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Abstract

In this thesis we study some asymptotic and validity problems concerning Vlasov-type
equations. In the first part of the work we focus on the Landau damping and the long-time
behavior of solutions of the Vlasov-HMF and Vlasov-Poisson equations. We do it by looking
at the scattering problem, where the asymptotic datum is fixed, in the style of the work [17,
Bibliog. Part I]. In the second part of the thesis we focus on validity problems for kinetic
equations with topological interaction. This interaction does not depend on the metric
distance but rather on the proximity rank among the agents and, in the last decade, has
been widely used to describe biological systems that exhibit collective behaviors.
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Introduction

This thesis deals with the mathematical theory of various partial differential equations
arising as models of phenomena belonging to two different branches of physics: plasma
physics and the physics of complex systems. These models share the feature that they all
come from kinetic theory and they use a statistical description of the system.

Most of the PDE models studied in this work can be englobed in a unique definition,
giving them the name of Vlasov-type equations. They read as

Of(t,x,0) + v - Vo f(t,z,v) + V- (K[f](t,x,v)f(t,x,v)) —0, (1)

where f; = f(t,z,v) : R x X x R?is the distribution function of the agents in the system
having position x in the configuration space X and velocity v € R? at time ¢ € R. The
functional K[f] : R x X x R? — R will be the nonlocal mean-field interaction. This is
obtained by averaging the individual interactions between agents with the distribution
given by f. In the following we will specify its definition from time to time.

Concerning these equations, we focus on two main aspects:

m the asymptotic behavior of solutions of Vlasov-type equations coming from plasma
physics and, in particular, the phenomenon of Landau damping;

m the rigorous derivation of Vlasov-type equations from microscopic particle systems
modeling collective phenomena with agents interacting via “topological” interaction,
a type of irregular interaction presenting jump discontinuities.

This work is organized into two parts, each concerning one of these two topics.

The configuration space X will depend on the problem addressed. For the plasma
physics problems of the first part of the thesis we work on the d-dimensional torus, i.e. the
periodic box T¢ = R?/(277Z)?, while in the case of collective dynamics problems of the
second part we work in the d-dimensional Euclidean space R,

xi




INTRODUCTION

Part I - Scattering approach to the Landau damping

In the first part of this work, we consider the Vlasov-Poisson equation, the main kinetic
equation used to describe collisionless plasmas of electrons. In this case

Kif(ea) = -9 |

W(e —y)f(t,y,v) dydv) @
Tdx R4

where W is the fundamental solution of the Laplace operator in T%, i.e. the Coulomb
potential on T? if d = 3. We consider stationary regular solutions depending only on the
velocities and we perturb them in suitable functional spaces with high regularity.

Already in the ‘40s, L. Landau in [26, Bibliog. Part I], considered an analytic stationary
state 1) which satisfies a precise stability condition, and noticed that the perturbed solution
of the linearized equation around 7 relaxes asymptotically towards a new equilibrium
causing the electric field to decay exponentially. This phenomenon is now called Landau
damping.

In this thesis, we focus on the nonlinear Landau damping for (1), (2) and on a scattering
approach for the existence of damped solutions introduced by E. Caglioti and C. Maffei
in [17, Bibliog. Part I]. The goal is to understand the relationship between the backward
scattering result and the forward result for the Cauchy problem, developed by C. Mouhot
and C. Villani in [36, Bibliog. Part I].

The analysis will concentrate especially on some resonances present in the equation
and experimentally observed, called plasma echoes. Let us briefly explain what they are,
considering the one-dimensional case.

Referring to equation (1), (2), passing to Fourier transform and considering the equation
for the density p(t,z) = { f(¢, z,v) dv, we will deal with a mode-by-mode equation of the
form

+o0 R
pt(n) = linear terms + Z J ﬁs(k)%(s —t)hs(n — k,nt — ks) ds, (3)
k0t

where k,n € Z and p denotes the Fourier transform of p (see (1.7) for the notations) and
h(t,z,v) = f(t,z + vt,v).

