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Summary

The sensitivity of eigenvalues of structured matrices under general or structured
perturbations of the matrix entries has been thoroughly studied in the liter-
ature. Error bounds are available, and the pseudospectrum can be computed
to gain insight. Few investigations have focused on analyzing the sensitivity of
eigenvectors under general or structured perturbations. This paper discusses this
sensitivity for tridiagonal Toeplitz and Toeplitz-type matrices.

KEYWORDS

eigenvector sensitivity, structured perturbation, Toeplitz matrix, tridiagonal Toeplitz-type matrix

1 INTRODUCTION

The sensitivity of the eigenvalues of a structured matrix to general or structured perturbations of the matrix entries has
received considerable attention in the literature. Both bounds and graphical tools such as the pseudospectrum or struc-
tured pseudospectrum have been developed; see, for example, other works.1–6 While the pseudospectrum measures the
sensitivity of the eigenvalues, it depends on the sensitivity of the eigenvectors of the matrix to perturbations of the matrix
entries. However, we are not aware of investigations that focus on the sensitivity of the eigenvectors to general or struc-
tured perturbations of a structured matrix. It is the purpose of this paper to carry out such an investigation for tridiagonal
Toeplitz matrices and tridiagonal Toeplitz-type matrices that are obtained by modifying the first and last diagonal entries
of a tridiagonal Toeplitz matrix. These kinds of matrices arise in numerous applications, including the solution of ordinary
and partial differential equations,7–10 time series analysis,11 and as regularization matrices in Tikhonov regularization for
the solution of discrete ill-posed problems.12,13 It is therefore important to understand properties of these matrices relevant
for computation. Our analysis is facilitated by the fact that the eigenvalues and eigenvectors of the matrices considered
are known in closed form.

Introduce the tridiagonal Toeplitz matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛿 𝜏 O
𝜎 𝛿 𝜏

𝜎 · ·
· · ·

· · ·
· · 𝜏

O 𝜎 𝛿

⎤⎥⎥⎥⎥⎥⎥⎦
∈ C

n×n. (1)
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We will denote this matrix by T = (n; 𝜎, 𝛿, 𝜏). It is well known that its eigenvalues are given by

𝜆h = 𝛿 + 2
√
𝜎𝜏 cos h𝜋

n + 1
, h = 1 ∶ n; (2)

see, for example, the work of Smith.9 Assume that 𝜎𝜏 ≠ 0. Then, the matrix (1) has n simple eigenvalues, which lie on a
line segment that is symmetric with respect to 𝛿. The components of the right eigenvector xh = [xh,1, xh,2, … , xh,n ]T ∈ Cn,
for h = 1 ∶ n, associated with the eigenvalue 𝜆h are given by

xh,k =
(√

𝜎

𝜏

)k

sin hk𝜋
n + 1

, k = 1 ∶ n, (3)

and the corresponding left eigenvector 𝑦h = [𝑦h,1, 𝑦h,2, … , 𝑦h,n ]T ∈ Cn has the components

𝑦h,k =

(√
𝜏

𝜎̄

)k

sin hk𝜋
n + 1

, k = 1 ∶ n, (4)

where the bar denotes complex conjugation. Throughout this paper the superscript (·)T stands for transposition and the
superscript (·)H stands for transposition and complex conjugation.

If 𝜎 = 0 and 𝜏 ≠ 0 (or 𝜎 ≠ 0 and 𝜏 = 0), then the matrix (1) has the unique eigenvalue 𝛿 of geometric multiplicity
one. The right and left eigenvectors are the first and last columns (or the last and first columns) of the identity matrix,
respectively.

We also will consider tridiagonal Toeplitz-type matrices of the form

T𝛼,𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛿 − 𝛼 𝜏 O
𝜎 𝛿 𝜏

𝜎 · ·
· · ·

· · ·
· · 𝜏

O 𝜎 𝛿 − 𝛽

⎤⎥⎥⎥⎥⎥⎥⎦
∈ C

n×n (5)

for certain parameters 𝛼, 𝛽 ∈ C. These matrices arise in the solution of ordinary or partial differential equations on an
interval. Thus, T𝛼,𝛽 is a tridiagonal Toeplitz matrix when 𝛼 = 𝛽 = 0.

Formulas for eigenvalues and eigenvectors of the matrices (5) are explicitly known for several choices of the parameters
𝛼 and 𝛽; they are derived in the work of Yueh.14 Table 1 reports expressions for the eigenvalues for several choices of

TABLE 1 Formulas for the eigenvalues 𝜆h of the
matrix (5) for h = 1 ∶ n and several choices of 𝛼 and 𝛽

𝜶 𝜷 𝝀h

0
√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos 2h𝜋

2n+1√
𝜎𝜏 0 𝛿 + 2

√
𝜎𝜏 cos 2h𝜋

2n+1

0 −
√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos (2h−1)𝜋

2n+1

−
√
𝜎𝜏 0 𝛿 + 2

√
𝜎𝜏 cos (2h−1)𝜋

2n+1√
𝜎𝜏 −

√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos (2h−1)𝜋

2n

−
√
𝜎𝜏

√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos (2h−1)𝜋

2n√
𝜎𝜏

√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos h𝜋

n

−
√
𝜎𝜏 −

√
𝜎𝜏 𝛿 + 2

√
𝜎𝜏 cos (h−1)𝜋

n
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𝛼 and 𝛽. When 𝜎𝜏 ≠ 0, the components of the right eigenvector xh = [xh,1, xh,2, … , xh,n ]T ∈ Cn associated with the
eigenvalue 𝜆h are given by

xh,k =
(√

𝜎

𝜏

)k
sin 2hk𝜋

2n+1
, 𝛼 = 0, 𝛽 =

√
𝜎𝜏;

xh,k =
(√

𝜎

𝜏

)k
sin h(2k−1)𝜋

2n+1
, 𝛼 =

√
𝜎𝜏, 𝛽 = 0;

xh,k =
(√

𝜎

𝜏

)k
sin (2h−1)k𝜋

2n+1
, 𝛼 = 0, 𝛽 = −

√
𝜎𝜏;

xh,k =
(√

𝜎

𝜏

)k
cos (2h−1)(2k−1)𝜋

2(2n+1)
, 𝛼 = −

√
𝜎𝜏, 𝛽 = 0;

xh,k =
(√

𝜎

𝜏

)k
sin (2h−1)(2k−1)𝜋

4n
, 𝛼 =

√
𝜎𝜏, 𝛽 = −

√
𝜎𝜏;

xh,k =
(√

𝜎

𝜏

)k
cos (2h−1)(2k−1)𝜋

4n
, 𝛼 = −

√
𝜎𝜏, 𝛽 =

√
𝜎𝜏;

xh,k =
(√

𝜎

𝜏

)k
sin h(2k−1)𝜋

2n
, 𝛼 =

√
𝜎𝜏, 𝛽 =

√
𝜎𝜏;

xh,k =
(√

𝜎

𝜏

)k
cos (h−1)(2k−1)𝜋

2n
, 𝛼 = −

√
𝜎𝜏, 𝛽 = −

√
𝜎𝜏,

for k = 1 ∶ n.
It is straightforward to show that the component yh,k of the left eigenvector 𝑦h = [𝑦h,1, … , 𝑦h,n ]T ∈ Cn of (5) is obtained

from the component xh,k of the corresponding right eigenvector by replacing the factor (𝜎∕𝜏)k/2 by (𝜏∕𝜎̄)k∕2.
This paper is organized as follows. Section 2 discusses the sensitivity of the eigenvalues of the matrices (1) and (5)

to general (unstructured) perturbations. Eigenvalue condition numbers for the matrices (1) and (5) are given. Section 3
is concerned with the sensitivity of the eigenvectors of the matrices (1) and (5) to general perturbations. Eigenvector
condition numbers are presented. Section 4 discusses eigenvalue and eigenvector sensitivity to structured perturbations.
Condition numbers are defined. Section 5 describes two novel applications of tridiagonal Toeplitz matrices. The first part
of the section shows how eigenvalues of a Hermitian tridiagonal matrix can be estimated by using the explicitly known
eigenvalues of the closest symmetric tridiagonal Toeplitz matrix. In the latter part of the section, we discuss how the
eigenvectors of a severely non-Hermitian nearly tridiagonal Toeplitz matrix can be computed accurately by using the
explicitly known spectral factorization of the closest tridiagonal Toeplitz matrix. Concluding remarks can be found in
Section 6.

