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Abstract

The design of 2D and 3D assets is one of the key components of Computer Graphics
applications. Recently, the demand for high-quality assets, like textures and materials,
or 3D shapes, has seen impressive growth due to their widespread adoption in
industrial design workflows as well as in the movie and video game industries.
However, designing an asset is still a consuming operation in terms of time and
human effort, in particular when a precise target must be matched. Over the
years, various techniques, such as real-world material and model captures or inverse
modeling, have been developed to ease this process and to support artists in matching
a desired target.

This thesis, entitled Enhancing Controllability in Procedural and Non-
Procedural Asset Editing, explores the common techniques adopted in asset
design and proposes novel approaches to reduce the time and human effort involved
in this process, aiming to reach an easier and yet more controllable pipeline for asset
editing in both for 2D and 3D environments. We firstly investigate the procedural
asset fields, proposing inverse procedural modeling solutions for 2D vector patterns
and 3d implicit shapes defined as differentiable programs and graphs respectively.
As regards the 2D content, we propose an example-based parameter estimation tool,
called pOp, and a direct manipulation tool named pEt. The first one proposes a
parameter estimation method based on a user-provided sketch or render using an
inverse Signed Distance Field optimization problem as its backbone. By minimizing
the differences between the target pattern SDF and the procedurally generated one,
it estimates the procedural parameter assignment that better matches the target
design. Still in the parameter estimation field, the second approach enables users to
directly manipulate the procedural vector pattern content by performing edits in
the viewport by selecting and dragging around sets of points or preventing others
from moving. In this scenario, the best parameter assignments are determined
by minimizing the distance between sets of points, allowing users to edit multiple
parameters all at once without relying on counterintuitive GUI slider tweaking
operations.

Similarly in the 3D setting, this thesis proposes a direct manipulation tool
for procedurally-defined implicit surfaces, assuming end-to-end differentiability
with respect to the procedural parameters. By defining a method for tracking
points on the implicit surface, we set up a gradient descent-based optimization loop
that solves for the procedural parameters as the user performs edits directly in the
viewport, such as dragging surface patches or constraining other ones. This tool
allows for the editing of procedural implicit surfaces at interactive rate, supporting
all the operations that make implicit modeling a robust and easy-to-use alternative
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to regular 3D modeling. In particular, it supports standard CSG operations and
their smooth counterparts, which are widely used in the creation of organic assets,
while remaining resilient to topology changes.

Finally, we concentrate on non-procedural asset synthesis, specifically focusing on
structured texture generation with widespread diffusion models as a backbone. We
propose pAff, a method for the expansion of a small user-designed sketch to a large-
scale, high-quality, and moreover, tileable content. To do so, we enhance previously
assessed diffusion pipelines by injecting structured pattern domain knowledge through
a LoRA finetuning process, exploiting the Noise Rolling technique to improve quality
and ensure tileability.

In conclusion, this thesis makes a significant contribution in improving user
control in procedural and non-procedural asset editing. It proposes novel methods
that could be either integrated into common 2D or 3D modeling software and further
expanded to various asset design workflows, making the design process easier for
both novice and experienced users.
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Chapter 1

Introduction

Asset design represents one of the major processes in Computer Graphics applica-
tions, playing an important role in digital art fields as well as in architectural design
and the entertainment industry. In recent years, the demand for high-quality assets
started to grow rapidly, due to the fast expansion of design applications and the
progress in high performance hardware systems. 3D assets are commonly used to rep-
resent objects, subjects, or environmental elements in virtual scenes, with their final
appearance being described in terms of Spatially Varying Bidirectional Reflectance
Distribution Function (SVBRDF) materials and textures, which determine their
base color or physical properties like roughness or specularity in common rendering
pipelines. However, the workflow encompassing the creation of such assets is still
demanding in terms of time and human resources. In fact, the pipeline adopted by
artists to create a high-quality asset is usually costly and it is often challenging for
them to match a specific design. Although the creation of assets from scratch is still
a possible approach, many techniques developed to support users in the synthesis
and editing process.

For non-procedural asset synthesis, techniques such as 2D or 3D captures have
evolved through the years to facilitate content creation. Even though they provide a
good basis for further edits, they are controllable in a complex manner, still requiring
artists to manually adapt them to reach a desired target appearance. In recent
years, generative applications have been adopted in the field of digital art, providing
the possibility of expressing a textual or visual constraint to better guide content
generation. However, textual input is frequently not sufficient to describe content,
whereas image conditioning may aid in the generation process but it still may fail in
reconstructing the exact style, specifically in the case of highly structured contents
or minute details.

On the other hand, procedural models for materials, textures, and 3D shapes
define a family of assets, allowing for significant variations in the design of each
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example by assigning different values to the exposed set of parameters. Although
this approach reduces the degrees of freedom and gives users more control over the
final design, parameter editing still requires a significant amount of resources. In
particular, the editing process usually involves tweaking the parameter values using
separate GUI sliders and understanding the impact of a parameter change over
the final design may still necessitate some training. Furthermore, as the number
of exposed parameters increases, it may become more difficult to determine the
appropriate assignment for each parameter in order to achieve the desired appearance.
Example-based and direct manipulation applications have developed through the
years to make this process even easier. The former approach requires artists to
provide a render or a sketch as a target, while the system identifies a possible
parameter value assignment that better matches the provided design, whereas the
latter allows for asset manipulation directly from the viewport, with a system
recomputing the correct parameter update that matches edits that can be performed
using a click-and-drag or stroke interaction. It is also possible to use a hybrid
of the two approaches, firstly identifying a first parameter assignment using an
example-based parameter estimation module and then applying local modifications
through direct interaction.

This thesis, entitled "Enhancing Controllability in Procedural and Non-
Procedural Asset Editing", explores 2D and 3D asset design, reviewing previous
approaches from the fields of inverse procedural modeling and texture synthesis,
and proposes novel techniques that aim at simplifying the creative design workflow
by providing more controllable and yet precise editing tools for both novice and
experienced users. In the following section, we will examine more closely the
contributions made by each work proposed in this thesis.

1.1 Contributions

This thesis explores different approaches for procedural and non-procedural asset
editing, aiming to ease the modelling process by enhancing control for both novice
and proficient users and lifting their workflow by reducing time and resources spent
in cumbersome editing processes.

Procedural Assets. In the context of procedural assets, this thesis focuses
on example-based and direct manipulation-based interactions, optimizing for the
procedural parameters exposed by the asset to find the values that more accurately
match the user input, both in terms of visual targets provided in the form of images
or sketches and and direct in-viewport interaction.

pOp proposes an example-based approach for estimating the values of the
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procedural parameters exposed by a procedural program describing a vector pattern.
More in detail, pOp handles procedural vector patterns, which are a collection
of vector shapes that follow a structured arrangement. By exploiting the end-to-
end differentiability of such procedural programs with respect to the procedural
parameters, pOp performs a gradient descent-based optimization, minimizing the
difference between the example or sketch provided by the user and the generated
vector pattern. Instead of using an inverse rendering definition of the optimization
problem, pOp measures the pattern difference in the pattern signed distance field
domain, thus introducing a new OnTop operator that mimics the overlap between
vector shapes and a differentiable definition of a pattern SDF. The example-based
parameter optimization framework proposed by pOp enabled the estimation of
procedural parameter values given a render or a sketch, paving the way for a more
controllable interaction between artists and procedural vector patterns content.

The framework proposed in pOp is then complemented by pEt, which proposes
a direct manipulation method to edit the parameters of the same procedural vector
pattern programs. Users can now perform edits on the pattern directly in the
viewport via a click-and-drag interaction schema. Artists can use mouse movements
to express transformations over a set of points, as well as constraints, which prevent
other points from moving. Thanks to a point identification schema that enables pEt
to locate the same point from the procedural parameter assignment, transformations
in the selected point positions are translated into procedural parameter updates
via a gradient descent-based optimization loop, minimizing the distance between
such points and the transformed ones. While pOp performs a more global parameter
optimization in identifying a good parameter assignment starting from an image
or a sketch, local adaptations can be performed using pEt, whose combination of
approaches enabled a full editing architecture for procedural vector patterns under
the assumption of differentiability.

Although previously assessed methods are adopted in the fields of procedural
vector patterns, similar techniques can be used to improve the editability of other
procedural assets, such as implicitly defined surfaces. In this thesis, a Procedural
Implicit Surface Direct Manipulation tool is also proposed to circumvent
the laborious process of editing implicit surfaces, which involves tuning a large
number of sliders, for which the semantics or parameter interconnection may be
unclear. By proposing an in-viewport editing approach for implicit surfaces, we
allow users to perform edits on the surfaces by clicking and dragging patches of the
surfaces or constraining others to prevent them from moving. As the user performs
the edits, our optimization tools perform a gradient descent-based optimization
loop for each frame, computing an update for the procedural parameters for an
end-to-end differentiable definition of procedural implicit surfaces. Leveraging an
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ad-hoc co-parameterization designed for implicit surfaces, our system can identify
the same point location throughout an edit, allowing parameter optimization by
estimating the impact of a procedural parameter at a given point. The proposed
framework supports a wide range of operations commonly involved in implicit surface
modeling, including boolean and smooth boolean operations, affine transformations,
warping operations, and also being resilient to topology changes.

Non-Procedural Assets. On the other hand, in the context of non-procedural
assets, this thesis proposes a method to facilitate the synthesis of visually accurate
textures with highly structural details and arrangements, oppositely to non-stochastic
and natural texture synthesis methodologies that have been widely proposed through-
out the year. In pAff, we leverage the generative capabilities of stable diffusion
models, finetuned on the pattern domain by incorporating a Low-Rank Adaptation
(LoRA) model. Given a small sketch of a pattern, our architecture enabled the gen-
eration of large-scale and high-quality content, that presents a high fidelity in terms
of structure, colors, and fine-grained details with the provided sketch. Leveraging
novel techniques such as Noise Rolling, our architecture performs the expansion of a
user-drawn input to an arbitrarily sized canvas and ensures pattern tilability, paving
the way for further application and enabling a higher level of control over Latent
Diffusion Models in the context of asset generation.

In conclusion, the approaches proposed in this thesis may be adopted to enhance
the controllability of other assets different from 2D structured patterns and 3D
implicit surfaces, such as SVBRDF materials, thereby providing assistance in several
cumbersome asset design workflows.

After a first review of the works that relate the most to the domain studied
in this thesis Chapter 2, we will proceed in digging into details about procedural
asset editing in Part I, exploring both example-based and direct manipulation based
editing for 2D and 3D assets, and non-procedural 2D asset editing in Part II. In
conclusion, this thesis will suggest future directions for improving controllability or
adapting proposed methodologies to other asset types.
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Chapter 2

Related Work

This chapter reviews relevant works concerning the editing and controllability
of procedural as well as the guided synthesis of non-procedural ones. Specifically,
Section 2.1 will review the literature related to inverse procedural modeling, with an
explicit focus on example-based approaches (Section 2.1.2) and direct manipulation
methods (Section 2.1.3) on both 2D and 3D content. Lastly, Section 2.2 will cover
related works on non-procedural texture synthesis and control, with a particular
attention to the ones based deep learning architectures and generative models.

2.1 Inverse Procedural Modeling

With the term inverse procedural modeling we usually refer to the problem of
finding the procedural description for 2D or 3D assets like materials, textures or
shapes that better matches a user-provided target. Depending on the application,
some inverse procedural modeling approaches estimate the procedural program from
the provided example, while others find the procedural parameters given known
programs. Although this thesis mainly focuses on approaches that aim at modifying
the parameters of a procedural model and not its procedural rules, the following
sections will cover in detail both problems as well as the evolution of the proposed
solutions through the years. Alongside with the discussion about relevant works,
particular emphasis is also given to the contribution of the methods proposed in this
thesis for all concerning tasks.

Firstly, procedural program estimation is reviewed by proposing several ap-
proaches that aimed at estimating or controlling the definition of 2D or 3D assets
like Bèzier curves arrangements, trees, façades or buildings in terms of procedural
programs or graphs. Then, focusing only on procedural parameter optimization,
both example-based and direct manipulation methods for textures, materials and
3D shape editing are reviewed. In example-based approaches, users provide a target,
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usually in the form of an render or sketch, that is used to compute the procedural
parameters that better match the given image. On the other hand, in direct ma-
nipulation approaches transformations are directly performed on procedural assets
with click-and-drag or stroke interactions, with the optimizer recomputing the pa-
rameter values that best fit the constraint expressed by the user. In general though,
example-based methods are complementary to direct manipulation ones since the
former works better as starting points during design, while the latter works best
when performing final edits.

2.1.1 Procedural Program Estimation

The work of [Šta+10] represents one of the first works in 2D procedural program
estimation, which will be assessed in this section in conjunction with the 3D counter-
part. It propose a method for objects made up of lines or Bèzier curves, providing a
framework that automatically extracts an L-system, that is a description of a model
using compact rules, from a vector image of Bézier curves. [Van+12] demonstrates
procedural modeling for urban design applications, by proposing a system that
optimizes the input parameters of local and global indicators in a 3D procedural
model of buildings and cities, based on Markov Chain Monte Carlo (MCMC) during
the parameter searching. [BWS10] investigates the inverse procedural modeling
of 3D geometry, building a system that automatically creates 3D models that are
similar to a target geometry, extrapolating a set of procedural rules that allows
fast and reliable object construction. Subsequently, the idea of inverse procedural
modeling was adopted in many fields such as the generation of trees from a target
model [Šta+14; Du+18], knitwear [Tru+19], facades or buildings [Wu+13; Zhu+15;
Mül+07; NBA18] or the reconstruction of animated sequences [PLL11]. Similar
works are the ones by [Sha+18; Lip+19; Guo+20; Krs+20; Rit+15], that propose
methods for estimating procedural modeling programs or globally and locally con-
trolling them. Lastly, a detailed overview of the inverse procedural modeling of 3D
models for virtual applications is exposed by [Ali+16]. While all these works are
examples of inverse procedural modeling, they address the problem of estimating
the entire procedural program rather than its parameter values, which in turns is
the main focus of the procedural asset editing works proposed in this thesis.

2.1.2 Procedural Parameter Estimation via Examples

In example-based techniques, users provide images like renders or sketches
depicting the final design of the asset, being it a texture, material or 3D shape. Given
the desired appearance, different approaches developed through the years to find an
assignment to the procedural parameters that better match the input. Although
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parameter estimation from examples can be applied to different procedural assets,
particular attention is given to procedural materials, since usual design workflows
encompass materials and textures synthesis by manipulating the parameters of the
procedural generator. However, when the number of parameters is high, artists may
struggle in finding the parameter values to obtain the desired appearance. This issue
has started to be addressed recently for raster textures like in [Guo+19], that use
Markov Chain Monte Carlo to sample the parameter space to find the procedural
parameters that generate the desired texture for unstructured materials such as
wood, plastic, leather or metallic paints, starting from a photograph. [Shi+20]
presents a more comprehensive method that works on differentiable procedural
graphs, automatically converting the procedural nodes in [ADO]. Given a target
image, the most promising material graphs are selected using their Gram Matrix
computed with a pre-trained VGG network [GEB16]. The material parameters are
then refined using gradient-based optimization of the differentiable material graph.
This approach works well for color manipulations but does not support effectively
pattern generator nodes, which in turns is one of the core contributions of this
thesis. [HDR19] combines inverse procedural textures and texture synthesis in a
comprehensive framework for inverse material design. The parameters of an inverse
procedural program are estimated via clustering and by using a Convolutional Neural
Network (CNN) trained for parameter estimation. To better match the desired
look, the result is augmented via non-procedural style transfer. In [Hu+21b], the
authors improve upon their previous work by presenting a semi-automatic pipeline
for material proceduralization given SVBRDFs maps. The framework hierarchically
decomposes them into sub-materials, that are proceduralized using a multi-layer noise
model capable to capture local variations. They reconstruct procedural material
maps using a differentiable rendering-based optimization that minimizes the distance
between the generated procedural model and the input material pixel-map. [Gue+22]
propose a generative model for procedural materials that are represented as node
graphs, and let users to auto-complete those graphs too, while [Hu+22a] make
complex node differentiable by using neural network proxies. However, many of
these works rely on training Neural Networks to estimate a parameter initialization,
thus needing to collect data and performing an offline time-consuming training
process, that may also be iterated if new assets need to be supported. Leaving aside
raster textures and focusing on the field of vector graphics and patterns, the work
of [Li+20] proposes a differentiable rasterizer for vector graphics that fills the gap
between vector and raster graphics. The authors demonstrate that their differentiable
renderer supports interactive editing, image vectorization, painterly rendering, seam
carving and generative modeling in a gradient-based optimization process. [Red+20]
show how to support compositing operations by proposing a method to differentiate
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them, in the context of vector patterns. The example-based approach proposed in
this thesis, namely pOp, focuses on procedural and differentiable vector patterns by
estimating their parameters using an gradient descent optimization that minimizes
a differentiable SDF-based loss function. Such approach will be discussed more in
detail throughout Chapter 3.

