. “Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition”. In: J. Artif. Intell. Res. 13.1 (2000), pp. 227–303.

Doner, John. “Tree acceptors and some of their applications”. In: Journal of Computer
and System Sciences 4.5 (1970), pp. 406–451.

Duret-Lutz, Alexandre et al. “Spot 2.0 - A Framework for LTL and \omega -
Automata Manipulation”. In: ATVA. Vol. 9938. Lecture Notes in Computer
Science. 2016, pp. 122–129.

Efthymiadis, Kyriakos and Daniel Kudenko. “A comparison of plan-based and
abstract MDP reward shaping”. In: Connect. Sci. 26.1 (2014), pp. 85–99. doi:
10.1080/09540091.2014.885283. url: https://doi.org/10.1080/09540091.
2014.885283,https://www.tandfonline.com/doi/full/10.1080/09540091.
2014.885283.

Ehlers, R. “Symbolic Bounded Synthesis”. In: CAV. 2010.
Ehlers, Rüdiger et al. “Supervisory control and reactive synthesis: a comparative

introduction”. In: Discrete Event Dynamic Systems 27.2 (2017), pp. 209–260.
Elgot, Calvin C. “Decision problems of finite automata design and related arith-

metics”. In: Transactions of the American Mathematical Society 98.1 (1961),
pp. 21–51.

Emerson, E. Allen. “Temporal and Modal Logic”. In: Handbook of Theoretical
Computer Science. 1990.

Fagin, Ronald et al. Reasoning About Knowledge. MIT Press, 1995.
Fellah, Abdelaziz, Helmut Jürgensen, and Sheng Yu. “Constructions for alternating

finite automata”. In: Int. J. Comput. Math. 35.1-4 (1990), pp. 117–132.
Felli, Paolo, Giuseppe De Giacomo, and Alessio Lomuscio. “Synthesizing Agent

Protocols From LTL Specifications Against Multiple Partially-Observable Envi-
ronments”. In: KR. AAAI Press, 2012.

Fischer, Michael J. and Richard E. Ladner. “Propositional dynamic logic of regular
programs”. In: Journal of Computer and System Sciences 18.2 (1979), pp. 194–211.
issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(79)90046-1. url:
http://www.sciencedirect.com/science/article/pii/0022000079900461.

Fogarty, Seth et al. “Profile trees for Büchi word automata, with application to
determinization”. In: Inf. Comput. 245 (2015), pp. 136–151.

http://dl.acm.org/citation.cfm?id=2343576.2343638
http://dl.acm.org/citation.cfm?id=2343576.2343638
https://doi.org/10.1080/09540091.2014.885283
https://doi.org/10.1080/09540091.2014.885283,https://www.tandfonline.com/doi/full/10.1080/09540091.2014.885283
https://doi.org/10.1080/09540091.2014.885283,https://www.tandfonline.com/doi/full/10.1080/09540091.2014.885283
https://doi.org/10.1080/09540091.2014.885283,https://www.tandfonline.com/doi/full/10.1080/09540091.2014.885283
https://doi.org/https://doi.org/10.1016/0022-0000(79)90046-1
http://www.sciencedirect.com/science/article/pii/0022000079900461

Bibliography 202

Fried, Dror, Lucas M Tabajara, and Moshe Y Vardi. “BDD-based boolean functional
synthesis”. In: International Conference on Computer Aided Verification. Springer.
2016, pp. 402–421.

Gabaldon, Alfredo. “Precondition Control and the Progression Algorithm”. In:
ICAPS. AAAI, 2004, pp. 23–32.

Gabbay, D. et al. On the Temporal Analysis of Fairness. Tech. rep. Jerusalem, Israel,
Israel, 1997.

Gaon, Maor and Ronen I. Brafman. “Reinforcement Learning with Non-Markovian
Rewards”. In: AAAI. AAAI Press, 2020, pp. 3980–3987.

Garcia, Javier and Fernando Fernandez. “A comprehensive survey on safe reinforce-
ment learning”. In: J. Mach. Learn. Res. 16 (2015), pp. 1437–1480.

Garey, M. R. and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Geffner, Hector and Blai Bonet. A Coincise Introduction to Models and Methods for
Automated Planning. Morgan&Claypool, 2013.

Gerevini, Alfonso et al. “Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners”. In: Artif.
Intell. 173.5-6 (2009), pp. 619–668.

Gerevini, Alfonso E et al. “Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners”. In: AIJ
173.5-6 (2009), pp. 619–668.

Gerth, Rob et al. “Simple on-the-fly automatic verification of linear temporal logic”.
In: PSTV. Vol. 38. IFIP Conference Proceedings. Chapman & Hall, 1995, pp. 3–
18.

Ghallab, M., D. S. Nau, and P. Traverso. Automated planning - theory and practice.
2004.

Ghallab, Malik, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

Gödel, Kurt. “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I”. In: Monatshefte für mathematik und physik 38.1 (1931),
pp. 173–198.