2 SENSITIVITY OF THE SPECTRUM

This section discusses the sensitivity of the eigenvalues of the matrices (1) and (5) to general (unstructured) perturbations
of the matrix entries.

2.1 Eigenvalue distances
Proposition 1. The eigenvalues (2) of the matrix T defined by (1) satisfy

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

2(n+1)
sin (2h−1)𝜋

2(n+1)
, for 1 < h ≤

n
2

or h = n,

4
√|𝜎𝜏| sin 𝜋

2(n+1)
sin (2h+1)𝜋

2(n+1)
, for h = 1 or n

2
< h < n.

(6)

In particular, the distance of the eigenvalue 𝜆h to the other eigenvalues of T only depends on h, n, and the product |𝜎𝜏|.
Moreover, the minimal distance between any two eigenvalues of T is

4
√|𝜎𝜏| sin 𝜋

2(n + 1)
sin 3𝜋

2(n + 1)
.

This distance is achieved by |𝜆1 − 𝜆2| and |𝜆n− 1 − 𝜆n|.
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Proof. Let 1 ≤ j, h ≤ n. The trigonometric identity

cos a − cos b = −2 sin a + b
2

sin a − b
2

yields

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = min {|𝜆h − 𝜆h+1|, |𝜆h − 𝜆h−1|}
= 2
√|𝜎𝜏|min

{||||cos h𝜋
n + 1

− cos (h + 1)𝜋
n + 1

|||| , ||||cos h𝜋
n + 1

− cos (h − 1)𝜋
n + 1

||||
}

= 4
√|𝜎𝜏| sin 𝜋

2(n + 1)
min

{||||sin (2h + 1)𝜋
2(n + 1)

|||| , ||||sin (2h − 1)𝜋
2(n + 1)

||||
}

.

This shows (6). The remaining statements follow from this formula.

Remark 1. Results on the spacing of the eigenvalues of Hermitian Toeplitz matrices with simple-loop symbols
(e.g., of the eigenvalues of Hermitian tridiagonal Toeplitz matrices) are reported in the works of Bogoya et al.15

and Böttcher et al.16 Such results can be extended to non-Hermitian tridiagonal Toeplitz matrices by diagonal
similarity transformation. To this end, we note that the matrix T = (n; 𝜎, 𝛿, 𝜏) is, via the diagonal matrix D =
diag [1, v, … , v n− 1], similar to T′ = (n; v𝜎, 𝛿, v−1𝜏). One can choose v so that |v𝜎| = |v−1𝜏|. The matrix T′ then is
normal; see theorem 3.1 of the work of Noschese et al.3 In particular, real tridiagonal Toeplitz matrices T can be
transformed to symmetric matrices T′ by letting v be such that v𝜎 = v−1𝜏.

An analogue of Proposition 1 can be shown for the eigenvalues of the matrix (5) for the choices of 𝛼 and 𝛽 considered
in Table 1. The results follow from the expressions for the eigenvalues in this table and are formulated in the following
proposition.

Proposition 2. The eigenvalues 𝜆h of the matrix T𝛼,𝛽 satisfy

(i) for 𝛼 = 0 and 𝛽 =
√
𝜎𝜏 or vice versa

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

2n+1
sin (2h−1)𝜋

2n+1
, for 1 < h ≤

n
2

or h = n,

4
√|𝜎𝜏| sin 𝜋

2n+1
sin (2h+1)𝜋

2n+1
, for h = 1 or n

2
< h < n;

(ii) for 𝛼 = 0 and 𝛽 = −
√
𝜎𝜏 or vice versa

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

2n+1
sin 2(h−1)𝜋

2n+1
, for 1 < h ≤

⌈
n
2

⌉
or h = n,

4
√|𝜎𝜏| sin 𝜋

2n+1
sin 2h𝜋

2n+1
, for h = 1 or

⌈
n
2

⌉
< h < n;

(iii) for 𝛼 =
√
𝜎𝜏 and 𝛽 = −

√
𝜎𝜏 or vice versa

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

n
sin (h−1)𝜋

n
, for 1 < h ≤

n
2

or h = n,

4
√|𝜎𝜏| sin 𝜋

n
sin h𝜋

n
, for h = 1 or n

2
< h < n;

(iv) for 𝛼 =
√
𝜎𝜏 and 𝛽 =

√
𝜎𝜏

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−1)𝜋

2n
, for 1 < h ≤

n
2

or h = n,

4
√|𝜎𝜏| sin 𝜋

2n
sin (2h+1)𝜋

2n
, for h = 1 or n

2
< h < n;

(v) for 𝛼 = −
√
𝜎𝜏 and 𝛽 = −

√
𝜎𝜏

min
𝜆𝑗≠𝜆h

|𝜆h − 𝜆𝑗| = ⎧⎪⎨⎪⎩
4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−3)𝜋

2n
, for 1 < h ≤

⌈
n
2

⌉
or h = n,

4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−1)𝜋

2n
, for h = 1 or

⌈
n
2

⌉
< h < n.
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TABLE 2 Minimal distance between eigenvalues of the
matrix (5) for several choices of 𝛼 and 𝛽

𝜶 𝜷 Minimal distance

0
√
𝜎𝜏 4

√|𝜎𝜏| sin 𝜋

2n+1
sin 2𝜋

2n+1√
𝜎𝜏 0 4

√|𝜎𝜏| sin 𝜋

2n+1
sin 2𝜋

2n+1

0 −
√
𝜎𝜏 4

√|𝜎𝜏| sin 𝜋

2n+1
sin 2𝜋

2n+1

−
√
𝜎𝜏 0 4

√|𝜎𝜏| sin 𝜋

2n+1
sin 2𝜋

2n+1√
𝜎𝜏 −

√
𝜎𝜏 4

√|𝜎𝜏|sin2 𝜋

n

−
√
𝜎𝜏

√
𝜎𝜏 4

√|𝜎𝜏|sin2 𝜋

n√
𝜎𝜏

√
𝜎𝜏 4

√|𝜎𝜏|sin2 𝜋

2n

−
√
𝜎𝜏 −

√
𝜎𝜏 4

√|𝜎𝜏|sin2 𝜋

2n

Table 2 shows the minimal distance between any two eigenvalues of T𝛼,𝛽 for the choices of 𝛼 and 𝛽 of Table 1.

2.2 Eigenvalue condition numbers
We first consider the eigenvalues of the Toeplitz matrix (1). Condition numbers for these eigenvalues also have been
discussed in the work of Noschese et al.3 When 𝜎𝜏 ≠ 0, eigenvalue condition numbers can be obtained from (3) and (4).
Standard computations and the trigonometric identity

n∑
k=1

sin2 hk𝜋
n + 1

= n + 1
2

, h = 1 ∶ n, (7)

show that, for h = 1 ∶ n,

||xh||22 =
n∑

k=1

||||𝜎𝜏 ||||ksin2 hk𝜋
n + 1

,

||𝑦h||22 =
n∑

k=1

|||| 𝜏𝜎 ||||ksin2 hk𝜋
n + 1

,

|||𝑦H
h xh
||| = n∑

k=1
sin2 hk𝜋

n + 1
= n + 1

2
.

Consequently, the condition numbers for the eigenvalues 𝜆h, h = 1 ∶ n, of the matrix (1) are given by

𝜅(𝜆h) =
||xh||2||𝑦h||2|||𝑦H

h xh
||| (8)

= 2
n + 1

√√√√ n∑
k=1

||||𝜎𝜏 ||||ksin2 hk𝜋
n + 1

·
n∑

k=1

|||| 𝜏𝜎 ||||ksin2 hk𝜋
n + 1

.