The modes h should decay with a rate that depends on the regularity of f, but notice
that, when nt ~ ks in (3), the corresponding term has no decay and thus we expect that,
if # > 1, at times 7 = 7! the density p (k) would strongly influence p¢(n). This effect is
called plasma echo and has been experimentally observed in the ‘60s by J. H. Malmberg et
al. in [32, Bibliog. Part I].

From a mathematical point of view, in the Fulerian approach, the aim is to obtain global
in-time regularity estimates on the solutions using norms quantifying the decay of its
Fourier transform. Plasma echoes make it challenging to close the a priori estimates using
the cited norms. In general the validity of the damping depends on the regularity setting,
and in particular on the choice of data with analytic or Gevrey regularity, an intermediate
class between analytic and C™ functions.

To study this issue, after reviewing some results on the Landau damping in Chapter 1,
we present two works.

Xii



INTRODUCTION

Comparative study for Vlasov-HMF equation In Chapter 2, we consider a simplifi-
cation of the Vlasov equation, called Vlasov-HMF (Hamiltonian mean-field model) model.
In this case d = 1 and

Kflea) = —on( |

cos(w — ) f(t,y,v) dy dv).
TIxR

This approximated model has been widely studied in the last decades being a handy
reduction of the Vlasov-Poisson equation, in which the singularity of the kernel is removed
by replacing it with a cosine function. It can be easily implemented numerically to study
the features of a long-range interaction (see [1, 5, 18, Bibliog. Part I]). Furthermore, as we
will see, it is also a useful testing ground from a mathematical point of view for studying
issues about long-time behavior of solutions.

However, in this case the resonances due to plasma echoes are few: in fact, the equation
verified by the given density p is not the one (3) but

+o0
pt(n) = linear terms + Z J ps(k)(s —t)hs(n — k,nt — ks)ds, n = +1.
k=+17t

So we have that nt — ks = 0 only when s = +t. This simplifies the treatment.

For this model, we adapt the Eulerian forward techniques to the backward problem to
make a comparison in the case of analytic solutions. What results is that in the backward
approach the a priori estimates on the solutions of the equation are greatly simplified by
the exponential decay guaranteed by the analytic regularity. In the backward case, this
also allows to provide a very precise rate that describes the evolution of the regularity of
the solution over time.

We also prove a nonperturbative result, through a more accurate analysis of nonlinear
terms.

Backward approach for the Vlasov-Poisson equation with Gevrey data In Chapter
3, we focus on the scattering problem for the one-dimensional Vlasov-Poisson equation
given by (1), (2). We consider analytic and Gevrey asymptotic data, the latter case not
covered in [17, Bibliog. Part I].

In this work, a function f € L?(T?x R?) belongs to the 1/v-Gevrey class with regularity
parameter A if

If

Roo = 2 fRd A (0, % | f(n, )P dé < o0, 4)

neZd

where [ is the Fourier transform of f, (n, &) = (1 + [¢]2 + [7]*)/2 and & > 0 is fixed.

Notice that, if (4) holds with =1, then the function f has analytic regularity. In general,
this class of functions has some properties - among which the existence of Gevrey functions
with compact support - which make their use in the study of evolutive PDEs very convenient
(see [20, 42, 19, Bibliog. Part I).

Also in this Chapter we use forward techniques for the backward perturbative problem,
allowing, in the analytic case, to overcome the plasma echoes mechanism with a simple
proof. Moreover, we extend the proof to asymptotic data of 1/y-Gevrey regularity with
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INTRODUCTION

~ > 1/3, and we recover the 3-Gevrey threshold for the existence of damped solutions that
was found in the case of the Cauchy problem by [36, 9, Bibliog. Part IJ.

Nonetheless, our scattering approach makes it clear that the plasma echoes mechanism
is a secondary linear effect. This fact allows us to formally argue that the linear part of the
backward equation is ill-posed for data with Gevrey regularity less than 1/3.

Part II - Mean-field limit and propagation of chaos for
particle systems with topological interaction

The second part of the thesis deals with the rigorous derivation of effective kinetic equations
from deterministic and stochastic particle dynamics at the microscopic level.