Goldman, R. P. and M. S. Boddy. “Expressive Planning and Explicit Knowledge”.
In: AIPS. 1996.

Gottlob, Georg. “Computer science as the continuation of logic by other means”. In:
Keynote Address, European Computer Science Summit (2009).

Gretton, Charles. “A More Expressive Behavioral Logic for Decision-Theoretic
Planning”. In: PRICAI. Vol. 8862. Lecture Notes in Computer Science. Springer,
2014, pp. 13–25.

Grounds, Matthew Jon and Daniel Kudenko. “Combining Reinforcement Learning
with Symbolic Planning”. In: Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning, 5th, 6th, and 7th European Symposium,
ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems,
Revised Selected Papers. 2007, pp. 75–86. doi: 10.1007/978-3-540-77949-0_6.
url: https://doi.org/10.1007/978-3-540-77949-0%5C_6.

Grzes, M. and D. Kudenko. “Plan-based reward shaping for reinforcement learning”.
In: Proc. of the 4th International IEEE Conference on Intelligent Systems. 2008,
pp. 10–22.

Grzes, Marek. “Improving exploration in reinforcement learning through domain
knowledge and parameter analysis”. PhD thesis. University of York, 2010.

Grześ, Marek. “Reward Shaping in Episodic Reinforcement Learning”. In: Proceed-
ings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
AAMAS ’17. São Paulo, Brazil: International Foundation for Autonomous

https://doi.org/10.1007/978-3-540-77949-0_6
https://doi.org/10.1007/978-3-540-77949-0%5C_6

Bibliography 203

Agents and Multiagent Systems, 2017, pp. 565–573. url: http://dl.acm.org/
citation.cfm?id=3091125.3091208.

Hadfield-Menell, Dylan et al. “The Off-Switch Game”. In: IJCAI. 2017, pp. 220–227.
Halpern, Joseph Y. et al. “On the unusual effectiveness of logic in computer science”.

In: Bull. Symb. Log. 7.2 (2001), pp. 213–236.
Hasanbeig, Mohammadhosein, Alessandro Abate, and Daniel Kroening. “Logically-

Constrained Neural Fitted Q-iteration”. In: AAMAS. International Foundation
for Autonomous Agents and Multiagent Systems, 2019, pp. 2012–2014.

Hasanbeig, Mohammadhosein, Yiannis Kantaros, et al. “Reinforcement Learning for
Temporal Logic Control Synthesis with Probabilistic Satisfaction Guarantees”.
In: CDC. IEEE, 2019, pp. 5338–5343.

Haslum, P. et al. An Introduction to the Planning Domain Definition Language.
2019.

Hengst, Bernhard. “Hierarchical Reinforcement Learning”. In: Encyclopedia of Ma-
chine Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA:
Springer US, 2010, pp. 495–502. isbn: 978-0-387-30164-8. doi: 10.1007/978-
0-387-30164-8_363. url: https://doi.org/10.1007/978-0-387-30164-
8_363.

Henriksen, J. G., J. L. Jensen, et al. “Mona: Monadic Second-order Logic in Practice”.
In: TACAS. 1995.

Henriksen, Jesper G., Jakob Jensen, et al. “Mona: Monadic second-order logic in
practice”. In: 1995, pp. 89–110.

Heule, Marijn and Sicco Verwer. “Exact DFA Identification Using SAT Solvers”. In:
Grammatical Inference: Theoretical Results and Applications, 10th International
Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceedings.
2010, pp. 66–79.

Hoffmann, J. and R. I. Brafman. “Contingent Planning via Heuristic Forward Search
with Implicit Belief States”. In: ICAPS. 2005.

Hopcroft, John. “An n log n algorithm for minimizing states in a finite automaton”.
In: Theory of machines and computations. 1971, pp. 189–196.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. 2006.

Icarte, Rodrigo Toro, Toryn Klassen, et al. “Using Reward Machines for High-Level
Task Specification and Decomposition in Reinforcement Learning”. In: ICML.
2018, pp. 2107–2116.

Icarte, Rodrigo Toro, Toryn Q Klassen, et al. “Teaching Multiple Tasks to an RL
Agent using LTL”. In: (2018).

— “Using Advice in Model-Based Reinforcement Learning”. In: The 3rd Multidisci-
plinary Conference on Reinforcement Learning and Decision Making (RLDM).
2017.

Icarte, Rodrigo Toro, Ethan Waldie, et al. “Learning Reward Machines for Partially
Observable Reinforcement Learning”. In: NIPS. 2019, pp. 15523–15534.

Immerman, Neil. Descriptive complexity. Graduate texts in computer science. Springer,
1999.

J. Nilsson, N. Principles of Artificial Intelligence. 1982.
Jiménez, P. and C. Torras. “An efficient algorithm for searching implicit AND/OR

graphs with cycles”. In: Artif. Intell. 124.1 (2000). doi: 10.1016/S0004-3702(00)
00063-1.