Note that the eigenvalue condition numbers 𝜅(𝜆h) only depend on h, n, and the ratio ||| 𝜎𝜏 |||. When |𝜎| = |𝜏|, we have

‖xh‖2
2 = ‖𝑦h‖2

2 =
n∑

k=1
sin2 hk𝜋

n + 1
= n + 1

2
, h = 1 ∶ n,

and it follows that

𝜅(𝜆h) =
‖xh‖2‖𝑦h‖2|||𝑦H

h xh
||| = 1.

Thus, the eigenvalues are perfectly conditioned. This is in agreement with the observation that the matrix T is normal
when |𝜎| = |𝜏|; see theorem 3.1 of the work of Noschese et al.3
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TABLE 3 Condition numbers of the eigenvalues 𝜆h, h = 1 ∶ n, of the matrix (5)
for several choices of 𝛼 ≠ 𝛽

𝜶 𝜷 𝜿(𝝀h)

0
√
𝜎𝜏 4

2n+1

√∑n
k=1
||| 𝜎𝜏 |||ksin2 2hk𝜋

2n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 2hk𝜋

2n+1√
𝜎𝜏 0 4

2n+1

√∑n
k=1
||| 𝜎𝜏 |||ksin2 h(2k−1)𝜋

2n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 h(2k−1)𝜋

2n+1

0 −
√
𝜎𝜏 4

2n+1

√∑n
k=1
||| 𝜎𝜏 |||ksin2 (2h−1)k𝜋

2n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 (2h−1)k𝜋

2n+1

−
√
𝜎𝜏 0 4

2n+1

√∑n
k=1
||| 𝜎𝜏 |||kcos2 (2h−1)(2k−1)𝜋

2(2n+1)
·
∑n

k=1
||| 𝜏𝜎 |||kcos2 (2h−1)(2k−1)𝜋

2(2n+1)√
𝜎𝜏 −

√
𝜎𝜏 2

n

√∑n
k=1
||| 𝜎𝜏 |||ksin2 (2h−1)(2k−1)𝜋

4n
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 (2h−1)(2k−1)𝜋

4n

−
√
𝜎𝜏

√
𝜎𝜏 2

n

√∑n
k=1
||| 𝜎𝜏 |||kcos2 (2h−1)(2k−1)𝜋

4n
·
∑n

k=1
||| 𝜏𝜎 |||kcos2 (2h−1)(2k−1)𝜋

4n

TABLE 4 Condition numbers of the eigenvalues 𝜆h, h = 1 ∶ n − 1 of the
matrix (5) for 𝛼 = 𝛽 =

√
𝜎𝜏, and of the eigenvalues 𝜆h, h = 2 ∶ n, for 𝛼 = 𝛽 = −

√
𝜎𝜏

𝜶 𝜷 𝜿(𝝀h)√
𝜎𝜏

√
𝜎𝜏 2

n

√∑n
k=1
||| 𝜎𝜏 |||ksin2 h(2k−1)𝜋

2n
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 h(2k−1)𝜋

2n

−
√
𝜎𝜏 −

√
𝜎𝜏 2

n

√∑n
k=1
||| 𝜎𝜏 |||kcos2 (h−1)(2k−1)𝜋

2n
·
∑n

k=1
||| 𝜏𝜎 |||kcos2 (h−1)(2k−1)𝜋

2n

We turn to the condition numbers of the eigenvalues of the Toeplitz-like matrix T𝛼,𝛽 defined by (5) for parameters 𝛼

and 𝛽 considered in Table 1. The condition numbers, which are reported in Tables 3 and 4, can be derived by using the
trigonometric identities ∑n

k=1 sin2 2hk𝜋
2n+1

= 2n+1
4

,
∑n

k=1 sin2 h(2k−1)𝜋
2n+1

= 2n+1
4

,∑n
k=1 sin2 (2h−1)k𝜋

2n+1
= 2n+1

4
,

∑n
k=1 cos2 (2h−1)(2k−1)𝜋

2(2n+1)
= 2n+1

4
,∑n

k=1 sin2 (2h−1)(2k−1)𝜋
4n

= n
2
,

∑n
k=1 cos2 (2h−1)(2k−1)𝜋

4n
= n

2
,

for h = 1 ∶ n, and
n∑

k=1
sin2 h(2k − 1)𝜋

2n
= n

2
, if h ≠ n;

n∑
k=1

cos2 (h − 1)(2k − 1)𝜋
2n

= n
2
, if h ≠ 1.

Notice that 𝜅(𝜆h) = 1 when 𝛼 = 𝛽 =
√
𝜎𝜏 and h = n and when 𝛼 = 𝛽 = −

√
𝜎𝜏 and h = 1.

Proposition 3. Let |𝜎| = |𝜏| > 0, and let 𝛼 and 𝛽 be defined as in Table 1. Then, the tridiagonal Toeplitz-like matrix
given by (5) is normal. Consequently, all eigenvalues have condition number one.

Proof. To show normality, we may apply theorem 1 of the work of Bebiano et al.17 and note, using the notation of this
reference, that we have 𝛿 ±

√
𝜎𝜏 = (r̂ + id)ei𝜙, with r̂ = r ± |𝜎|, if 𝛿 = (r + id)ei𝜙 and 𝜏 = 𝜎e2i𝜙 for some r, d, 𝜙 ∈ R,

and if |𝜎| = |𝜏| ≠ 0. Here and below, i denotes the imaginary unit.

3 SENSITIVITY OF THE EIGENVECTORS

The beginning of this section reviews the results by Stewart.18 These results are subsequently applied to the matrices (1)
and (5).
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3.1 Eigenvector condition numbers
Definition 1 (See the work of Stewart18).
Let A ∈ Cn×n and let x be an eigenvector of unit norm associated with the simple eigenvalue 𝜇. Let U ∈ Cn×(n−1) be a
matrix whose columns form an orthonormal basis for Range(A − 𝜇I). The condition number of x (i.e., the condition
number of the one-dimensional invariant subspace spanned by x) is defined by

𝜅(x) = ‖‖(𝜇I − UHAU)−1‖‖−1
2 .

Let A𝜀 = A + 𝜀E, where 𝜀 ∈ R is of small magnitude and E ∈ Cn×n is a matrix with ||E||F = 1. Here and below, || · ||F
denotes the Frobenius norm. Let x 𝜀 be the unit-norm eigenvector of A𝜀 corresponding to x, that is, there is a continuous
mapping t → xt for 0 ≤ t ≤ 𝜀 such that x t = x for t = 0 and x t = x 𝜀 for t = 𝜀. Then, for the induced perturbation in
the direction between x and the pseudoeigenvector x 𝜀, one has

sin 𝜃x,x𝜀 ≤ 𝜅(x)𝜀, (9)

where sin 𝜃x,x𝜀 ∶=
√

1 − cos2𝜃x,x𝜀 and cos 𝜃x,x𝜀 ∶= |xHx𝜀|; see the work of Stewart18(pp 48–50) for more details.

3.2 Eigenvector condition numbers in the normal case
Let the matrix A ∈ Cn×n be normal and denote its spectrum by Λ(A). Consider the expression ||(𝜇I − UHAU)−1||2 of
Definition 1. It is straightforward to show that the upper bound||(𝜇I − UHAU)−1||2 ≤ min

𝜆≠𝜇
𝜆∈Λ(A)

|𝜇 − 𝜆|
is attained because A is unitarily diagonalizable. Thus, if the matrix A ∈ Cn×n is normal, the condition number of a unit
eigenvector x only depends on how well the associated eigenvalue 𝜇 is separated from the other eigenvalues of the matrix.
This result leads to the following proposition, which is shown in the work of Stewart.18

Proposition 4. Let A ∈ Cn×n be a normal matrix and let x be a unit eigenvector associated with the simple eigenvalue 𝜇.
The condition number of x (i.e., the condition number of the one-dimensional invariant subspace spanned by x) is given by

𝜅(x) =
⎛⎜⎜⎝ min

𝜆≠𝜇
𝜆∈Λ(A)

|𝜇 − 𝜆|⎞⎟⎟⎠
−1

.