2.1.3 Procedural Parameter Estimation via Direct Manipulation

The idea of direct manipulation has been previously explored in many domains,
such as vector graphics, 3D models and rendering. One of the first examples of direct
manipulation dates back to the work of [BB89], that proposes a system for the edit
of Bézier curves by selecting a point where the curve should pass through, without
directly editing its control points. [IMH05] propose a system for the interactive
manipulation of 2D shapes by moving mesh vertices as constrain handles, without
requiring a predefined skeleton. Their system recomputes the remaining vertices
position by updating the triangles rotation and scale, thus minimizing their distortion.
[HLC19] proposes a bidirectional programming system for the creation of programs
that generate vector graphics. In their interface, users can edit the program text or
the output shapes, with the result mirrored in both modes. [Gue+16] proposes an
editing approach that allows users to explore variation of the patterns as the user
performs a manipulation. Although the space of possible variations is exponential,
this work provides a tool that identifies a set of intuitive and distinct variations the
user could choose from. [Jac+11] investigates the use of blending weights for 2D
and 3D object deformation controlled by handle points or cages, ensuring a simpler
design and easier user control. Editing procedural shaped directly from screen-space
user edits is is applied also to simple joint structures [BM96; AL10] and in the field
of Inverse Kinematic, for which [Ari+18] provides a comprehensive survey.

In the rendering domain, [PTG02] proposes an interface for editing shadows
by clicking and dragging them, while the algorithm determines the location of
the corresponding point lights. The same work also introduces the idea of adding
constraints to the edits. [Pel10] extends these ideas to the editing of environment
maps. While both these works explore direct manipulation ideas, they do so
without requiring an optimizer since it is possible to analytically compute light
positions in the case of shadows and highlights. Further appearance, lighting and
material editing approaches as well as how the combination of user interaction
paradigms and rendering back ends provide a usable system for appearance editing
are comprehensively analyzed in the survey of [Sch+14].

In the case of procedural 3D meshes, a few papers proposed techniques that
allow in-viewport editing. The pioneer work from [Gle94] investigated graphical
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interfaces for the direct manipulation of 3D shapes. For procedural 3D CAD models,
a bidirectional approach is proposed in [Cas+22]. In this work, users directly
manipulate the output shapes, while the system estimates the parameters of the
program and maintains its validity. Inverse edits are performed by minimizing
constrained optimization objectives that represent changes in geometry, deformation,
program parameters as well as physical performance. [Gai+22] proposes a method for
direct manipulation of 3D meshes using a bounding-box hierarchy. Upon selecting an
object, the corresponding bounding-box is identified and its vertices are transformed.
The system minimizes the distance between the transformed points and the selected
bounding-box vertices to estimate the procedural parameters. However, a key
limitation of the two latter methods is that they respectively rely on bounding
boxes and mesh representations, and thus do not support operations that result in
topological changes. [MB21] demonstrates inverse control when editing 3D meshes
generated by node graphs. This work focuses on amending the graph network
to support automatic differentiation that is then used for parameter solving and
provides support for topological changes operations as well.

The work of [MB21], combined with the rendering-based approaches of [PTG02;
Pel10] opened up to different direct manipulation based applications in both 2D
vector patterns domain as well as implicitly defined surfaces. As regard the former,
Chapter 4 will cover pEt, a direct manipulation approach for differentiable vector
patterns. Oppositely to the work of [MB21], pEt is based on automatically differ-
entiated procedural programs, whose parameters can be manipulated by clicking
and dragging points from both the shapes’ interior and exterior. As regards 3D
implicits, the work exposed in Chapter 5 focuses on the overlap of two research fields,
namely the editing of procedural shapes or the editing of implicit surfaces, aiming at
directly controlling procedural shapes defined as implicit surfaces and inheriting the
topology changes resiliency from previous by redefining it for the implicit domain. In
fact, in the context of parametric implicit surfaces, the assumption that no change
of topologies can occur is impracticable as Constructive Solid Geometry (CSG)
operations are widely used to construct complex models. All the methods relying
on the parametrization provided by meshes cannot be directly applied to implicits
because they have no way to track the evolution of a point on the shape after a
change in the procedural parameters.

The following paragraph sets aside discrete implicit representations that are not
parametric and focuses solely on procedural implicit surfaces. On top of providing
control over affine transformations through 3D Gizmos in modeling software [Wom22;
Mag22], previous research on implicit modeling has focused on providing indirect
and direct control to the user. The work from [Sch+06] shows an interactive
modeling application where the user sketches 2D contours that are interpreted
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as new primitives in a BlobTree model [WGG99], which can then be combined
with CSG operators to create complex shapes. Despite the system’s expressiveness,
editing of the parameters is still done indirectly through manual tuning of sliders.
Limited to affine transformations, the work of [BGA05] shows how to animate a
BlobTree model by defining the procedural parameters values as a function of time.
Warp curves [Sug+08; SWS10] are another alternative for editing implicit surfaces
in which the user draws and manipulates polylines which locally deform the implicit
surface using variational warping. Modifications are however limited to space-
deformations, which are computationally intensive, and are not propagated back to
the procedural parameters of the shape. Direct manipulation of implicit surfaces
have been investigated for blending operators, with new ones that either improve
topological control through new parameters [ZCG15], or that match a 2D drawing of
the intended blending behavior [Ang+17]. The method exposed in libfive [Kee19], a
library for implicit modeling, provides some surface manipulation capabilities. The
key limitation is that it only allows the user to specify where there must be some
element of surface, not to specify which element exactly. In practice, this limits
the user to only inflation and translations operations and without handling other
operators like affine transformations and complex warping such as twisting.

2.2 Non-procedural Asset Control

Non-procedural asset editing still aims at producing an asset that is coherent with
an user specification, being it a textual definition or a visual suggestion representing
a specific style or content. Oppositely to procedural asset editing, it does not aim
to produce an appropriate representation for a given content, both in the terms
of procedural programs or parameters. So, while non-parametric texture synthesis
works well for many domains, it lacks in editability, i.e. the ability of users to
fine-tune the final texture to match the desired look. This section covers relevant
works assessing 2D asset synthesis, going from classical texture synthesis approaches
up to more novel applications involving deep architectures and generative models.

Texture Synthesis. At first, example-based non-parametric texture synthesis
has been explored by [EL99] as regards per-pixel approaches and by [EF01] for per-
patch [EF01] stochastic ones, followed by [Kwa+05], that proposes an optimization
method that refines the entire texture, and many other techniques reported in
the comprehensive survey of [Wei+09]. [GEB15] proposed a method that aims
to create a texture exploiting Convolutional Neural Networks by extracting and
combining features at different levels, using this stationary representation to learn a
new texture from noise. Recently, the work of [Zho+18] focuses on the synthesis of
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non-stationary textures using Generative Adversarial Networks (GANs), producing a
bigger texture that is perceptually similar to a small target image using a generator
and discriminator approach. On the pattern domain, [Bar+06] and [Hur+09] aim at
synthesizing patterns by analyzing elements and properties from reference vector
pattern provided by users. [Iji+08] also allow users to specify a local growth area as
a constraint to the synthesis process.

Lastly, [Tu+20] proposed an example-based framework for continuous curve
patterns that extends previous discrete element synthesis methods by involving not
only the sample positions but also their topological connections. [Ma+13] propose
a method for generating spatio-temporal repetitions based on a combination of a
constrained optimization and a data-driven computation, while [Rov+15] explores
repetitive structure synthesis using discrete elements or continuous geometries. A
more comprehensive review of the example-based methods can be found in [Gie+21].
[Guo+19; Hu+22b; Zho+22] are recent examples of the many methods that stochasti-
cally synthesize realistic material maps guided by input images. These methods focus
on non-parametric synthesis, while we concentrate on editing parametric patterns.

Generative models. Image generation is a long-standing challenge in computer
vision due to the complexity of visual data and the diversity of real-world scenes.
With the advent of deep learning, the generation task has been increasingly posed as
a learning problem, with Generative Adversarial Networks (GAN) [Goo+14] enabling
the generation of high-quality images [Kar+17; BDS18; Kar+20]. However, GANs
are characterized by an unstable adversarial training [ACB17; Gul+17; Mes18], and
unable to model complex data distributions [Met+16], exhibiting a mode collapse
behavior.

Recently, Diffusion Models (DMs) [Soh+15; HJA20; Rom+22] have emerged
as an alternative to GANs, achieving state-of-the-art results in image generation
tasks [DN21] also thanks to their stable supervised training approach. Furthermore,
DMs have enabled a whole new level of classifier-free conditioning [HS22] through
cross-attention between latent image representations and conditioning data. More
recently, ControlNet [ZRA23] has been proposed to extend generation controllability
beyond the typical global-conditioning (e.g.: text prompts) for a fine control over
the generation structure. Moreover, approaches like DreemBooth [Rui+23] and
LoRA [Hu+21a], allow users to customize large-scale pre-trained models, adapting
them to particular tasks or domains or domains, without needing to finetune them and
requiring only a limited set of training samples. Regardless of these improvements,
however, Diffusion Models tend to be slower and more computationally demanding
than GANs, limiting their application in interactive environments. To close this
gap, recent approaches have focused on improving the inference performances of
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DMs, reducing the number of required diffusion steps from tens or hundreds to
just a few steps [Son+23; Sau+23], while other approaches have been proposed to
enable high-resolution generation with limited resources [Jim23; Bar+23; Vec+23],
achieving 4K or higher resolution.

Generative models for textures synthesis. Several work have assessed the
synthesis of patterns in the form of natural textures or BRDF materials involving
generative models as their backbone. [Hei+21] address the problem of texture
synthesis via optimization by introducing a textural loss based on the statistics
extracted from the feature activations of a convolutional neural network optimized
for object recognition (e.g. VGG-19). [Vec+23] recently introduced ControlMat
to perform SVBRDF estimation from input images, and generation when condi-
tioning via text or image prompts. It employs a novel noise rolling technique in
combination with patched diffusion to achieve tileable high-resolution generation.
MatFuse [Vec+24], on the other hand, focuses on extending generation control via
multimodal conditioning and editing of existing materials via volumetric inpainting,
to independently edit different material properties.

Focusing on non-stationary textures, [Zho+23] introduces a new Guided Corre-
spondence Distance metric that can be employed as a loss function to optimize the
texture synthesis process, improving the similarity measurement of output textures
to examples. [Zho+24], in contrast, leverages a diffusion model backbone combined
with a two-step approach and a "self-rectification" technique, to generate seamless
texture, faithfully preserving the distinct visual characteristics of a reference example.
Although the quality and level of realism of textures of BRDF materials generated
via these methods is impressive, they mainly focus on unstructured, natural and
non-stochastic content generation with only a few of them explicitly focusing on
structured content. This scenario paved the way for structured patterns generation
via an expansion process using diffusion models, as covered in Chapter 6.



13

Part I

Editing Procedural Assets
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Chapter 3

pOp: Parameter Optimization of
Differentiable Vector Patterns
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MSE: 0.0193 MSE: 0.0001 MSE: 0.4375 MSE: 0.0009 MSE: 0.1536

Figure 3.1. pOp finds the parameters of procedural vector graphics patterns that best match
target images. We support patterns comprised of standard vector graphics elements, e.g.
circles, rectangles, lines, and quadratic Bèzier curves, where the translation, rotation
and scale of the elements is defined by an arbitrary procedural program. Here we show
several examples from different generators. We tested our algorithm with synthetic
input generated from a pattern instance, that lets us measure the goodness of fit, here
reported as mean squared error (MSE) of the procedural parameters.

In this chapter we propose pOp, a practical method for estimating the parameters
of vector patterns, that are formed by collections of vector shapes arranged by an
arbitrary procedural program. In our approach, patterns are defined as arbitrary
programs, that control the translation, rotation and scale or vector graphics elements.
We support elements typical of vector graphics, namely points, lines, circle, rounded
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Figure 3.2. We tested pOp framework on hand-drawn inputs, mimicking a possible design
application. Given a user-sketch, pOp is capable of identifying the parameters that
better match the input, thus producing a visually similar result.

rectangles, and quadratic Bèzier drawings, in multiple colors. We optimize the
program parameters by automatically differentiating the signed distance field of the
drawing, which we found to be significantly more reliable than using differentiable
rendering of the final image. We demonstrate our method on a variety of cases,
representing the variations found in structured vector patterns.

3.1 Introduction

Procedural content creation is heavily used in computer graphics since it produces
high-quality, resolution-independent assets that can be easily edited to produce
countless variations. Procedural synthesis is particularly well suited to texture
generation, since textures are time consuming to create otherwise. A procedural
generator can be thought of as a function that produces a texture guided by a set of
parameters chosen by artists while modeling. Many such procedural generators are
easily available and cover a large class of textures, e.g. [ADO]. But as the number of
parameters increases, determining the parameter values needed to obtain the desired
look becomes time-consuming.

To alleviate this issue, inverse procedural modeling techniques attempt to find
the parameter set of a given procedural generator that matches a target image. In
particular, recent works like [HDR19; Guo+19; Shi+20; Hu+21b], use optimization
of differentiable textures, optionally combined with neural networks and texture
synthesis to provide a solution in this domain.
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We focus on procedural vector patterns, formed by a collection of vector shapes. In
our application, the procedural generator is an arbitrary function that places shapes
according to the desired pattern, by changing their translation, scale and rotation.
Our goal is similar to prior work, in that we want to determine the procedural
parameters of a pattern that matches a target image. The main difference with prior
work is that we focus on vector patterns treated as collections of shapes, rather than
raster textures formed by a grid of pixels.

We find procedural parameters with a gradient-based optimization process, that
requires that vector patterns are end-to-end differentiable with respect to the pattern
parameters. Prior work on inverse procedural texture synthesis uses differentiable
rendering to match the final image. For vector graphics, [Li+20] proposed an inverse
rendering framework suitable for various optimization tasks. When applied to our
domain though, inverse rendering is not a suitable solution since the gradient is
vanishingly small when the pattern shapes do not overlap during optimization.
We instead propose a loss function based on signed distance fields, that works
well in our domain. We show how to compute such loss for vector patterns by
combining the known shapes’ distance field with a proper composition operator,
and how to support arbitrary fill and stroke colors. The operation required for
the resulting patterns turn out to be all differentiable, so we can easily support
arbitrary patterns written as Python functions, by taking advantage of automatic
differentiation frameworks. We determine the exact formulation of the loss function
by experimentation and optimize it using gradient-based optimization, where proper
initialization is determined experimentally.

We tested our algorithm with a variety of patterns, as shown in Figure 3.1 and
3.2 throughout this chapter, using both synthetic and hand-drawn input, and found
the proposed method reliable, where prior work was not able to find the pattern
parameters. We believe that our method may be particularly helpful for users when
the number of parameters increases and when patterns that are visually very different
can be obtained from the same procedural program, as shown in Figure 3.3.

3.2 Method

3.2.1 Differentiable Vector Patterns

Procedural Vector Patterns. We focus on patterns made of collections of vector
primitives instantiated on a canvas. In our implementation, we support a subset
of the SVG (Scalable Vector Graphic) standard shapes such as circles, rectangles,
line segments and SVG paths consisting of quadratic Bézier curves. Every shape is
described by its geometric parameters, as well as its rendering style comprised of fill
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MSE: 0.0775 MSE: 1449 MSE: 0.1874 MSE: 0.1075

Figure 3.3. The same procedural program can create visually-distinctive patterns. Our
algorithm optimizes all pattern variations.

color, stroke color, and stroke thickness. However, in this work we do not support
semi-transparent shapes as well as linear and radial color gradients.

Each pattern is represented as an arbitrary function that describes the position,
rotation and scale of vector primitives, controlled by a set of pattern parameters.
For example, a grid pattern is a function parametrized over the grid offsets. In
this work, we focus on structured and non-stochastic patterns, since many works
have already focused on stochastic procedural materials [HDR19; Guo+19; Shi+20;
Hu+21b]. In our implementation patterns are written as arbitrary Python functions,
which are significantly more expressive than node graphs, and support completely
general shape arrangements.

Inverse Procedural Patterns. Given a target image and a procedural function
able to reproduce such image, we seek to estimate the function parameters that
reproduce the target image. In other words, our goal is to identify the parameter set
Φ∗ of the given procedural function G that minimizes a loss L between the target
image I and the one generated by G.

Φ∗ = argminΦ L(I, G(Φ)) (3.1)

Prior work on inverse procedural materials uses differentiable renderers combined
with gradient-based optimization to estimate the procedural parameters [Guo+19;
Shi+20; HDR19; Hu+21b]. In the context of vector graphics, [Li+20] present a



3.2 Method 18

Target Initialization [Li+20] Ours

MSE: 0.0266 MSE: 0.0001

Figure 3.4. When trying to optimize a pattern starting from the same initial configuration,
we found that losses based on image difference, and relate differentiable renderers such
as [Li+20], do not work well in our problem domain. We instead define a loss based on
pattern SDFs that is robust to all pattern variations.