Jobstmann, B. and R. Bloem. “Optimizations for LTL Synthesis”. In: FMCAD. 2006.
Jothimurugan, Kishor et al. “Compositional Reinforcement Learning from Logical

Specifications”. In: NeurIPS. 2021, pp. 10026–10039.

http://dl.acm.org/citation.cfm?id=3091125.3091208
http://dl.acm.org/citation.cfm?id=3091125.3091208
https://doi.org/10.1007/978-0-387-30164-8_363
https://doi.org/10.1007/978-0-387-30164-8_363
https://doi.org/10.1007/978-0-387-30164-8_363
https://doi.org/10.1007/978-0-387-30164-8_363
https://doi.org/10.1016/S0004-3702(00)00063-1
https://doi.org/10.1016/S0004-3702(00)00063-1

Bibliography 204

Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra. “Planning
and Acting in Partially Observable Stochastic Domains”. In: Artif. Intell. 101.1-2
(1998), pp. 99–134.

Kamp, Johan Anthony Wilem. Tense logic and the theory of linear order. University
of California, Los Angeles, 1968.

Karpathy, Andrej. REINFORCEjs: WaterWorld demo. https://cs.stanford.
edu/people/karpathy/reinforcejs/waterworld.html. Accessed: 15-03-2020.
2015.

Khoussainov, Bakhadyr and Anil Nerode. Automata Theory and Its Applications.
Secaucus, NJ, USA: Birkhauser Boston, Inc., 2001. isbn: 3764342072.

Klarlund, Nils. “Mona & Fido: The logic-automaton connection in practice”. In:
CSL. 1997, pp. 311–326.

Klarlund, Nils and Anders Møller. Mona version 1.4: User manual. BRICS, Depart-
ment of Computer Science, University of Aarhus Denmark, 2001.

Kupferman, Orna. “On High-Quality Synthesis”. In: Computer Science - Theory
and Applications - 11th International Computer Science Symposium in Russia,
CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Proceedings. 2016, pp. 1–15.

Kupferman, Orna and Moshe Y. Vardi. “From Linear Time to Branching Time”. In:
ACM Trans. Comput. Log. 6.2 (2005), pp. 273–294.

Lacerda, Bruno, David Parker, and Nick Hawes. “Optimal Policy Generation for
Partially Satisfiable Co-Safe LTL Specifications”. In: IJCAI. 2015, pp. 1587–1593.

Leike, Jan et al. “AI Safety Gridworlds”. In: CoRR abs/1711.09883 (2017).
Leiss, Ernst L. “Succint Representation of Regular Languages by Boolean Automata”.

In: Theor. Comput. Sci. 13 (1981), pp. 323–330.
Leon Illanes, Le et al. “Symbolic Planning and Model-Free Reinforcement Learning:

Training Taskable Agents”. In: Proc. of 4th Multidisciplinary Conference on
Reinforcement Learning and Decision Making (RLDM). 2019. url: http://www.
cs.toronto.edu/~lillanes/papers/IllanesYTM-rldm2019-symbolic.pdf.

Leonetti, Matteo, Luca Iocchi, and Peter Stone. “A synthesis of automated planning
and reinforcement learning for efficient, robust decision-making”. In: Artificial
Intelligence 241 (2016), pp. 103–130. doi: 10.1016/j.artint.2016.07.004.
url: https://doi.org/10.1016/j.artint.2016.07.004.

Levine, John. Flex & Bison: Text Processing Tools. " O’Reilly Media, Inc.", 2009.
Li, J., K. Y. Rozier, et al. “SAT-Based Explicit LTLf Satisfiability Checking”. In:

AAAI. 2019.
Li, Xiao, Cristian Ioan Vasile, and Calin Belta. “Reinforcement learning with tem-

poral logic rewards”. In: IROS. IEEE, 2017, pp. 3834–3839.
Lichtenstein, Orna and Amir Pnueli. “Checking That Finite State Concurrent

Programs Satisfy Their Linear Specification”. In: POPL. ACM Press, 1985,
pp. 97–107.

Linz, Peter. An introduction to formal languages and automata. Jones and Bartlett
Publishers, 2006.

Littman, Michael. The Reward Hypothesis - Markov Decision Processes. en. url:
https://www.coursera.org/lecture/fundamentals- of- reinforcement-
learning / michael - littman - the - reward - hypothesis - q6x0e (visited on
05/31/2022).

Littman, Michael L. “Programming agent via rewards”. In: Invited talk at IJCAI.
2015.

Littman, Michael L. et al. “Environment-Independent Task Specifications via GLTL”.
In: CoRR abs/1704.04341 (2017).

Littman, Michael Lederman. “Programming agent via rewards.” Invited talk at
IJCAI. 2015.

https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
http://www.cs.toronto.edu/~lillanes/papers/IllanesYTM-rldm2019-symbolic.pdf
http://www.cs.toronto.edu/~lillanes/papers/IllanesYTM-rldm2019-symbolic.pdf
https://doi.org/10.1016/j.artint.2016.07.004
https://doi.org/10.1016/j.artint.2016.07.004
https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/michael-littman-the-reward-hypothesis-q6x0e
https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/michael-littman-the-reward-hypothesis-q6x0e

Bibliography 205

Ly, Linh Thao et al. “A Framework for the Systematic Comparison and Evaluation
of Compliance Monitoring Approaches”. In: EDOC. 2013, pp. 7–16.

Maggi, Fabrizio Maria et al. “Monitoring Business Constraints with Linear Temporal
Logic: An Approach Based on Colored Automata”. In: BPM. Vol. 6896. Lecture
Notes in Computer Science. Springer, 2011, pp. 132–147.

Mahanti, A. and A. Bagchi. “AND/OR Graph Heuristic Search Methods”. In: J.
ACM 32.1 (1985). doi: 10.1145/2455.2459.

Manna, Zohar and Richard J. Waldinger. The deductive foundations of computer pro-
gramming - a one-volume version of "The logical basis for computer programming".
Addison-Wesley, 1993.

Maslov, AN. “Estimates of the number of states of finite automata”. In: Doklady
Akademii Nauk. 1970, pp. 1266–1268.

Mattmüller, R. “Informed progression search for fully observable nondeterministic
planning”. PhD thesis. 2013.

Mattmüller, R. et al. “Pattern Database Heuristics for Fully Observable Nondeter-
ministic Planning”. In: ICAPS. 2010.

Mealy, George H. “A method for synthesizing sequential circuits”. In: Bell Syst. 34
(Sept. 1955), pp. 1045–1079.

Meyer, Albert R. “Weak monadic second order theory of succesor is not elementary-
recursive”. In: Logic colloquium. Springer. 1975, pp. 132–154.

Mnih, Volodymyr et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529–533.

Mohri, Mehryar. “Finite-State Transducers in Language and Speech Processing”. In:
Comput. Linguistics 23.2 (1997), pp. 269–311.

Montali, Marco et al. “Declarative specification and verification of service choreogra-
phiess”. In: ACM Trans. Web 4.1 (2010), 3:1–3:62.

Moore, Andrew W. “Variable Resolution Dynamic Programming”. In: ML91. 1991,
pp. 333–337.

Moore, Edward F. “Gedanken-Experiments on Sequential Machines”. In: Automata
Studies (Dec. 1956), pp. 129–154.

“Symposium on Decision Problems: On a Decision Method in Restricted Second
Order Arithmetic”. In: Logic, Methodology and Philosophy of Science. Ed. by
Ernest Nagel, Patrick Suppes, and Alfred Tarski. Vol. 44. Studies in Logic and
the Foundations of Mathematics. Elsevier, 1966, pp. 1–11. doi: https://doi.
org/10.1016/S0049-237X(09)70564-6. url: https://www.sciencedirect.
com/science/article/pii/S0049237X09705646.

Ng, Andrew Y., Daishi Harada, and Stuart J. Russell. “Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping”. In:
Proceedings of the Sixteenth International Conference on Machine Learning.
ICML ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,
pp. 278–287. isbn: 1-55860-612-2. url: http://dl.acm.org/citation.cfm?
id=645528.657613.

Ng, Andrew Y. and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learn-
ing”. In: Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July
2, 2000. 2000, pp. 663–670.

Nilsson, N. J. Problem-solving methods in artificial intelligence. 1971.
Ohrstrom, Peter and Per Hasle. Temporal logic: From ancient ideas to artificial

intelligence. Vol. 57. Springer Science & Business Media, 2007.
OpenAI. FrozenLake-v0. https://gym.openai.com/envs/FrozenLake-v0/. Ac-

cessed: 30-06-2020. 2016.

https://doi.org/10.1145/2455.2459
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/https://doi.org/10.1016/S0049-237X(09)70564-6
https://www.sciencedirect.com/science/article/pii/S0049237X09705646
https://www.sciencedirect.com/science/article/pii/S0049237X09705646
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645528.657613
https://gym.openai.com/envs/FrozenLake-v0/

Bibliography 206

Orseau, Laurent and Stuart Armstrong. “Safely Interruptible Agents”. In: UAI.
2016.

Papadimitriou, Christos H. Computational complexity. Academic Internet Publ.,
2007.

Patrizi, Fabio et al. “Computing Infinite Plans for LTL Goals Using a Classical
Planner”. In: IJCAI. 2011, pp. 2003–2008.

Pearl, Judea. Heuristics - intelligent search strategies for computer problem solving.
Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984.

Pesic, Maja and Wil M. P. van der Aalst. “A Declarative Approach for Flexible
Business Processes Management”. In: Business Process Management Workshops.
Vol. 4103. Lecture Notes in Computer Science. Springer, 2006, pp. 169–180.