In Chapter 4, we review some validity results for systems with regular interactions in
the mean-field scaling. This is the so-called mean-field limit, i.e. we consider the interaction
intensity scaling with 1/N and the density of particles diverging with their number N, to
obtain an effective kinetic equation in the limit N — co.

In Chapters 5 and 6, we focus on the derivation of kinetic equations for models coming
from the physics of complex systems, in particular from the area of collective dynamics,
focusing on interactions that are called “topological”. In these topological models, the
strength of the interaction between two agents x; and x; is a function of the proximity
rank R(x;, x;) of x; with respect to x;:

Rz, xj) = Y Xz — ap| < |zi — ]}, ()
k#1

where X{|z; — x| < r} is the characteristic function of the set {|x; — x| < r}. So
R(x;, xj) counts the number of agents at distance less than or equal to |z; — ;| from z;.

This type of interaction is widely used in biophysics to describe the collective behavior
of flocks of birds, fish schools and swarms. From a mathematical point of view it presents
some nontrivial difficulties since the methods usually adopted in validity problems fail due
to the exotic properties of the topological interaction: it is not Lipschitz continuous having
jump-like discontinuities and it is not a pair interaction since it depends on the state of the
other agents.

We present two results that investigate these two aspects.

Mean-field limit for a topological Cucker-Smale model In Chapter 5, we study the
following mean-field system

(1) = vi(

V; t)
N . 1=1,...,
(t) = % .ZIK(R(:UJZ\;])>(UJ(75) —vi(t)), e ©
j=

where (z;(t),v;(t)) € R x R%, R(x;, x;) is the proximity rank in (5) and K : [0, 1] — R*
is a regular nondecreasing function.

This is the so-called topological Cucker-Smale model introduced by J. Haskovec in
[32, Bibliog. Part II]. The interaction is such that neighboring birds tend to align their

Xiv



INTRODUCTION

velocities but with weights given by K (R(z;,z;)/N). It can be proved that under suitable
assumptions on the initial datum, this model exhibits asymptotic consensus in the velocities.

Here we want to prove a mean-field limit result for this topological model. We do this
by studying the empirical measure related to (6):

N
Z vZ (t)s

where 9§ is the Dirac delta measure.

Having the interaction function a discontinuity of jump-type, there are several problems
in the study of this model. In particular, the dynamics of N particles does not fall within
the classical Cauchy-Lipschitz theory and it is not clear whether and when the dynamics is
well-defined.

Furthermore, at least formally, we expect that in the limit N — o0 we recover a
Vlasov-type equation (1) with

I(t0) = [ KO{p)Ga. o~ y)) 0 = 0 (e, 0) dy s )

where

Mmmm=j<pwwm' ®)

and p(t,z) = {pa f(t,z,v) dv. Nevertheless, the rigorous proof of the mean-field limit is
not trivial, since it does not fit into the so-called Dobrushin theory (see Chapter 4), which
requires a Lipschitz-type interaction.

Hence, in this Chapter we prove the following results:

« the N-particle dynamics is well-defined, except for a set of measure zero;

« if fo is bounded, there exists a unique weak solution f; of the topological Cucker-
Smale equation (1) (7) with initial datum fy, which is bounded,;

« Y weakly converge to f;, provided this is true at time 0.

Propagation of chaos for a jump process In Chapter 6, a stochastic process describing
alignment via topological interaction is studied.

In this model, particles {(z;, v;)} Y, go freely, namely following the trajectories x; -+ v;t.
At some random time dictated by a Poisson process of intensity N, a particle (say ¢) is
chosen with probability % and a partner particle (say j) with probability 7; ; equal to

o K(R(:vi,:vj)/N)
ﬂ-ZJ - ZivllK(N 1)

Y

where K : R? — R is a regular function and R(x;, ;) is the proximity rank defined in
(5). Then the transition (v;, v;) — (vj,v;) is performed. After that, the system goes freely
with the new velocities and so on.

XV
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In [7, Bibliog. Part II], the authors derived formally that the kinetic equation expected
to be valid in the limit N — o0 is

<8t +v- Vx>f(t,x,v) = *f(tax’v) + p(t,x) JK(M[p](:L‘, |x - y|))f(tvyav) dy (9)

where M|[p](z,r) is defined as in (8).

We underline that equation (9) cannot be reduced to the Vlasov-type equations in (1)
and it is more correct to see it as a Boltzmann-type equation coming from a collisional
stochastic model with a gain and loss term.

The rigorous derivation of the kinetic equation from the N-particle system has been
done in a later work [21, Bibliog. Part II]. The authors prove the result, comparing the V-
particle and the limit processes using the BBGKY hierarchies, assuming that the interaction
function K is real analytic.

To avoid this assumption, we present here a more natural proof that improves the
previous result, using a classical coupling technique instead of the hierarchies and assuming
K to be only Lipschitz continuous.
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Scattering approach to the Landau
Damping






CHAPTER

A brief overview on some results
about Landau damping

In this first Chapter we begin the study of the asymptotic behavior of some specific solutions
of the Vlasov-Poisson equation.

After having recalled the basic properties of the Vlasov-Poisson equation, we briefly
review two important results about the theory of Landau damping: the linearized result
carried out by L. Landau in his pioneering work [26] and the proof of the nonlinear damping
for the one-dimensional Vlasov-Poisson equation, obtained by E. Caglioti and C. Maffei in
[17] using the scattering approach.

1.1 Vlasov-Poisson equation: basic properties

In the kinetic theory of plasmas, the Vlasov-Poisson equation is a nonlinear partial differ-
ential equation that describes the time evolution of the distribution function of electrons in
a collisionless globally neutral plasma. It was first introduced by A. Vlasov in 1938 in [43].

Denoting T? = R?/(277Z)? the d-dimensional torus, the Vlasov-Poisson equation reads
as

Orf(t,z,v) +v-Vuf(t,z,v) + [ 1(t,x) - Vo f(t,x,v) =0,
‘F[f](t7x) = _vxv[f](ta .T), [f] t,l‘) = —p(t,ﬁ) +p, (1.1)

p(t,z) = fRd f(t,x,v)dv.

Here f(t,z,v) : R x T¢ x R? — R* is the distribution function of electrons having at
time ¢ € R position 2 € T and velocity v € R.

Due to the compatibility condition for the Poisson equation in (1.1) we are subtracting
to p its mean over T¢ called p. This is physically justified by saying that we are considering
as a fixed background the density of ions and that, since the system has to be globally
neutral, this is equal to the mean density of electrons.

3




1.1. VLASOV-POISSON EQUATION: BASIC PROPERTIES

Equation (1.1) can be seen as a nonlinear Liouville equation where F| f](¢, ) is the
mean-field force generated by the spatial density p(t, x) of electrons. Notice that

VI = [ W= ) dydu,
TdxRd
where TV is the fundamental solution of the Laplace operator on T,

The study of the Cauchy problem for (1.1) has produced a huge literature. We mention
here the works by Arsen’ev on the existence of weak solutions and of classical solutions
for short times ([2], [3]) and the theory of Pfaffelmoser [40] and Lions-Perthame [29] for
the existence of global classical solutions. See [21] or [15] for a review.

Let f(t,z,v) be a regular solution of equation (1.1) and let us consider the flow
Oy (z,v) = (X(t,z,v),V(t,z,v)), defined in the phase space by the following charac-
teristics

X(t,z,v) = V(t,z,v)

V(t,z,v) = F[f](t, X (t,z,v)) (1.2)
X(0,z,v) =2z V(0,z,v) =v.

Then, it is easy to see that f is conserved along the flow, i.e.
fit, X(t,xz,v),V(t,xz,v)) = f(0,z,v)
and so, denoting fy(z,v) = f(0,z,v),
f(t.a,v) = fo(@) ™ (z,0)). (1.3)

Clearly this is only a representation formula, since to determine the flow ®;(z,v) and
solve (1.2), one must already know the solution f.

As first properties of equation (1.1), we have the classical conserved quantities:

M[f] = ff(t,x,v)da:dv,

Plf] = jvf(t,x,v)d:xdv,
ELf1 =TI+ VIS

where

1] = ;f|v|2f<t, 2,v) de dv (14)

VIf] = % JW(:U —2)p(x,t)p(x',t) dz da’.

Moreover, as a consequence of (1.3), given an arbitrarily regular function G : R — R,
the quantity

fG(f(t, z,v))dz dv
is conserved. In particular, considering the entropy function G(x) = zlog(x), we get
| #ttsz0)tog( 0.2, 0)) oo

is constant. Hence the entropy of the system is preserved.



1.1. VLASOV-POISSON EQUATION: BASIC PROPERTIES

1.1.1 Stationary solutions

The Vlasov-Poisson equation (1.1) admits infinitely many stationary states. Indeed, as
can be easily seen, any spatially homogeneous distribution function 7(v) is a stationary
solution of equation (1.1). This follows from

Fnl(e.t) = V(|

W(z —y)n(w)dy dw) = 0.
TdxRd
It is natural to study the stability of these equilibria, and in this first part of the thesis
we will address some aspects of this broad problem. For now, we mention an important
theorem of C. Marchioro and M. Pulvirenti (see [33, 35]) which proves that a homogeneous
function 7(|v|) nonincreasing in |v| is an orbitally stable solution of the Vlasov-Poisson
equation.

Theorem 1.1. Let (x,v) € T? x R? and consider an homogeneous solution n(|v|) such that
M(n| + T[n] < 4+ (see (1.4)), wheren : Rt — R™ is a nonincreasing function. Given
e > 0, let fo(x,v) an initial datum such that

J|f0(x,v) —n(v)|(1 + 1)2) dedv <e,

then

sup [ 1£(t,2,0) = (o) do do < 5(e),
teR

where f(t,z,v) is solution' of (1.1) with initial datum fo and §(¢) — 0 ife — 0.

We don’t give the proof of this result, which follows from rearrangement techniques.

Beyond the homogeneous ones, there exist other types of stationary solutions. In 1951, I.
B. Bernstein, J. M. Greene e M. D. Kruskal in [14] proved the existence of stationary solutions
of (1.1) g(x,v) which are not spatially homogeneous. These stationary states are called
BGK waves, since, being the Vlasov equation invariant under Galilean transformations,
if g(x,v) is a stationary solution, then the wave g(t, z,v) == g(x — ct,v — ¢) solves the
equation (1.1) for any c € R.

We observe that, given the Vlasov equation (1.1), any state g(x, v), obtained composing
a smooth function GG with the mesoscopic energy of the system, i.e.

02
g(z,v) = G(E(z,v)), where E(z,v)= 5t Vig](x),

gives rise to a stationary solution, provided that the following compatibility condition is
verified

'U2
| we-n6(5 + vidw) ddo - Vgl

For a proof of the existence of BGK solutions, we refer to section (2.2) of the next
Chapter, where in Remark (2.2) this is done in the case of the HMF approximation of the
Vlasov-Poisson equation.

"Here we are assuming that a given solution exists. Clearly it depends on the aforementioned results
about the well-posedness theory.



1.2. LINEAR LANDAU DAMPING

Furthermore, we mention that in [27], Z. Lin and C. Zeng proved the existence of
solutions of BGK type for the Vlasov-Poisson equation in any small neighborhood of a
homogeneous stationary solution 7(v) with low Sobolev regularity. As will be clear from
the next section, this result implies that Landau Damping doesn’t hold around homogeneous
solutions belonging to these functional spaces.

1.2 Linear Landau Damping

In 1946, L. Landau in [26], linearizing the Vlasov-Poisson equation around a suitable analytic
spatially homogeneous equilibrium 7(v), predicted the existence of damped solutions near
the given stationary regular state, proving that the electric field of the plasma decays
exponentially, so that the flow governed by the mean-field force is asymptotically free.

This decay of the electric field would have been experimentally observed only eighteen
years later by J. H. Malmberg and C. B. Wharton in [31]. A similar phenomenon also occurs
in the dynamics of galaxies and it was observed by the astrophysicist D. Lynden-Bell in
[30].

Here we give an idea of the linear Landau damping, a classical result in the literature.
We consider solutions of the form

flt,z,v) =n(v) + ef(t,x,v), (1.5)

where f will be the perturbation and € > 0 its size.

We start by writing the linearized Vlasov-Poisson equation around the homogeneous

equilibrium 7(v). Let f(t, z,v) as in (1.5), replacing it in equation (1.1) and by linearizing
it, i.e. neglecting the terms of O(¢?), we obtain the linearized Vlasov equation

of(t,x,v) + vV f(t,z,v) + F[f](t,z) - Vyn(v) =0, (1.6)

where from now on, we drop the sign over the perturbation and denote it by f(¢,x,v).
Landau showed that it is possible to exactly solve this linearized equation. For this

purpose, let ﬁ be the Fourier transform of f; in both positions and velocities, i.e

~ 1

ft(n, &) = @an)d J’ﬂ‘ded e TN (¢ g w) da do, (1.7)

with n € Z% and £ € R

Using the Duhamel formula and applying the Fourier transform to (1.6), we get
t
fi(n,€) = fo(n, & +nt) — W(n) fo Fs(n, 0)j(€ +n(t = s))[n - (€ +n(t —s))]ds. (1.8)

Since py(n) = ft(n, 0), setting £ = 0 in (1.8), we obtain a closed equation in p;(n) for
n#0

S~ t

pr(n) = fo(n,nt) - W(n)fo ps(n)n(n(t — s))[nf*(t - 5) ds. (1.9)

We observe instead that for n = 0, p;(0) = p is a conserved quantity.

6
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Equation (1.9) is a Volterra integral equation of the form

. t
Puln) = fon, tn) + fo jalt — )Pa(n) ds, (1.10)

where j is the following kernel
Jn(t) = =W (n)i(nt)|n|*.

Fixed n, the (1.10) is of the form

t
a(t) = 50) + | (e~ s)al)ds (111)
0
for o, 3 € L'(R). This integral equation can be solved by using the Laplace transform
+00
Lla](o) = J ea(t)dt, oeC,
0

well-defined for R(o) > 0. By applying the Laplace transform to the equation (1.11) we
obtain that

Lla](o) = L[B](0) + L[j](0)£]a](0)

and so £[8](0)

o

Lla](o) = ——=——,
) = T )

which is well defined, provided that L[] and L[j] are, and that L[j](o) # 1.

To reconstruct «(t) from its Laplace transform it is necessary to integrate L[] on a
path of the complex plane suitably chosen. In this regard we refer the reader to the next
two chapters and the reference [37]. We state the following lemma, the proof of which is
similar to the one given in Lemma (3.1).

Lemma 1.1. Let j(t) be an integral kernel defined fort = 0, such that
()] < coe™ ™

with positive constants ¢y and \g. Given k > 0, suppose further that |L[j](c) — 1| = & for
each o € C such that Ro > 0.

Moreover, let 3(t) be an analytic function such that |3(t)| < cre™, where ¢, and )\ are
positive constants and let «(t) be a solution of the equation

t
a(t) = B(t) + f Jj(t—s)a(s)ds.
0
Then, for ' < min{Ag, A},
lau(t)] < ce™t.

Let’s apply the Lemma (1.1) to our equation (1.9): the kernel j, () decays exponentially
provided that n(v) is an analytic stationary solution. Similarly fo(n,nt) decays expo-
nentially if the initial data fj is analytic. We just have to require the following stability
condition, sometimes called Penrose condition ([39]),

inf  |L[jn](0) — 1] =k > 0.

nezZd, No=0
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This condition is implicit in Landau’s work [26] and is due to G. Backus, who was the first
to give a complete treatment of the linearized equation in [4].

We therefore observe that, by Lemma (1.1), the solution p;(n) of the integral equation
with n # 0 tends exponentially to zero and therefore p(t, z) converges weakly to the value
D, so that the force field vanishes.

1.3 Scattering approach for the Landau Damping

Since the work of Landau, the damping phenomenon has been extensively studied and
understood, but the extension from the linear to the true nonlinear case has proved to be
particularly difficult for the mathematical theory.

Only in 1998, E. Caglioti and C. Maffei in [17] gave a first proof in the case where
the domain is the one-dimensional torus T'. Subsequently, a proof with less restrictive
hypotheses was given in [24].

The idea of the proof in [17] is the following one: let (x,v) € T' x R, as seen by the
linearized analysis we expect the distribution function f(t, z, v) to weakly converge to a
homogeneous equilibrium, so that for large times the self-consistent force in (1.1) would
be zero and f; would evolve similarly to the free evolute of a suitable asymptotic density
w(z,v), ie. for large times

ft,z,v) ~ w(z — vt,v).

It is therefore reasonable to consider the scattering problem where, instead of studying the
evolution of a given initial datum, one looks for a solution of the equation (1.1) with the
asymptotic condition

tggloo Hf(t,ﬂ?,?)) - W(l‘ - Utav)“LOO(TIXR) = 0. (1.12)

Then, if a solution of the scattering problem (1.12) exists, it is not difficult to prove that
it weakly converges to a homogeneous equilibrium, given by the spatial mean of w.

Indeed, taking a test function ¢(x,v) € C.(T! x R), we have that
fw(:v —vt,v)¢(x,v)drdv = fw(x, v)p(x + vt,v) dx dv.

Moreover

1

— o(z + vt,v)e e dz dv = &E(n,ﬁ + nt),
21 Jrixr

where $ is the Fourier transform of ¢ as in (1.7). Hence, by Plancherel theorem,
fw(m,v)qb(:v+vt,v)dxdv = J&\)(O &)o(0,8)dE + Z f n 5 (n,& 4+ nt)d¢.
n#0

The first term gives the spatial mean of w while the second term goes to zero as ¢ goes to
infinity, by dominated convergence.

From now on, let
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and periodically extended in R, the fundamental solution of the problem

1

0:B(x) = d(x) — o

with 2 € T!, where the constant % has been added to make the system globally neutral.

We want to prove the existence of solutions to the backward problem (1.12) in the
following sense. Let 7 > 0 and w(x, v) be a regular function. A weak formulation of the
Vlasov-Poisson equation (1.1) with asymptotic condition (1.12) is given requiring that

f(t,z,0) = w(@:[f) 7} (@, 0) (1.13)
for t = 7, where @[ f](z,v) = (X[f](¢, z,v), V[f](t, z,v)) solves

{X[f] = V[/]
VLI = FIA XL VI

with asymptotic conditions

limg—oe X[f] — V[f]t = 2
limtaoo V[f] =

and the force field must verify
FU2) = | Bl =0y

For the thesis of the theorem to be true, the asymptotic datum w must belong to a
suitable space of functions: we say that w € S, ¢, if w = 0 and there exist positive
constants A, ¢1, co such that

- c
|o(n, )] < T2t Alel,

and
C2

< ——.
w(@v) S 7

We will follow an iterative strategy. Given w € S) (, ¢,, we solve the sequence of linear
problems

orf M (t, x,v) + vf M (¢, z,0) + FOU (¢t 2)0, f™ (L, x,0) = 0, (1.14)
Hf(n) (ta €z, U) - W(SC — ut, U)HLOC(TlxR) —0
for n > 1. Here the force fields are given by
FO(t,2) = f Bz —y)p™(t,y)dy, FO =o. (1.15)
T

Then the aim is to prove that the sequence {f(™} converges to a solution of the Vlasov-
Poisson equation in the sense of (1.13).

Before doing this, we state a lemma that ensures the well-posedness of the linear
problem in (1.14). For a given field F'(¢, z) we define

|Fllar = sup e[ F(t, )] oo (1)
t=1

9



1.3. SCATTERING APPROACH FOR THE LANDAU DAMPING

Lemma 1.2. Let7 > 0 e F(t,x) € C(T! x [r,4+0)) a Lipschitz force field with Lipschitz
constant L. