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Geothermal reservoirs are highly anisotropic and heterogeneous, and thus require
a variety of structural geology, geomechanical, remote sensing, geophysical and
hydraulic techniques to inform Discrete Fracture Network flowmodels. Following
the Paris Agreement on reduction of carbon emissions, such reservoirs have
received more attention and new techniques that support Discrete Fracture
Network models were developed. A comprehensive review is therefore needed
to merge innovative and traditional technical approaches into a coherent
framework to enhance the extraction of geothermal energy from the deep
subsurface. Traditionally, statistics extracted from structural scanlines and
unmanned aerial vehicle surveys on analogues represent optimum ways to
constrain the length of joints, bedding planes, and faults, thereby generating a
model of the network of fractures. Combining borehole images with seismic
attributes has also proven to be an excellent approach that supports the stochastic
generation of Discrete Fracture Network models by detecting the orientation,
density, and dominant trends of the fractures in the reservoirs. However, to move
forward to flow modelling, computation of transmissivities from pumping tests,
and the determination of hydraulically active fractures allow the computation of
the hydraulic aperture in permeable sedimentary rocks. The latter parameter is
fundamental to simulating flow in a network of discrete fractures. The mechanical
aperture can also be estimated based on the characterization of geomechanical
parameters (Poisson’s ratio, and Young’s modulus) in Hot Dry Rocks of igneous-
metamorphic origin. Comparedwith previous review studies, this paper will be the
first to describe all the geological and hydro-geophysical techniques that inform
Discrete Fracture Network development in geothermal frameworks. We therefore
envisage that this paper represents a useful and holistic guide for future projects
on preparing DFN models.
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1 Introduction

The exponential advances in geo-modelling of the last 30 years have yielded new
approaches for representing fluid flow in the aquifers that are exploited for drinkable
water, conventional oil and gas, shale gas and geothermal reservoirs of both hydrothermal
and Hot Dry Rock (HDR) nature (Bigi et al., 2013; Hartmann et al., 2014; Przybycin et al.,
2017; Lancia et al., 2018; Doran et al., 2021; Dorhjie et al., 2022; Hering et al., 2023; Medici
and West, 2023; Melouah et al., 2023). Many researchers have pointed out that these
advances in modelling have not been followed by adequate attention to the experimental and
technical components that are necessary to represent the complexity of porous and fractured
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geological media (Aydin, 2000; Frosch et al., 2000; Kristensen et al.,
2016; Colombera et al., 2019). However, in the last 5 years, some new
structural (LiDAR scan tests, and UAV surveys) and geophysical
(Ultra Sonic Borehole Imager, Active Line Source temperature
logging, and fibre optic sensing for fluid temperature) techniques
have been developed to inform the discrete fracture network (DFN)
flowmodels used in the production of geothermal energy (e.g., Aabø
et al., 2005; Lima et al., 2019; Tavani et al., 2022; Welch, 2023). This
renewed interest has occurred to meet the ambitious targets set by
the Paris Agreement. According to this agreement, the reduction of
greenhouse gas emission is imperative, and it can be reduced by the
decarbonisation of our energy grid. In their attempts to reduce such
emissions, researchers have recognized the importance of
geothermal resources, which are essential in view of their direct
application to sustainable heating and electricity production (Rubio-
Maya et al., 2015; Salazar et al., 2017; Ciapala et al., 2021; Rybach,
2022).

As a consequence of the exigencies of a sustainable society, a review
of the techniques necessary to generate robust flow models in
geothermal reservoirs is needed to (i) approximate the anisotropic
and heterogeneous nature of geological media, (ii) account for the
exponential proliferation of numerical solutions in the last 30 years, and
(iii) integrate established and new experimental approaches. The most
recent technical approaches incorporate the use ofUAV surveys/LiDAR
tablets in thefield of remote sensing and seismic attributes from the field
of geophysics (Aabø et al., 2005; Smeraglia et al., 2021; Welch et al.,
2022). These new techniques also need to be integrated with the more
traditional ones (structural scanline surveys, fullbore formation
microimager logging, acoustic and optical televiewer logs), for
reconstruction of the 3D network of fractures. The techniques
mentioned above allow the generation of 3D discrete fractures with
more realistic geometry that can be used to characterize geothermal
reservoirs. Notably, other traditional methodologies are necessary when
the purpose of the modelling is to eventually understand the dynamics
of flow. In the latter case, the hydraulic aperture is also fundamental to
characterize Discrete Fracture Network (DFN) models (Quinn et al.,
2020; Romano et al., 2020; Hale et al., 2021).

To determine the applicability of the techniques reviewed in
this paper, models of fluid flow in a DFN framework are necessary