Pesic, Maja, Dragan Bosnacki, and Wil M. P. van der Aalst. “Enacting Declarative
Languages Using LTL: Avoiding Errors and Improving Performance”. In: SPIN.
Vol. 6349. Lecture Notes in Computer Science. Springer, 2010, pp. 146–161.

Pesic, Maja, Helen Schonenberg, and Wil M. P. van der Aalst. “DECLARE: Full
Support for Loosely-Structured Processes”. In: Proc. of the 11th IEEE Int.
Enterprise Distributed Object Computing Conf. (EDOC). IEEE Computer Society,
2007, pp. 287–300.

Pešić, Maja, Dragan Bošnački, and Wil MP van der Aalst. “Enacting declarative
languages using LTL: avoiding errors and improving performance”. In: SPIN.
2010, pp. 146–161.

Pnueli, A. and R. Rosner. “On the Synthesis of a Reactive Module”. In: POPL. 1989.
Pnueli, Amir. “Linear and Branching Structures in the Semantics and Logics of

Reactive Systems”. In: ICALP. Vol. 194. Lecture Notes in Computer Science.
Springer, 1985, pp. 15–32.

— “The Temporal Logic of Programs”. In: FOCS. IEEE Computer Society, 1977,
pp. 46–57.

Prior, Arthur N. Time and modality. John Locke Lecture, 2003.
Puterman, Martin L. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
Queille, Jean-Pierre and Joseph Sifakis. “Specification and verification of concurrent

systems in CESAR”. In: Symposium on Programming. Vol. 137. Lecture Notes
in Computer Science. Springer, 1982, pp. 337–351.

Quint, Eleanor et al. “Formal Language Constraints for Markov Decision Processes”.
In: CoRR abs/1910.01074 (2019).

Rabin, Michael O. and Dana S. Scott. “Finite Automata and Their Decision Prob-
lems”. In: IBM J. Res. Dev. 3.2 (1959), pp. 114–125.

Raman, Vasumathi et al. “Model predictive control with signal temporal logic
specifications”. In: 53rd IEEE Conference on Decision and Control, CDC 2014,
Los Angeles, CA, USA, December 15-17, 2014. 2014, pp. 81–87.

Ray, Alex, Joshua Achiam, and Dario Amodei. “Benchmarking safe exploration in
deep reinforcement learning”. In: arXiv preprint arXiv:1910.01708 7 (2019), p. 1.

Reif, J. H. “The Complexity of Two-Player Games of Incomplete Information”. In:
JCSS 29.2 (1984).

Reiter, Raymond. Knowledge in action: logical foundations for specifying and imple-
menting dynamical systems. MIT press, 2001.

Reynolds, John C. Theories of programming languages. Cambridge University Press,
1998.

Rintanen, J. “Complexity of Planning with Partial Observability”. In: ICAPS. 2004.
Ronca, Alessandro and Giuseppe De Giacomo. “Efficient PAC Reinforcement Learn-

ing in Regular Decision Processes”. In: IJCAI. ijcai.org, 2021, pp. 2026–2032.

Bibliography 207

Ronca, Alessandro, Gabriel Paludo Licks, and Giuseppe De Giacomo. “Markov
Abstractions for PAC Reinforcement Learning in Non-Markov Decision Processes”.
In: (2022).

Rudell, Richard. “Dynamic variable ordering for ordered binary decision diagrams”.
In: ICCAD. IEEE, 1993, pp. 42–47.

Rummery, Gavin A and Mahesan Niranjan. On-line Q-learning using connectionist
systems. Vol. 37. Citeseer, 1994.

Russell, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2010.

Scutellà, M. G. “A Note on Dowling and Gallier’s Top-down Algorithm for Proposi-
tional Horn Satisfiability”. In: J. Log. Program. 8.3 (1990), pp. 265–273.

Silva, João P. Marques and Karem A. Sakallah. “GRASP - a new search algorithm
for satisfiability”. In: ICCAD. IEEE, 1996, pp. 220–227.

Silver, David et al. “Mastering the game of Go without human knowledge”. In:
Nature 550 (Oct. 2017), pp. 354–359.

Simsek, Özgür and Andrew G. Barto. “An intrinsic reward mechanism for efficient
exploration”. In: ICML. Vol. 148. ACM International Conference Proceeding
Series. ACM, 2006, pp. 833–840.

Singh, Satinder P. and Richard S. Sutton. “Reinforcement Learning with Replacing
Eligibility Traces”. In: Mach. Learn. 22.1-3 (Jan. 1996), pp. 123–158. issn:
0885-6125. doi: 10.1007/BF00114726. url: http://dx.doi.org/10.1007/
BF00114726.

Sistla, A. P. and E. M. Clarke. “The Complexity of Propositional Linear Temporal
Logics”. In: J. ACM 32.3 (July 1985), pp. 733–749. issn: 0004-5411. doi: 10.
1145/3828.3837. url: http://doi.acm.org/10.1145/3828.3837.