Target SDF for yellow SDF for black SDF for pink

Figure 3.5. Colored patterns are supported by computing an SDF for each color. The loss
function is the sum of the contribution corresponding to each color. Here we display
SDFs from blue to red for negative to positive values respectively.

differentiable rasterizer for SVG elements that we attempted to apply in our work. In
this case, a loss is computed between a target image and the rendered image obtained
by rasterization. Since the rasterizer is differentiable, gradient-based optimization is
used to find the parameter set that best fits the target image.

However, as shown in Figure 3.4, measuring the loss as an image difference
together with a differentiable rasterizer has significant issues for vector patterns
comprised of many small shapes. The case shown in this previous image is partic-
ularly problematic since many shapes with constant colors overlap. In this case,
gradients derived from an image difference metric become small and inaccurate.
A similar problem occurs when small shapes do not overlap, where the gradient
becomes unreliable since it captures differences only on shape boundaries. Overall
these issues make the gradient vanishingly small for most parameters’ configurations,
making image differences unstable in our context.
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3.2.2 Loss Function.

To overcome this issue, we measure pattern differences based on the signed
distance fields of the pattern’s shape elements. This ensures that gradients are well
defined for all parameters’ configurations. A signed distance field for a pattern is a
function that measures the minimum distance between a point and the boundaries
of the shapes. By convention, we assign a negative distance if the point is inside a
shape, and a positive distance otherwise.

Since a pattern may have multiple colors, we consider the distance to the shape
of each color separately, as shown in Figure 3.5. Note that if a shape is drawn
with a different stroke and fill colors, its SDF is different for each color. For the
stroke color we consider the geometry of the shape boundary, while for the fill color
we consider the geometry of the shape interior. If we indicate with Sc the signed
distance corresponding to color c, the loss between the target image I and the
generated pattern G(Φ) is the sum of the a per-color difference between their SDFs,
which can be written as:

LS = 1
|C|

∑
c∈C

D(Sc(I), Sc(G(Φ))) (3.2)

where C is the set of pattern colors.
We measure the difference D between SDFs with the L2 distance, which was

chosen by experimentation. In particular, we experimentally compared this metric
with the L1 metric and the L2 metric applied over the levels of a Gaussian image
pyramid, and found L2 to work best for our problem. An example of this comparison
is shown in Figure 3.6.

[Smi+20] introduces a loss between SDFs for the case of fitting the control points
of quadratic Bèzier curves for a single shape. Their metric is composed of a distance
metric of the shape SDFs, together with a normal alignment term that measures the
alignment of the shape normals. For our problem domain, the L2 distance worked
significantly better. This is due to the fact that [Smi+20] measures SDF differences
only in the image regions near shape boundary, which makes the gradient vanishingly
small for most parameter sets in our case, as we have already discussed.

At the same time, we observe that combining the normal alignment metric with
the L2 metric improves optimization convergence when shapes positions are close to
the target image, making the SDF loss vanishingly small, while the normal alignment
remains significant. In our notation, the normal alignment loss is written as:

LN = 1
|C|

∑
c∈C

[
1− ⟨∇Sc(I),∇Sc(G(Φ))⟩2

]
(3.3)

where gradients are normalized. The final loss L between a target image and the
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L2 over L2 +
Target Initialization L1 L2 pyramid [Smi+20] normal align.

MSE:0.5735 MSE:0.3687 MSE:0.4097 MSE:0.7783 MSE:0.2167

Figure 3.6. Comparison of the results obtained with different loss functions, reporting
both the pattern image and the MSE of the optimized pattern parameters, where all
parameter sets are optimized from the same initialization. We compare L1, L2, L2 over
a gaussian pyramid, the metric proposed in [Smi+20], and the L2 distance with normal
alignment. The latter loss was chosen since it works best in our tests.

procedural pattern is the weighted sum of both terms, written as:

L = LS + αN · LN (3.4)

where the weight αN is set to 0.05 according to the results of a hyperparameter
tuning process.

Pattern Distance Fields. To evaluate the loss, we need to compute the distance
field of each pattern color. We can compute the distance field by considering each
vector element separately, and then combining those fields appropriately.

For basic vector graphics elements, the signed distance field can be analytically
computed. The formulas for circles, rectangles and line segments can be found in
[Qui], while the formulas for quadratic Bèzier curves are presented in [Smi+20]. In
our implementation, we approximately convert cubic Bèzier to quadratic ones, since
the latter have simpler and numerically-robust distance formulas.

We combine the shapes SDFs into the pattern SDF using a variety of operators
supported in vector graphics. SDFs support boolean operators, namely union,
intersection and difference, in a straightforward manner. We adopt these operations
in our prototype implementation. But, in the vast majority of times, vector graphics
elements are combined by drawing elements on top of the previous ones, which does
not correspond to any boolean operations for shapes with fill and stroke colors. For
this case, we introduce a new operator that computes the SDF of a shape drawn on
top of another, illustrated in Figure 3.7. The reason why the union operator cannot
be used to combine shapes drawn one after the other is that stroke and fill colors do
not properly combine, as shown in Figure 3.8.

Let us consider the operation of drawing a shape onto a background. Since we
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Figure 3.7. SDF corresponding to the operation of drawing a shape onto another, compared
to the SDFs for the single shapes.

compute SDFs for each color, we focus on a single color c, and consider three SDFs:
the background SDF for c, indicated as SB

c , and the SDFs for the stroke of fill of
the foreground, indicated as SF

s and SF
f . The resulting SDF for the selected color

depends on the fill and stroke colors of the foreground, giving us four cases. (1) If the
selected color is the same as both the stroke and fill colors, then we want to include
the whole foreground into the SDF, which can be done using a boolean union. (2)
Conversely, if the selected matches neither the foreground stroke and fill, then we
want to remove the whole foreground from the background SDF, which can be done
using a boolean difference. (3) If the selected color matches the foreground stroke
color, but not its background, then we have to include the former and exclude the
latter resulting in a union followed by a difference. (4) Finally, if the selected color
matches the background fill, we perform a difference followed by a union. Formally,
we summary write:

OnTop(B, F, c) =


union(SB

c , union(SF
s , SF

f )) for c = s ∧ c = f

diff(SB
c , union(SF

s , SF
f )) for c ̸= s ∧ c ̸= f

diff(union(SB
c , SF

s ), SF
f ) for c = s ∧ c ̸= f

union(diff(SB
c , SF

s ), SF
f ) for c ̸= s ∧ c = f

Figure 3.7 shows an example of combining two shapes with the same stroke and
fill colors, resulting in the last two cases described here.
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Figure 3.8. Comparison between combining overlapping shapes with boolean unions or
with our operator that captures drawing shapes on top of one another. While the union
operator captures shapes correctly, it cannot represent shapes that have both stoke and
fill color. Our operator matches exactly the SDFs corresponding to the stroke and fill
colors extracted from the target image.

Differentiable Pattern SDFs. We estimate the procedural parameters using
gradient-based optimization, which requires gradients to be computed for all param-
eters. To this end, we employ the automatic differentiation facilities in PyTorch
[Pas+19]. Our patterns are written starting from single shapes that are either drawn
on top of one another or combined with boolean operations. All these operations
are just a sequence of calls between automatically differentiable functions, making
automatic differentiation feasible. In all cases, automatic differentiation can compute
derivatives via backpropagation, without any further intervention from the pattern
author.

Target Image SDF. SDFs can be computed analytically when shapes are provided
explicitly. For our application, only target images are provided, so the target SDFs
need to be computed from the raster representation. The SDF extraction procedure
is shown in Figure 3.9. Since we compute an SDF per color, we first compute a
binary mask of the image that selects the areas that match the given color. Once the
mask is extracted, we apply the Euclidean distance transform to extract the distance
inside of the shape, and apply the same procedure to the inverted mask to extract
the positive distance. In the end, we combine the two distance transformations to
obtain the complete target signed distance.
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Figure 3.9. SDF extracted from an hand-drawn target image. For each image color, we
extract a binary mask that is used to compute both inner and outer distance using the
Euclidean distance transform, flipping the mask values accordingly.

3.2.3 Optimization

Optimization Procedure. As described before, the goal of our work is to de-
termine the procedural parameters so that the generated vector pattern matches
a target image. Such parameters are computed by minimizing the loss specified in
Equation 3.1. We consider as optimizable parameters only the ones that influence
the pattern geometric properties. Conversely, the shape element types and their
colors are given apriori and thus not considered in the optimization process.

We determine the procedural parameters using an iterative gradient-based opti-
mization process that relies on the end-to-end differentiability of our pattern SDFs.
More specifically, we use the Adam optimizer [DB15], with a learning rate of 0.025.
We choose Adam since it works well for our problem. The target SDFs are computed
as described above and do not need to be differentiable.

Parameter Set Initialization. At the beginning of the optimization, a proper
initialization is necessary to ensure that we do not get stuck in local minima. We
tested several initialization strategies and pick the one that works best for our case.
In particular, we considered random sampling, Nelder-Mead’s simplex and Genetic
Algorithms, as illustrated in Figure 3.10.

Random sampling picks a set of initialization candidates randomly in the whole
parameter set and maintains the set of candidates that most closely matches the
target image. Even with relatively few parameters, we found that this procedure
achieves poor results. One of the main issues is that an error introduced by even a
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Target Random Nelder-Mead Genetic Algorithm

MSE: 1.4249 MSE: 1.4091 MSE: 1.1208

Figure 3.10. Comparison between the parameter initialization procedures. Between
random sampling, Nelder-Mead’s simplex and genetic algorithms, the latter was selected
since it works best for our problem.

single parameter might reject a candidate, even if all other parameters were selected
well. For this reason, we iteratively sample a single parameter at each iteration, thus
not losing some good parameters initialization discovered in the previous ones.

The Nelder-Mead’s simplex algorithm [NM65] solves the unconstrained optimiza-
tion of a function by evaluating it at a set of points that form a high-dimensional
simplex. Then, it iteratively shrinks the simplex by replacing the point with the
highest error with another obtained using the reflection, expansion or contraction
operations. This step is repeated a desired number of times.

Genetic Algorithms [For96] are a class of computational models inspired by the
idea of evolution. In our setting, the variant we use first samples a set of candidates
randomly in the whole domain. Candidates are ranked based on their error, and the
best ones are picked to participate in the next generation. New candidates are then
generated by using a 2-point crossover operation, with further random mutations.
This step is repeated a desired number of times.

In our experiments, we found random sampling to perform worst, with the
simplex method and genetic algorithms to work well. For example, in Figure 3.10 we
compare the three initialization both visually and by computing the Mean Squared
Error (MSE) between the target parameters and the computed initializations. In
this example, and in general, the Genetic Algorithms achieves the best results, due
to their capacity of propagating partial best parameters from an iteration to the
following ones.

Parameter Set Optimization. To reduce the chance to get stuck in local minima,
we tested two commonly-used approaches. At first, we adopted an Iterated Local
Search [LMS03] approach. This procedure consists in applying iteratively a local
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Figure 3.11. Loss changes during optimization of the stripe pattern in Figure 3.1. In our
approach, we chose to optimize starting from multiple starting configuration, to reduce
the chance of local minima, and pick the best final one. We use 10 candidates in our,
but show here only 2 for clarity of presentation.

search algorithm, represented in our case by gradient descent. At the end of each
iteration, a single parameter of the best configuration found so far is modified at
random. The new configuration obtained this way is then used to initialize the
next local optimization pass. This helps to avoid local minima by perturbing a
solution that might not be optimal. However, only the best configuration found by
the initialization phase is exploited to initialize the first local search. Alternatively,
the best candidates selected during initialization are all optimized separately with
gradient descent, but without perturbation. We then select the parameter set with
the lowest loss. This technique reduces the chance of local minima by exploring more
points in the space. In our experiment, the latter procedure worked best, especially
in the case where the number of parameters increases. We chose to use 10 initial
candidates for the exploration.

Finally, during an iteration, the loss could keep increasing or oscillating around
a minimum. To reduce such behavior we adopt a patience and refinement technique.
If the loss between the target pattern and the one computed by the generation
increases for a considerable amount of iterations, the best parameters assignment is
reloaded and the optimizer learning rate is reduced. This strategy helps in case of an
oscillation around a minimum since the adopted optimizer parameters could produce
high jumps in the loss landscape without gradually leaning towards a minimum. If
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Figure Generator Parameters Shapes MSE

Fig. 3.1 Honeycomb 4 198 0.0193
Spades 7 11 0.0001
Rectangles 8 21 0.4375
Circles1 12 30 0.0009
Stripes 14 34 0.1536

Fig. 3.3 Circles2 14 25 0.0773
Circles2 14 25 0.0004
Circles2 14 25 0.0015
Circles2 14 18 0.0025

Fig. 3.4 Shingles 6 30 0.0001
Fig. 3.6 Circles2 14 61 0.2167
Fig. 3.8 Circles3 7 36 0.0018
Fig. 3.9 Rectangles 8 25 0.3058

Table 3.1. Statistics of the optimized patterns, including number of parameters, number of
shapes, and MSE of the fitted parameter set.

the optimized parameters are refined with a high frequency, then the iteration is
stopped and the best parameters are again reloaded and perturbed before the next
iteration starts. We adopted a patience of 100 iterations and a total number of 3
refinements during each framework iteration. At the end of the process, the overall
best parameters identified during one of the iterations are returned. An example of
optimization is shown in Figure 3.11.

3.3 Results

Throughout this chapter, we have already shown several patterns whose pa-
rameters were fitted with our algorithm. In this section, we analyze the generator
functions that were used to obtain the given patterns.

Pattern Optimization All results were fit with the same optimization setting to
further demonstrate the robustness of the approach. In particular, we use 250 gradient
descent iterations from the 10 best candidates selected during an initialization of 25
generations, starting from a population of 250 individuals. We execute all operations
on a 16-core Ryzen 9 CPU with an NVIDIA 3090 GPU. All code was written in
Python and use PyTorch [Pas+19] and SciPy [Vir+20] for optimization and automatic
differentiation. The Genetic Algorithm based initialization is implemented using the
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Target Initialization Optimized

MSE: 0.8205

Figure 3.12. For patterns with high number of parameters, 25 in this figure, the algorithm
may converge to a local minimum.

DEAP [For+12] framework.
Table 3.1 shows the statistics of the optimized patterns. We tested 7 different

procedural patterns, that have from 4 to 14 parameters. In our tests, we found
that our algorithm can reliably find the parameter sets in all these cases. For the
synthetic patterns, we measure the goodness of fit with the MSE of the pattern
parameters, which we found to be very low in all cases, going from 0.0001 to 0.4375.

Patterns with tens of parameters are cumbersome for users since all parameters
need to be appropriately set. This is sometimes ameliorated by careful parametriza-
tion, which makes a single pattern easier to use, but also makes writing new patterns
complex. On the contrary, in our work patterns are arbitrary Python functions that
we did not specifically write to provide convenient parametrization.

In Figure 3.12, we show a failure example involving a pattern that is parametrized
by 25 parameters. While the number of shapes and colors does not affect convergence
negatively, there is a dependence on the number of parameters. Higher number of
parameters may influence the initialization stage, providing a poor guess of the initial
parameters, that may lead to a convergence in some local minima of the loss function.

Pattern Types We chose patterns that are quite different in the types of elements
they are comprised of. In particular, we showed examples using lines, circles, rectan-
gles, as well as SVG drawings represented as quadratic Bèzier curves. By changing
element types and pattern structure, our framework supports a large variety of
examples. In fact, patterns that are visually quite different can be obtained from
the same procedural function, as shown in Figure 3.3. Overall, we found our method
to work well in all these cases.
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Unsupported Patterns While our algorithm supports a large variety of patterns,
some cases are still not supported, since they would require changes to how patterns
are specified via a target image. We leave them for future work.

In particular, we do not support opacity in the color definition, since we treat the
element as individual shapes. The concern, in this case, is how to disambiguate non-
opaque colors from opaque ones in the target images. [Red+20] shows a promising
direction using texture synthesis, that we might be able to adapt to procedural
patterns as well. Furthermore, we only support solid fill and stroke colors since the
per-color SDF definition is not well defined for linear or radial color gradients.

Stochastic patterns are also a concern since it is unclear what the target image
should be. The authors of [Shi+20] acknowledge this issue and provide an ad-
hoc solution for raster texture with small variations that effectively freezes the
randomization elements in the pattern. While this idea may work in their domain,
fully-stochastic vector patterns may take any arrangement, so it is unclear if a single
target image is sufficient to determine their parameters.

3.4 Conclusions

This chapter introduces pOp, a method for computing the parameters of proce-
dural vector patterns that match a given input image. The key idea of this work
is to cast the optimization problem in terms of pattern distance fields, that are
made differentiable using automatic differentiation and a careful choice of shape
combination operators. In future work, we plan to extend our work to investigate new
formulations that support opacity and stochastic patterns, together with exploring
the possibility of optimizing the shape element control points as well.
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Chapter 4

pEt: Direct Manipulation of
Differentiable Vector Patterns

Figure 4.1. We propose pEt, an interactive method to edit the parameters of procedural
programs that generate vector patterns, where users interactively transform a set of
points and constrain other ones to fixed locations. During the interaction, we solve
for the procedural parameters with a gradient-based method since our patterns are
differentiable with respect to the procedural parameters for both boundary and interior
points. Here we show, for each pattern, the starting, middle and end frames of two
sequential edits. Here, and in all figures, we mark in blue the transformed points, in
red the fixed ones, and we draw the trajectory of the transformed points in blue in the
middle frame.

In previous chapter, we demonstrated how to estimate procedural parameters of
procedural vector patterns, which are collections of vector primitives generated by
procedural programs, starting from example images and sketches. Although it works
well as a first estimation of good initial starting point values, other approaches like
asset manipulation may be enable more precise edits, as the system interactively
determines the procedural parameter values while the edit occurs. In this chapter we
complement such approach by proposing pEt, a method for editing procedural vector



4.1 Introduction 30

Figure 4.2. The same procedural program can produce significantly different results by
changing just the parameters assignment. Here two examples program are edited to
produce three variations. For each variation, we show the first frame and the last frame
of the optimization procedure.

patterns using direct manipulation. In this approach, users select and interactively
transform a set of shape points, while also constraining other selected points. Our
method then optimizes for the best pattern parameters using gradient-based opti-
mization of the differentiable procedural functions. We support edits on large variety
of patterns with different shapes, symmetries, continuous and discrete parameters,
and with or without occlusions.

4.1 Introduction

Procedural methods are often used in computer graphics as they provide con-
trollable, high-quality, and resolution-independent assets such as textures or shapes.
Users generate different assets by either writing new procedural programs or by
changing the parameters of existing ones. By far, the most common case is the latter,
considering that large libraries of programs are readily available [ADO]. As the
number of parameters increases, which is typical for high-quality programs, editing
time grows significantly since users have to manually search a large parameter space
to find the values that generate a desired asset.

Many recent works have investigated automated methods to estimate the pa-
rameters of procedural programs. These prior work differ in the user interaction
they support. Example-based methods determine the procedural parameters that
best match a given exemplar (see for example [HDR19; Li+20; Shi+20; Red+20;
Hu+21b; Hu+22a]), by formulating the problem as an optimization procedure. These
methods are helpful to provide users with a starting point for further editing. Direct
manipulation methods let users manipulate the asset directly, while an optimization
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procedure finds the best procedural parameters that match the edit. These methods
differ in the manipulations they support; for example [MB21; Cas+22] let users
directly drag surface points for editing procedural meshes and CAD models, while
[PTG02; Pel10] let users drag shadows and highlights to edit illumination. These
direct manipulation methods have the advantage of letting the user guide the opti-
mization interactively, while receiving real-time feedback on what the procedural
program can achieve, sidestepping the issues that example-based methods exhibit
when asked to reproduce an asset that the procedural program cannot achieve.

With our framework pEt, we propose a method for direct manipulation of
procedural vector patterns. We consider patterns made of collections of vector
graphics shapes generated by a procedural program. Editing such patterns by
manipulating a slider-based interface remains cumbersome due to the high number of
non-independent parameters. Inspired by the user interaction scheme of [MB21], we
let users edit procedural vector patterns by interactively transforming user-selected
points on the patterns’ shapes (see Figure 4.1 for examples). We formulate the
problem as determining, by optimization, the procedural parameters that minimize
the distance between the user-transformed points and the corresponding pattern-
computed points. The optimization runs interactively for each mouse event, letting
users guide patterns toward the desired appearances. This lets users perform
final edits in a goal-based manner, possibly starting from the pattern parameters
determined by the example-based method pOp, exposed in Chapter 3.

Our formulation depends on two insights that make this work different from prior
works in this area. A naive formulation would only let users transform all selected
points, as is done in [MB21]. In the case of vector patterns, this is not sufficient to
express complex pattern manipulations.

Instead, we also allow users to set constraints on some pattern points, inspired
by similar ideas explored in goal-based illumination [PTG02]. We demonstrate that
this simple change is sufficient for users to guide the editing precisely (see Figure 4.2
for an example). Also, procedural vector patterns are often written imperatively as
programs that issue shape drawing commands, such as emitting SVG shapes. In this
representation, we cannot directly express our optimization constraints. Instead, we
consider procedural vector patterns represented as functions that take as input the
parametrized coordinates of each shape point, and output the point positions. This
change of representation makes it possible to compute the gradients of the points
positions with respect to the pattern parameters, making the pattern end-to-end
differentiable.

We tested the method on a variety of patterns with different characteristics, as
shown in all the images of the current chapter. We consider edits that alter the
shape positions, the pattern symmetries, the number of shapes and the deformation



4.2 Method 32

Figure 4.3. Different edits can be expressed by selecting different points and either
transforming or fixing them. (Top) The stripes are translated by transforming a set of
16 points. (Bottom) The distance between stripes is edited by transforming a set of 8
points, while fixing another 8 points.

of the shapes, showing examples where we edit continuous and discrete parameters,
as well as parameters are affected by noise functions. Overall we found pEt to work
well for all cases.

4.2 Method

We consider procedural programs that generate patterns made of collections
of vector shapes, such as grids, stripes, radial patterns, optionally with occlusions
and deformations of shapes. Users can edit procedural patterns by either changing
the program code, or altering the program parameters. In this work, we focus
on simplifying the latter task. The output of procedural programs can differ
substantially by just changing its parameters, as shown in Figure 4.2, but as
the number of parameters increases, the edits become very time-consuming. The
approach proposed by pOp in Chapter 3 shows how to estimate the procedural
parameters to match an example image, which works well for an initial estimate,
but that cannot be further edited with the same method. To fine-tune procedural
patterns, we propose an interactive direct manipulation method where users select
and transform a set of points on the patterns, while our algorithm solves for the
procedural parameters interactively at each mouse event. Our method is general
with respect to the pattern type and its parameters, and only requires the pattern to
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Figure 4.4. Procedural deformations, here obtained by applying noise functions to the
shape outlines, are controlled in the same manner as other transformations.

be differentiable, which we obtain using automatic differentiation. In the following
sections, we will describe the method and motivate its design, starting from the user
interaction.

4.2.1 User Edit

In pEt, users edit patterns by selecting arbitrary sets of points on the pattern
shapes and transforming them. We consider sets of points, instead of single ones,
since different selections correspond naturally to different edits, for the same points
transformations (see Figure 4.3 for an example).

A possibility for implementing the interface would be to select and transform
each set of points separately, as this offers the most control. However, this modality
has two main issues. Since each transformation requires a separate mouse action, this
would end in a non-interactive optimization of the pattern parameters, preventing
users to naturally guide the edit by exploiting a real-time preview of the result. The
second, and more important one, relates to optimization, whose interactive execution
greatly enhances convergence, as shown in Figure 4.5.

Running the optimization for each mouse event means that the current procedural
parameters are close to the optimal ones, so gradient-based optimization is more
likely to find the optimal solution and not get stuck in local minima. Figure 4.8
shows the loss values throughout the offline optimization with reference to the online
optimization ones, using the same program and selection already shown in Figure 4.5.
The descending behavior is visible in both of them, although the online optimization
always reached a lower convergence rate with reference to the offline one.

Due to this, we suggest a more straightforward user interface in which users
select one set of points that will undergo the same transformation, as defined by
mouse operations, and a second set of points, possibly empty, that will remain fixed
throughout mouse interaction. In this interface, the transformed points guide the
edit interactively, while the fixed points constrain it. This kind of interface has
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Figure 4.5. Besides providing interactive feedback while editing, optimizing procedural
parameters per-frame gives better final results, compared to optimizing only once at the
end of the interaction sequence (we compare the results with the same total number of
iterations).

been proposed for interactive goal-based editing of illumination [PTG02; Pel10]. For
pattern editing, using transformed and fixed point sets allows users to interactively
express a wide variety of pattern transformations while maintaining a simple interface,
as shown specifically in Figure 4.3 and as also visible in the remaining figures in this
chapter.

We also prototyped an interface where users select and transform whole shapes at
once, as opposed to points on them, since it feels natural for patterns made of rigid
elements. However, we found that this interface is too constraining since it cannot
express entire classes of valid pattern edits that we aim to provide. Furthermore, by
selecting individual points we can also support patterns with procedurally deformed
shapes, as shown in Figure 4.4.

In our prototype, users transform points by applying an affine transformation,
namely translation, rotation or scaling, to the points original positions, although
additional transformations can surely be implemented. We should note that these
transformations do not map directly to most of the parameters in the procedural
patterns we tested.

In our current implementation, we compute the positions of the transformed
points by re-transforming the starting points’ locations according to the current
mouse position. The optimizer is instead initialized with the procedural parameters’
found in the last frame. This makes the optimization more stable and allows users
to guide the edit where desired. We also tested a different approach where trans-
formations are applied to the positions computed using the procedural parameters
estimated in a previous optimization step of the edit, thinking that users might be
able to better guide the optimizer. Instead, we found that the optimization suffers
from drifting since tiny errors accumulate over time and do not cancel out during
mouse interaction, as shown in Figure 4.6.
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Figure 4.6. In our prototype interface, we apply transformations starting always from
the initial, correct configuration, since we observed drifting of the solution if the trans-
formations are applied to the configuration of the last frame. In this example, the
resulting pattern shows an undesired pattern rotation, as well as a misalignment due to
the updated grid spacing.

We can formally write the user interaction in our system as computing the
transformed points T tps from the positions of the selected points ps at the t-th
frame of mouse interaction. The transformation T depends on the type of selected
points, being a linear transformation M t for the edited points s ∈ E, or the identity
function for the fixed points s ∈ F . In summary, we can write

T tps =

M tps s ∈ E

ps s ∈ F
(4.1)

4.2.2 Loss Function

We determine the procedural parameters by gradient-based optimization. In
our formulation, we minimize the L2 distance between the positions of the edited
points and the positions of the same points computed by the procedural function,
for each frame of mouse interaction. We treat transformed and fixed points in the
same manner in the loss function.

A natural way to implement this loss is to consider points on the boundary
of vector shapes since vector primitives are represented by their boundaries, e.g.
vertices of polygons or points on tessellated splines. In fact, this is what is done
in prior work on goal-based 3d shape editing [MB21], where users can only select
the vertices of the boundary meshes. This makes the implementation trivial since
boundary vertices are a finite set of uniquely identified items so they can be tracked
by both the user interface and the procedural program without any additional work.

Our first prototype was implemented in this manner. But we quickly found that
many valid edits cannot be expressed by editing only boundary points, for example
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Figure 4.7. In this example, the user intent is to rotate the grid without rotating the
individual shapes. To do so, the user needs to fix some points to disambiguate between
rotation and say translation and scaling during interaction. (Top) Selecting only points
on the shape boundary induces unwanted shape transformations. In fact, as shown by
the orange and green points, the user intent is not respected in this case. (Bottom) On
the contrary, by selecting points in the interior of the shape, a rotation of the grid is
specified precisely, and user intent is fully respected.

as shown in Figure 4.7. For this reason, we extended the selection to also consider
points in the interior of each vector shape.

This slight modification requires significant changes in the evaluation of the loss
function since interior points are not uniquely identified, which is necessary to ensure
that both user interface and optimizer track the same points. In our prototype, we
require the procedural pattern to be able to evaluate the position of all points in each
shape, both boundary and interior. We identify points with a shape identifier, which
is uniquely defined, and by a parametrization of the shape interior, which allows us
to identify all shape points. In our implementation, the user interface determines
both shape identifiers and points parameters during selection. We can then freely
transform the points by acting only on their location, while the optimization uses
the fixed point identifiers to compute the location of the corresponding points.

To put things formally, we model procedural vector patterns as functions f(i, Θ)
that take as input a point identifier i and compute the point location p̃ in the
pattern. The point identifier i = (d, u, v) is comprised of a discrete shape identifier
d together with two continuous coordinates (u, v) that identify points in the interior
and boundary of the shape d. The procedural pattern depends on the procedural
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parameters Θ = {θk}, which are the parameters that we optimize for. With this
notation, we can write the optimization we perform at each frame t as

Θt = argminΘ
1
N

N∑
s

||T tps − f(is, Θt)||2 (4.2)

where ps = f(is, Θt) for t = 0 (4.3)

4.2.3 Optimization

We minimize the previously defined loss using gradient descent, relying on the
automatic differentiation computation of the gradient of the procedural functions
f with reference to its parameters. By optimizing procedural parameters at each
frame, the per-frame optimization converges in few iterations since the procedural
parameters Θt at frame t are used as initialization when computing the parameters
Θt+1 for the next frame t + 1. In this manner, gradient descent finds the optimal
solution with a small number of iterations, likely without incurring in local minima.

The program function f performs a vectorized computation of the points position
if a packed vectorized parametrization is provided, thus improving the system speed.
In the subsequent section, we will cover the main aspects of our editing tool.

We implemented our prototype using PyTorch since it provides robust automatic
differentiation for our patterns. We optimize procedural parameters using the Adam
optimizer [DB15] with a learning rate of 0.002. We use a maximum of 125 iterations,
but we allow the optimization to stop sooner if the loss is below a threshold of 0.0005,
corresponding to a negligible distance between the sets of points.

Our formulation scales trivially to complex patterns since it depends on the
selection size and not the number of shapes in the pattern itself. We further improve
speed by vectorizing the evaluation of the procedural patterns, to ensure that we
evaluate the function for all points at once.

We support both continuous and discrete pattern parameters. Continuous
parameters are left unchanged during optimization, and clamped to their valid
range once the optimization terminates in each frame of mouse interaction. Discrete
parameters are treated as continuous during optimization, and rounded to their
discrete values at the end of each frame. The discrete behavior is implemented in
the procedural function itself that rounds of the continuous optimization parameter
to the internally discrete one. This rounding does not cause any trouble since shape
identifiers remain unique, thus the selected ones remain uniquely identified. We
support discrete parameters for which a continuous counterpart is well defined, such
as the number of elements in the rings of Figure 4.1 (B) or the number of elements
and subdivisions in Figure 4.9 (H). On the contrary, discrete parameters such as
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Figure 4.8. Comparison between per-frame optimization, shown left, and optimization
performed only in the last frame, shown right, for the edit in Figure 4.5. Besides
providing feedback while editing, per-frame optimization has a lower end loss (0.0016)
than end-only optimization (0.0327), for the total number of iterations. Peaks in the
per-frame optimization correspond to mouse events.

enums are not handled.
We should also note that occlusion between shapes does not cause any concern

during the optimization since points are uniquely identified and the procedural
function can compute the position of any parametrized point, whether or not these
points are visible in the final rendering. The only implementation detail needed is
to support the selection of hidden points in the user interface, which can be done in
a manner similar to vertex selection in 3D software.

4.3 Results

In this section, we collect the results obtained while editing a variety of procedural
vector patterns, summarized in Table 4.1 and shown in all the figures of the current
chapter. We performed all the tests on a machine with an AMD Ryzen 9 CPU with
3.4 GHz frequency. The edit sequences discussed here were re-computed offline from
the original mouse interactions, for reproducibility and for further comparisons with
the synthetic tests presented later. On our machine, our implementation reaches in a
range of 0.9 ms to 2.8 ms per iteration. In our tests, time increases with the number
of points selected, but remains constant throughout all iterations of an optimization
step.

We tested patterns with a growing number of parameters from 9 to 26. In all
cases, we converge to a solution with low loss value within the allotted iterations.
The final loss value does not depend on the number of parameters, while the pattern
complexity impacts the number of iterations. On the contrary, the number of selected
points does not significantly influence the number of iterations nor the final loss.
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Figure 4.9. Gallery of edits on a variety of differentiable vector patterns such as grids,
stripes, and radial patterns, with possibly occlusion, deformation and jittering. For each
pattern, we show two consecutive edits.
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The type of edit does slightly influence the number of iterations, that always remains
within the maximum budget.

We tested patterns with different types and number of shapes as well as with
different symmetries. In our tests, we included patterns with continuous and discrete
parameters. The latter are shown when editing the circular patterns of Figure 4.1
(B) and Figure 4.9 (D, H), and they are handled as discussed in the previous section.
We finally verified that shape occlusion can be handled without concerns by editing
the shingles patterns in Figure 4.9 (A, E) where we selected points on the topmost
shape without introducing unwanted constraints on the occluded shapes. None of
these factors significantly affect the final loss nor the number of iterations.

We optimize all parameters at once. This allows us perform complex edits that
require the concurrent change of multiple parameters, as shown in Figure 4.2 (B–first
edit), Figure 4.9 (B–first edit) and Figure 4.9 (H–first edit), where, respectively, 4, 4
and 2 parameters are modified concurrently. Furthermore, the use of a gradient-based
solver ensures that parameters that do not affect the current edit are left unchanged
during interaction, like in the edit of Figure 4.2 (A) or Figure 4.3.

From a user perspective, our method is simpler than using sliders since artists
do not have to find which parameters produce a desired change. This becomes
important as the number of parameters increase, which does not affect our method
but makes slider-based manipulation more cumbersome. The example in Figure
4.1 (B) shows a complex case with 26 parameters, for which finding the correct slider
to change could be time-consuming in a manual scenario.

Besides structured patterns, we support deformations in the pattern shapes and
in their placement, as shown in Figure 4.4 and Figure 4.9 (E, F). We obtained
these deformations by applying noise functions to the shapes boundaries and their
transformations, as is common in procedural texturing. These results show that we
can control procedural deformation just as well as structured patterns.

We also tested the accuracy of the optimized procedural parameters with respect
to correct values. We consider the same edits as in Figure 4.9 and use the estimated
procedural parameters of the last frame as target parameters. Then, for each
frame, we compute a set of parameters that is linearly interpolated between the
starting parameters and the target parameters. We compute the positions of
the selected points by evaluating the procedural function at each frame with the
linearly interpolated parameters. With these positions, we estimate the procedural
parameters with our method and compare them with the correct ones used to
generate the points positions. We perform the comparison by computing a mean
squared error. As shown in Table 4.1, these errors are very small in every test
we performed, and do not depend on the pattern, selection and edit complexity.
This tests confirms that we compute accurate parameters throughout the mouse
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Figure 4.10. A limitation of our approach is that user edits can produce undesired results
if the procedural program has no parameter combination that can fit user edits. In this
figure, the user intent of shearing the grid ends in a rotation update in a procedural
program that cannot express shearing (top), while it is correctly handled by a program
that can model the edit (bottom).

interaction, thus proving users with precise feedback while editing.

4.3.1 Limitations

We believe that our work has three main limitations. First, we support only
shapes with parametrized interiors to perform selection and optimization. While
most vector graphics primitives are easily parametrizable, there may be others for
which this is problematic. One possibility would be to tessellate the shape interior as
planar meshes, and use the mesh vertices, that are unique, as interior points. This
method is trivial to implement, and would certainly solve the concern presented, but
it may slow down the computation.

The second limitation, inherent in all optimization methods, is the increase in
computation time as the number of procedural parameters increases. We show
patterns with more than twenty parameters, which would be quite cumbersome to
manipulate with sliders. However, scaling to hundreds or thousands of parameters
might become problematic. To support these cases, we need a method that optimizes
only the parameters that control the users intended edit, expressed by both selection
and mouse motion. We leave this investigation to future work.

Finally, our method may fail when the user edits cannot be reproduced by
changes in the program parameters. For example, In Figure 4.10, the user performs
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an edit equivalent to shearing the grid. If the procedural program cannot generate a
sheared grid, the optimization may incorrectly update other parameters to better fit
the transformed points with the ones computed by the program, as shown in the
top row. On the contrary, the resulting edit matches the user intent perfectly if the
procedural program can represent the given edit, as shown in the bottom row.

4.4 Conclusions

In conclusion, we presented a method for the direct manipulation of procedural
vector patterns. We support patterns expressed as differentiable functions that take
parametrized points as input and compute the point positions as output. Users
manipulate these patterns by transforming sets of points, while constraining other
points. During the interaction, we optimize patterns at each frame to give users
real-time feedback on the edit, while ensuring an accurate estimation of the pattern
parameters. In the future, we plan to explore methods to write procedural patterns
automatically using neural networks and language models.
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Table 4.1. Statistics of the edits shown throughout the current chapter. For each edit we
report the number of parameters and shapes of the pattern, the number of transformed
and fixed points, the number of mouse events of the stroke, and the number of iterations
performed during the optimization (mean value, minimum and maximum early exit
iteration). For real edits, we report the loss at the end of the optimization, while for
synthetic tests we report the MSE between the target parameters and the correct values.
Each table row corresponds to a different program, where more than an entry is reported
when a sequence of edits is performed consecutively on the same pattern.

Figure Num. Num. Transf. Fixed Mouse Number of Final Average
Num. Prms. Shapes Points Points Events Iterations Loss MSE
4.7 B 9 25 1 1 42 25, 6, 42 0.0013 2 · 10−6

4.9 A
10 121 3 1 27 57, 24, 125 0.0019 1 · 10−6

10 98 6 1 25 76, 21, 125 0.0013 4 · 10−5

4.9 E
10 49 3 3 42 53, 23, 87 0.0020 2 · 10−4

10 84 5 1 28 97, 64, 125 0.0023 6 · 10−4

4.9 F
10 49 5 1 5 102, 20, 125 0.0083 8 · 10−4

10 105 10 8 5 111, 42, 125 0.0016 1 · 10−4

4.4 A 10 16 7 6 18 119, 114 125 0.0216 9 · 10−5

4.9 C
14 20 6 4 36 117, 26, 125 0.0061 7 · 10−5

14 20 17 0 39 104, 32, 125 0.0005 1 · 10−4

4.9 G
16 31 10 1 41 73, 29, 125 0.0005 4 · 10−5

16 31 5 6 26 107, 84, 125 0.0005 1 · 10−4

4.3 A
17 31 16 0 45 65, 19, 119 0.0002 2 · 10−5

17 18 8 8 44 51, 16, 105 0.0005 3 · 10−5

4.6 A 20 32 54 0 18 102, 84, 125 0.0051 4 · 10−4

4.9 B
20 50 40 1 17 123,108,125 0.0010 1 · 10−4

20 50 12 13 18 27, 13, 40 0.0010 1 · 10−4

4.9 D
20 37 1 1 34 4, 2, 33 0.0023 1 · 10−6

20 37 4 0 27 19, 3, 64 0.0025 6 · 10−6

4.9 H
20 59 3 4 11 35, 20, 56 0.0006 4 · 10−6

20 59 4 4 15 34, 15, 125 0.0015 6 · 10−6

4.1 A
20 25 8 0 53 30, 8, 96 0.0010 2 · 10−5

20 32 64 0 39 46, 20, 97 0.0007 22 ·10−5

4.2 B
20 41 17 17 18 116, 52, 125 0.0223 3 · 10−4

20 18 36 0 8 111, 22,125 0.0006 34 ·10−4

20 18 4 4 18 30, 13, 85 0.0013 4 · 10−4

4.2 B
23 39 32 0 37 86, 45, 125 0.0007 1 · 10−4

23 63 5 5 25 124, 112, 125 0.0006 1 · 10−4

23 63 5 0 44 16, 6, 29 0.0007 1 · 10−4

4.1 B
26 41 9 18 24 105, 64, 123 0.0024 3 · 10−6

26 41 4 0 15 110, 15, 125 0.0016 4 · 10−5
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Chapter 5

Direct Manipulation of
Procedural Implicit Surfaces
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Figure 5.1. Our method enables the direct manipulation of procedural implicit surfaces
through mouse strokes in the viewport. We estimate an update of the procedural
parameters of the implicit surface that matches the user intent thanks to the auto-
differentiation of an augmented version of the implicit function (Section 5.4.2). As
opposed to the typical workflow of updating parameters through sliders, our method
enables a more direct and intuitive editing process.

After analyzing problems and possible solutions to ease the editing of procedural
vector patterns, we now shift to the 3D scenario by focusing on a popular procedural
representation for shape modeling, namely procedural implicit surfaces. They provide
a simple framework for complex geometric operations such as Booleans, blending and
deformations. However, even in this case their editability remains a challenging task:
as the definition of the shape is purely implicit, direct manipulation of the shape
cannot be performed. Thus, parameters of the model are often exposed through
abstract sliders, which have to be non-trivially created by the user and understood
by others for each individual model to modify. Further, each of these sliders needs
to be set one by one to achieve the desired appearance.

In this chapter, we propose a method to directly manipulate the implicit surface
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in the viewport, this lifting this laborious process while preserving editability,
We let the user naturally interact with the output shape, leveraging points on
a co-parameterization we design specifically for implicit surfaces, to guide the
parameter updates and reach the desired appearance faster. We exploit our automatic
differentiation of the procedural implicit surface to propagate interactions made
by the user in the viewport to the shape parameters themselves. We further
design a solver that uses such information to guide an intuitive and smooth user
workflow, demonstrating different editing processes across multiple implicit shapes
and parameters that would be tedious by tuning sliders.

5.1 Introduction

When creating virtual worlds and prototypes, authoring 3D assets is crucial. In
particular, procedural modeling has gained significant traction in the industry in the
past decade, relying heavily on implicit surfaces [JQ14; Mag22; Wom22] – defined as
the zero level set of a function. This representation is particularly interesting as it
allows for hierarchical combinations of various functions representing primitives (e.g.
spheres or boxes) and operators (e.g. Boolean operations, affine transformations
or deformations) in a tree or a graph [WGG99; RMD11]. Each of these operators
and primitives comes with its own set of procedural parameters, which can typi-
cally be adjusted through sliders for non-destructive authoring. However, editing
the shape by adjusting individual sliders requires a comprehensive understanding
of its parameterization, as multiple parts can be affected by a single procedural
parameter. Conversely, editing one part of a shape may require modifications of
several interdependent procedural parameters. To be able to circumvent this tedious
process, we propose a direct manipulation approach to editing. This approach allows
users to directly interact with the end surface in the viewport and propagating the
changes to the relevant procedural parameters. While this kind of technique saw
recent success for mesh-based parametric modeling [MB21; Cas+22; Gai+22], none
of these approaches can be readily applied to implicit surfaces. Tracking of explicit
points on the surface during manipulations cannot be achieved easily in implicit
surfaces due to the lack of surface parameterization.

Our method allows the user to perform edits by simply selecting and dragging any
desired parts on the implicit shape over the 3D viewport, while optionally expressing
constraints on other patches to remain unchanged throughout the edit, thus increasing
expressiveness. We automatically update the procedural parameters of the implicit
surface to modify the shape to best match the user manipulation. However, to
enable manipulation of a procedural shape we need to be able to characterize an
element of surface in a way that is robust to changes in the procedural parameters.
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As this is not trivially defined for implicit surfaces, we extend [MB21]’s framework
of co-parameterization, enabling the definition of a point’s location and its Jacobian
with respect to the shape parameters. We adapt this framework to implicit surfaces
and show how it can be used for direct manipulation purposes. We further refine
the parameter update through a new solver that exploits the Jacobian computed in
an automatic differentiation fashion. We compute the Jacobian for multiple groups
of points, each of which represents a patch of the implicit surface. Our framework
supports the direct manipulation of procedural parameters for classical implicit
primitives combined with complex operators such as smooth Boolean, deformations
and affine transformations (Figure 5.1).

Contributions We enable in-viewport editing of procedural implicit surfaces
thanks to the following contributions:

• A mapping between point positions and unique identifiers for procedural
implicit surfaces, allowing the proper tracking of a point during an edit.

• A solver that, given user mouse-strokes and multi-point constraints, interac-
tively updates the values of dozens of procedural parameters to best match
the user intent.

• A mean to evaluate the local influence of parameters on individual points of
a shape, which could be applied in other optimization pipelines than direct
manipulation.

We evaluate our method in terms of editing capacity (e.g. can we reach a desired
shape) through a user study and a comparison to existing direct manipulation
techniques for analytic implicit surfaces.

5.2 Overview

We aim at providing direct manipulation tools for procedural implicit surfaces
where users interact with the shape itself directly in the viewport, rather than
indirectly setting a value by moving an indicator on a track bar, namely a slider, as
in traditional procedural modeling. Formally, a user edit consists in the selection
of multiple points pi over the surface, and their expected screen space movement
∆Ti. Typically, ∆Ti either matches the movement of the user mouse cursor, or is
equal to zero to mean that the element should not move during the edit. The goal
of our solver is to update the shape according to this edit while maintaining its
global consistency. Our pipeline handles procedural implicit shapes described by
scene graphs, as detailed in the next paragraph.
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Figure 5.2. Our input is a procedural implicit shape represented by a scene graph (left),
combining primitives, transformations, Boolean operations, etc. Procedurally-defined
shapes allow users to create a large variety of instances Φ(θ) by tweaking the procedural
parameters θ (right), but this is a non-trivial task as the user must understand the
influence of each individual parameter over the model. In each figure of the current
chapter, bidirectional arrows are used as a simplified semantical representation of
procedural parameters.

Background. An implicit surface is defined as the zero level set of a function
f : R3 → R. A point p ∈ R3 belongs to the implicit surface S if and only if it
satisfies f(p) = 0. Representing 3D shapes using implicit surfaces thus inherits from
interesting properties of function objects, like their compact analytical representation
or the possibility to compose them together.

A procedural implicit surface is a generalization of an implicit function f with
a second argument from a procedural parameters space Θ ⊂ Rn, where n is the
number of procedural parameters.

These parameters, commonly used in general procedural modeling, are exposed
by the designer of the initial shape to its end user.

The surface S for a particular value θ ∈ Θ is called an instance of the procedural
shape Φ:

S = Φ(θ) = {p ∈ R3 | f(p, θ) = 0} (5.1)

We support procedural implicit functions that are derived from a scene graph,
like for instance BlobTrees [WGG99] or analytical Signed Distance Fields. A scene
graph is a directed acyclic graph (or sometimes more simply a tree) whose nodes
are either primitives such as spheres or boxes, or operators such as CSG operators
or affine transformations (see Figure 5.2). Complex implicit shapes arise from the
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Figure 5.3. Starting from a scene graph representation of an implicit surface (a), we
augment it so that the resulting implicit function f̄ computes both the scalar value s

and a co-parameter c that identifies the evaluation point in space (b). We do this by
replacing the eval, pre, post functions of the different nodes. This allows estimating
the derivative of a position with respect to the procedural parameters, which is then
used to modify them to match the user stroke (c).

combination of primitives via multiple boolean operators such as union, intersection of
difference. In the implicit domain, a blended variation of regular boolean operations
called smooth boolean is greatly exploited to create more organic shapes.

A formal derivation of the implicit function f from the scene graph is described
is Section 5.3.

Problem setting. In our context, a manipulation of the procedural implicit surface
means a change of the procedural parameters θ through user interaction. This ensures
that the deformed surface globally remains a valid instance of the procedural shape Φ.
To comply with the user input, we minimize for each manipulated point the following
loss:

Li := 1
2
∥∥∆ Proj

(
pi
)
−∆Ti

∥∥2
2 (5.2)

where ∆ Proj
(
p
)

= Proj
(
pθ+∆θ

)
− Proj

(
pθ
)

is the effective movement of the point
p after an update ∆θ of the procedural parameters, projected by Proj onto the
screen. The first problem we address, in Section 5.4, is the definition of the new
position pθ+∆θ of the dragged point. Indeed, while the initial position p0 is simply
found by casting a ray onto the surface, tracking what is semantically the same
element of geometry after the change of procedural parameters is challenging. We
then derive in Section 5.5 the gradient of Li, and in particular the Jacobian matrix
of each dragged position pθ+∆θ

i with respect to ∆θ. Lastly, Section 5.6 details our
gradient descent based solver. Our complete pipeline is summarized in Figure 5.3.

5.3 Scene Graph Model

In a typical scene graph used for implicit modeling, an oriented edge is used in
two ways: from the root to the leaves, it carries a position p at which primitives



5.3 Scene Graph Model 49

ALGORITHM 1: Derivation of the implicit function from a scene graph.
The expression of the implicit function f is derived from a scene graph by recursively
compiling its root node into the expression of an evaluation function R3 7→ R.

Input: A node n of the scene graph.
Output: The implicit function represented by the node n.
function CompileNode(n):

if IsPrimitive(n)
return n.eval;

else
children ← GetChildren(n);
return n.post ◦ map(CompileNode, children) ◦ n.pre;

must be evaluated, then from the leaves back to the root, it carries the returned
scalar value s. We formalize this by having each primitive provide an eval function,
which maps a position p ∈ R3 to a scalar value s ∈ R, and each operator that has
m input provide a function pre : R3 → (R3)m that prepares the m positions fed
to its inputs and a function post : Rm → R that reduces the m values returned
by the inputs. For instance, the eval function of a sphere primitive of radius r is
eval : p 7→ ∥p∥ − r and here are examples of operators:

Scaling by a factor x Union of 2 shapes
pre : p 7→ p/x pre : p 7→ (p, p)
post : s 7→ s · x post : (s1, s2) 7→ min(s1, s2)

The final expression of f is obtained by recursively chaining the pre, eval and
post expressions as detailed in Algorithm 1. The free variables of the expression –
e.g. the scale factor x or the radius r in the examples above – constitute the vector
θ of procedural parameters. In practice there is usually a remapping between the
parameters that are publicly exposed to the end user and the low-level parameters
of the graph nodes, but we consider without loss of generality that this is part of
the eval, pre and post functions.

We assume the resulting function f to be continuous and differentiable around
its zero level-set. In order to render shapes using sphere tracing [Har96], we also
assume that f is Lipschitz, ie. that there is a bound λ on the magnitude of ∇f ,
ensuring that |f(p, θ)|/λ is always lower than the distance from p to the surface.
This in turn allows to compute points on the surface using sphere tracing for direct
manipulation purposes.
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Co-parameterization space

3D space

Figure 5.4. Co-parameterization enables the identification of the same point location before
and after an edit. The two points p and p′, selected in different shape instances Φ(θ)
and Φ(θ′), have two different locations in R3, but are mapped to the same co-parameter
c ∈ C because they represent the same semantic element of the shape. This enables to
define the influence ∂p

∂θ of the procedural parameters at a given point p.

5.4 Coparameterization

To enable direct manipulation, we need to robustly identify the same point
location throughout the edit as it allows us to estimate the local influence of the
procedural parameters. We formalize pθ+∆θ as the position of a point p after an
update θ + ∆θ of the procedural parameters (Section 5.4.1), and describe how to
use the structure of the scene graph to track the identity of manipulated points
(Section 5.4.2).

5.4.1 Definition

The sole expression of the implicit function f cannot provide the position pθ+∆θ

of a dragged point for an arbitrary change ∆θ of the procedural parameters, because
in its compiled form it lacks the semantic awareness of the original scene graph. We
propose to define an augmented implicit function f̄ : (p, θ) 7→ (s, c) that not only
return the scalar value s ∈ R but also a feature vector c ∈ C meant to uniquely
identify what role the position p plays in the instance Φ(θ). This so-called co-
parameter c formally characterizes the notion of same point: f̄(p, θ) = f̄(p′, θ′)
if and only if p and p′ are two positions of the same element of geometry under
different procedural parameters θ and θ′ (Figure 5.4). Hence pθ+∆θ is defined as
the only point such that f̄(pθ+∆θ, θ + ∆θ) = f̄(pθ, θ). Note that s is always 0 for
surface points, so c is what enforces point identity.

Our co-parameter space C = R3×N is detailed in Section 5.4.2, as well as how we
build f̄ in practice. Note that contrary to [MB21], we define the co-parameterization
on the whole space rather than only on the surface, due to the implicit nature of
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our shapes.

5.4.2 Augmented Implicit Function

The scene graph from which our implicit function is derived carries semantic
information that also suggests a notion of what same point means. This section
describes how we modify the construction of the implicit function to encode this
extra information as a co-parameterization that we can then use in our solver. Our
requirements for the definition of the co-parameterization are (a) to uniquely and
robustly identify elements of geometry (b) to be locally differentiable (Section 5.5)
and (c) to be automatically constructed for all of our 3D implicit shapes. To ensure
this last point, we build the co-parameterization together with the implicit function f ,
by defining an augmented version of the eval, pre and post functions we described
in Section 5.3:

eval : R3 −→ R× C

pre : R3 −→
(
R3)m (Unchanged)

post :
(
R× C

)m −→ R× C

We provide these augmented functions only once for each type of primitive and
operator, and the very same Algorithm 1 hence defines an augmented implicit
function f̄ : (p, θ) 7→ (s, c) that returns both the scalar value s ∈ R and the co-
parameter c ∈ C at the evaluated position. The co-parameter c = (a, pid) is made of
a differentiable part a ∈ R3 and a path index part pid ∈ N that uniquely identifies
the path followed in the scene graph during the evaluation of a point. The following
paragraphs describe rules of thumb for defining the augmented version of eval and
post.

Primitive nodes They represent atomic shapes, and are often derived from a
fixed canonical shape that is only rigidly transformed by the procedural parameters
(e.g., ellipsoid, prism, cylinder, etc.). In this case, we use the position of a point p
in this canonical space as its unique identifier a, and the path index pid is always 0
for a primitive. This idea can be generalized to other shapes, sometimes at the cost
of a local discontinuity (e.g., we parameterize the torus as a bent cylinder). While
these primitives represent basic shapes, our framework enables highly complex shape
design through operator nodes, allowing for vast combination of primitives, as it is
typically done in implicit modeling [WGG99].

Operators nodes Basic operators simply forward the co-parameter received
from their input, but in general operators may introduce ambiguity in the co-
parameterization in two ways: by combining multiple inputs, and by duplicating
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(a) Scene graph (c) Augmented Implicit Function   𝑓 ∶ ℝ3 × 𝜃 → ℝ × C
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(b) Implicit Function 𝑓 ∶ ℝ3 × 𝜃 → ℝ
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Figure 5.5. The implicit function f and the augmented implicit function f̄ can be derived
from the scene graph (a) via a compilation process. While the former (b) only provides
the distance output for each position p it is queried on, the latter (c) augments such
information by also returning its co-parameter c = (a, pid).

geometry. Both potentially lead to multiple points sharing the same co-parameter,
which we avoid by adding the integer part pid of the co-parameterization. A 2-input
operator offsets the path index pid that it receives from its second input by 1+
the maximum pid it may receive from its first input. Its output pid is forwarded
from either of its input depending on its behavior. Operators with more than 2
inputs are decomposed into sub steps, and duplication operators are treated as
chains of 2-input unions. While this allows us to manipulate many different implicit
operators (including Boolean and smooth Boolean operators, affine transformations,
and warping), we discuss in Section 5.7 more challenging operators that we do
not support. Note that this integer part pid is ignored when differentiating the
co-parameter, but is used in the solver to control that the dragged point is properly
tracked (see Section 5.6).

Compilation Example The scene from Figure 5.5 is made up of 2 primitives,
namely the Sphere and the Box ; the former is transformed using the unary operator
Scale and finally combined with the latter via the binary Union operator to create
the final shape. By recursively following Algorithm 1, we start from the Union node
and apply the CompileNode function to its children, which are the Box primitive
and modifier Scale, that can be further unrolled until the base case Sphere is reached.
By recursively applying Algorithm 1, the implicit function f : R3 ×Θ→ R derived
from the scene graph.

While the function f only evaluates the distance of a point in space from the
implicit shape, we need additional information to allow the direct manipulation of
the implicit shape itself. We apply the same Algorithm 1 but replace each node’s
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Figure 5.6. To reduce ambiguities during an edit, our framework enables multi-point
constraints over parts of the shape. This guides the optimization towards an procedural
parameter update that does not affect the constrained areas, thus increasing the frame-
work expressiveness.

function with their augmented version pre, eval and post, thus computing and
propagating both the distance and the co-parameter for each evaluated position. In
this case, Algorithm 1 derives the augmented implicit function f̄ : R3×Θ→ (R×C).

Exploiting the information propagated by the augmented output makes it possible
to track the same point during an edit, and allows estimating the influence of the
procedural parameters over them.

5.5 Evaluation and normalization

The computation of Jacobians with respect to procedural parameters is a core
step in the optimization process. Here we define how to compute and refine them
accordingly to the user selection (Figure 5.7).

5.5.1 Jacobian Evaluation

Minimizing the direct manipulation loss Li from Equation 5.2 requires to evaluate
at pθ+∆θ

i the Jacobian ∂p
∂θ of the position p of a point with respect to procedural

parameters θ, at a fixed point identity c, as described in Sec. 5.6. Fortunately, this
3× n matrix can be derived from the Jacobian of f̄ : (p, θ) 7→ (s, c) by applying the
implicit function theorem:

∂p
∂θ

= −
(

∂f̄

∂p

)+

· ∂f̄

∂θ
(5.3)
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(b) Without Filtering (c) With Filtering

Height change

Figure 5.7. We automatically filter out some columns of the Jacobian matrix to deactivate
procedural parameters that are deemed less relevant to the edit. Here, a selection on
the side of the sofa suggests an edit involving the width rather than the height or depth.
Without filtering (b), all dimensions are updated, resulting in undesirable changes in
height and depth, while our filtering discards the height and depth dimensions, focusing
on width (c).

where (·)+ denotes the pseudo-inverse of a matrix. We use automatic differentiation
to evaluate the Jacobian of all outputs of f̄ with respect to both the procedural
parameters θ and the position p.

However, simply evaluating the point-wise Jacobian of our procedural shape has
two major drawbacks that we need to address: first, the different columns of the
Jacobian – which relate to different procedural parameters – are not homogeneous in
terms of scales and units. For this, we perform a normalization step that we detail
in Section 5.5.2. Second, the differential information is only valid for a single point,
potentially resulting in a noisy interaction as the user typically drags a patch of
surface. There is a need for a filtering step where we zero the values that relates to
procedural parameters that we do not aim at modifying (Section 5.5.3).

5.5.2 Jacobian Normalization

Switching e.g., a length parameter from meters to millimeters divides by a factor
1000 the corresponding columns of the Jacobian ∂p

∂θ and thus leads to gradient
descent updates 1000 times slower only for this parameter. To prevent this, we
estimate a normalization factor for each procedural parameter of the model. We
randomly sample 50 rays from the six views aligned with the canonical axes, and
at each intersection between a ray and the implicit shape we evaluate the Jacobian
∂p
∂θ . The normalization factor mi of the i-th procedural parameter is then defined as
the maximum magnitude of the i-th column of the Jacobian over all samples. We
similarly update the normalization factors mi after each user edit and each change
of viewpoint. Normalization factors are exploited in the Jacobian filtering process
(Section 5.5.3), enabling a direct and robust comparison between parameters, and
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are also used to scale the gradient of the loss function ∇L during the optimization
(Section 5.6).

5.5.3 Jacobian Reduction and Filtering

To increase the robustness of the Jacobian, we estimate it for a neighboring
patch of surface rather than at a single point. We evaluate ∂p

∂θ at 16 sample points
within a screen-space disk centered on the user’s mouse cursor and reduce them to
their average 3× n matrix.

We then filter this patch-wise Jacobian matrix, noted J(p, θ), by cancelling out
procedural parameters that do not influence enough the position of the patch. The
process of filtering the procedural parameters does not require any input from the
user, and is automatically performed by extracting information from the Jacobian
matrices themselves. We filter the i-th column of the Jacobian by estimating the
influence of the i-th procedural parameter on the geometry. To be preserved, each
Jacobian column ji has to respect at least two of the three following conditions.
(a) Its normalized magnitude ∥ji∥

mi
must be higher than an empirical threshold

λmag = 0.35, aiming to keep dimensions with large impact on the shape geometry.
(b) The standard deviation of ji across all selected points must be lower than an
empirical threshold λstd = 0.2, aiming to keep dimensions that behaves similarly
across the patch. (c) The angular distance dv · ji

∥ji∥
, where dv denotes the view

direction, must be lower than an empirical threshold λview = 0.4 to foster dimensions
whose impact is orthogonal to the view direction.

5.6 Solving

Thanks to the evaluation of the filtered and reduced Jacobian J(p, θ) of p
with respect to θ, we can integrate the manipulated shape in generic continuous
optimization frameworks. At each frame of the interaction, we use a few steps of
gradient descent to minimize the following multi-point manipulation loss:

L =
∑

i

Li + λLreg (5.4)

where Lreg = ∥∆θ∥2 is a regularization term that prevents sudden changes in
procedural parameters and λ = 0.2. The gradient of Li with respect to ∆θ is:

∇Li = JProj · J(pθ+∆θ
i , θ + ∆θ) (5.5)

When updating θ at each step of the gradient descent, we divide coefficient-wise
the gradient ∇L by the vector m of normalization factors (Section 5.5.2). Since the
surface is only implicit, the updated positions pθ+∆θ

i are estimated as part of the
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optimization (Equation 5.8), and the confidence of this estimation is measured by
the difference ∥∆c∥ = ∥∆a∥2 + δ∆pid,0 between the initial co-parameter of pθ

i and
the one evaluated at pθ+∆θ

i . When this error exceeds a threshold ec = 0.7, we divide
the gradient by ∥∆c∥ to slow down the drift. The scaled gradient is then multiplied
by the global learning rate η. We then update the estimate pi of the 3D position
pθ+∆θ

i of the dragged point:

∆θ := −η∇L/m (5.6)

θ ←− θ + ∆θ (5.7)

pi ←− pi + J(pi, θ) ·∆θ ∀i (5.8)

5.7 Results

We implemented our method as well as our implicit primitives and operators in
C++/GLSL. We use libfive trees [Kee19] as target to the compilation of our scene
graph representation (Algorithm 1), which provides us with symbolic expression
optimization and numeric automatic differentiation. All models shown throughout
this chapter (Figure 5.1, 5.6, 5.7, 5.10, 5.11) were rendered using sphere tracing
[Har96] in a standalone application. Experiments were performed on a desktop
computer equipped with AMD® Ryzen 5 clocked at 3.6 GHz with 32 GB of RAM, and
an NVIDIA GTX 1050 graphics card. Statistics for the models shown throughout
this chapter and performances for the different steps of the pipeline are reported in
Table 5.1.

Performance Our method runs at interactive framerates (including manipulation
and rendering), enabling direct manipulation by the user without the need to wait
for any sort of loading. The most computationally intensive part is the solving
(Table 5.1), where the maximum number of gradient descent iterations is set to 50,
which we found to be a good trade off between quality and performance To achieve
interactivity, we optimize the expression of f̄ using libfive expression optimization
feature at initialization. As a further improvement in speed, the Jacobians used
during solving are updated every 4 frames.

Control. We illustrate our direct manipulation tool on a set of 11 procedural
implicit surfaces with varying complexity and topology. Scene graph complexity
spans from a minimum of 19 nodes (Figure 5.6) to 265 nodes for the roller model in
Figure 5.1, with a number of procedural parameters ranging from 4 to 45. Figure 5.11
shows editing sessions with three successive edits to these models. A typical workflow
in our framework involves fixing some parts of the implicit surface while dragging
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Table 5.1. Performance for the different scenes, with the amount #nodes of nodes in
the scene graph and #θ of procedural parameters. We report the execution time for
the different steps of an edit, namely the co-parameter sampling time tc, the Jacobian
evaluation time tj and the average solving time ts for the 50 optimization iterations. All
timings are in ms.

Scene Fig. #θ #nodes tc tj ts

Roller 5.1 8 265 1.524 2.365 9.903
Cup 5.2 5 39 2.523 0.151 0.548
Fridge 5.6 3 19 2.325 0.214 0.381
Sofa 5.7 13 77 2.319 0.678 1.652
Webcam 5.10 5 206 1.628 0.935 3.503
Cheese 5.11a 27 158 1.897 1.932 3.145
Robot Arm 5.11b 6 243 2.061 0.732 2.831
Pipes 5.11c 6 249 1.559 1.510 4.152
Toaster 5.11d 4 256 1.904 1.126 4.811
House 5.11e 20 244 2.137 0.999 2.313
Rabbit 5.11f 45 188 1.484 3.980 5.928

some other parts, as highlighted in Figure 5.1, 5.6, and 5.11. On top of our
Jacobian filtering (Section 5.5.3), this helps the solver disambiguate the procedural
parameter update and allows for more intuitive edits, even when warping and affine
transformations are involved. For instance, the House model combines a bend and a
twist, that can both be manipulated separately when the right fixed constraints are
provided. Another example is the Robot arm, which involves chained rotations that
can be controlled independently by fixing points on the different joints.

Topology changes Our framework is also resilient to changes in topology in-
duced by CSG operators (union, intersection, and difference) when some procedural
parameters are altered. This is an important feature since the ease with which
one can create varying topology is one of the key strengths of implicit modeling,
and it emerges from the presence of a unique path index (pid) in the co-parameter
that identifies the dragged points. We highlight the resiliency to topology changes
in Figure 5.8 as well as in the edits performed on the pipe and cheese models
(Figure 5.11)

Comparison with other techniques Our method is focused on the direct manip-
ulation of analytic implicit surfaces defined as procedural scene graphs. We support
the classical operators of implicit modeling, such as CSG operators that changes
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Figure 5.8. Examples featuring changes of topology. Our method naturally inherits from
the ability of procedural implicit surfaces to represent objects of varying topology, be it
through additive of subtractive, smooth or hard boolean operations.

the topology of the model, morphological operators (e.g., dilatation) and smooth
Booleans (see Figure 5.9), bringing the power of direct manipulation techniques
performed on meshes [MB21; Gai+22; Cas+22] to procedural implicit surfaces.

Close to our method is the direct manipulation solution exposed in libfive [Kee19],
which allows manipulation of analytic implicit surfaces. Their solver tries to find
a procedural parameter update such that some part of the surface passes by the
new mouse position, back-projected into the 3D space along the normal of the base
position on the model. However, it has no way to identify which part of the shape
the user intends to modify. A failure case of their method is shown on Figure 5.10,
where the user tries to modify the lens position of the camera. Although libfive’s
heuristic behaves well for procedural parameters that move elements of surface along
their normal, it struggles with tangential movements, due to its lack of awareness
of a point’s identity. In contrast, our solution appropriately evaluates the local
influence of a procedural parameter in all directions equally.

User Study We evaluated the effectiveness of our method via a user study involving
20 subjects, whose backgrounds in 3D editing ranged from novice to proficiency.
After a hands-on session where the user could try both slider-based and direct
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Smooth radius

Figure 5.9. Smooth Booleans are key operators of implicit shape modeling, as they blend
shapes together in a more organic way than hard Booleans (left). Our framework
naturally supports updating the smoothness parameter, by dragging a point from the
smooth junction between the two shapes (right).

Depth
Lens Position

(c) Result (libfive)(b) Result (ours)(a) Input stroke

Figure 5.10. When the user intends to drag points in a direction significantly different
than the local surface normal (a), our direct manipulation approach keeps track of the
dragged point (b) while libfive’s solver only constrains that the overall surface passes by
the new mouse position (c). In this very example, libfive is never able to affect the lens
position parameter.

manipulation interactions, a more comprehensive editing session of five tasks is
performed. Each task requires the user to reach a target shape configuration shown
in a provided reference image, using slider-only interaction in the first task and
direct manipulation for the remaining ones. It emerged that 95% (all but 1 subject)
found the direct manipulation tool to be reactive to their inputs, and the 55%
assessed that they rarely or never find themselves preferring to use sliders over direct
manipulation. Some of them experienced a little frustration and provided feedback
like "It is sometimes difficult to isolate the exact parameter you want to tune". This
opens up possibilities for improvements, such as presenting hints on areas of the
model regarding the parameters that have the greatest impact on them. Overall,
almost the totality of users leaned towards the use of a direct manipulation tool if
provided by 3D editing software.
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Limitations and Future Work Our method allows the direct manipulation of
analytic implicit surfaces, but does not come without limitations. First, an explicit
co-parameter must be derived for primitives and operators that we aim at editing,
which may not be trivial. While our framework supports many different primitives
and operators, some remain to be integrated. For instance, we do not support
domain repetition operators, which requires to discriminate points belonging to
different instances by producing a different pid for each one. Our definition of
co-parameter does not ensure consistent interpolation, thus morphing operators can
lead to unintuitive manipulation. Another limitation of our co-parameterization is
that it must remain injective, which is not fulfilled in some edge cases, e.g., when the
size of a box becomes 0. In this case, multiple points end up at the same position.

We found that our Jacobian filtering (Section 5.5.3) does not perform as well
for models with too many procedural parameters influencing the same patch. This
is partially solved by using multiple fixed constraints for editing, but future work
may investigate more advanced filtering and reduction strategies. Finally, our
current gradient descent optimization (Section 5.6) could benefit from more advanced
techniques, such as ADAM optimization, or even Natural Gradient Descent as our
total number of parameters remains small.

5.8 Conclusion

In this work, we proposed a direct manipulation approach for procedural implicit
surfaces. We automatically augment the implicit function to output a co-parameter,
allowing to robustly track the same point location throughout an edit. We leverage
this to enable users to directly drag parts of the shape in the viewport, as opposed
to tediously edit sliders, and more generally open the opportunity to evaluate the
local influence of each procedural parameter on individual points of a shape. Our
framework supports the direct manipulation of implicits made of a large set of
primitives and complex operators, including warping and affine transformations.
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Figure 5.11. Editing sessions performed using our framework. The first image represents
the original procedural implicit shape with a simplified semantical representation of
its procedural parameters. The remaining images show three consecutive edits that
are performed on the implicit shape, including both constrained and unconstrained
manipulations. For each edit, we report the selected points and the mouse trajectory,
highlighting the procedural parameter update in the underlying sliders.



63

Part II

Controlling Non-Procedural
Assets
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Chapter 6

Structured Pattern Expansion
with Diffusion Models

Figure 6.1. We propose a diffusion-based model for structured pattern expansion. Our
approach enables the generation of large-scale, high-quality tileable patterns by extending
a user-drawn input, shown within the black boxes, to an arbitrarily-sized canvas. Our
method extends the input pattern while faithfully following the user input and producing
coherently-structured yet non-repetitive images.

After digging in detail regarding procedural asset editing, we now focus on
enhancing controllability in non-procedural asset ones. Leaving aside standard
texture synthesis techniques, we focus on recent diffusion model applications, which
facilitate the synthesis of materials, textures, and even 3D shapes. By providing
a conditioning, usually in the form of a text or an image, users can guide content
generation reducing the time needed for creating digital assets. In this chapter, we
focus on the synthesis of structured, stationary, patterns, where diffusion models are
less reliable and, more importantly, less controllable.

Our approach, namely pAff, leverages the generative capabilities of a stable
diffusion model and adapts it to the pattern domain. We give users direct control on
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the synthesis by expanding a partially hand-drawn pattern into a larger pattern while
preserving the structure and details present in the input. We improve the quality of
the synthesized pattern by incorporating a Low-Rank Adaptation (LoRA), to tune
the model on structured patterns, a noise-rolling technique, to ensure tileability, and
a patch-based approach, for the generation of large-scaled assets.

We demonstrate the effectiveness of our method through a comprehensive set
of experiments, outperforming existing models in generating diverse, consistent
patterns, that are directly controlled by user input.

6.1 Introduction

Hand-drawn structured patterns play a central role in computer graphics, finding
applications across a variety of fields in design and digital art. The creation of
these patterns remains a complex task, which requires both expertise and signifi-
cant time investment. AI-assisted content creation, as shown, promize to simplify
asset creation. For example, learning-based image-synthesis methods have shown
impressive generation capabilities for natural images [Rom+22; BDS18; Kar+17;
Kar+20; Pod+23]. The application of these methods to pattern-like synthesis focuses
on mostly unstructured realistic materials [He+23; Vec+24; Vec+23], leaving the
creation of structured patterns an under-explored task.

Given this scenario, we focus on structured patterns with a hand-drawn appear-
ance, formed by the repetitions of hand-drawn shapes painted with solid colors and
crisp edges. More formally, our structured patterns are stationary repetitions of
recognizable shapes, with per-shape variations, and drawn with piece-wise constant
colors. Examples of these patterns are visible throughout this chapter, with Fig. 6.2
also showing images of textures outside of our scope. We focus on these patterns for
their importance both in design applications and because no current learning-based
method addresses their synthesis directly.

In pAff, we focus on Latent Diffusion Models [Rom+22] as the base synthesis
method. While these methods have made significant strides in natural image
synthesis, they are not suited for generating structured patterns. Their first limitation
is that the quality of the synthesized patterns is poor. This is because these models
are trained to generate photo-realistic images characterized by unstructured, more
chaotic, textures with high-frequency, stochastic, color variations. When applied to
our domain, the output of these models does not maintain the patterns’ structure,
nor their sharpness, and coherent visual style.

Furthermore, in many design applications, users want to specify patterns precisely.
Most diffusion models focus on text-to-image synthesis that does not allow for a
precise specification of the desired pattern, since it is hard to describe in words the
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In-domain samples Out-of-domain samples

Figure 6.2. Pattern Category. We focus on structured, stationary, patterns in a hand-
drawn style, characterized by repeated recognizable shaped drawn in flat colors (left).
Unstructured or aperiodic patterns, as well as photorealistic textures, fall outside the
scope of out method (right).

structure and appearance of the pattern. Even when using images as guides, we
found current methods to perform unreliably in our domain.

To close this gap in literature and provide artists with simpler, but controllable,
means for content creation, we propose a diffusion-based model specifically designed
for the synthesis and expansion of structured, stationary patterns. In particular,
we leverage the extensive knowledge already available in large-scale models, such
as Stable Diffusion [Rom+22; Pod+23], and adapt it to the patterns domain by
training a “small” LoRA [Hu+21a]. This approach not only allows us to reduce the
computational and data requirements of training a diffusion model from scratch
but helps to retain the expressivity of models trained on large-scale datasets like
LAION [Sch+21], while adapting it to our specific domain. To that end, we collect
a dataset of procedurally designed patterns that we use to train our LoRA.

We base our architecture on an inpainting pipeline, which supports the expansion
of a partial, hand-drawn input sketch into a larger pattern while preserving its
structural integrity and details. During inference, we leverage noise rolling and
patch-based synthesis to produce large-scale, tileable patterns, at high quality in a
reliable way. These design choices allow us to generate large-scale, tileable patterns
that accurately follow the input sketch while adding a limited degree of variation
avoiding visible repetitions.

We evaluate our approach by demonstrating its effectiveness in expanding patterns
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from a large set of input sketches, and by qualitatively showing the improvement over
previous state-of-the-art approaches in texture synthesis. We analyze our architecture
to demonstrate the benefits of its design choices, by conducting a comprehensive set
of experiments and ablation studies. The results show that our approach generates
a wide range of structure patterns while maintaining a consistent structure and
appearance found in the input sketches. In summary, the contributions of our work
are as follows:

• we present a new diffusion-based approach for structured pattern synthesis
and expansion;

• we introduce a new medium-scale dataset for fine-tuning generative models on
the pattern domain;

• we demonstrate the generation capabilities of our model for different types
of structured patterns and show its ability to control the generation precisely
from input sketches;

• we validate the improvements over other generative methods, non-specifically
trained for patterns, underlying the need for a specifically trained model.

6.2 Method

The work proposed in this chapter is based on the Latent Diffusion (LDM) archi-
tecture [Rom+22] adapted to synthesize high-quality stationary, structured patterns
with a vector-like appearance. Given a hand-drawn sketch, which serves as the seed
for expansion, we extend it to an arbitrary-sized canvas, introducing variations while
keeping the overall structure and appearance unchanged. In particular, the initial
sketch is centrally placed within a larger canvas, and our model extends the design
outward in a process similar to "outpainting" effectively filling the entire frame.

Our approach finetunes an LDM model pre-trained for image generation by
training a Low-Rank Adaptation (LoRA) on a dataset of procedurally generated
patterns. To improve generation fidelity, we employ an IP-Adapter [Ye+23] for image
prompting, ensuring that the generated extension remains true to the original design.
To scale patterns to arbitrarily large sizes while maintaining coherence, we employ a
combination of noise rolling for tileable pattern generation and latent replication.
After a predefined number of diffusion steps, the latent space is manipulated to
introduce variations while maintaining structural integrity.

In the following part of this chapter, we first provide an overview of the latent
diffusion architecture for image generation and the approaches to combine text and
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Figure 6.3. Architecture. Given a hand-drawn input pattern, we extend it to an
arbitrary-sized canvas, introducing variations while keeping the overall structure and
appearance unchanged. Our approach combines text and image conditioning to guide a
finetuned Latent Diffusion Model [Rom+22] to generate high-quality consistent patterns.
At inference, the input pattern is centrally placed within a larger canvas, with our model
extending the design outward in a process similar to "outpainting" and effectively filling
the entire frame. To ensure tileability of the output we roll the input tensor at each
diffusion step and unroll afterward. To further extend the pattern beyond the initial
canvas scale, we replicate the latent after 60% diffusion steps.

image conditioning, to then detail our approach and architectural choices specific to
the structured pattern domain. The general architecture of our work is shown in
Fig. 6.3. We ablate our design choices and architectural component in Sec. 6.3.4,
demonstrating the benefits of our approach.

6.2.1 Guided Image Generation

Latent Diffusion Model. We leverage the Latent Diffusion architecture, consist-
ing of a Variational Autoencoder (VAE) [KW13] and a diffusion U-Net [Rom+22].
The encoder E , compresses an image x ∈ RH×W ×3 into a latent representation
z = E(x), where z ∈ Rh×w×c, and c is the dimensionality of the encoded image,
capturing the essential features in a lower-dimensional space. The decoder, D,
reconstructs the image from this latent space, effectively projecting it back to the
pixel space.

The diffusion process involves a series of transformations that gradually denoise
a latent vector, guided by a time-conditional U-Net. During training, noised la-
tent vectors are generated, following the strategy defined in [HJA20], through a
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deterministic forward diffusion process q (zt|zt−1), transforming the encoding of an
input image into an isotropic Gaussian distribution. The diffusion network ϵθ is then
trained to perform the backward diffusion process q (zt−1|zt), effectively learning to
“denoise” the latent vector and reconstruct its original content.

Text conditioning. Latent Diffusion models can typically be globally conditioned
with high-level text prompts via cross-attention [Vas+17] between each convolutional
block of the denoising U-Net and the embedding of the condition y, extracted by an
encoder τθ, with the attention defined as:

Attention(Q, K, V ) = softmax
(

QKT

√
d

)
V (6.1)

where Q = W i
Q · τθ(y), K = W i

K · φi(zt), V = W i
V φi(zt). Here, φi(zt) ∈ RN×di

ϵ

is the flattened output of the previous convolution block of ϵθ, and W i
Q ∈ Rd×di

τ ,
W i

K ∈ Rd×di
ϵ , W i

V ∈ Rd×di
ϵ , are learnable projection matrices.

The training objective in the conditional setting becomes

LLDM := EE(M),y,ϵN (0,1),t
[
∥ϵ− ϵθ(zt, t, τ(y))∥22

]
(6.2)

Openly available LDM implementations use a pre-trained CLIP [Rad+21] model
as feature extractor τ to encode the text condition. In particular, we use the same
CLIP encoder as Stable Diffusion v1.5, relying on a ViT model with a patch size of
14× 14.

Image conditioning. Despite the expressive capabilities of text, which has shown
remarkable results in the context of natural image synthesis, accurately describing a
pattern structure with text is challenging since it would require precise definitions
of the pattern shapes, their positions and symmetries in relation to the other, and
their appearance features.

To provide better control of the synthesized pattern, we propose to combine a
high-level text prompt, generally valid for all our patterns, with image conditioning
via an IP-Adapter [Ye+23] model. This lightweight adapter achieves image prompting
capability, for pretrained text-to-image diffusion models, through a decoupled cross-
attention mechanism that separates cross-attention layers for text features and image
features. In particular, the adapter computes separate attention for the text and
image embeddings, which are then summed before being fed to the next U-Net layer.
The output of the new cross-attention is computed as:

Atten.(Q, Kt, Vt, Ki, Vi) = softmax
(

QKT
t√

d

)
Vt + softmax

(
QKT

i√
d

)
Vi (6.3)
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Figure 6.4. Comparison of the generation modalities. We show the different
generation modalities that our base architecture support. While global conditioning via
text or image only (first two rows) is an option, it struggles in generating a consistent
pattern and lack fine-grained user control. In contrast, our expansion approach (last row)
enables generation of arbitrarly large patterns ensuring consistency with the provided
input.

with Kt, Vt, Ki, Vi being respectively the keys and values for the text and image
embeddings. During the training of the IP-Adapter, only the image cross-attention
layers are trained, while the rest of the diffusion model is kept frozen.

This approach has shown remarkable performances in controlling the generation
process with image prompts, allowing it to closely follow the reference image.

6.2.2 Stable Diffusion Finetuning

To achieve visually coherent pattern synthesis and expansion, we fine-tune the
Stable Diffusion 1.5 model [Rom+22] to our specific pattern domain. In particular,
we leverage a Low-Rank Adaptation (LoRA) technique [Hu+21a] for efficient fine-
tuning of a large, pre-trained model, limiting the number of training parameters,
while avoiding catastrophic forgetting.

In particular, we train low-rank matrices into the transformer layers of the base
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Latent Diffusion Model (LDM):

θ′ = θ + ∆θ, (6.4)

where θ represents the original weights of the transformer in the LDM, and ∆θ is
the low-rank update, computed as:

∆θ = U · V T , (6.5)

with U ∈ Rr×d being the trainable matrices, and r much smaller than d, the
dimensionality of the layer’s parameters.

This fine-tuning step focuses the generation on the pattern domain and is mostly
responsible for the model’s ability to maintain stylistic consistency and detailed
coherence specific to the target patterns. By introducing these low-rank updates, we
ensure that the model adapts efficiently to the specific feature of the pattern domain,
without losing its expressive capabilities from the training on the image domain.

6.2.3 Patterns expansion

To expand patterns to an arbitrary size, while ensuring their aesthetic coherence
and tileability, we base our architecture on the Stable Diffusion 1.5 model specifically
trained for image inpainting [Rom+22]. We leverage its ability to understand
the context of partial images and generate coherent completions and combine it
with latent replication and noise rolling [Vec+23], to produce high-quality, tileable
expansions. This ensures that the expanded patterns remain consistent with the
original input, preserving the overall visual appearance as shown in Fig. 6.4 and
Fig. 6.5. In particular, we place our input pattern at the center of the canvas
and use the inpainting capabilities of SD to fill the missing area in an outpainting
fashion. However, while inpainting alone can reconstruct the missing part, it tends
to lose long-term dependencies inside the image, leading to inconsistencies in the
global structure. This limitation arises because inpainting primarily focuses on
local continuity without adequately preserving the broader context and relationships
within the image. To mitigate this issue, while also enabling tileable generation, we
employ noise rolling. At inference time, the latent representation zt of the pattern at
a particular timestep t is cyclically shifted spatially. In particular, for each diffusion
step, we compute:

z′
t = roll(zt, ∆x, ∆y), (6.6)

where roll(·, ∆x, ∆y) denotes the cyclic shift operation along the image’s width
(∆x) and height (∆y). After rolling, the model estimates the noise component and
performs a denoising step, computing z′

t−1. Subsequently, the latent space is unrolled
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Figure 6.5. Pattern expansion. The figure illustrates the pattern expansion capabilities
of our model, where the input patterns are contained within the black boxes. The left and
right sample showcase organic patterns, demonstrating the model’s ability to extrapolate
intricate designs while maintaining a natural flow. The central panel presents a more
structured geometric pattern which is also successfully expanded to cover a larger area.
This example highlights the model’s versatility in handling both organic and geometric
patterns.

back to its original configuration to maintain the integrity of the global pattern
structure:

zt−1 = roll(z′
t−1,−∆x,−∆y). (6.7)

By manipulating the latent space in this manner, the model effectively treats the
pattern’s edges as interconnected, removing any visible border.

Finally, to be able to cover an arbitrarily large canvas, we start the denoising
process at the model’s native resolution of 512× 512, placing the input at the center
of the canvas, and filling the remaining area. Then, after N denoising steps, we
replicate the latent with the minimum factor to cover the target size and denoise
using patched diffusion for the remaining steps. In our experiments, we set N to
the 60% of the inference steps, resulting in the best compromise between pattern
consistency and variation. By combining latent replication and noise rolling, we
support a larger expansion while guaranteeing the quality of the generated patterns,
as demonstrated in Sec. 6.3 and in the ablation study in Sec. 6.3.4.

6.3 Experimental results

6.3.1 Datasets

Due to the lack of publicly available pattern datasets, we created a custom dataset
consisting of 4000 patterns of 8 classes, with some of them showcased in Fig. 6.6.
Such classes were specifically designed to expose strong geometrical structures, like
checkered patterns, stripes, grids, and polka dot arrangements, to help the LoRA to
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Figure 6.6. Pattern samples from the dataset. Samples extracted from four pattern
classes, namely grid, checker, stripes and zigzag. For each pattern, we use the generating
procedural parameters to define a caption matching its design details, thus creating a
pattern-text pair used while training the LoRA.

learn the features that characterize the structured pattern domain the most. For
each class, we defined an ad-hoc procedural program capable of creating a set of
samples with a great variety in both design and colors. To enhance the sketched
style, we also combined our patterns with different scales of Perlin noise [Per85],
thus introducing the irregularities that are commonly found in hand-drawn designs.

Our dataset consists of procedurally generated pattern-text captions pairs. We
generated each pattern by randomly sampling a value in the proper range for each
exposed procedural parameter, including exposed colors. For each pattern, the values
used in the procedural program are also employed to produce a caption highlighting
some of its details. For each class, we designed a base caption structure that is
filled with details drawn from the procedural parameter values. As an example, the
caption matching the checkered pattern in Fig. 6.6 (left) is generated from the base
caption of "A hand-drawn checkered pattern. Checkers are colored in <even_color>
and <odd_color>, and their size is <checker_size>. Checkers are surrounded on
all four sides by a checker of a different color. Colors are flat and without shading.",
where the free variables are completed by "light green", "wheat" and "big" respectively.

For each class, we sample 500 different parameter sets and generated the corre-
sponding pattern-text pair for training.

6.3.2 Technical details

Training. We train our LoRA with a mini-batch gradient descent, using the
Adam [KB14] optimizer with a learning rate set to 10−4 and a batch size of 8. The
training is carried out for 5000 iterations on a single NVIDIA RTX3090 GPU with
24GB of VRAM, using the pre-trained inpainting Stable Diffusion 1.5 checkpoint
from [Rom+22].
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Inference. Generation is performed by denoising a latent random noise for 50
steps, using the DDIM sampler [SME20] with a fixed seed. Pattern expansion takes
about 2 seconds at 512 × 512 and 4 seconds at 1024 × 1024 and 6GB of VRAM,
about 12 seconds at 2048× 2048 and 8GB VRAM. Memory and requirements can be
further reduced by processing fewer patches in parallel, albeit at the cost of increased
computation time.

6.3.3 Results and comparisons

We evaluate pAff generation capabilities when conditioning using either text or
image. Despite not being the main focus of this work, we show that our architecture
is able to generate pattern-like images when being globally conditioned. However, as
shown in Fig. 6.4, generation style tends to significantly diverge from the guidance
image, highlighting the need for stronger constraining for a specific pattern expansion
that closely follows the input sample.

Expansion results. We evaluate our model generation capabilities for pattern
expansion (Fig. 6.5 and Fig. 6.10). The results demonstrate our method to closely
follow the input prompt, producing high-quality, coherent pattern expansion.

Fig. 6.5 highlights the pattern expansion capabilities of our model. The input
patterns are contained within the black boxes, while the surrounding patterns
are generated by the model. The model successfully extends the input pattern,
maintaining coherence and preserving the structural integrity of the original designs.
Each generated pattern flows naturally from the input, ensuring that there are no
abrupt transitions or noticeable repetitions. The model keeps color consistent in
the generated area, matching the original input. Due to the adoption of the noise
rolling technique, all results are tileable, thus allowing seamless repetition of each
generation. We show more large-scale expansions in Fig. 6.10. All examples use an
expansion factor of 2 in both width and height dimensions.

Comparison. We compare our method, against a series of established techniques
including [Hei+21], GCD [Zho+23], MatFuse [Vec+24], and [Zho+24] as depicted
in Fig. 6.7. For each method, we use the official code and weights released by the
authors. As MatFuse [Vec+24] is trained to generate PBR materials, we provide the
pattern as the diffuse component of the material, initializing the other properties at
a default value.

pAff notably improves with respect to previous approaches in preserving the
structural integrity and visual fidelity of patterns. Both [Hei+21] and GCD, while
capturing the visual features of the patterns, tend to break the overall structure,
introducing unnatural distortions that result in a loss of pattern detail and clarity.
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Init (a) [Hei+21] (b) GCD (c) MatFuse (d) [Zho+24] Our method

Figure 6.7. We compared our method with established exture and material synthesis
techniques. As previous work tends to break the overall structure (a, b, d) or fails at
reconstructing the pattern appearance (c), our method consistently expands the input
by preserving structural integrity and input coherency.

MatFuse fails to capture the appearance of the pattern, mostly due to the training
on natural textures, being only able to reproduce the colors and general shape of
the pattern but lacking any sharpness or detail. [Zho+24], in contrast, is generally
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able to reproduce the sharp visual appearance of the pattern, and capture the main
features; however, due to its main focus on non-stationary textures, it tends to break
the overall structure, resulting in sharp discontinuity edges inside the image and
transitioning between different parts of the pattern. Additionally, it struggles with
very sparse patterns (e.g., third row in Fig. 6.7), and introduces a color shift on
the original input. None of the other methods produces tileable results. Compared
to the other approaches, our work can capture the visual features of the pattern
and extend it seamlessly, introducing slight variations without altering the overall
structure. All results are tileable, thanks to the use of noise rolling at inference time.

6.3.4 Ablation Study

We evaluate our design choices starting from the baseline solution and gradually
introducing the different proposed architectural components and diffusion elements
–IP-Adapter, LoRA finetuning, noise-rolling–. To systematically assess the impact of
each component, we test the different configurations on a series of example patterns.
We provide qualitative results of the ablation study in Fig. 6.8.

We firstly evaluate the Stable Diffusion base model performing a text-guided
inpainting task. This sets a performance baseline without being influenced by any
of the design choices that characterize our method. Although the model is able
to fill in the missing areas, it tends to diverge from the input condition and break
the overall structure. Even for simple examples, the text-guided approach is not a
natural mean to express pattern structures such as shapes and arrangements, and
moreover, it is not versatile enough to perfectly describe the design of the partial
input pattern.

To provide control in a more natural way, we include an IP-Adapter [Ye+23]
that introduces an image prompt as further guidance for the inpainting process. The
guidance image is constructed by simply repeating the image prompt multiple times
to fill a 512× 512 canvas. As described in Sec. 6.3.2 this helps the CLIP encoder
better capture the visual features and sharpness of the guidance, due to the high
sensitivity of CLIP to image resolution [WCL23]. As shown in our results, visual
guidance allows the model to better follow the input, while still presenting some
visual inconsistencies and limitations, mostly due to the training on natural images.
In fact, the model is capable of better catching the style and colors provided by the
guidance image, but it still fails at reconstructing its geometrical details in both
shape features or pattern scale and often provides natural-looking results.

Since the model is more exposed to photorealistic, natural, and unstructured
data during training, we perform a fine-tuning on the structured patterns to better
adapt it to this new domain and task. To do so, we trained a LoRA module on our
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Figure 6.8. Ablation study. We show the performance improvements with the intro-
duction of each design choice. The base inpainting model is unable to expand the
pattern while keeping visual coherence. The introduction of image conditioning via the
IP-Adapter improves the generation consistency with the prompt. The LoRA finetuning,
on a small dataset, greately enhances generation quality, ensuring visual consistency
over the entire generation. Finally, the introduction of noise rolling enables tileable
generation and removes repetition seams and visual artifacts.
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Figure 6.9. Limitations. Our model presents some limitations, which can be categorized
into domain-specific and architectural limitations. First, it is by design unable to expand
non-repeating patterns, either non-stationary or aperiodic [Smi+23] (left and center).
Additionally, it can fail to generate very structured patterns at a consistent scale while
ensuring tilebility, thus squeezing or distorting the pattern to make it fit the canvas
(right).

crafted pattern dataset. By combining the LoRA domain knowledge with the Stable
Diffusion Model backbone, we noticed that the overall result quality and consistency
are significantly improved, thanks to the new adaptation to the pattern domain. In
particular, results preserve the same style as the provided input and reconstruct
geometrical details and arrangements in a more resilient way.

Despite good results that could be achieved on small expansions, we notice a
deterioration of the output for higher expansion factors. As reported in the right-
most images of Fig.6.8, the expansion tends to produce a degraded output that
influences the style and the structure, in terms of color artifacts and discontinuities
in the pattern respectively. The introduction of the noise rolling technique enables
us to produce results that correctly integrate the provided image by maintaining
both the visual and geometrical aspects. In particular, this addition has a twofold
effect: it makes the generated pattern tileable, removing edge discontinuities, and it
helps in better capturing long-range dependencies inside the image, thus allowing us
to increase the expansion factor without losing quality.

6.4 Limitations and Future Work

Our method comes with some limitations that we can divide between architectural
limitations and domain limitations. Examples of failure cases or unexpected behavior
are presented in Fig. 6.9. As discussed in previous sections, our method cannot
faithfully expand non-repeating patterns, either non-stationary (Fig. 6.9 left), or
aperiodic [Smi+23] (Fig. 6.9 center). This limitation comes from the design choices
of our approach, which focus on repeating patterns. While both expansions present
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plausible patterns, they don’t necessarily follow the expected behavior, where the
lines in the first figure should keep growing, while the tiles should not present a
predictable pattern. Future work could focus on tackling non-repeating patterns by
injecting, into the generation, additional information, in the form of conditioning
about the pattern’ repetitiveness. The last failure case (Fig. 6.9 right), on the
other hand, shows the design limitations of our approach, which can fail to generate
very structured patterns at a consistent scale in the presence of tilebility. This is
related to the noise rolling which enforces tileability on the border of the image, thus
squeezing the border shingles to make them fit the canvas. Possible improvements
could involve an automated solution to find the optimal crop of the pattern [Rod+24]
before beginning the expansion.

6.5 Conclusion

We presented pAff, a diffusion-based architecture for structured pattern expan-
sion, with a focus on controllability of the generated pattern. We demonstrated
the expansion of several patterns in the class with distinctly different structures,
symmetries, and appearance. Our results show the robustness of the proposed
architecture and its controllability, while the comparison with prior work shows that
our method is significant over the state of the art.
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Figure 6.10. Our diffusion-based pattern expansion method enables the generation of
large-scale, high-quality and tileable patterns from a small user-drawn input, reported
in the black boxes. By being fine-tuned on domain-specific data, it adapts to different
structured arrangements of solid-colored shapes, consistently extending the input design
features to a larger-scale result.
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Chapter 7

Conclusion

In this thesis, we explored procedural and non-procedural asset editing, with the
aim of enhancing its controllability to ease the design process for both novice and
experienced users.

Procedural assets are used in computer graphics applications since variations can
be obtained by changing the parameters of the procedural programs, thus increasing
variability without having to model each asset from scratch separately. However,
as the number of parameters increases, editing becomes a cumbersome operation
as users have to manually navigate a large space of choices. Many methods in
the literature have been proposed to estimate parameters from example images,
which works well for initial starting points. For precise edits, direct manipulation
approaches let users manipulate the output asset interactively, while the system
determines the procedural parameters that match the performed modification. In
this thesis, we mainly focused on 2D structured textures, namely procedural vector
patterns, and on 3D models expressed as procedural implicit surfaces.

Concerning the former, we propose pOp and pEt, two complementary approaches
whose union uplifts the process of editing procedural vector patterns under the
assumption of differentiability with reference to the exposed procedural parameters.
In particular, pOp is an example-based editing tool that estimates procedural
parameter values that better match the target appearance provided by users in
terms of images like renders or even sketches. Instead of solving an inverse rendering
problem, pOp relies on an inverse signed distance field approach, thus optimizing for
the procedural parameters by minimizing a function computing a per-color pattern
signed distance field loss. On the other hand, pEt proposes a direct manipulation
tool for differentiable vector patterns, enabling users to interact with them using a
click-and-drag interaction schema. By defining an identifier for each selected point,
pEt solves for the procedural parameters in a gradient descent-based optimization
loop, thus computing an update in the procedural parameter values that is coherent
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with the edit expressed by the user directly in the viewport. Using these approaches
in a hybrid mode, artists can firstly identify a good initial assignment for each
parameter value by providing a sketch target, and refine their values by directly
manipulating the procedural vector pattern to get a more precise result. Focusing
on a different procedural asset for 3D modeling, we propose a direct manipulation
tool specifically designed for implicit surfaces. By defining a way of uniquely
identifying points on an implicit surface via a co-parameterization function, our
system enabled the selection of patches of the surface that can be arbitrarily moved
around in the viewport. The underlying gradient descent-based optimization loop
estimates a parameter update that coherently expresses the change suggested by the
user at interactive time rates, enabling users to visualize the outcome of their edit
as the dragging movement is performed. Our framework correctly handles regular
primitives and modeling operations, such as affine transformations. It also supports
operations that are widely adopted in implicit surface modeling like CSG Booleans
and Smooth Booleans, being resilient to changes in topology, as well as warping
operations.

Lastly, concerning non-procedural asset editing, this thesis proposes pAff, a
model that leverages novel generative applications and extends them to the domain
of structured patterns, oppositely to widespread natural and non-stochastic content
creation. This model takes as input a hand-drawn user sketch depicting a desired
pattern and extends it to produce a larger-scale, high-quality, and tileable result,
without having the user design the entire canvas and still keeping a high fidelity
with the provided input.

7.1 Future Directions

In this work of thesis, we explored how to enhance user control in common
design workflows for both inverse procedural asset modeling and non-procedural
asset synthesis. As regards the former task, this thesis mainly focuses on parameter
estimation, but it does not explore procedural program estimation, which is still
a challenging and yet complex task in the wider inverse procedural modeling field.
So, future work may explore this direction, providing tools that are capable of
estimating the structure of a procedural generator in terms of programs or graphs,
in an example-based scenario as well as through direct manipulation occurring on
target assets.

Similarly, we can also assess the limitations of the methods proposed in this
thesis as possible directions for future explorations. As an example, new formulations
can be investigated to handle properties, such as opacity, in pOp framework as well
as domain repetition nodes in the procedural implicit surface direct modeling tool.
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Optimization can also be strengthened, providing a suitable definition of the co-
parameterization function, assessing injectivity in corner cases, and a more consistent
interpolation. The gradient descent optimization algorithm may be improved using
other optimization techniques like ADAM or momentum and more emphasis could
be given to extracting information from the points or patches selected by users, as
they could hypothetically suggest a possible update in certain parameters without
having to update all of them simultaneously.

As regards generative-based pattern expansion, further training and fine-tuning
can be performed to handle unexpected or unfaithful behaviour in generation,
increasing the families of structured data correctly supported by our expansion
method. Improving guidance by identifying a good repeatable tile in the input
proposed by the user may help in generating patterns in a more reliable way, possibly
supporting spatially varying features, a more refined tileability constraint may be
adopted to reduce scale artifacts and additional information may be injected into
the generation, thus improving conditioning mechanisms to support non-repeating
patterns as well.

In conclusion, this thesis firstly assesses challenges in procedural and non-
procedural asset editing, proposing novel methods for simplifying 2D texture mod-
eling as well as 3D implicit surface design and representing a step forward in the
simplification of such time-consuming workflows. The methods proposed in this
thesis could be extended to other assets and integrated into common 2D or 3D
editing software, easing the design process.
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