Consider the tridiagonal Toeplitz matrix T = (n; 𝜎, 𝛿, 𝜏) and introduce the right and left unit eigenvectors,

x̃h = xh||xh|| , 𝑦h = 𝑦h||𝑦h|| , h = 1 ∶ n,

where the vectors xh and yh are defined by (3) and (4), respectively.

Proposition 5. Let the Toeplitz matrix T = (n; 𝜎, 𝛿, 𝜏) be normal. Then, the condition number of x̃h is given by

𝜅(x̃h) =
⎧⎪⎨⎪⎩
(

4|𝜎| sin 𝜋

2(n+1)
sin (2h−1)𝜋

2(n+1)

)−1
, for 1 < h ≤

n
2

or h = n,(
4|𝜎| sin 𝜋

2(n+1)
sin (2h+1)𝜋

2(n+1)

)−1
, for h = 1 or n

2
< h < n.

(10)

In particular, 𝜅( x̃h) depends only on h, n, and |𝜎|. Moreover,

max
h=1∶n

𝜅( x̃h) =
(

4|𝜎| sin 𝜋

2(n + 1)
sin 3𝜋

2(n + 1)

)−1

.

The maximum is attained by the eigenvectors x̃h associated with the four extremal eigenvalues with indices h = 1, 2,
n − 1,n.

Proof. The proof follows from Propositions 1 and 4, by using the characterization in theorem 3.1 of the work of
Noschese et al.3

Figure 1 shows the condition numbers 𝜅( x̃h) of normalized eigenvectors of a 100 × 100 normal tridiagonal Toeplitz
matrix with |𝜎| = |𝜏| = 1.
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FIGURE 1 Eigenvector condition numbers for the matrix T = (100; exp i𝜃1, 𝛿, exp i𝜃2), where 𝛿 ∈ C and 𝜃1, 𝜃2 ∈ R are arbitrarily chosen
parameters, and i =

√
−1. The horizontal axis shows the index of the eigenvalues 𝜆h, h = 1 ∶ 100, and the vertical axis shows the condition

numbers 𝜅(x̃h). The condition numbers are independent of 𝛿, 𝜃1, and 𝜃2

Let T 𝜀 = T + 𝜀E, where 𝜀 ∈ R is a constant of small magnitude and E ∈ Cn×n satisfies ||E||F = 1. Introduce the
unit-norm pseudoeigenvector x̃ 𝜀

h of T 𝜀 corresponding to the unit-norm eigenvector x̃h of T. Thus, there is a continuous
mapping t → x̃ t

h for 0 ≤ t ≤ 𝜀 such that x̃ t
h = x̃h for t = 0 and x̃ t

h = x̃ 𝜀
h for t = 𝜀. We obtain from (10) that

0 ≤ sin 𝜃x̃h ,̃x𝜀h
≤

⎧⎪⎨⎪⎩
(

4|𝜎| sin 𝜋

2(n+1)
sin (2h−1)𝜋

2(n+1)

)−1
𝜀, for 1 < h ≤

n
2

or h = n,(
4|𝜎| sin 𝜋

2(n+1)
sin (2h+1)𝜋

2(n+1)

)−1
𝜀, for h = 1 or n

2
< h < n.

(11)

Proposition 6. Let the matrix T = (n; 𝜎, 𝛿, 𝜏) be Hermitian. Given the unit pseudoeigenvector x̃ 𝜀
h , define the associated

Rayleigh quotient,
𝜆𝜀h =

(
x̃ 𝜀

h

)HT x̃ 𝜀
h ,

and introduce the associated residual norm
r 𝜀

h = ‖‖‖T x̃ 𝜀
h − 𝜆𝜀hx̃ 𝜀

h
‖‖‖2
.

Then,
r 𝜀

h

2|𝜎| cos 𝜋

n+1

≤ sin 𝜃x̃h ,̃x 𝜀
h
≤

r 𝜀
h

mink≠h
|||𝜆k − 𝜆𝜀h

||| . (12)

Proof. The proof follows from theorem 11.7.1 of the work of Parlett19 by observing that spread(T) ∶= 𝜆1 − 𝜆n =
2|𝜎| cos 𝜋

n+1
.

We turn to the condition number of the eigenvectors of the matrix (5) for 𝛼- and 𝛽-values of Table 1. Using Proposition 2,
we obtain the following expressions.

Proposition 7. Let the matrix T𝛼,𝛽 ∈ Cn×n be normal and let x̃h, for h = 1 ∶ n, be unit eigenvectors. Then,

(i) for 𝛼 = 0 and 𝛽 =
√
𝜎𝜏 or vice versa

𝜅( x̃h) =
⎧⎪⎨⎪⎩
(

4
√|𝜎𝜏| sin 𝜋

2n+1
sin (2h−1)𝜋

2n+1

)−1
, for 1 < h ≤

n
2

or h = n,(
4
√|𝜎𝜏| sin 𝜋

2n+1
sin (2h+1)𝜋

2n+1

)−1
, for h = 1 or n

2
< h < n;
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TABLE 5 Maximal eigenvector condition numbers for the
eigenvectors of the matrix (5) for several choices of 𝛼 and 𝛽

𝜶 𝜷 maxh= 1∶n𝛋(x̃h)

0
√
𝜎𝜏

(
4|𝜎| sin 𝜋

2n+1
sin 2𝜋

2n+1

)−1

√
𝜎𝜏 0

(
4|𝜎| sin 𝜋

2n+1
sin 2𝜋

2n+1

)−1

0 −
√
𝜎𝜏

(
4|𝜎| sin 𝜋

2n+1
sin 2𝜋

2n+1

)−1

−
√
𝜎𝜏 0

(
4|𝜎| sin 𝜋

2n+1
sin 2𝜋

2n+1

)−1

√
𝜎𝜏 −

√
𝜎𝜏

(
4|𝜎|sin2 𝜋

n

)−1

−
√
𝜎𝜏

√
𝜎𝜏

(
4|𝜎|sin2 𝜋

n

)−1

√
𝜎𝜏

√
𝜎𝜏

(
4|𝜎|sin2 𝜋

2n

)−1

−
√
𝜎𝜏 −

√
𝜎𝜏

(
4|𝜎|sin2 𝜋

2n

)−1

(ii) for 𝛼 = 0 and 𝛽 = −
√
𝜎𝜏 or vice versa

𝜅( x̃h) =
⎧⎪⎨⎪⎩
(

4
√|𝜎𝜏| sin 𝜋

2n+1
sin 2(h−1)𝜋

2n+1

)−1
, for 1 < h ≤

⌈
n
2

⌉
or h = n,(

4
√|𝜎𝜏| sin 𝜋

2n+1
sin 2h𝜋

2n+1

)−1
, for h = 1 or

⌈
n
2

⌉
< h < n;

(iii) for 𝛼 =
√
𝜎𝜏 and 𝛽 = −

√
𝜎𝜏 or vice versa

𝜅( x̃h) =
⎧⎪⎨⎪⎩
(

4
√|𝜎𝜏| sin 𝜋

n
sin (h−1)𝜋

n

)−1
, for 1 < h ≤

n
2

or h = n,(
4
√|𝜎𝜏| sin 𝜋

n
sin h𝜋

n

)−1
, for h = 1 or n

2
< h < n;

(iv) for 𝛼 =
√
𝜎𝜏 and 𝛽 =

√
𝜎𝜏

𝜅( x̃h) =
⎧⎪⎨⎪⎩
(

4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−1)𝜋

2n

)−1
, for 1 < h ≤

n
2

or h = n,(
4
√|𝜎𝜏| sin 𝜋

2n
sin (2h+1)𝜋

2n

)−1
, for h = 1 or n

2
< h < n;

(v) for 𝛼 = −
√
𝜎𝜏 and 𝛽 = −

√
𝜎𝜏

𝜅( x̃h) =
⎧⎪⎨⎪⎩
(

4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−3)𝜋

2n

)−1
, for 1 < h ≤

⌈
n
2

⌉
or h = n,(

4
√|𝜎𝜏| sin 𝜋

2n
sin (2h−1)𝜋

2n

)−1
, for h = 1 or

⌈
n
2

⌉
< h < n.