Sohrabi, Shirin, Jorge A. Baier, and Sheila A. McIlraith. “Preferred Explanations:
Theory and Generation via Planning”. In: AAAI. 2011.

Somenzi, Fabio. “CUDD: CU Decision Diagram Package, 3.0.” In: University of
Colorado at Boulder (2015).

Sutton, Richard S. “Generalization in reinforcement learning: Successful examples
using sparse coarse coding”. In: Advances in neural information processing
systems 8 (1995).

— “Integrated Architectures for Learning, Planning, and Reacting Based on Approx-
imating Dynamic Programming”. In: Machine Learning, Proceedings of the Sev-
enth International Conference on Machine Learning, Austin, Texas, USA, June
21-23, 1990. 1990, pp. 216–224. doi: 10.1016/b978-1-55860-141-3.50030-4.
url: https://doi.org/10.1016/b978-1-55860-141-3.50030-4.

— “Learning to predict by the methods of temporal differences”. In: Machine
Learning 3.1 (Aug. 1988), pp. 9–44. issn: 1573-0565. doi: 10.1007/BF00115009.
url: https://doi.org/10.1007/BF00115009.

Sutton, Richard S. and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998.

Sutton, Richard S., Doina Precup, and Satinder P. Singh. “Between MDPs and Semi-
MDPs: A Framework for Temporal Abstraction in Reinforcement Learning”. In:
Artif. Intell. 112.1-2 (1999), pp. 181–211. doi: 10.1016/S0004-3702(99)00052-
1. url: https://doi.org/10.1016/S0004-3702(99)00052-1.

Tabajara, L. M. and M. Y. Vardi. “Partitioning Techniques in LTLf Synthesis”. In:
IJCAI. 2019.

Tabajara, Lucas Martinelli and Moshe Y Vardi. “Partitioning Techniques in LTLf
Synthesis.” In: IJCAI. 2019, pp. 5599–5606.

Tabakov, Deian and Moshe Y Vardi. “Experimental evaluation of classical automata
constructions”. In: LPAR. 2005, pp. 396–411.

https://doi.org/10.1007/BF00114726
http://dx.doi.org/10.1007/BF00114726
http://dx.doi.org/10.1007/BF00114726
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
http://doi.acm.org/10.1145/3828.3837
https://doi.org/10.1016/b978-1-55860-141-3.50030-4
https://doi.org/10.1016/b978-1-55860-141-3.50030-4
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1

Bibliography 208

Tamm, Hellis and Margus Veanes. “Theoretical Aspects of Symbolic Automata”.
In: SOFSEM. Vol. 10706. Lecture Notes in Computer Science. Springer, 2018,
pp. 428–441.

Tarski, Alfred. “Der Wahrheitsbegriff in den formalisierten Sprachen”. In: Studia
philosophica 1 (1936).

Thanh To, S., E. Pontelli, and T. Cao Son. “A Conformant Planner with Explicit
Disjunctive Representation of Belief States”. In: ICAPS. 2009.

Thatcher, James W. and Jesse B. Wright. “Generalized finite automata theory with
an application to a decision problem of second-order logic”. In: Mathematical
systems theory 2.1 (1968), pp. 57–81.

Thiébaux, Sylvie et al. “Decision-Theoretic Planning with non-Markovian Rewards”.
In: J. Artif. Intell. Res. 25 (2006), pp. 17–74.

Thomas, Wolfgang. “Star-free regular sets of ω-sequences”. In: Information and
Control 42.2 (1979), pp. 148–156. issn: 0019-9958. doi: https://doi.org/
10.1016/S0019-9958(79)90629-6. url: http://www.sciencedirect.com/
science/article/pii/S0019995879906296.

Torres, Jorge and Jorge A. Baier. “Polynomial-Time Reformulations of LTL Tempo-
rally Extended Goals into Final-State Goals”. In: IJCAI. 2015.

Trakhtenbrot, B.A. “Finite automata and the logic of single-place predicates.” English.
In: Sov. Phys., Dokl. 6 (1961), pp. 753–755. issn: 0038-5689.

Tseitin, Grigori S. “On the complexity of derivation in propositional calculus”. In:
Automation of reasoning. Springer, 1983, pp. 466–483.

Turing, Alan Mathison et al. “On computable numbers, with an application to the
Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

Vaandrager, Frits W. “Model learning”. In: Commun. ACM 60.2 (2017), pp. 86–95.
Vardi, Moshe Y. “Logic and automata: A match made in heaven”. In: International

Colloquium on Automata, Languages, and Programming. Springer. 2003, pp. 64–
65.

— “An Automata-Theoretic Approach to Linear Temporal Logic”. In: Banff Higher
Order Workshop. Vol. 1043. Lecture Notes in Computer Science. Springer, 1995,
pp. 238–266.

— “From Church and Prior to PSL”. In: 25 Years of Model Checking - History,
Achievements, Perspectives. 2008, pp. 150–171.

