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Abstract

In this paper we propose a solution to the state-feedback and output-feedback stabilization problem for linear time-varying
stochastic systems affected by arbitrarily large and variable input delay. It is proved that under the proposed controller the
underlying stochastic process is exponentially centered and mean square bounded. The solution is given through a set of delay
differential equations with cardinality proportional to the delay bound. The predictor is based on the semigroup generated by
the closed-loop system in absence of delay, and its computation is described by a numerically reliable and robust method. In
the deterministic case this method generates the same optimal trajectories as in the delay-less case.
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1 Introduction

The control problem of linear systems with input de-
lay has been thoroughly studied in recent years both
in the Lyapunov-Krasovskii framework and in the pre-
dictor feedback approach (Fridman, 2014; Kharitonov,
2015; Zhou, 2014b; Karafyllis and Krstic, 2017). In this
paper we consider linear time-varying stochastic systems
(LTVSS) with large and known input delays for which
comparatively fewer results exist. Although the prob-
lem of stability conditions for time-varying systems with
delays has been studied in the linear deterministic case
(e.g. Krstic (2010); Cai et al. (2017); Sanz et al. (2019))
and in the more general context of nonlinear systems
in several recent contributions (e.g. Bekiaris-Liberis and
Krstic (2012); Mazenc and Malisoff (2016) and the ref-
erences therein for the deterministic case and Li et al.
(2020); Zhou and Luo (2018) for the stochastic case), the
problem of designing controllers for LTVSS in presence
of arbitrarily large input delays is still, to the best of our
knowledge, unresolved. In Niu et al. (2009) and Li et al.
(2009) it is possible to stabilize in probability/almost
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surely the state of the system (e.g. Niu et al. (2009) and
Li et al. (2009)). However, (i) the noise process is only
multiplicative and it allows to stabilize to zero the sys-
tem in probability/almost surely (this is not possible in
our case) (ii) the presence of an undelayed control input
term simplifies the theoretical analysis. Ai et al. (2016)
solve an output feedback stabilization problem for a class
of stochastic feedforward nonlinear systems with time-
varying input delay, and still differs from the proposed
works because of the framework (point (i)) and the em-
ployed theoretical analysis. A relevant work which solves
the stochastic control problem for the linear-quadratic
case is Zhang and Xu (2016) where the noise is again
multiplicative with respect to the state and control. For
the case of unknown delays the most popular approach is
emulation in which Lyapunov-Krasovskii functionals are
used to derive robust stability conditions of basic feed-
back control designs for delay-less systems Malisoff and
Zhang (2015); Mazenc et al. (2008). However, emulation
provides conservative estimates of the maximum delay
and it is thus unsuited to large delays. In order to com-
pensate large delays, either constant or time-varying, the
control design needs to use information about the delays
as in the classical reduction model approach of Artstein
(1982) (see also Mazenc et al. (2014) for time-varying
systems). The reduction model approach is able to com-
pensate for arbitrarily long input delays, but the compu-
tation of the input signal involves distributed terms and
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the solution of integral equations that are computation-
ally challenging and potentially not robust (see Mondié
and Michiels (2003)). In the approaches based on sequen-
tial predictors (originally proposed in Germani et al.
(2002) for observers and in Besançon et al. (2007) for
predictors), distributed terms are replaced by dynamic
equations coupled by delayed correction terms that pre-
dict the system dynamics at different time points in the
future (see also Najafi et al. (2013); Zhou et al. (2017);
Mazenc and Malisoff (2017)). This is the approach that
we pursue in this paper for dealing with large delays.
This paper builds also over the approach based on closed-
loop predictors, also known as pseudo-predictors, of Ca-
cace et al. (2014); Zhou (2014a), where the core idea
is to use the exponential of the closed-loop matrix as a
finite-dimensional predictor. For systems that are expo-
nentially unstable, the resulting feedback stabilizes the
system up to a certain delay. In this work we adopt a
different predictor, in the form of an observer with a de-
layed correction term that has the important advantage
of allowing a cascaded structured that can cope with
arbitrarily large delays, analogously to the approaches
mentioned above and to Cacace et al. (2016); Najafi et al.
(2013). The predictor has the same structure as in Ca-
cace et al. (2016), where it was used in the deterministic
time-invariant setting, and it makes use of the closed-
loop dynamics in the observer gain. Our work extends
Zhou (2014a) to large delays – also in exponentially un-
stable case – and to stochastic systems, and it provides
also the computation of the closed-loop state transition
matrix. In fact, a crucial step in the stochastic time-
varying case is the computation of the closed-loop semi-
group over a delay interval. We describe a numerically
robust computation of the semigroup that, together with
the cascaded observer-predictor, makes up the complete
controller structure. This work can be seen also as the
extension to the time-varying case of our recent papers
Cacace et al. (2019) and Cacace et al. (2020) that are fo-
cused on the time-invariant case for linear systems with
nonlinear diffusions and additive noise with large delays,
respectively. A feature of the proposed approach is that
in the deterministic case it recovers optimal solution in
the LQR sense, that is, the same trajectories and value
of the cost function.
The stabilization problem is defined in Section 2 and
Section 3 provides the main results for the case of state-
feedback. The robust implementation of the closed-loop
semigroup is described in Section 4. The extension to
output feedback control and time-varying delays is car-
ried out in Section 5. Finally, Section 6 provides a nu-
merical example and Section 7 gives some conclusions.