The maximal eigenvector condition numbers are reported in Table 5.

4 SENSITIVITY TO STRUCTURED PERTURBATIONS

Observe that the smaller 0 < |𝜎∕𝜏| < 1 is, the larger the first component of the unit right eigenvector x̃h and the last
component of the unit left eigenvector 𝑦h are. Similarly, the larger 1 < |𝜎∕𝜏| < ∞ is, the larger the last component of
x̃h and the first component of 𝑦h are.
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Consider the Wilkinson perturbation

Wh = 𝑦h x̃ H
h

of the matrix T defined by (1) associated with the eigenvalue 𝜆h. This is a unit-norm perturbation of T that yields the
largest perturbation in 𝜆h; see, for example, the work of Wilkinson.6 The entries of the largest magnitude of Wh are in
the bottom-left corner of Wh when |𝜎∕𝜏| < 1 and in the top-right corner when |𝜎∕𝜏| > 1. The entries of Wh close to the
diagonal are of small magnitude. In particular, the entries of the largest magnitude of Wh are not present in Wh| , the
orthogonal projection of Wh in the subspace  of tridiagonal Toeplitz matrices. This projection is used in the following
proposition, which summarizes the results from the work of Noschese et al.20 and yields useful formulations for both
the  -structured eigenvalue condition number (see, e.g., the work of Karow et al.21) and the worst-case  -structured
perturbations.20,22

Proposition 8. Let 𝜆h be a simple eigenvalue of a Toeplitz matrix T ∈  ⊂ Cn×n with associated unit right and left
eigenvectors x̃h and 𝑦h, respectively. Given any matrix E ∈  with ||E||F = 1, let𝜆h(t) be an eigenvalue of T + tE converging
to 𝜆h as t → 0. Then,

| .
𝜆h(0)| ≤ max

{|||||
𝑦H

h E x̃h

𝑦H
h x̃h

||||| , ||E||F = 1, E ∈ 

}
= ||Wh| ||F|||𝑦H

h x̃h
|||

and

.
𝜆h(0) =

||Wh| ||F|||𝑦H
h x̃h
||| if E = 𝜂

Wh|||Wh| ||F ,
for any unimodular 𝜂 ∈ C. Here,

.
𝜆h(t) denotes the derivative of 𝜆h(t) with respect to the parameter t.

It follows from Proposition 8 that the  -structured condition number of the eigenvalue 𝜆h of the tridiagonal Toeplitz
matrix T is given by

𝜅 (𝜆h) = 𝜅(𝜆h)||Wh| ||F .
This expression shows that the  -structured condition number 𝜅 (𝜆h) may be small even when the traditional condition
number 𝜅(𝜆h) is large. Thus, an eigenvalue 𝜆h may be much more sensitive to a general perturbation of T than to a
structured perturbation. The worst-case structured perturbation20 is given by the structured analogue of the Wilkinson
perturbation

Wh|̂ ∶= Wh|||Wh| ||F .
We have the following result.

Proposition 9. The  -structured condition number of a simple eigenvalue 𝜆h of a tridiagonal Toeplitz matrix T =
(n; 𝜎, 𝛿, 𝜏) is given by

𝜅 (𝜆h) =

√
1
n
+ 1

n − 1

(||||𝜎𝜏 |||| + |||| 𝜏𝜎 ||||
)

cos2 h𝜋
n + 1

. (13)

In particular, 𝜅 (𝜆h) only depends on h, n, and the ratio ||| 𝜎𝜏 |||.
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Proof. Let 𝜎h, 𝛿h, and 𝜏h denote the subdiagonal, diagonal, and superdiagonal entries of Wh| , respectively. Then,

𝜎h =

√
𝜏

𝜎̄

∑n−1
k=1 sin hk𝜋

n+1
sin h(k+1)𝜋

n+1

(n − 1)
√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

=
(n + 1)

√
𝜏

𝜎̄
cos h𝜋

n+1

2(n − 1)
√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

,

𝛿h = n + 1

2n
√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

,

𝜏h =

√
𝜎̄

𝜏

∑n−1
k=1 sin hk𝜋

n+1
sin h(k+1)𝜋

n+1

(n − 1)
√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

=
(n + 1)

√
𝜎̄

𝜏
cos h𝜋

n+1

2(n − 1)
√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

.

The above expressions were obtained by exploiting the trigonometric identities (7) and
n−1∑
k=1

sin hk𝜋
n + 1

sin h(k + 1)𝜋
n + 1

= n + 1
2

cos h𝜋
n + 1

, h = 1 ∶ n; (14)

see, for example, appendix A of the work of Buttà et al.2 Hence,||Wh| ||F =
√

n|𝛿h|2 + (n − 1)|𝜎h|2 + (n − 1)|𝜏h|2
=

n+1
2

√
1
n
+ 1

n−1

(||| 𝜎𝜏 ||| + ||| 𝜏𝜎 |||) cos2 h𝜋
n+1√∑n

k=1
||| 𝜎𝜏 |||ksin2 hk𝜋

n+1
·
∑n

k=1
||| 𝜏𝜎 |||ksin2 hk𝜋

n+1

.

Finally, 𝜅 (𝜆h) is the product of 𝜅(𝜆h) and ||Wh| ||F . The proof now follows by using (8).

4.1 Eigenvector structured sensitivity in the normal case
When E is a (tridiagonal Toeplitz) structured perturbation of T, the perturbed matrix T 𝜀 = T + 𝜀E is a tridiagonal Toeplitz
matrix. Assume that T is normal. Unfortunately, T 𝜀 = (n; 𝜎 𝜀, 𝛿𝜀, 𝜏 𝜀) might not be normal because |𝜎 𝜀|may differ from|𝜏𝜀|. For the components of the eigenvector x 𝜀

h = [x 𝜀
h,1, x 𝜀

h,2, … , x 𝜀
h,n]

T associated with the hth eigenvalue of T 𝜀, we have

x 𝜀
h,k =

(√
𝜎𝜀

𝜏𝜀

)k

sin hk𝜋
n + 1

, k = 1 ∶ n, h = 1 ∶ n,

so that

cos 𝜃x̃h ,̃x𝜀h
=

|||||
∑n

k=1

(√
𝜎̄

𝜏

)k(√
𝜎𝜀

𝜏𝜀

)k
sin2 hk𝜋

n+1

|||||√
n+1

2

∑n

k=1
||| 𝜎𝜀

𝜏𝜀
|||ksin2 hk𝜋

n+1

, h = 1 ∶ n, (15)

where x̃h and 𝑦h are normalized vectors. Notice that the perturbations induced in the eigenvectors do not depend on 𝛿𝜀.
In fact, the induced perturbations only depend on the ratio 𝜎𝜀

𝜏𝜀
.

Proposition 10. The right and left eigenvectors of normal tridiagonal Toeplitz matrices T = (n; 𝜎, 𝛿, 𝜏) only depend on
the dimension n and on the angle 𝜃 = arg(𝜎) − arg(𝜏).
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Proof. From (3) and (4), it is clear that, given the dimension of the matrix, the ratio 𝜎∕𝜏 uniquely determines the right
and left eigenvectors of T up to a scaling factor. Because |𝜎| = |𝜏|, one has

xh,k = 𝑦h,k = ei k
2
𝜃 sin hk𝜋

n + 1
, k = 1 ∶ n, h = 1 ∶ n. (16)

Remark 2. When T is Hermitian, we have 𝜃 = 2 arg(𝜎), whereas in the skew-Hermitian or shifted skew-Hermitian
cases, one has 𝜃 = 2 arg(𝜎) − 𝜋.