Vardi, Moshe Y. and Pierre Wolper. “An Automata-Theoretic Approach to Automatic
Program Verification (Preliminary Report)”. In: LICS. IEEE Computer Society,
1986, pp. 332–344.

— “Reasoning About Infinite Computations”. In: Inf. Comput. 115.1 (1994), pp. 1–
37.

Veanes, Margus, Nikolaj S. Bjørner, and Leonardo Mendonça de Moura. “Symbolic
Automata Constraint Solving”. In: LPAR (Yogyakarta). Vol. 6397. Lecture Notes
in Computer Science. Springer, 2010, pp. 640–654.

Veanes, Margus, Peli De Halleux, and Nikolai Tillmann. “Rex: Symbolic regular ex-
pression explorer”. In: 2010 Third International Conference on Software Testing,
Verification and Validation. IEEE. 2010, pp. 498–507.

Watkins, Christopher J. C. H. and Peter Dayan. “Q-learning”. In: Machine Learning
8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10.1007/BF00992698. url:
https://doi.org/10.1007/BF00992698.

Watkins, Christopher John Cornish Hellaby. “Learning from delayed rewards”. PhD
thesis. 1989.

Wen, Min, Rüdiger Ehlers, and Ufuk Topcu. “Correct-by-synthesis reinforcement
learning with temporal logic constraints”. In: IROS. 2015, pp. 4983–4990.

https://doi.org/https://doi.org/10.1016/S0019-9958(79)90629-6
https://doi.org/https://doi.org/10.1016/S0019-9958(79)90629-6
http://www.sciencedirect.com/science/article/pii/S0019995879906296
http://www.sciencedirect.com/science/article/pii/S0019995879906296
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

Bibliography 209

Whitehead, Steven D. and Long-Ji Lin. “Reinforcement learning of non-Markov
decision processes”. In: Artificial Intelligence 73.1 (1995). Computational Re-
search on Interaction and Agency, Part 2, pp. 271–306. issn: 0004-3702. doi:
https://doi.org/10.1016/0004- 3702(94)00012- P. url: http://www.
sciencedirect.com/science/article/pii/000437029400012P.

Wolper, Pierre. “Temporal logic can be more expressive”. In: 22nd Annual Symposium
on Foundations of Computer Science (sfcs 1981) (1981), pp. 340–348.

Xiao, S. et al. “On-the-fly Synthesis for LTL over Finite Traces”. In: AAAI. 2021.
Yang, Fangkai et al. “PEORL: Integrating Symbolic Planning and Hierarchical

Reinforcement Learning for Robust Decision-Making”. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. 2018, pp. 4860–4866. doi: 10.24963/
ijcai.2018/675. url: https://doi.org/10.24963/ijcai.2018/675.

Yu, Fang, Muath Alkhalaf, and Tevfik Bultan. “Stranger: An Automata-Based String
Analysis Tool for PHP”. In: TACAS. Vol. 6015. Lecture Notes in Computer
Science. Springer, 2010, pp. 154–157.

Yu, Fang, Tevfik Bultan, et al. “Symbolic string verification: An automata-based
approach”. In: SPIN. 2008, pp. 306–324.

Yu, Sheng, Qingyu Zhuang, and Kai Salomaa. “The state complexities of some basic
operations on regular languages”. In: Theoretical Computer Science 125.2 (1994),
pp. 315–328.

Zhu, S., G. De Giacomo, et al. “LTLf Synthesis with Fairness and Stability Assump-
tions”. In: AAAI. 2020.

Zhu, S., G. Pu, and M. Y. Vardi. “First-Order vs. Second-Order Encodings for
LTLf -to-Automata Translation”. In: TAMC. 2019.

Zhu, Shufang, Lucas M. Tabajara, Jianwen Li, et al. “Symbolic LTLf Synthesis”. In:
IJCAI. 2017, pp. 1362–1369.

Zhu, Shufang, Lucas M. Tabajara, Geguang Pu, et al. “On the Power of Automata
Minimization in Temporal Synthesis”. In: GandALF. Vol. 346. EPTCS. 2021,
pp. 117–134.

https://doi.org/https://doi.org/10.1016/0004-3702(94)00012-P
http://www.sciencedirect.com/science/article/pii/000437029400012P
http://www.sciencedirect.com/science/article/pii/000437029400012P
https://doi.org/10.24963/ijcai.2018/675
https://doi.org/10.24963/ijcai.2018/675
https://doi.org/10.24963/ijcai.2018/675

	Introduction
	Context: Temporal Logics for AI in Decision-Making
	Logic and Computer Science
	Temporal Logics and Program Verification
	Temporal Logics and Artificial Intelligence
	Temporal Logics on Finite Traces
	ltlf/ldlf-to-dfa: State-of-the-art

	Contributions
	Compositional ltlf/ldlf-to-dfa
	Reinforcement Learning with ltlf/ldlf reward specifications
	Forward Synthesis

	Structure of the Thesis

	I Temporal Logics and Automata Theory
	Finite Automata Theory
	Deterministic Finite Automata (dfa)
	Nondeterministic Finite Automata (nfa) and Universal Finite Automata (ufa)
	nfa with -transitions: -nfa

	Alternating Finite Automata (afa)
	Binary Decision Diagrams (BDD)
	dfa Representations
	Fully-Explicit: Explicit State, Explicit Alphabet
	Semi-Symbolic: Explicit State, Symbolic Alphabet
	Fully-Symbolic: Symbolic State, Symbolic Alphabet

	dfa operations: Projections, Concatenation, Closures
	Existential projection
	Universal Projection
	Concatenation
	Kleene Closure

	Summary

	Temporal Logics on Finite Traces
	Linear Temporal Logic
	Syntax
	Semantics

	Linear Temporal Logic on Finite Traces: ltlf
	Syntax
	Semantics
	Complexity and Expressiveness

	Regular Temporal Specifications (ref)
	Linear Dynamic Logic on Finite Traces: ldlf
	Syntax
	Semantics

	Reasoning in ltlf/ldlf
	Summary

	ltlf and ldlf translation to automata
	From ltlf/ldlf to afa
	 function for ltlf
	 function for ldlf

	The ldlf2nfa algorithm
	On-the-fly dfa
	On-the-fly ltlf/ldlf evaluation
	ldlf2dfa: a variant of ldlf2nfa

	From ltlf to fol using Mona
	Reduction to fol
	Weak monadic Second-order theory of 1 Successor (WS1S)

	Summary

	II Compositional Automata Construction
	Compositional approach
	Introduction
	Compositional Translation
	The Technique
	Analysis

	Examples
	Summary and Discussion
	Refinement of Complexity Analysis
	Tailored Rewriting of ldlf Formulas
	Design Compositional Translation for Other Formalisms

	Symoblic Compositional Approach
	From afa to dfa using projections
	Semi-symbolic automata operations
	Existential and Universal Projections
	Concatenation and Kleene Closure
	Construction of the afa

	Summary and Discussion
	Exploit dfa-representation of afas for other problems
	dfa-representation of a Full afa
	Hybrid Compositional Approach

	The Lydia and LydiaSynt Tools
	Mona dfa Library
	What is Mona
	Mona automata

	Lydia and LydiaSynt
	Lydia
	LydiaSynt

	Experimental Evaluation
	Experimental Methodology.
	Experiment Setup.
	Benchmarks
	Results and Analysis

	Discussion and Future Works
	Get rid of the Mona dfa Library
	Improve Experimental Coverage
	Optimizations

	III Reinforcement Learning with ltlf/ldlf Specifications
	Background on Reinforcement Learning
	Reinforcement Learning
	Markov Decision Process (MDP)
	Temporal Difference Learning
	Reward Shaping (RS)
	Non-Markovian Reward Decision Process (NMRDP)
	Preliminaries
	Find an optimal policy for NMRDPs
	Define the non-Markovian reward function
	Using pltl

	RL for NMRDP with ltlf/ldlf Rewards
	NMRDP with ltlf/ldlf rewards

	Summary

	Restraining Bolts
	Introduction
	RL with ltlf/ldlf restraining specifications
	Automata-based reward shaping
	Implementation and Examples
	Summary and Discussion
	Learning ltlf/ldlf goals
	POMDPs
	Quantitative Interpretation of Temporal Formulas
	Automata-based Reward Shaping
	Restraining Bolts with Clocks

	Imitation Learning over Heterogeneous Agents
	Introduction
	Related work
	Problem definition
	Solution method
	Case studies
	Summary and Discussion

	Temporal Logic Monitoring Rewards via Transducers
	Introduction
	Background
	Reward Transducers
	Extending MDPs via Reward Transducers
	Rewards as Temporal Specifications
	Monitoring Rewards
	Applications in RL
	Summary and Discussion

	Domain-independent reward machines for modular integration of planning and learning
	Introduction
	Related work
	Problem formulation
	Solution
	Reward machine generation
	Use of the reward machine for RL
	Automatic sub task decomposition

	Experimental results
	Summary and Discussion

	IV Forward ltlf Synthesis
	Background on ltlf Synthesis
	ltlf Basics
	ltlf Synthesis
	AND-OR Graph Search
	Sentential Decision Diagrams (SDDs)
	Summary

	ltlf Synthesis as AND-OR Graph Search
	Introduction
	DFA Construction from ltlf
	ltlf Synthesis as AND-OR Graph Search
	Synthesis Algorithm
	SDD-based Expand

	Related Work
	Summary and Discussion
	Informed Search
	Different Strategies to implement Expand
	Extension to ldlf, ppltl, ppldl
	Other optimizations

	Cynthia
	Implementation
	Empirical Evaluation
	Empirical Evaluations
	Benchmarks

	Summary and Discussion

	Conclusions
	References