Notation. tr(M) is the trace of a square matrix M .
M > 0 denotes a positive definite matrix. ‖x‖ denotes
the Euclidean norm for x ∈ Rn and ‖M‖ the opera-
tor norm. On a filtered probability space (Ω,F , {Ft},P),
E[·] denotes the expectation, and L2(Ω;Rn) denotes the
linear space of square integrable random vectors of Rn

endowed with the norm ‖x‖L2
=
(
E
[
‖x‖2

]) 1
2 . Given a

time-varying dynamical matrix A, then the semigroup
or state transition matrix of A is denoted by ΦA : R+ ×
R+ → Rn×n and it is such that for any t, s ∈ R+,
∂ΦA

∂t (t, s) = A(t)ΦA(t, s) and ΦA(t, t) = I. Furthermore,
a state transition matrix Φ is uniformly exponentially
stable (UES) with rate λ iff there exist c > 0 and λ > 0
such that ‖Φ(t, t0)‖ ≤ c e−λ(t−t0) for t ≥ t0.

2 Problem statement and preliminaries

On a filtered probability space (Ω,F , {Ft},P), we study
the stabilization problem of linear-time varying systems
with variable input delay in the Itô formalism of stochas-
tic differential equation (SDE)

dx(t) =
(
A(t)x(t) +B(t)u(ψ(t))

)
dt+ F (t) dWt, (1)

dy(t) = C(t)x(t)dt+G(t) dVt, (2)

where the state x(t) ∈ Rn, and E[x(0)] and ‖x(0)‖L2 are
finite. The mapψ is Borel measurable, and the control u :

[−δ, T ]→ Rp is Ft-adapted such that
∫ T
−δ ‖u(s)‖2L2

ds <

+∞, for any T > 0. Moreover, Wt ∈ Rd and Vt ∈ R` are
Ft-adapted standard Wiener processes mutually inde-
pendent. The matrices A(t), B(t), C(t), F (t), G(t) are
of appropriate size piece-wise continuous in t and uni-
formly bounded. We made the following hypotheses.

Assumption 1 (a) The couple (A(t), B(t)) is uniformly
controllable; (b) the couple (C(t), A(t)) is uniformly ob-
servable.

The couple (A(t), B(t)) is uniformly controllable if
the inequalities (A.3) hold true, whilst the couple
(C(t), A(t)) is uniformly observable if the dual version
of (A.3) holds true (Cheng (1979)).

Assumption 2 The map ψ can be expressed as ψ(t) =
t − δ(t), with the delay function δ : R+ → [0, δ̄] Borel
measurable. Moreover, there exists and it is known the
inverse function ψ−1.

Definition 1 A stochastic process {ξ(t)}t≥0 is said to be
exponentially centered with rate λ if there exists λ > 0
such that given ξ0 there exists c > 0 such that ‖E[ξ(t)]‖ ≤
c e−λt, and mean square bounded if there exist κ > 0
such that supt≥0 ‖ξ(t)‖L2

< κ.

We briefly comment upon the requirements of Defini-
tion 1. Since system (1) is affected by additive noise, it
is impossible with any control to achieve E[‖x‖2] → 0
or any other type of convergence to zero that involves
the norm of the state. Thus, the aim of the control is
to have E[‖x‖2] < κ. However, in a control problem
it is obviously desirable that the expected value of the
state asymptotically or exponentially approaches the
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origin as its equilibrium point, a requirement that cor-
responds to exponentially centered solutions. Moreover,
when Wt = Vt = 0, that is, the system is deterministic,
an exponentially centered solution corresponds to an ex-
ponentially stabile solution.

Lemma 1 Let us consider the stochastic system

dξ(t) = (A(t)ξ(t) + v(t)) dt+F (t) dWt, ‖ξ(t0)‖L2
<∞,
(3)

with the state transition matrix ΦA UES with rate λ > 0
and the process {v(t)} exponentially centered with rate
ν > 0 and mean square bounded. Thus, the process {ξ(t)}
is exponentially centered with rate min{λ, ν} and mean
square bounded;

Proof. By writing explicitly the unique solution to (3),
and the assumption ‖v(t)‖L2

< κ, we can write

‖ξ(t)‖L2 ≤ ‖ΦA(t, t0)‖‖ξ(t0)‖L2 + κ

∫ t

t0

‖ΦA(t, s)‖ ds

+

(∫ t

t0

‖ΦA(t, s)F (s)‖2 ds

) 1
2

. (4)

Since by assumption ΦA is UES with rate λ, then
from (4) it follows that {ξ(t)} is mean square bounded.
The solution {ξ(t)} is exponentially centered with rate
min{λ, ν} since v(t) is exponentially centered with rate
ν and it obeys to

d

dt
E[ξ(t)] = A(t)E[ξ(t)] + E[v(t)]. (5)