Proposition 11. If the perturbation 𝜀E of the Hermitian matrix T = (n; 𝜎, 𝛿, 𝜎̄) has the same structure as T, then the
right eigenvector x 𝜀

h (the left eigenvector 𝑦𝜀
h ) associated to the hth eigenvalue of

T 𝜀 ∶= T + 𝜀E = (n; 𝜎𝜀, 𝛿𝜀, 𝜎̄𝜀)

has the components

x 𝜀
h,k = 𝑦𝜀h,k = eik arg(𝜎𝜀) sin hk𝜋

n + 1
, k = 1 ∶ n,

for h = 1 ∶ n. Moreover, the associated Rayleigh quotient is given by

𝜆𝜀h ∶=
x 𝜀H

h T x 𝜀
h

x 𝜀H
h x 𝜀

h

= 𝛿 + 2|𝜎|ℜ (ei(arg(𝜎)−arg(𝜎𝜀))) cos hk𝜋
n + 1

, h = 1 ∶ n, (17)

and the following inequalities hold:‖‖‖Tx 𝜀
h − 𝜆𝜀hx 𝜀

h
‖‖‖2√

2(n + 1) cos 𝜋

n+1

≤ sin 𝜃x̃h ,̃x𝜀h
≤

‖‖‖Tx 𝜀
h − 𝜆𝜀hx 𝜀

h
‖‖‖2√

2(n + 1)|𝜎| |||1 −ℜ
(

ei(arg(𝜎)−arg(𝜎𝜀))
)||| cos hk𝜋

n+1

.

Here and below, ℜ(·) denotes the real part of the argument.

Proof. If T is Hermitian, then T 𝜀 is Hermitian as well (i.e., 𝜏𝜀 = 𝜎𝜀). The angle 𝜃 in (16) is equal to 2 arg(𝜎𝜀); see
Remark 2. Further, one has

𝜆𝜀h =
𝛿
∑n−1

k=1 sin2 hk𝜋
n+1

+
(
𝜎e−i arg(𝜎𝜀) + 𝜎̄ei arg(𝜎𝜀))∑n−1

k=1 sin hk𝜋
n+1

sin h(k+1)𝜋
n+1

n+1
2

.

Exploiting the identities (7) and (14), we obtain

𝜆𝜀h = 𝛿 +
(
𝜎e−i arg(𝜎𝜀) + 𝜎̄ei arg(𝜎𝜀)) cos h𝜋

n + 1
.

Moreover, (17) follows from 𝜎e−i arg(𝜎𝜀) + 𝜎̄ei arg(𝜎𝜀) = |𝜎|ℜ(ei(arg(𝜎)−arg(𝜎𝜀))). The proof is concluded by using Proposition 6,
observing that ||x𝜀h||22 = n+1

2
and

min
k≠h

|||𝜆k − 𝜆𝜀h
||| = |||𝜆h − 𝜆𝜀h

||| = 2|𝜎| |||1 −ℜ
(

ei(arg(𝜎)−arg(𝜎𝜀)))||| cos hk𝜋
n + 1

.

When T is shifted skew-Hermitian and the perturbation E has the same structure, we have that T 𝜀 is shifted
skew-Hermitian as well (i.e., 𝜏𝜀 = −𝜎̄𝜀). Thus, in both the Hermitian and shifted skew-Hermitian cases, the structured
𝜀-pseudospectrum lies in a closed line segment, that is, on the real axis or on the imaginary axis, respectively. In other
situations when |𝜎| = |𝜏|, the structured 𝜀-pseudospectrum is bounded by the ellipse {𝜏z + 𝛿 + 𝜎z−1 ∶ z ∈ C, |z| = 1},
which is the boundary of the spectrum of the Toeplitz operator T∞ = (∞; 𝜎, 𝛿, 𝜏); see, for example, other works.2,3,23,24

4.1.1 The real case
The following results are concerned with normal real tridiagonal Toeplitz matrices.

Proposition 12. All real symmetric tridiagonal Toeplitz matrices of a given dimension have the same right and left
eigenvectors.
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Proof. If T is real and symmetric (i.e., 𝜎 = 𝜏), then

xh,k = 𝑦h,k = sin hk𝜋
n + 1

, k = 1 ∶ n, h = 1 ∶ n.

Corollary 1. The eigenvectors of a real symmetric tridiagonal Toeplitz matrix are perfectly conditioned with respect to
any structured perturbation that respects symmetry.

Proof. If T is symmetric, then T 𝜀 is symmetric as well (i.e., 𝜎𝜀 = 𝜏𝜀). It follows from Proposition 12 that x̃h = x̃ 𝜀
h for

h = 1 ∶ n.

Corollary 2. The eigenvectors of a real shifted skew-symmetric tridiagonal Toeplitz matrix are perfectly conditioned
with respect to structured perturbations that respect both the skew-symmetry and the signs of the superdiagonals (and
subdiagonals).

Proof. If T is shifted skew-symmetric, then 𝜎 = −𝜏, and one has

xh,k = 𝑦h,k = (sgn(𝜏)i)k sin hk𝜋
n + 1

, k = 1 ∶ n, h = 1 ∶ n.

By assumption T 𝜀 is a real shifted skew-symmetric tridiagonal Toeplitz matrix and sgn(𝜏) = sgn(𝜏𝜀). Thus, from (15),
we have

cos 𝜃 x̃h ,̃x𝜀h
=
|||∑n

k=1 (sgn(𝜏)i)k(−sgn(𝜏𝜀)i)ksin2 hk𝜋
n+1
|||√

n+1
2

∑n
k=1 sin2 hk𝜋

n+1

=

∑n
k=1 sin2 hk𝜋

n+1√
n+1

2

∑n
k=1 sin2 hk𝜋

n+1

= 1 .

Proposition 13. The eigenvectors of a real normal tridiagonal Toeplitz matrix are perfectly conditioned with respect to
any structured perturbation that respects the symmetry [skew-symmetry and signature].

Proof. A real tridiagonal matrix T is normal if and only if it is symmetric or shifted skew symmetric; see, for example,
theorem 7.1 of the work of Noschese et al.25 or corollary 2.2 of the work of Noschese et al.26 The proof now follows
from Corollaries 1 and 2.

Let  denote the subspace of real symmetric tridiagonal Toeplitz matrices and let  be the subspace of real shifted
skew-symmetric tridiagonal Toeplitz matrices. The above results show that the unstructured measure (10) of the sensi-
tivity to perturbations of the eigenvectors of a tridiagonal Toeplitz matrix in  or  is not accurate in case of structured
perturbations E of the matrix T, that is, when E ∈  or E ∈  with E small enough.

4.2 Eigenvalue structured sensitivity in the normal case
For normal matrices, the right and left unit eigenvectors can be chosen to be the same. Then, the Wilkinson perturbation
Wh is Hermitian for h = 1 ∶ n.

Corollary 3. The  -structured condition number of the eigenvalue 𝜆h of a normal tridiagonal Toeplitz matrix T is
given by

𝜅 (𝜆h) =
√

1
n
+ 2

n − 1
cos2 h𝜋

n + 1
, h = 1 ∶ n. (18)

Proof. The proof trivially follows from (13), since |𝜎| = |𝜏|.
4.2.1 The real case
We recall that a real tridiagonal matrix T is normal if and only if it is symmetric or shifted skew symmetric. Notice that
Proposition 8 can be generalized to several other structures and that, in particular, it holds true if one everywhere replaces
 by either  or  , or other subspaces of matrices with a given symmetry pattern; see the work of Noschese et al.20 It



14 of 20 NOSCHESE AND REICHEL

follows that, for h = 1 ∶ n, the  -structured [ -structured] condition number of the eigenvalue 𝜆h of a real symmetric
[shifted skew-symmetric] tridiagonal Toeplitz matrix T is given by

𝜅
(𝜆h) = ‖Wh|

‖F
[
𝜅

(𝜆h) = ‖‖Wh|

‖‖F
]
,

𝜅(𝜆h) being equal to 1, and that the worst-case structured perturbation20 is given by the structured analogue of the
Wilkinson perturbation:

Wh|̂
∶=

Wh|||Wh|
||F

[
Wh|̂

∶=
Wh|||Wh|

||F
]
.

The following result is concerned with symmetric tridiagonal Toeplitz matrices and eigenvalue sensitivity to
 -structured perturbations, that is, to real symmetric tridiagonal Toeplitz matrix perturbations.