for medium (fluid temperature ranging from 90°C to 150°C) and
high enthalpy (fluid temperature equal or higher than 150°C)
hydrothermal reservoirs for fractured rocks of sedimentary
nature (see conceptual scheme in Figure 1). Here, such
geothermal resources are buried in the depth range of
approximately 0.15–5.0 km (Busby, 2014; Medici et al., 2019a;
De Franco et al., 2019; Melouah et al., 2021a; Melouah et al.,
2021b; Zheng et al., 2021; Xu et al., 2022; Zuo et al., 2022;
Eldosouky et al., 2023). In this depth range, the permeability of
the rocks is relatively low due to processes of groundwater
dissolution which are minimal, and DFN is needed to unravel
the amount of heat that can be extracted, and economically feasible
by studying the rock mass at a scale small enough (cubes of 0–3 km
of length) (Müller et al., 2010; Medici et al., 2018). The DFN
approach (Figure 1) is also fundamental in Enhanced Geothermal
Systems (EGS) to produce geothermal fluids from igneous and
metamorphic HDR that are characterized by particularly low
permeability due to a reduced hydraulic connectivity of the
natural fracturing network (Lu et al., 2023). In this framework,
fluids are injected at a pressure that could reactivate pre-existing
fractures or create new ones. EGS allows to (i) rise the fracture
connectivity and hence the permeability of the reservoir, and (ii)
increase the flow-surface contacts to favour heat exchange between
rock and injected fluid (Breede et al., 2013; Kong et al., 2014; Jain
et al., 2015; Wu and Li, 2020). By contrast, the Equivalent Porous
Medium (EPM) is more commonly used to model flow and heating
at much shallower depths to manage low-enthalpy geothermal
resources (Figure 1). EPM models can be used to model transfer
of heat plumes. Such EPM models allow reproducing both the
conductive and advective heat transport by groundwater in the
shallow subsurface for the planning of heat pumps (García-Gil
et al., 2020; Abesser et al., 2021). EPM and DFN approaches shown
in Figure 1 can also be used in the same geothermal project. In
fact, in a variety of EGS projects, a DFN is used to estimate the
permeability in three dimensions by defining the tensor. Then,
this information on the permeability tensor can be transferred
to EPM models that will be anisotropic for flow applications
in geothermal reservoirs of medium and high enthalpy nature
(Janiga et al., 2022; Ma et al., 2022).

FIGURE 1
EPM vs. DFN modelling in low, medium and high enthalpy geothermal energy.
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Some of the techniques described in this research to informDFN
models are common to the rock mechanics sector due to the
importance of rock discontinuities on the stability of rock
engineering infrastructures (Shang et al., 2016; Schilirò et al.,
2022), the excavation of rock caverns for the storage of liquefied
natural gas (Xiao et al., 2019), and the mining and oilandgas sectors
where fractures play a role in the extraction of fluids (Bauer and
Tóth, 2017). Therefore, this review is primarily addressed to a public
of experts in geothermal energy, although a wider range of
geoscientists may also find it of interest.

A look at recent literature that summarizes current knowledge
of DFN with a focus on geothermal resources reveals a special
issue (Mazzoli, 2022) with nine contributions that examine the
link between structural geology and extraction of fluids. All
nine contributions describe the tectonic structures of reservoir
analogues (Filipovich et al., 2020; Bossennec et al., 2022; Dragoni
and Santini, 2022), the fluid-rock interaction (Liotta et al., 2021;
Gudmundsson, 2022), and heat flow computing and mapping
(Santini et al., 2020; 2021; Majorowicz, 2021; Majorowicz and
Grasby, 2021). Previous reviews in the field of geothermal energy
have focused on the exploration of specific regions characterized
by elevated geothermal gradients (e.g., Minissale, 1991; Breede
et al., 2013; Manzella et al., 2018; Majorowicz, 2021). Other
attempts to review the literature on geothermics have focused
on numerical modelling of single and dual porosity systems, and
description of machine learning techniques (Hayashi et al., 1999;
Axelsson, 2010; Okoroafor et al., 2022) or combining different
approaches to flow modelling (discrete fracture network,
equivalent porous medium, and conduit) in specific lithologies
(Selroos et al., 2002; Medici et al., 2021). By contrast, this review
will be the first one to describe exclusively technological
and experimental techniques that inform DFN in geothermal

frameworks in a variety of lithologies with cut-off to the end of
the year 2023 (Figures 2, 3).

In summary, analysing structural, remote sensing,
geomechanical, hydro-geophysical methods, this review provides
guidelines for defining the physical parameters used to inform DFN
flow models of geothermal reservoirs discerning advantages/
limitations and conditions of application of the methods. Specific
research objectives are to provide descriptions of: (i) scanline and
Unmanned Aerial Vehicles surveys to determine orientation,
density, and length of fractures, (ii) combinations of Acoustic
Televiewer logging and seismic attributes to guide stochastic
generation of a DFN, (iii) hydro-geophysical techniques for
determination of hydraulically active fractures and hydraulic
apertures, and (iv) collection of geomechanical parameters for
generation of a DFN.

2 Fracture network characterization

2.1 Scanline survey

Scanline surveys are used to characterise the network of rock
discontinuities in outcrops (e.g., road cuts, quarries) that represent
an analogue of the reservoir. The geometries of the fractures are
measured in outcrop assuming a tectonic history sufficiently similar
to enable comparison in terms of fracture density and persistence
(Bauer et al., 2017). The methodology consists of recording dip angle
and direction, position along the line, length, mechanical aperture
and tortuosity of the rock discontinuities. The tortuosity is defined
as the ratio between the length of the curve and the distance between
its ends and is rarely measured by surveyors. Instead, surveyors
record this parameter by assigning an index, and therefore the

FIGURE 2
Outcrop exposures of fractured rocks at cliffs. (A)Cretaceous Limestone on the Tyrrhenian Sea in southern Latium, Italy, (B)Miocene volcanic rocks
of the Columbia River Basalt Group at the Palouse Falls, Washington, United States.
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FIGURE 3
Outcrop exposures suitable for scanline surveys along orthogonal axes in different lithologies. (A) Triassic Sandstone on a disused quarry at the
Fleswick Bay in NW England, (B) Creteceous Limestone at Terracina in Central Italy along a road cut, and (C) Dolostone and shale at the Reformatory
Quarry at Guelph, Ontario, Canada.
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measurement is semi-quantitative (Tsang, 1984; Hitchmough et al.,
2007).