3 State-feedback with constant input delay

In this section we focus on the state-feedback stabiliza-
tion problem with constant input delay. In Section 5
we shall extend the results to the output-feedback sta-
bilization problem with time-varying input delay. With
ψ(t) = t− δ, δ > 0, the SDE (1) becomes

dx(t) =
(
A(t)x(t) +B(t)u(t− δ)

)
dt+ F (t) dWt, (6)

3.1 Basic predictor

Let us define Ã(t) = A(t)−B(t)K(t), where K : R+ →
Rp × Rn is a gain sequence. Moreover, let M(t, s) =
K(t)Φ

Ã
(t, t− s)B(t− s), with t ≥ s ≥ 0 and let

γM (λ, t,∆) =

∫ ∆

0

‖M(t, τ)‖eλτdτ. (7)

Theorem 2 Consider the process {x(t)} solution to (6)
with the Assumption 1 (a). Let K : R+ → Rp × Rn be
a control gain such that the closed-loop state transition

matrix Φ
Ã

of Ã(t) = A(t) − B(t)K(t) is UES with rate
λ > 0. For t ≥ −δ consider the control law

u(t) =−K(t+ δ)θ(t) (8)

θ̇(t) =Ã(t+ δ)θ(t) +B(t+ δ)K(t+ δ)

· Φ
Ã

(t+ δ, t) (x(t)− θ(t− δ)) , (9)

where θ(τ) = Φ
Ã

(τ +δ, 0)θ0 for τ ∈ [−δ, 0] with θ0 = x0.

If supt≥δ γM (λ, t, δ) < 1, then the process {x(t)} is (a)
exponentially centered with rate λ and (b) mean square
bounded.

Remark 1 The gain sequence {K(t)} is such that, with
u(t) = −K(t)x(t) and F (t) ≡ 0, the process {x(t)} is
exponentially centered with rate λ. A possible choice of
K is therefore given by

K(t) =
1

2
B>(t)H−1

λ (t+ ∆, t), (10)

where the map Hλ is given by (A.2). See the Appendix
for more details.

Proof. (b) Let v(t) = x(t)− θ(t− δ) for t ≥ 0, then the
process {x(t)} obeys the following SDE for t ≥ 0:

dx(t) =
(
Ã(t)x(t) +BK(t)v(t)

)
dt+ F (t) dWt. (11)

Moreover, we have for t ≥ δ

θ̇(t) = Ã(t+ δ)θ(t)

+B(t+ δ)K(t+ δ)Φ
Ã

(t+ δ, t)v(t), (12)

dv(t) =
(
Ã(t)v(t) +B(t)ϕ(t)

)
dt+ F (t) dWt, (13)

where ϕ(t) = K(t)
(
v(t)− Φ

Ã
(t, t− δ)v(t− δ)

)
. By in-

tegrating equation (13) in [t−δ, t], we can write for t ≥ 2δ

v(t) = Φ
Ã

(t, t− δ)v(t− δ) +

∫ t

t−δ
Φ
Ã

(t, s)B(s)ϕ(s) ds+

+

∫ t

t−δ
Φ
Ã

(t, s)F (s) dWs, (14)

and thus, with a change of variable, we have for t ≥ 2δ,

ϕ(t) =

∫ δ

0

K(t)Φ
Ã

(t, t− s)B(t− s)ϕ(t− s) ds+

−
∫ δ

0

K(t)Φ
Ã

(t, t− s)F (t− s) dWt−s. (15)

3



By the definition of M above (7) and by letting

N(t, s) = K(t)Φ
Ã

(t, t− s)F (t− s), (16)

γN (t,∆) =

(∫ ∆

0

‖N(t, τ)‖2 dτ

)1/2

, (17)

we can write

ϕ(t) =

∫ δ

0

M(t, s)ϕ(t− s) ds−
∫ δ

0

N(t, s) dWt−s,

(18)

and estimate the L2 norm of ϕ(t), by using triangular
inequality, Ito isometry 1 , for t ≥ 2δ as follows

‖ϕ(t)‖L2
≤
∫ δ

0

‖M(t, s)‖ ‖ϕ(t− s)‖L2
ds

+

(∫ δ

0

‖N(t, s)‖2 ds

) 1
2

. (19)

Moreover, by the definitions of γM and γN in (7) and
(17), we can write

‖ϕ(t)‖L2
≤ γM (0, t, δ) sup

s∈[t−δ,t]
‖ϕ(s)‖L2

+ γN (t, δ)

(20)

By taking the supremum on both sides in [t − δ, t] we
have for t ≥ 3δ,

sup
s∈[t−δ,t]

‖ϕ(s)‖L2 ≤ sup
s∈[t−δ,t]

γM (0, s, δ) sup
s∈[t−2δ,t]

‖ϕk(s)‖L2

+ sup
s∈[t−δ,t]

γN (s, δ), (21)

where we note that condition supt≥δ γM (λ, t, δ) < 1 im-
plies supt≥δ γM (0, t, δ) < 1 since λ is positive. Moreover,
for i ≥ 1, by defining

wi = sup
s∈[iδ,(i+1)δ]