Proposition 14. The eigenvalues 𝜆h of any symmetric tridiagonal Toeplitz matrix T ∈ Rn×n have condition numbers

𝜅
(𝜆h) =

√
1
n
+ 2

n − 1
cos2 h𝜋

n + 1
, h = 1 ∶ n,

with respect to any structured perturbation that respects the symmetry.

Proof. It is straightforward that 𝜅
(𝜆h) ≤ 𝜅 (𝜆h). In addition, in the real symmetric case, that is, when 𝜎 = 𝜏, the

Wilkinson perturbation associated with 𝜆h, Wh = 𝑦h x̃ H
h , is real and symmetric. Thus, the orthogonal projection of

Wh in the subspace of real symmetric tridiagonal Toeplitz matrices coincides with Wh| . This concludes the proof
because 𝜅

(𝜆h) coincides with the condition number 𝜅 (𝜆h) in (18), that is,

𝜅
(𝜆h) = ||Wh|

||F = ||Wh| ||F = 𝜅 (𝜆h).

Figure 2 shows the structured eigenvalue condition numbers 𝜅
(𝜆h) for a 100 × 100 symmetric tridiagonal Toeplitz

matrix.

Remark 3. Let 𝜎h, 𝛿h, and 𝜏h denote the subdiagonal, diagonal, and superdiagonal entries, respectively, of the orthog-
onal projection of the Wilkinson perturbation Wh associated with the eigenvalue 𝜆h of a real symmetric tridiagonal
Toeplitz matrix T = (n; 𝜎, 𝛿, 𝜎) (i.e., Wh|

≡ Wh| ; cf. the proof of Proposition 14). It is easy to show that

𝜎h = 𝜏h = 1
n − 1

cos h𝜋
n + 1

; 𝛿h = 1
n
.

0 10 20 30 40 50 60 70 80 90 100
0.1
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FIGURE 2 Structured eigenvalue condition numbers for the matrix T = (100; 𝜎, 𝛿, 𝜎), where 𝜎 and 𝜏 are arbitrarily chosen real
parameters. The horizontal axis shows the index of the eigenvalue 𝜆h, h = 1 ∶ 100, and the vertical axis shows the structured condition
numbers 𝜅

(𝜆h). The condition numbers are independent of 𝜎
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Moreover, one has

𝜎h = 𝜏h =
cos h𝜋

n+1

(n − 1)
√

1
n
+ 2

n−1
cos2 h𝜋

n+1

; 𝛿h = 1

n
√

1
n
+ 2

n−1
cos2 h𝜋

n+1

,

where 𝜎h, 𝜏h, and 𝛿h denote the subdiagonal, diagonal, and superdiagonal entries, respectively, of the unit norm
 -structured analogue of the Wilkinson perturbation, Wh|̂

. Thus, if we perturb T by the real symmetric tridiagonal
Toeplitz matrix 𝜀W𝑗|̂

[−𝜀W𝑗|̂
], for a given j ∈ {1, … ,n}, the spectrum of the perturbed matrix T 𝜀

𝑗 [T−𝜀
𝑗 ] contains

the eigenvalue

𝜆𝜀𝑗 = 𝛿 + 𝜀

n
√

1
n
+ 2

n−1
cos2 𝑗𝜋

n+1

+ 2
⎛⎜⎜⎜⎝𝜎 +

𝜀 cos 𝑗𝜋

n+1

(n − 1)
√

1
n
+ 2

n−1
cos2 𝑗𝜋

n+1

⎞⎟⎟⎟⎠ cos 𝑗𝜋

n + 1

⎡⎢⎢⎢⎣𝜆
−𝜀
𝑗 = 𝛿 − 𝜀

n
√

1
n
+ 2

n−1
cos2 𝑗𝜋

n+1

+ 2
⎛⎜⎜⎜⎝𝜎 −

𝜀 cos 𝑗𝜋

n+1

(n − 1)
√

1
n
+ 2

n−1
cos2 𝑗𝜋

n+1

⎞⎟⎟⎟⎠ cos 𝑗𝜋

n + 1

⎤⎥⎥⎥⎦ .
Straightforwardly, the  -structured 𝜀-pseudospectrum, for 𝜀 small enough, is given by the union of the real

intervals [𝜆−𝜀h , 𝜆+𝜀h ] of width 2𝜅
(𝜆h)𝜀, for h = 1 ∶ n.

Let us turn to the shifted skew-symmetric case.

Proposition 15. All the eigenvalues of a shifted skew-symmetric tridiagonal Toeplitz matrix T ∈ Rn×n have the same
condition number

𝜅
(𝜆h) =

1√
n

with respect to any structured perturbation that respects the shifted skew-symmetry.

Proof. Odd eigenvector components of real shifted skew-symmetric tridiagonal Toeplitz matrices are purely imagi-
nary numbers. Hence, the Wilkinson perturbation associated with 𝜆h is Hermitian. By using the same notation as in
Remark 3, we obtain

𝜎h = 𝜏h =
sgn(𝜏)i
n − 1

cos h𝜋
n + 1

; 𝛿h = 1
n
.

Thus, the orthogonal projection of Wh in the subspace of real shifted skew-symmetric tridiagonal Toeplitz matrices is
the matrix 1

n
I. Its Frobenius norm 1√

n
gives the structured condition number 𝜅

(𝜆h) = ||Wh|
||F .

Remark 4. Perturbing the real shifted skew-symmetric tridiagonal matrix T = (n; 𝜎, 𝛿, − 𝜎) by ±𝜀Wh|̂
, where

Wh|̂
is the  -structured unit norm analogue of the Wilkinson perturbation, gives the pseudoeigenvalues 𝜆±𝜀

h =
𝛿± 𝜀√

n
+ 2i|𝜎| cos h𝜋

n+1
for h = 1 ∶ n. Therefore, the  -structured 𝜀-pseudospectrum is given by the union of the

intervals on the shifted imaginary axis of extremes 𝜆±𝜀
h and width 2𝜀√

n
, for h = 1 ∶ n.

We conclude this section by noticing that Proposition 12 can be extended to real symmetric tridiagonal Toeplitz-type
matrices. We have the following result.

Proposition 16. Any real symmetric tridiagonal Toeplitz-type matrix of a fixed order n of the types considered in Table 1
has the same right and left eigenvectors.
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Proof. One has
xh,k = sin 2hk𝜋

2n+1
, 𝛼 = 0, 𝛽 = 𝜎;

xh,k = sin h(2k−1)𝜋
2n+1

, 𝛼 = 𝜎, 𝛽 = 0;

xh,k = sin (2h−1)k𝜋
2n+1

, 𝛼 = 0, 𝛽 = −𝜎;

xh,k = cos (2h−1)(2k−1)𝜋
2(2n+1)

, 𝛼 = −𝜎, 𝛽 = 0;

xh,k = sin (2h−1)(2k−1)𝜋
4n

, 𝛼 = 𝜎, 𝛽 = −𝜎;

xh,k = cos (2h−1)(2k−1)𝜋
4n

, 𝛼 = −𝜎, 𝛽 = 𝜎;

xh,k = sin h(2k−1)𝜋
2n

, 𝛼 = 𝜎, 𝛽 = 𝜎;

xh,k = cos (h−1)(2k−1)𝜋
2n

, 𝛼 = −𝜎, 𝛽 = −𝜎

for k = 1 ∶ n.

5 APPLICATIONS

This section discusses how the theory developed in the previous sections can be applied to approximate the eigenvalues
or accurately evaluate the spectral factorization of certain matrices.

5.1 Approximation of the spectrum of a real symmetric tridiagonal matrix
Let An ∈ Rn×n be a symmetric tridiagonal matrix. Denote the jth subdiagonal entry of An by 𝜎j, j = 1 ∶ n − 1, and let
𝛿j be the jth diagonal entry, j = 1 ∶ n. The matrix An may, for instance, have been determined by carrying out n steps of
the symmetric Lanczos algorithm applied to a large symmetric matrix A; see, for example, the work of Golub et al.27 for
a discussion on this algorithm.