Using scanline surveys to determine geometrical characteristics
of joints, fractures, stylolites and bedding plane discontinuities has
many advantages (Billi et al., 2003; Lemieux et al., 2009; Lancia et al.,
2020). Firstly, by performing the survey on orthogonal rock walls
measurements can be performed in the three dimentions (two
horizontal lines, and one vertical) which match fracture network
models that incorporate the third spatial axis. The performance of a

single horizontal scanline on a vertical face may fail to detect small
size discontinuities or those that are roughly parallel to the scanline
or concealed, resulting in bias during sampling (Shang et al., 2018).
To avoid bias, the condition of having orthogonal walls is commonly
chosen at quarries (Figures 3A–C), and under this condition the
majority of literature on this specific topic has been produced (e.g.,
Wealthall et al., 2001; Hitchmough et al., 2007; Lemieux et al., 2009;
Agosta et al., 2010; Medici et al., 2016). Secondly, the potential to
record parameters along both vertical, and horizontal lines reduces

FIGURE 4
Proportion peaked (thick lines) and un-peaked (thin lines) fractures as function of the methodology and the orientation of the borehole or scanline.
(A) sub-horizontal scanlines, (B) vertical boreholes or scanlines, and (C) inclined borehole.
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or eliminates bias by sampling discontinuities that are characterized
by a range of dipping angles (see conceptual scheme in Figures 4A,
B). Thirdly, this methodology allows the measurement of the length
of the rock discontinuities that cannot be measured directly in
boreholes (Aydin, 2000; Bauer et al., 2017; Lepillier et al., 2019;
2020).

However, scanline surveys that are performed to represent the
fracture network of geothermal reservoirs have some limitations.
The mechanical aperture does not fit the aperture of the reservoirs.
This issue occurs for the enhancement of the aperture due to an
unconfined free face at quarries and road cuts (Kana et al., 2013).
Weathering can also enlarge themechanical aperture. The lithostatic
load is much higher in reservoirs buried at depths between 0.5 and
5 km. The tectonic history of outcropping rock can differ from the
same rock buried in the subsurface, therefore the outcropping rock
might show a different pattern of rock discontinuities (Aydin, 2000;
Guerriero et al., 2011; Vitale et al., 2012). Scanline surveys are also
characterized by a degree of subjectivity. Indeed, surveyors that
performed a scanline in the same position multiple times produced
each time different results (Hitchmough et al., 2007).

Of note, some authors have introduced a simplified approach
named “fast scanline” that exclusively incorporates information on
dip angle and direction, and position along the line, thereby
reducing the scan time (Carminati et al., 2014). This fast
approach should be discarded for scanline surveys used to
reconstruct of the three dimensional pattern of rock
discontinuities. The length of rock discontinuities is a
fundamental parameter that must be recorded in an outcrop in a
DFN research project. By contrast, neglecting the mechanical
aperture may be acceptable due to the non representativity of
that parameter in the outcrop (Bauer et al., 2017). The tortuosity
can also be neglected by choosing to build DFN flowmodels in three
dimensions with tabular discontinuities.

Dip angle and directions, position and length of the fracture can
also be extrapolated from LiDAR scan tests using tablets in the field

(Apple iPAD, iPAD Pro and iPhone 12 Pro). This method is faster
than traditional scanline tests and provide accurate geometrical data
(Tavani et al., 2022; Allmendinger and Karabinos, 2023). However,
the limitation of technologically scanning an outcrop without
measuring each rock discontinuity consists on loosing detail on
recognizing geological nature (e.g., bedding planes vs. stylolites).

2.2 Unmanned aerial vehicle

In practice, substantial parts of rock outcrops are not accessible
for structural scanlines. To sidestep this issue, unmanned aerial
vehicles (UAV; Figure 5) are used to acquire information on the
geometries of the fractures at cliffs such as those shown in Figure 2,
where surveyors either cannot walk or transport equipment on
top. UAVs are characterized by their megapixel photosensors,
and are therefore capable of collecting numerous (~102–103)
photos of the outcrop with a certain percentage (e.g., 70%) of
spatial overlap. After the photos have been taken, the next step is
to extract information on the geometry of rock discontinuities by
manual digitalization of joints, bedding planes, and faults (Binda
et al., 2021). The UAV for applications in geosciences are
characterized by different airframes polystyrene, plastic,
aluminum, and carbon fiber for the most modern (Giordan et al.,
2020). All the rock discontinuities are rigorously georeferenced, and
the described approach allows for the collection of information on
dip angle and direction, and the density of fractures. This
information is equivalent to data obtained from structural
scanlines acquired in road cuts and quarries. Consequently, the
statistics on the fracturing network obtained from structural
scanlines and from UAV can be integrated as proposed by
Smeraglia et al. (2021). These authors combined information
from scanline surveys on road cuts with fracture statistics from
UAV photos of the unaccessible portion of a cliff that is
characterized by Cretaceous limestones. The information

FIGURE 5
UAV survey to extract fracture statistics on the pavement of fractured dolostone at Guelph, Ontario, Canada.
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acquired by combining structural surveys on road cuts and UAV
photogrammetry was used to generate DFN models of faulted and
host-rock blocks using the MOVE Software Suite. Using the same
suite, DFN models of fractured Mesozoic limestones in southern
Italy were generated by Giuffrida et al. (2020), combining structural
analysis in the field with the extraction of geometrical fracture data
from an UAV as the one shown in Figure 5.