‖ϕk(s)‖L2 ,

γMi = sup
s∈[iδ,(i+1)δ]

γM (0, s, δ), γNi = sup
s∈[iδ,(i+1)δ]

γN (s, δ),

we can rewrite inequality (21) as

wi+1 ≤ γMi+1 max(wi, wi+1) + γNi+1. (22)

Furthermore, because of the uniform exponential stabil-
ity of Φ

Ã
, both γMi and γNi are uniformly bounded in

1 all the processes are square-integrable random variables
for any t ≥ 0.

i ≥ 1 from which it follows that

sup
i≥1

wi ≤ max{w1, b}, b :=
supi γ

N
i

1− supi γ
M
i

(23)

with b finite, since supi γ
M
i < 1 by hypothesis. Indeed, it

is easy to prove that wi > b implies wi+1 < wi (because
wi+1 ≥ wi would imply wi+1 ≤ b < wi, a contradiction)
and that wi ≤ b implies wi+1 ≤ b (because wi+1 > b
would imply wi+1 ≤ b, a contradiction). Thus, if w1 > b
then supi{wi} ≤ w1 and if w1 ≤ b then supi{wi} ≤
b. This proves supi{wi} ≤ max{w1, b} from which it
follows that ϕ is mean square bounded with bound b̄ =
max{w1, b}. It is now easy to prove that v is mean square
bounded, too. In fact, from (13) it descends that for
t ≥ 3δ

v(t) = Φ
Ã

(t, δ)v(δ) +

∫ t

δ

Φ
Ã

(t, s)B(s)ϕ(s) ds

+

∫ t

δ

Φ
Ã

(t, s)F (s) dWs, (24)

and consequently, for

‖v(t)‖L2 ≤ ‖ΦÃ(t, δ)‖ ‖v(δ)‖L2 + b̄

∫ t

δ

‖Φ
Ã

(t, s)B(s)‖ ds

+

(∫ t

δ

‖Φ
Ã

(t, s)F (s)‖2 ds

) 1
2

, (25)

where all terms on the right-hand side are uniformly
bounded in t. Thus, we conclude that {v(t)} is mean
square bounded. Finally, by considering equation (11),
the mean square boundedness of {x(t)} descends with
similar steps of (25).

(a) For t > 2δ, let Eϕ(t) = E[ϕ(t)], then from (18) we
have

Eϕ(t) =

∫ δ

0

M(t, s)Eϕ(t− s) ds. (26)

Moreover, by setting Eλϕ(t) = eλt E[ϕ(t)], we have

Eλϕ(t) =

∫ δ

0

M(t, s) eλsEλϕ(t− s) ds, (27)

and thus

‖Eλϕ(t)‖ ≤
∫ δ

0

‖M(t, s)‖ eλs ‖Eλϕ(t− s)‖ ds

≤ γM (λ, t, δ) sup
s∈[t−δ,t]

‖Eλϕ(s)‖. (28)

Since supt≥δ γM (λ, t, δ) < 1, by proceeding as in (20),

we conclude that Eλϕ(t) is uniformly bounded. It follows
that {ϕ(t)} is exponentially centered with rate λ. Con-
sequently, it is easy to see from (13) that also {v(t)}
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is exponentially centered with rate λ and consequently,
from (11), the same holds for {x(t)}.

�

By comparing the predictor (9) with the one obtained
in the classical reduction approach, namely

θ(t) = ΦA(t, t−d)x(t−δ)+

∫ t

t−δ
ΦA(t, s)B(s)u(s−δ) ds,

(29)
we observe that the implementation of (9) is much
cheaper, due to the absence of distributed terms, and
more robust thanks to the presence of a correction term.
We also remark that the initialization θ0 = x0 is not
mandatory, and Theorem 2 holds with any bounded
pre-shape function θ(τ), τ ∈ [−δ, 0].

In the deterministic case when the control law u(t) =
−K(t)x(t) is optimal with respect to some criteria and it
generates an UES state transition matrix then the pre-
dictor of Theorem 2 preserves its properties in presence
of delay in the following sense.

Corollary 3 Let F (t) = 0 for any t ≥ 0 and K :
R+ → Rp × Rn be an optimal control gain such that the

closed-loop state transition matrix Φ
Ã

of Ã(t) = A(t)−
B(t)K(t) is UES with rate λ∗ > 0. If supt≥δ γM (λ, t, δ) <
1 for any λ > λ∗ then (a) the trajectory x(t) solu-
tion to the closed-loop system (6) with input delay un-
der the control law (8)–(9) and the initialization θ(τ) =
Φ
Ã

(τ + δ, 0)x0 for τ ∈ [−δ, 0] is the same as the opti-

mal trajectory without delay; (b) if θ(τ) for τ ∈ [−δ, 0]
is chosen arbitrarily, x(t) converges exponentially to the
optimal trajectory without delay.

Proof (sketch). The optimal trajectory is xo(t) =
Φ(t, t0)xo0. (a) v(t) = 0 for t ∈ [0, δ] and exponentially
centered with rate λ > λ∗. From (11) with F (t) ≡ 0 it
follows x(t) = Φ(t, t0)xo0 = xo(t). (b) v(t) is not null in
[0, δ] but still exponentially centered, thus ‖x(t)−xo(t)‖
converges to 0 with rate λ− λ∗.

�

3.2 Modular predictor

Let us set γ̃M (λ, δ) = supt≥δ γM (λ, t, δ) and define δmax

such that γ̃M (0, δmax) = 1, or, if γ̃M (0, δ) < 1 for any
δ > 0, δmax = +∞. Clearly, δmax exists and is unique
since δ 7→ γ̃M (λ, δ) is continuous and monotonically in-
creasing for any λ > 0. This section is devoted to the
case when the delay affecting the input of the system
(6) is larger than the maximum delay, namely δ > δmax.
Thus, in the case δ > δmax, we shall design a modular
predictor that allows to achieve the same results of The-
orem 2 at the expenses of the memory of the controller.

Definition 2 Given δ, δ∗ > 0, a delay partition Pδ,δ∗ is
a set {δj}, j = 1, . . . ,m, δ∗ ≥ δj > 0 and

∑m
j=1 δj = δ.

An equi-partition is such that δj = δ̃ = δ/m.

In the sequel we consider equi-partitions, and denote
dj = jδ̃, for j = 0, . . . ,m (hence d0 = 0).

Definition 3 Given system (6) and a gain K such that

the state transition matrix Φ
Ã

of Ã(t) = A(t)−B(t)K(t)
is UES with rate λ, then we say that the delay partition
Pδ,δ∗ is λ-feasible if γ̃M (λ, δ∗) < 1.

To the purpose of designing a λ-feasible equi-partition
one can proceed as follows.

• Find the gain K : R+ → Rp ×Rn with the associated
rate of stability λ > 0 of the state transition matrix

Φ
Ã

, where Ã(t) = A(t)−B(t)K(t);

• Choose a small ε ∈ (0, 1) and find δ∗ : γ̃M (λ,∆) =
1− ε;

• Compute the number of predictors m = dδ/δ∗e;
• Compute δ̃ = δj = δ/m.

Since δ 7→ γ̃M (λ, δ) is continuous and monotonically

increasing, δ∗ defined above satisfies δ∗ ≥ δ̃ > 0. With

the equi-partition described above let us denote Φ̃δ̃(tj) =
Φ
Ã

(tj−1, tj), where we set from now on tj = t− dj + δ.
The modular predictor consists of the following chain of
m predictors for j = 1, . . . ,m and t ≥ 0

θ̇j(t) = A(tj−1)θj(t)−B(tj−1)K(tj−1)θ1(t− dj−1)

+B(tj−1)K(tj−1)Φ̃δ̃(tj)(θj+1(t)− θj(t− δ̃)),
(30)

where θj(τ) = Φ
Ã

(τ + δ−dj−1, 0)θ0 for τ ∈ [−δ, 0) with

θ0 = x0 and θm+1(t) := x(t). The idea is that each θj(t)
predicts x(tj−1), thus θ1(t) predicts x(t+ δ).

Theorem 4 Consider the process {x(t)} solution to (6)
with the Assumption 1 (a). Let K : R+ → Rp × Rn be
a control gain such that the closed-loop state transition

matrix Φ
Ã

of Ã(t) = A(t) − B(t)K(t) is UES with rate
λ > 0. For a λ-feasible equi-partition Pδ,δ∗ and the con-
trol law for t ≥ −δ

u(t) = −K(t+ δ)θ1(t) (31)

where θ1(t) is defined by (30) with θj(τ) = Φ
Ã

(τ + δ −
dj−1, 0)θ0 for τ ∈ [−δ, 0) and j = 1, . . . ,m, θ0 = x0

and θm+1(t) := x(t), the process {x(t)} is exponentially
centered with rate λ and mean square bounded.

Proof (sketch). Let vj(t) = x(t) − θj(tj−1) be the
prediction error of the j-th predictor. vm is exponen-
tially centered with rate λ and mean square bounded by
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Theorem 2. The proof is concluded by backward induc-
tion. By induction hypothesis vj+1(t − δ̃) is exponen-
tially centered with rate λ and mean square bounded,
and by Theorem 2 we conclude that vj is exponentially
centered with rate λ and mean square bounded for all
j = 1, . . . ,m. Finally, since the dynamics of x(t) can be
written as

dx(t) =
(
Ã(t)x(t) +B(t)K(t)v1(t)

)
dt+ F (t)dWt,

the thesis follows by Lemma 1.