Let T ∶= An| be the orthogonal projection of An in the subspace  of tridiagonal Toeplitz matrices. We are interested
in the matrix T because its eigenvalues are known in closed form and can be used to estimate the eigenvalues of An.

Proposition 17. T is a real symmetric tridiagonal Toeplitz matrix.

Proof. The proof is straightforward because both the subdiagonal and superdiagonal entries of T are equal

to
∑n−1

𝑗=1 𝜎𝑗

n−1
.

Proposition 18. If the trace of An vanishes, then the spectrum of T is real and symmetric with respect to the origin.
Moreover, if n is odd, then T is singular. For n even,

𝜅2(T ) =
cos 𝜋

n+1

cos n𝜋
2(n+1)

.

Proof. The diagonal entries of T, given by 𝛿 =
∑n

𝑗=1 𝛿𝑗

n
, vanish. Therefore, the spectrum {𝜆𝑗}n

𝑗=1 of T is symmetric with
respect to the origin. If n is odd, zero is an eigenvalue; otherwise, if n is even, one has 𝜅2(T ) = 𝜆1∕𝜆 n

2
, where the

eigenvalues are defined by (2) with 𝜏 = 𝜎. This concludes the proof.

We have that T coincides with An if and only if An is a Toeplitz matrix. Thus, trivially, if An is a scalar, then T coincides
with An. Moreover, the following inequality holds.

Proposition 19. Let 𝜆1(An) ≥ … ≥ 𝜆n(An) denote the eigenvalues of An in decreasing order and let 𝜆i be the eigen-
values of T given by (2) with 𝜏 = 𝜎. Then, the average of the squared distances between the eigenvalues of An and T
satisfies

1
n

n∑
i=1

(𝜆i(An) − 𝜆i)2 ≤
1
n
||An − T||2F .
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Proof. Let A,B ∈ Cn×n be symmetric matrices. Denote by 𝜆↓(M ) [𝜆↑(M )] the vector whose entries are the eigenvalues
of a symmetric matrix M sorted in decreasing [increasing] order. Then,

||𝜆↓(A) − 𝜆↓(B)|| ≤ ||A − B||F ≤ ||𝜆↓(A) − 𝜆↑(B)||;
see, for example, the work of Bhatia.28 This shows the proposition.

Remark 5. Notice that An being symmetric positive definite does not guarantee that T is positive definite. Indeed, T
is positive definite if and only if ∑n

𝑗=1 𝛿𝑗

n
> 2
∑n−1

𝑗=1 𝜎𝑗

n − 1
cos 𝜋

n + 1
.

Let T = (n; 𝜎, 𝛿, 𝜏) be symmetric and define the Toeplitz-type matrix An ∶= T𝛼,𝛽 , where 𝛼 = ±
√
𝜎𝜏 and 𝛽 = ∓

√
𝜎𝜏.

The eigenvalues of the matrix An are symmetric with respect to 𝛿; expressions for the eigenvalues are provided in the fifth
and sixth rows of Table 1. It is easy to show that T is the closest tridiagonal Toeplitz matrix to An in the Frobenius norm.
Moreover, if 𝛿 = 0, then the eigenvalues of An are symmetric with respect to the origin and An has null trace so that, due
to Proposition 18, the spectrum of T is symmetric with respect to the origin.

We illustrate Proposition 19 with an example. Let the matrix An = [ai,𝑗] ∈ Rn×n differ from the symmetric Toeplitz
matrix T = (n, 𝜎, 𝛿, 𝜎) only in the entry a2,2. Then, the proposition shows that

1
n

n∑
i=1

(𝜆i(An) − 𝜆i)2 ≤
1
n
|a2,2 − 𝛿|2.

In particular, the sum in the left-hand side converges to zero as n increases. Hence, the spectrum of T furnishes an accurate
approximation of the spectrum of An when n is large.

5.2 Accurate computation of the spectrum of nonsymmetric tridiagonal
Toeplitz matrices
Let the tridiagonal Toeplitz matrix T = (n; 𝛿, 𝜎, 𝜏) be non-Hermitian. It has the spectral factorization

T = XΛX−1, (19)

where X ∈ Cn×n is the eigenvector matrix whose columns are given by (3) and the entries of the matrix Λ =
diag[𝜆1, 𝜆2, … , 𝜆n] are the eigenvalues given by (2).

When T ∈ Rn×n is far from symmetric, then the MATLAB function eig is only able to compute the spectral factorization
(19) with reduced accuracy. For instance, consider the matrix T = (25; 1, 0, 0.01). The eigenvalues of T are given by

𝜆h = 0.2 cos h𝜋
26

, h = 1 ∶ 25, (20)

while many of the eigenvalues determined by the function eig have a significant imaginary part; see Figure 3.
In addition, the spectrum of other nonsymmetric matrices can be difficult to compute accurately by the function eig.

When the matrix of interest, An ∈ Cn×n, is close to a Toeplitz matrix T = (n; 𝜎, 𝛿, 𝜏), the spectral factorization (19) may be
used to determine a more accurate spectral factorization of An than can be computed with eig in the following manner.

1. Determine the tridiagonal Toeplitz matrix T closest to An in the Frobenius norm.
2. Determine the spectral factorization (19) of T by using (2) and (3).
3. Evaluate the matrix B = X−1AnX = Λ + X−1(An − T )X. If T is close to An, then this matrix is closer to a Hermitian

matrix than An.
4. Compute the spectral factorization B = YDY−1 by using the MATLAB function eig. Thus, Y is the eigenvector matrix

of B, and D is a diagonal matrix, whose nontrivial entries are the eigenvalues. Typically, the matrix Y is fairly well con-
ditioned and can be computed by the function eig with quite high accuracy. The matrix Z = XY is (an approximation
of) the eigenvector matrix of An.

We illustrate the computations outlined with an example. Let T = (25; 1, 0, 0.01) and let An = T𝛼,𝛽 ∈ Rn×n be a
tridiagonal Toeplitz-type matrix (5) obtained from T with 𝛼 = 0.1 and 𝛽 = −𝛼. The eigenvalues of An are real and
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FIGURE 3 The exact eigenvalues (20) of T = (25; 1, 0, 0.01) (marked with black x) and the approximate eigenvalues computed by the
function eig (marked with red o)
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FIGURE 4 The exact eigenvalues of An (marked with black x), the approximate eigenvalues computed by the function eig (marked with
red o), and the eigenvalues computed by the algorithm outlined above (marked with blue +)

symmetric with respect to the origin; their formulas are shown in the fifth and sixth rows of Table 1. The eigenvec-
tors of An are described in Section 1. Hence, it is straightforward to assess the accuracy of the computational method
described. It is easy to see that T is the closest tridiagonal Toeplitz matrix to An. Its eigenvalues and eigenvectors are given
by (2) and (3).

Figure 4 displays the spectrum of An computed by using the relevant formulas of Table 1 (marked with black +), and
approximations of the spectrum computed by the MATLAB function eig (marked with red o) and the procedure described
above (marked with blue x). The eigenvalues determined in the latter manner cannot be distinguished from the exact
ones in Figure 4, whereas some of the approximate eigenvalues computed by eig applied to An can be seen to have large
imaginary components. The maximum pairwise difference of the exact eigenvalues and the eigenvalues computed by the
MATLAB function eig, ordered in the same manner, is 4.3 · 10−1, whereas the maximum pairwise difference of the exact
eigenvalues and the eigenvalues computed by our approach described above only is 3.3 · 10−8. Thus, the approximation
of a tridiagonal matrix by the closest Toeplitz matrix and using the spectral factorization of the latter may yield a more
accurate spectral factorization than the one determined by the MATLAB function eig.
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6 CONCLUSIONS

This paper discusses the sensitivity of eigenvectors of tridiagonal Toeplitz matrices under general and structured perturba-
tions. The eigenvectors are found to be quite sensitive to perturbations when the Toeplitz matrix is far from normal, but the
eigenvectors are insensitive to structured perturbation when the Toeplitz matrix has an additional structure, such as being
Hermitian. Our analysis suggests a novel method for computing the spectral factorization of a general nonsymmetric
tridiagonal matrix.
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