Furthermore, statistics on fracture geometry extracted using
UAV has been recently used by a variety of authors on different
lithologies. Francioni et al. (2020) extracted fracture statistics from a
UAV survey to generate a 3D DFN model of marls and limestone of
the Jurassic Age in the Abruzzi region in the area of Scanno Lake. A
DFN model in three dimensions has also been generated using a
UAV survey in the Triassic granites of the Gonghe Basin in China in
the framework of a high enthalpy geothermal project for the
development of an EGS system (Zhang B. et al., 2022).

UAV surveys for the generation of 3D DFN models have also
been used on the Cretaceous limestones of the Sorrento Peninsula in
southern Italy (Schilirò et al., 2022), the Jurassic marble of the
Apuan Alps in central-western Italy (Salvini et al., 2017), the
Cretaceous sandstone in northern Togo (Akara et al., 2020), and
the Triassic sandstone near Sydney in Australia (Tuckey, 2022). Of
note, UAV surveys similarly to LiDAR tablets show a limitation on
discerning the geological nature of the rock discontinuity.

2.3 Borehole images

Optical (OTV), Acoustic televiewer (ATV) and Fullbore formation
microimager (FMI) images show continuous views of the borehole wall,
and allow to record dip direction and angle, and position along the
borehole in fractured rocks. Dip direction and angle can be determined
by structure peaking after acquisition and processing of the dataset
(Williams and Johnson, 2004). The position of the rock discontinuities
along the borehole allows determining the fracturing intensity that is a
required parameter to build DFN models in three dimensions (Guo
et al., 2022; Xiao and He, 2022).

Notably, OTV and ATV logs provide the same information,
although differences have been detected by applying the two
methods. Fractures are more clearly defined under a wider range of
conditions on ATV images than on OTV images including dark-
coloured rocks, cloudy borehole water, and coated borehole walls.
Hence, the most important dataset to build DFN models is the one
fromATV.A high resolution example of ATV is the SchlumbergerUltra
Sonic Borehole Imager (UBI) that is commonly used in medium and
high enthalpy geothermal systems. This type of ATV is characterized by
an azimuthal resolution of 2°, vertical resolution from 0.2′ to 1.0′
depending on the pulse frequency (Genter et al., 1997; Gaillot et al.,
2007). However, OTV images allow for the direct viewing of the type of
fracture, and relation between lithology, fractures, foliation, and bedding
(Williams and Johnson, 2004; Medici et al., 2016; Medici et al., 2019b).
Therefore, the most powerful approach is the combined application of
imaging, by using ATV to determine the orientation of the fractures and
OTV to interpret its nature (e.g., distinguish a stylolite from an open
bedding plane fracture). The FMI tool is also used in geothermal fields to
determine the orientation of the fractures. This wireline tool works by
emitting a focused current from the four pads of the logging tool into the
geological formations. The intensity variations of the electrical resistivity

are measured and provide an image of the rock walls. The FMI provide
the same output of OTV andATV logs, but it is preferred in water based
mud wells that can occur in fluivial and turbidite deposits (Bauer et al.,
2017).

The principal advantage of OTV, ATV, and FMI logs with respect
to traditional scanlines, LiDAR scan tests and UAV surveys is the
opportunity to acquire the dataset directly in the geothermal reservoir.
The ATV log also provides the value of mechanical aperture due to the
fact that open discontinuities are characterized by low amplitude and
travel times of the acoustic waves. However, the aperture highlighted by
the acoustic televiewer is much higher than the real hydraulic aperture
(the necessary parameter for DFN flow models) as demonstrated by
Maldaner et al. (2018) in a Silurian fractured aquifer of carbonate origin
in Ontario.

Data on the fracturing intensity are affected by bias especially
when only vertical wells are used in the geothermal projects
(Terzaghi, 1965; Lato et al., 2010; Andrews et al., 2019). In fact,
vertical wells tend to pick low (0°–30°) angle discontinuities if the
stratigraphy is characterized by sub-horizontal beds as illustrated in
Figure 4A. To address this issue, the presence of inclined (or
deviated) wells with a plunge of 60° from horizontal allows
picking a higher proportion of sub-vertical joints (Figure 4C;
Munn et al., 2020). The inclined boreholes have on average, a
20% proportion of sub-vertical (50°–90°). This proportion is
lower, 6% by arithmetic average, in the vertical boreholes that are
biased towards the sub-horizontal discontinuities (Figure 4A).
Therefore, the presence of vertical and inclined wells provide
more robust statistics on fracturing intensity to build Discrete
Fracture Network (DFN) models.

2.4 Seismic attributes

The use of seismic attributes is used to generated 3D DFN
models due to their capability to detect the principal trends, and
presence of faults that can represent preferential flow pathways for
the geothermal fluids (Bense et al., 2013; 2016; Schneider et al., 2016;
Cho et al., 2019; Marchesini et al., 2019; Cho, 2021; Fadel et al., 2022;
Huang et al., 2022; Xing et al., 2022; Zhang E. Y. et al., 2022; Chiodini
et al., 2023).

An integrative workflow to the characterization of the 3D
network of fractures have been recently developed in the
Cretaceous Danish Chalk in the North Sea (Aabø et al., 2005;
Aabø et al., 2023; Smith and Welch, 2023). This approach is
based on reservoir data from ATV borehole images, cores and
seismic attributes (Aabø et al., 2005). ATV and core data provide
information on fracture orientation from a variety of wells. Seismic
attributes are capable to detect the principal trends of fractures and
faults of the reservoirs. The scale-gap between the data sets is bridged
by the introduction of two antracked attribute volumes, which
display structural trends below the resolution of amplitude
seismic. Further insight into the geometries of subsurface fracture
systems is obtained from fracture density logs from ATV/OTV/FMI
and cores, which provide an opportunity to study spatial
distribution of fractures as well as a qualitative measure of
fracture clustering. Cumulative density distribution plots and
calculation of the variation coefficient of fracture spacing provide
a more quantitative analysis of the fracture distribution (Aabø et al.,

Frontiers in Earth Science frontiersin.org07

Medici et al. 10.3389/feart.2023.1328397

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1328397


2005). These results have served as inputs into discrete fracture
network models that have been then stochastically generated using
the new DFN Generator v2.0 now available as a plugin in Petrel
(Welch et al., 2022; Welch, 2023).

3 Hydraulic characterization

3.1 Cubic law

DFN models that are used to simulate flow require input values
from fracture intensity, length and orientation from outcrop and
borehole image (ATV, OTV, and FMI) logs and the apertures of the
rock discontinuities. The latter parameter, which represents the aperture
of a parallel walled fracture, is the most important parameter when
simulating flow in a DFN framework, and is directly proportional to the
permeability of the rocks. Indeed, highly permeable rocks are
characterized by an elevated number of fractures with large
hydraulic aperture (Oron and Berkowitz, 1998; Dijk et al., 1999;
Berkowitz, 2002). The hydraulic aperture (see conceptual scheme in
Figure 6A) is assumed to be a smoothed parallel plate in DFN flow
modelling in a variety of numerical codes such as dfnWorks, TOUGH2,
MAFIC, and PFLOTRAN (Zhang and Yin, 2014; Hyman et al., 2015; Ji
and Koh, 2017; Romano et al., 2020). This assumption is related to the
fact that two straight lines represent the lower and upper bounds of the
modelled fracture. The straight lines average the peaks and valleys of
rough real walls of joints and bedding plane fractures (Figures 6A, B;
Renshaw, 1995). Hence, given this assumption, the hydraulic aperture
(b) is expressed by Eq. 1 based on the implementation of the cubic law
assuming a laminar flow (Romm, 1966).

b �
�����
12v T
gN

3

√
(1)

where T is the screened interval transmissivity, g is the gravitational
acceleration, v the kinematic viscosity of hot water in the geothermal
reservoir, and N the number of flowing fractures intersecting the

screened interval. Screened interval transmissivity (T) is determined
by a well test, and is the product of the rock hydraulic conductivity
and the packer screen length. Given the fact that there is no need to
experimentally determine g and v, geophysically determining “b”
means characterizing the transmissivity of the fractured rock using
well tests, and detecting the number of hydraulically active fractures
using either standard fluid logging or more advanced techniques
(Romm, 1966; Haffen et al., 2013). In a DFN framework for
geothermal energy production, all the rock discontinuities need
to be represented in the 3D domain even though not all of them are
hydraulically active. In fact, inactive fractures can represent either
boundaries that can influence the flow, or surfaces of mechanical
weakness that play a role in the development of EGS systems of
igneous and metamorphic origin (Caulk and Tomac, 2017; Förster
et al., 2018; Freitag et al., 2022). Reliable models of 3D networks of
fractures are fundamental in EGS systems to predict the new
framework of rock discontinuities after the injecting of fluids at
high pressure. This engineering process changes the pre-existing
fractures by enhancing their (i) length, (ii) degree of connectivity,
(iii) transmissivity, and (iv) storativity as geothermal reservoirs
(Lepillier et al., 2019; Abe and Horne, 2023).

3.2 Well tests

A variety of well tests are used to determine the transmissivity of
deep saline aquifers that host medium and high enthalpy geothermal
resources in lithified sedimentary rocks. Boreholes are typically
characterized by multiple packers in deep (~0.15–~2.0 km) saline
aquifers, and the Westbay technologies proposed by Schlumberger
can be used at such elevated depths in hydrothermal reservoirs
(Streetly et al., 2000; Streetly et al., 2006; Senel et al., 2014; Streetly
and Heathcote, 2018).

Constant flow rate pumping tests provides T by analysing the
drawdown, which is a fundamental parameter in the determination
of the hydraulic aperture using Eq. 1. The recovery phase (flow rate
equal to zero after shutting off the pump) can also provide an

FIGURE 6
Hydraulic aperture in fractured rocks. (A) Smooth parallel plate vs. rough walled models, and (B) real mechanical aperture.
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estimate of T that should approximate the result of the drawdown in
a reliable test (Hantush, 1966; Saleem, 1970; Medici et al., 2016).
Additionally, constant head step tests accurately identify the extent
of the Darcian flow and are also used to determine T by analysing the
drawdown. Therefore, “b” can be extrapolated by analysing the
drowdown. Such tests are characterized by raising the flow rate in at
least four steps, before shutting off the pump (Clark, 1977; Birsoy
and Summers, 1980; Kawecki, 1995; Lennox, 1996). The T value
from the step test analysis can also be crossed with the T value from
the recovery. Additionally, in this case, reliable tests are
characterized by very similar T values from the drawdown step
and the recovery phase. Notably, T values from the recovery phase
neglect the well loss correction, and can therefore be 20% lower than
T values obtained from the more reliable step recovery analysis
(Eden and Hazel, 1973; Clark, 1977; Mathias and Todman, 2010). A
correction that accounts for the density changes due to the
temperatures, and viscosities of geothermal fluids has recently
been proposed to determine transmissivity from constant flow
rate, recovery and step tests (Klinka and Gutierrez, 2020). The
correction arises from the fact that traditional methods for
analysis of pumping tests (e.g., Hantush, 1966; Eden and Hazel,
1973; Clark, 1977; Birsoy and Summers, 1980) are suitable in shallow
aquifers which are characterized by lower temperatures and
different density with respect to geothermal fluids.