4 Robust numerical solution to the state tran-
sition matrix differential equation

In this section we give a simple tool to obtain the
state transition matrix ΦA as the numerical solu-
tion of a coupled matrix differential equations. Given
ẋ(t) = A(t)x(t), x(t0) = x0, one has

x(t) = ΦA(t, t0)x0 (32)

where the state transition matrix ΦA(t, t0) obeys

Φ̇A(t, t0) = AΦA(t, t0) (33)

ΦA(t0, t0) = I. (34)

The state transition matrix of the predictor an interval
δ > 0 is defined for t ≥ t0 + δ as

Φ̃δ(t) = ΦA(t, t− δ), (35)

with Φ̃δ(t0 + δ) = ΦA(t0 + δ, t0). The state transition
matrix property implies

Φ̃δ(t) = ΦA(t, t0)Φ−1
A (t− δ, t0) (36)

and one has

Φ̇A(t, t0) = AΦA(t, t0) =
˙̃
Φδ(t)ΦA(t− δ, t0) (37)

+ Φ̃δ(t)A(t− δ)ΦA(t− δ, t0). (38)

Thus,

AΦA(t, t0)Φ−1
A (t− δ, t0) =

˙̃
Φδ(t) + Φ̃δ(t)A(t− δ), (39)

or, finally, by using (36), for t ≥ t0 + δ

˙̃
Φδ(t) =A(t)Φ̃δ(t)− Φ̃δ(t)A(t− δ), (40)

Φ̃δ(t0 + δ) =ΦA(t0 + δ, t0) (41)

4.1 Robust implementation

For large values of t−t0 the integration of the matrix dif-
ferential equation (40) with the initial condition (41) is
not reliable due to the propagation of numerical errors.
From now on, let us assume t0 = 0. A safe implementa-

tion can be obtained by re-initializing periodically Φ̃δ(t)
with the value of Φ(t, t− δ). The latter term is obtained
by integrating the state transition matrix equation (36)
with initial condition Φ(t− δ, t− δ) = I.

Let tk = kδ, Ik = [tk, tk+1]. Consider the sequence of
matrix functions Mk : Ik → Rn×n defined by

Ṁk(t) =A(t)Mk(t), t ∈ Ik (42)

Mk(tk) =In. (43)

Clearly,

Mk(tk+1) = Φ(tk+1, tk) = Φ̃δ(tk+1). (44)

Or, Φ̃δ(tk) can be computed reliably at tk by integrating

(42)–(43). The remaining values of Φ̃δ(t) are obtained by
integrating (40) in Ik. To this end consider the sequence

of matrix functions Φ̃kδ : Ik → Rn×n, k > 0, defined as

˙̃
Φ
k

δ (t) = A(t)Φ̃kδ (t)− Φ̃kδ (t)A(t− δ), t ∈ Ik (45)

Φ̃δ(tk) = Mk−1(tk). (46)

It follows that

Φ̃kδ (t) =Φ̃δ(t), t ∈ Ik (47)

Φ̃kδ (tk+1) =Φ̃δ(tk+1) = Mk(tk+1). (48)

Summarizing, a robust computation of Φ̃δ(t) is obtained
by iterating the integration of the pair of matrix differ-
ential equations (42)–(43) and (45)–(46) over the inter-
vals Ik (for k = 0 it is necessary to integrate (42)–(43)

only, since Φ̃δ(t) is not defined in I0).

The robust implementation described above is not af-
fected by the propagation of numerical errors, whilst the

computation of the state transition matrix Φ̃δ(t) through
equation (36) (by integrating (33)) or through direct in-
tegration of equation (40) is not a practical solution.

5 Output-feedback and variable delay

5.1 State-feedback with variable delay

We extend here the results of the previous section to the
case of time-varying delay. Consider the process

dx(t) =
(
A(t)x(t) +B(t)u(ψ(t))

)
dt+ F (t) dWt,
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as in (1), where ψ is introduced at the beginning of Sec-
tion 2 and it satisfies Assumption 2.

Corollary 5 Consider the process {x(t)} solution to (1)
with the Assumption 1(a) and 2. Let K : R+ → Rp×Rn
be a control gain such that the closed-loop state transition

matrix Φ
Ã

of Ã(t) = A(t) − B(t)K(t) is UES with rate

λ > 0. For t ≥ −δ̄ consider the control law

u(t) = −K(ψ−1(t))θ(ψ−1(t)− δ̄) (49)

θ̇(t) = Ã(t+ δ̄)θ(t) (50)

+B(t+ δ̄)K(t+ δ̄)Φ
Ã

(t+ δ̄, t)
(
x(t)− θ(t− δ̄)

)
,

where θ(τ) = Φ
Ã

(τ+ δ̄, 0)θ0 for τ ∈ [−δ̄, 0] with θ0 = x0.

If supt≥δ γM (λ, t, δ̄) < 1, then the process {x(t)} is expo-
nentially centered with rate λ and mean square bounded.

The proof is omitted since it follows the same line of the
proof of Theorem 2. We notice that the control law (49)
can be computed since ψ−1(t) is known at time t ≥ 0
and it is causal since ψ−1(t)− δ̄ ≤ t.

With an equi-partition Pδ̄,δ∗ let us denote Φ̃δ̃(tj) =
Φ
Ã

(tj−1, tj), where similarly with the constant delay

case tj = t − dj + δ̄. The modular predictor consists of
the following chain of m predictors for j = 1, . . . ,m, for
t ≥ 0

θ̇j(t) =A(tj−1)θj(t)−B(tj−1)K(tj−1)θ1(t− dj−1)

+B(tj−1)K(tj−1)Φ̃δ̃(tj)(θj+1(t)− θj(t− δ̃)),
(51)

where θj(τ) = Φ
Ã

(τ + δ̄−dj−1, 0)θ0 for τ ∈ [−δ̄, 0) with

θ0 = x0 and θm+1(t) := x(t). The idea is that each θj(t)
predicts x(tj−1), thus θ1(t) predicts x(t+ δ̄).

Corollary 6 Consider the process {x(t)} solution to (1)
with the Assumption 1(a) and 2. Let K : R+ → Rp×Rn
be a control gain such that the closed-loop state transition

matrix Φ
Ã

of Ã(t) = A(t) − B(t)K(t) is UES with rate

λ > 0. Take a λ-feasible equi-partition Pδ̄,δ∗ . For t ≥ −δ̄
consider the control law

u(t) = −K(ψ−1(t))θ1(ψ−1(t)− δ̄), (52)

where θ1(t) is defined by (51) with θj(τ) = Φ
Ã

(τ + δ̄ −
dj−1, 0)θ0 for τ ∈ [−δ̄, 0) and j = 1 . . . ,m, θ0 = x0 and
θm+1(t) = x(t). Then, the process {x(t)} is exponentially
centered with rate λ and mean square bounded.

5.2 Output-feedback with variable delay

In this section we focus on the output-feedback stabi-
lization problem of system (1)–(2).

Theorem 7 Consider the process {x(t)} solution to (1)
and the measurement equation (2) with Assumption 1
and 2. Let K : R+ → Rp × Rn be a control gain such

that the closed-loop state transition matrix Φ
Ã

of Ã(t) =

A(t) − B(t)K(t) is UES with rate λ > 0. For t ≥ −δ̄
consider the control law

u(t) = −K(ψ−1(t))θ(ψ−1(t)− δ̄) (53)

θ̇(t) = Ã(t+ δ̄)θ(t)+ (54)

+B(t+ δ̄)K(t+ δ̄)Φ
Ã

(t+ δ̄, t)
(
x̂(t)− θ(t− δ̄)

)
˙̂x(t) = A(t)x̂(t)−B(t)K(t)θ(t− δ̄)

+ L(t) (y(t)− Cx̂(t)) (55)

L(t) = P (t)C(t)>R(t)−1 (56)

Ṗ (t) = A(t)P (t) + P (t)A>(t) +Q(t)

− L(t)C(t)P (t), (57)

where θ(τ) = Φ
Ã

(τ + δ̄, 0)θ0 for τ ∈ [−δ̄, 0] with

θ0 = x̂(0) = E[x0], P (0) = E[(x(0) − E[x0])(x(0) −
E[x0])>], Q(t) = F (t)F>(t), R(t) = G(t)G>(t). If
supt≥δ̄ γM (λ, t, δ̄) < 1, then the process {x(t)} is expo-
nentially centered with rate λ and mean square bounded.

Proof. We note that condition supt≥δ̄ γM (λ, t, δ̄) < 1

implies supt≥δ̄ γM (0, t, δ̄) < 1 since λ is positive. For
t ≥ 0, the closed-loop dynamics are given by

dx(t) =
(
A(t)x(t)−B(t)K(t)θ(t− δ̄)

)
dt+ F (t)dWt

˙̂x(t) = A(t)x(t)−B(t)K(t)θ(t−δ̄)+L(t) (y(t)− C(t)x̂(t))

and for t ≥ δ̄

θ̇(t) = Ã(t+ δ̄)θ(t) (58)

+B(t+ δ̄)K(t+ δ̄)Φ
Ã

(t+ δ̄, t) (v(t)− ε(t)) ,

where ε(t) = x(t) − x̂(t) is the estimation error of the
filter, and v(t) = x(t) − θ(t − δ̄) is the prediction error
of the controller for t ≥ 0. Thus, we have for t ≥ δ̄

dv(t) =
(
A(t)v(t)−B(t)K(t)Φ

Ã
(t+ δ̄, t)v(t− δ̄)

)
dt

+B(t)K(t)Φ
Ã

(t+ δ̄, t)ε(t)dt+ F (t)dWt. (59)

In view of Assumption 1 and x̂(0) = E[x0] the term
B(t)K(t)Φ

Ã
(t+ δ̄, t)ε(t) is zero-mean and mean square

bounded, and following the proof of Theorem 2 the
process {v(t)} is exponentially centered with rate λ
and mean square bounded. The closed-loop dynamics
of {x(t)} is still given by (11), and the thesis follows by
Lemma 1.

�

From Corollary 6 and Theorem 7, we derive the following
final result.
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Corollary 8 Consider {x(t)} solution to (1) and the
measurement equation (2) with Assumption 1 and 2. Let
K : R+ → Rp × Rn be a control gain such that Φ

Ã
of

Ã(t) = A(t) − B(t)K(t) is UES with rate λ > 0. For
a λ-feasible equi-partition Pδ,δ∗ and the control law for
t ≥ −δ̄

u(t) = −K(ψ−1(t))θ1(ψ−1(t)− δ̄) (60)

where θ1(t) is defined by (30) with θj(τ) = Φ
Ã

(τ + δ̄ −
dj−1, 0)θ0 for τ ∈ [−δ̄, 0) and j = 1 . . . ,m, θ0 = E[x0],
θm+1(t) = x̂(t),

˙̂x(t) = A(t)x̂(t)−B(t)K(t)θ1(t−δ̄)+L(t) (y(t)− Cx̂(t)) ,
(61)

with x̂(0) = E[x0], where L(t) is given by (56)–(57) with
P (0) = E[(x(0) − E[x0])(x(0) − E[x0])>], the process
{x(t)} is exponentially centered with rate λ and mean
square bounded.

Remark 2 When the filters of Theorem 7 and Corol-
lary 8 are not initialized in E[x0], then the λ exponential
stability of the mean process {E[x(t)]} requires that ΦĀ,
with Ā(t) = A(t) − L(t)C(t), is UES with rate α ≥ λ.
When α < λ the process {x(t)} is exponentially centered
with rate α and mean square bounded. Finally, by giving
up the minimum variance property it is possible to design
the filter with an arbitrary prescribed rate of convergence
for any initial condition x̂(0) (see Stocks and Medvedev
(2006)).

6 Numerical example

We consider state feedback with the control law (52) of
Corollary 6 with two predictors and the robust numeri-
cal implementation of the state transition matrix Φ

Ã
in

Section 4. In particular, the equations (51) of the pre-
dictor with m = 2 specify in

θ̇1(t) = A(t+ δ)θ1(t)−B(t+ δ)K(t+ δ)θ1(t)+

B(t+ δ)K(t+ δ)Φ
Ã

(t+ δ, t+ δ̃)
[
θ2(t)− θ1(t− δ̃)

]
θ̇2(t) = A(t+ δ̃)θ2(t)−B(t+ δ̃)K(t+ δ̃)θ1(t− δ̃)+

B(t+ δ̃)K(t+ δ̃)Φ
Ã

(t+ δ̃, t)
[
x(t)− θ2(t− δ̃)

]
where θ1(τ) = Φ

Ã
(τ + δ̄, 0)θ0, θ2(τ) = Φ

Ã
(τ + δ̃, 0)θ0

for τ ∈ [−δ̄, 0) with θ0 = x0 and θm+1(t) = x(t). The
model (1)–(2) is characterized by

A(t) =

[
0 1

4 cos(t)

0 1 + 1
2 sin(t)

]
, B(t) =

[
0

1 + 1
2 cos(t)

]

F (t) =
1

2

[
1 −1

0 1

]
, G(t) =

1

2
, C(t) =

[
1 0
]
.

The delay function δ(t) is such that max{δ(t)} = δ̄ = 0.4
and the gain K is chosen with the standard linear-
quadratic technique. Figure 1 shows that the process
{x(t)} is exponentially centered and mean square
bounded, where the expectation is estimated as the
average over 103 independent simulations of noise se-
quences and initial conditions.

7 Conclusions

We conclude by remarking that the results presented in
this paper are new also in the deterministic case, since
predictors for linear time-varying systems with large de-
lays in the form of DDEs are not available. The design
and implementation of the method proposed here are
straightforward. Future extensions include the dual case
of LTVSS with large measurements delays, the presence
of mutliplicative state noise as well as the extension of
the closed-loop predictor approach to nonlinear systems.

A Stability of time-varying linear systems with
prescribed rate

For t ≥ 0 consider the time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t), (A.1)

where x(t) ∈ Rn, u ∈ Rp, and A(t), B(t) of appropriate
size piece-wise continuous in t. Let us define

H(t, t0) =

∫ t

t0

ΦA(t, s)B(s)B>(s)Φ>A(t, s)ds

Hα(t, t0) =

∫ t

t0

e4α(t0−s)ΦA(t, s)B(s)B>(s)Φ>A(t, s)ds

(A.2)

for any α > 0. A control law with prescribed rate of
uniform exponential stability can be obtained as first
proposed in Ikeda et al. (1975) with a state change x 7→
xeαt. This leads to the following.

Lemma 9 (Cheng (1979)) Consider the linear time-
varying system described by (A.1). If there exist ∆ > 0
and hM ≥ hm > 0 such that for any t ≥ 0

0 ≤ hm I ≤ H(t+ ∆, t) ≤ hM I, (A.3)

then for any α > 0, the linear time-varying state-feedback
control law

u(t) = −1

2
B>(t)H−1

α (t+ ∆, t)x(t) (A.4)
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Fig. 1. Empirical value of ‖E[x(t)]‖ in logarithmic scale (left). Empirical value of
√

E[||x(t)||2] = ||x(t)||L2 in logarithmic scale

(right). The expected value is estimated by averaging over 103 Monte Carlo runs.

is such that the null solution of the closed-loop system

ẋ(t) =

(
A(t)− 1

2
B(t)B>(t)H−1

α (t+ ∆, t)

)
x(t)

(A.5)

is UES for t ≥ 0 with rate grater than α.

We notice that (A.4) requires the knowledge at each
t ≥ 0 of Hα(t + ∆, t) and thus the knowledge at each
t ≥ 0 of ΦA(t+ ∆, t+ s) for s ∈ [0,∆]. We remark that
ΦA can be computed as in Section 4.
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