3.3 Borehole geophysical logging for fluids

Borehole geophysical logging techniques are used to determine
the number of hydraulically active fractures (N) in a packer interval
to determine the hydraulic aperture using Eq. 1, which is derived
using the cubic law (Romm, 1966). The most common approach is
to combine fluid temperature, electrical conductivity and velocity
logs to detect either inflow or outflow points using flow meters
(Hicks and Berry, 1956; Paillet and Pedler, 1996; Paillet et al., 2002;
Bixley et al., 2009; Massiot et al., 2015; Wight and Bennett, 2015;
Blöcher et al., 2016). By crossing this information with optical and
acoustic televiewer images that show the fractures at flowing points
the number (N in Eq. 1) of hydraulically active rock discontinuities
that enable fluid flow is determined. The transmissivity is known
from well tests performed in Westbay packers that are located at
different depths. Hence, the hydraulic aperture is determined by
using Eq. 1 at a variety of depths in the subsurface, and DFN flow
models can be rigorously informed.

A more innovative approach that can be used to determine the
number of hydraulically active fractures in deep saline aquifers is
Active Line Source (ALS) temperature logging. The ALS
temperature logging data from inside a FLUTe™ lined borehole
must be collected and processed as described by Pehme et al. (2013)
to generate thermal deviation logs where each aberration in the
deviation log represents a change in temperature that suggests a
fracture with active flow. After the addition of heat along a cable
deployed into the static water column inside the liner, a high-
resolution temperature probe with a specific resolution of 10−4°C
is used to measure temperature variability. The ALS temperature
logging method is considered a qualitative log that identifies very
small temperature deviations that have been shown to correspond to
active flow (Pehme et al., 2007; 2013). This methodology is highly

sensitive, and capable of detecting all the flowing fractures needed to
determine N, and therefore the hydraulic aperture using the
derivation of the cubic law expressed in Eq. 1. Fibre optic
sensing-based solutions produced by Silixa are also suitable for
temperature monitoring and detection of the number (N) of
hydraulically active fractures in geothermal reservoirs (Stork
et al., 2020).

Aside from the technology used for detection of hydraulically
active rock discontinuities, a percentage (approximately 100%) of
flowing fractures characterize the geothermal reservoirs of igneous
and metamorphic origin under pumped conditions. These types of
rocks show a low permeability intergranular porosity in the un-
fractured blocks (Szanyi, J. and Kovács, B., 2010; Randolph and Saar,
2011; Agemar et al., 2014; Medici et al., 2018). In the latter case, the
hydraulic conductivity of the intergranular pores can be neglected in
DFN (single permeability geothermal reservoirs), but all the
fractures of the network are active and need to be included in
the flow model. In contrast, geothermal reservoirs of sedimentary
origin (e.g., porous carbonates, not tight sandstone) are
characterized by a relatively permeable matrix (dual permeability
geothermal reservoirs), and the percentage of hydraulically active
fractures range from 20% to 80% of the total under pumped
conditions (Tellam and Barker, 2006; Quinn et al., 2015; Goupil
et al., 2022). Therefore, the permeability of the matrix blocks should
not be neglected in the latter case by embedding the discrete
fractures in a porous matrix. The permeability of the matrix can
be measured in the laboratory by using a mini-permeameter to test
rock samples from cores (Shafiq and Mahmud, 2017; Cant et al.,
2018; Bohnsack et al., 2020; Fazio et al., 2021).

4 Geomechanical characterization

Collection of geomechanical parameters is also needed to build
DFN models in EGS systems in igneous and metamorphic rocks.
Uniaxial Compressive Strength, Poisson’s ratio, and Young’s
modulus need to be determined in the laboratory by using either
analogous outcropping rocks, or core samples (Bozzano et al., 2012;
Torabi et al., 2018; Shang, 2020; Fiorucci et al., 2020; Marmoni et al.,
2020). Of note, outcropping rocks provide different Uniaxial
Compressive Strength and Young’s modulus values respect to the
same geological formations cored from the geothermal reservoir.
The discrepancy can be up to 50%; the samples from the outcrop are
mechanically weaker than those of the reservoir due to the
weathering effects on cliffs, quarry walls and road cuts (Bauer
et al., 2017). The above mentioned mechanical parameters
(compressive strength, Young’s modulus, and Poisson’s ratio)
ideally need to be determined using triaxial compressive tests.
These mechanical tests are characterized by lateral confinement
and a longer duration than uniaxial tests. Such conditions induce the
samples to be either more ductile or closer of the mechanical
behaviour of the subsurface under triaxial forces (Mogi, 1971; Li
et al., 1999; Sari and Karpuz, 2006).

The most reliable approach to the geomechanical
characterization of a geothermal reservoir is therefore
characterize compressive strength, Young’s Modulus and
Poisson’s ratio running mechanical tests with lateral confinement
of samples cored from the reservoir. These geomechanical
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parameters must be determined on both intact and fractured
samples. An intensively fractured geothermal reservoir is
assumed being characterized by geomechanical parameters closer
to the fissured samples selected from the core cuts (Villeneuve et al.,
2018; Rosberg and Erlström, 2021; Freitag et al., 2022).

Determining representative Young’s Modulus and Poisson’s ratio
values for an high enthalpy reservoir is fundamental to estimate the
mechanical aperture as function of the stress field under natural
conditions. Following this geomechanical approach, the hydraulic
aperture is also function of the orientation of the fractures with
respect to the principal stress tensor, σ1. Indeed, more elevated
angles between the direction of the σ1 and the fractures provide
lower values of mechanical apertures due to interplays of dilatational
and shear forces (Bisdom et al., 2016; 2017). This information on the
mechanical aperture need to informDFNmodels (Romano et al., 2020;
Rosberg and Erlström, 2021; Freitag et al., 2022). Recent and promising
research focuses on determining the Young’s modulus value directly
from the reservoir studying the acoustic impedance fromATV logs; this
approach is either alternative or integrative to geomechanical testing in
the laboratory of cored samples (Raef et al., 2015; Roshan et al., 2023).

Fractures in DFN models are typically assumed smoothed
(Figure 6B), although the roughness can reduce the permeability
at least in systems characterized by a low degree of mechanical
connectivity (Berkowitz, 2002). Joint Roughness Coefficient (JRC)
also needs to be characterized in the laboratory on cored samples to
inform DFN models in geothermal reservoirs using laser
profilometers (Lee and Ahn, 2004; MŁynarczuk, 2010).
Alternatively, some authors build DFN models (Figure 1) of
geothermal reservoirs reducing the aperture of smoothed
fractures that was previously estimated from either hydraulic or
geomechanical methods. This correction is not rigorous, but can be a
straightforward solution accounting for the roughness of the
fractures that reduce either the permeability of the reservoir, or
favour heat dispersion in EGS (Fox et al., 2015; Lima et al., 2019;
Kittilä et al., 2020a; b).

5 Discussion

5.1 Fracturing network reconstruction

A variety of structural (scanline surveys), remote sensing (UAV),
and geophysical (OTV/ATV/FMI images, seismic attributes) methods
have been recently developed to generate reliable DFN models (Aabø
et al., 2005; Antonellini et al., 2014; Giuffrida et al., 2020). Here, we
discuss all together these geological and geophysical techniques for
geothermal reservoir characterization. Note that, a summary table

(Table 1) has been proposed to summarize the characteristics of
scanline surveys, borehole images, and seismic attributes.

Scanline and UAV surveys have recently been combined to
generate DFN models in the outcropping fractured limestone in
Central and Southern Italy. These carbonate rocks represent
excellent analogues for the geothermal and hydrocarbon
reservoirs buried in the subsurface (Giuffrida et al., 2020;
Smeraglia et al., 2021). In northern Europe, other researchers
propose to combine core data, seismic attributes and acoustic/
resistivity images to stochastically generate a DFN afterwards
(Aabø et al., 2005; Welch et al., 2022; Smit and Welch, 2023). Of
note, once again a holistic approach to a DFN project has been
proposed by the geoscience community.

Scanline and UAV surveys of reservoir analogues and the
seismic attributes of the effective reservoir make a DFN
stochastic generation more reliable. Scanline and UAV surveys
provide information on the length of the fractures, and seismic
attributes have the unique advantage to bridge the gap between
borehole and reservoir scales (Table 1; Salvini et al., 2017; Lepillier
et al., 2020; Aabø et al., 2005Aabø et al., 2005; Smeraglia et al., 2021).
Acoustic and resistivity image logs acquire data directly from the
reservoir (Table 1), and therefore provide the effective orientation of
the fractures. Geophysical logging and seismic attributes should be
used to determine the orientation of the fracture sets; meanwhile
scanline and UAV surveys are needed to determine the length of the
principal and secondary sets.

Overall, this paper envisions a future in which researchers combine
geophysical techniques, and structural geology surveys in the field to
build robust models of the fracturing network. The above described
spatial representation of the discrete fractures also supports a rigorous
determination of the hydraulic aperture. In fact, this aperture
(Figure 6A) depends upon multiple factors including the orientation
of the fractures with respect to the stress field tensors σ1, σ2, and σ3
(Bisdom et al., 2016; 2017; Turner et al., 2017; Boersma et al., 2021).

5.2 Hydraulic aperture determination

The ATV logs have also been taken into account by researchers to
either determine the Young’s modulus of the reservoir rock, or detect
the number of hydraulically active fractures in geothermal reservoirs.
The latter information needs to be combined with pumping tests in
discrete packers to determine the values of the hydraulic apertures that
are necessary to move forward to flow modelling (Romano et al., 2020;
Medici et al., 2021). Therefore, the efforts in terms of data collection to
support flow modelling in a DFN framework also involve ATV/OTV/
FMI borehole logging, fluid logging, and pumping tests. Hydraulic

TABLE 1 Summary of the techniques used for construction of the fracturing network with information of the object characterized, depth of investigation and the
spatial scale.

Methodology Object characterized Depth of investigation (m) Observation scale (m)

Scanlines Analogue 0 Outcrop (~100–102)

UAV Analogue 0 Outcrop (~100–102)

FMI/ATV/OTV immages Reservoir 0–5,000 Borehole (~10−2–10−1)

Seismic attributes Reservoir 0–5,000 Reservoir (~102–103)
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testing is more feasible in medium and high enthalpy reservoirs in
lithified sedimentary rocks, since such highly layered and fractured
rocks tend to be more permeable than igneous and metamorphic
lithologies (Clauser, 1992; Younger et al., 2012; Zhang, 2013). The
latter two types of rocks characterize EGS-HDR systems; in these
geothermal reservoirs, the apertures of the fractures are estimated by
the mechanical properties (Poisson’s ratio, and Young’s modulus), and
they vary as functions of the lithostatic load (Bisdom et al., 2016; 2017).
This approach arises from the low permeabilities of basement rocks that
impede pumping tests during the exploration phase before the injection
of fluids to increase the connectivity of the fractures (Abe and Horne,
2023).

Hence, all the described structural, remote sensing,
geophysical, geomechanical and hydraulic datasets seem
fundamental to generating reliable models of the fracturing
network and then moving forward to simulating flow by
introducing the hydraulic aperture (Figure 6A). To the authors’
knowledge, the techniques described in this review have been
combined exclusively in small groups with few components
(e.g., outcrop scan lines with fracture statistics from UAV,
OTV/ATV/FMI images with seismic attributes, and fluid logging
with ATV images). This review therefore points the geothermal
community towards a larger combination of the discussed
techniques in future E&P projects to optimize recovery of hot

fluids by using DFN to either (i) represent the fracturing network
in three dimensions, or (ii) estimate the hydraulic aperture.

5.3 Workflow and future research scenarios

The proposed research has described a variety of geological,
geophysical, hydraulic and geomechanical techniques that can be
used to investigate geothermal reservoirs at a variety of scales to
inform DFNmodels of permeability and flow. These techniques can
be summarized in two workflows for hydrothermal systems
(Figure 7A) and enhanced geothermal systems for the extraction
from HDR (Figure 7B). The workflows are different because some
techniques cannot support extraction of fluids from both types of
geothermal systems. Fluid logs and pumping tests cannot be applied
to HDR due to the particularly low hydraulic conductivity of igneous
and metamorphic rocks at depths (~0.5–2 km) accessed during this
investigation (Kittilä et al., 2020a; b). Therefore, the cubic law cannot
be applied to estimate the hyadraulic aperture of a DFN in such
reservoirs (Figure 7B). Another key difference is that the above
described techniques can be directly transferred into the DFN flow
models that guide the production of fluids in hydrothermal
reservoirs. Such models are highly reliable because they integrate
all the structural geology, geophysical and hydraulic tests shown in

FIGURE 7
Workflows to build a DFN for flow in a geothermal framework. (A) Hydrothermal, and (B) HDR reservoirs.
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Figure 7A. Therefore, the need to fund research focused on data
collection appears to be crucial to support geothermal production in
naturally fractured sedimentary rocks that host hydrothermal
reservoirs.

A different scenario and area for future research appear from the
workflow shown in Figure 7B for HDR of igneous and metamorphic
origin. Three steps ofmodelling are necessary after collection of fracture
data in the field, borehole geophysical logging, and geomechanical data
to determine the hydraulic parameters needed to move forward to
production of geothermal fluids. Researchers need to build a DFN for
flowdetermining themechanical aperture through numericalmedelling
(Figure 7B; Bisdom et al., 2016; 2017). Additionally, either before fluid
injection, or after by accounting for the enhanced fracturing pattern
modelling is involved in the workflow. This review therefore shows that
several datasets need to be collected to enable production of fluids in
HDR systems. In these reservoirs (Figure 7B), collection of data need to
be more heavily integrated with numerical modelling research that can
be funded by governments and agencies.

6 Conclusion

Geothermal reservoirs modelling is challenging in a DFN
framework due to the complexity of the structural geology, and the
range of geomechanical and hydro-geophysical techniques required to
represent fluid flow in heterogeneous geological media. This review for
the first time summarizes different datasets while also discussing
advantages/limitations and the potentialities of their combinations.
The findings in this paper for DFN characterization will support
models for the production of geothermal fluids, and can be
summarized in the following five key points:

1. Structural scanlines and fracture statistics extracted from UAV
surveys on outcropping analogues of reservoirs are the only
approaches that provide the length of joints, bedding planes,
and faults; these parameters guide and facilitate the stochastic
generation of DFN models in lithified sedimentary, igneous, and
metamorphic rocks.

2. The combination of ATV/FMI images and seismic attributes has
also been proven to be an excellent approach that supports the
stochastic generation of DFN models. The ATV/FMI images
provide the only way to acquire orientation and the density of the
fractures in the reservoirs, and the seismic attributes reveal the
dominant trends of the joints and faults. Authors therefore
envisage researchers to combine ATV logs images and seismic
attributes with information from outcrop scanlines to acquire
information on either the orientation or length of the fractures.

3. Computation of transmissivities from pumping tests and the
number of hydraulically active fractures allows the hydraulic
aperture to be determined; the aperture is a fundamental
parameter that is needed to simulate flow in a network of
discrete fractures. Pumping tests are used to compute the
transmissvities in hydrothermal reservoirs, and the
combinations of ATV logs and fluid temperature, and of
electrical conductivities and velocity logs, determine the
number of hydraulically active fractures.

4. Researchers need to determine geomechanical parameters
(roughness, Young’s modulus, Poisson’s ratio, and

compressive strength) and estimate the apertures of rock
discontinuities to inform DFN models in EGS/HDR. This
information needs to be determined by laboratory testing on
either intact or fractured samples of igneous and methamorphic
rocks cored from the geothermal reservoir, and transferred to
fractures that are correctly oriented with respect to the stress field.

5. Combinations of scanline surveys, fracture statistics from UAV,
seismic attributes, geomechanical surveys, fluid logging and
pumping tests still need to be evaluated by researchers before the
parameters obtained from these techniques can be used for DFN
flow modelling. This combination of technique has the potential to
significantly improve fluid recovery in geothermal reservoirs.

Overall, networks of joints, bedding planes, and faults highly
control fluid flow in deep saline aquifers and Hot Dry Rocks that
host critical geothermal resources worldwide. Structural geologists,
hydrogeologists, and reservoir engineers can find information in this
review article on all the techniques used to characterize geothermal
reservoirs as part of the preparation process for developing robust
DFN flow models.
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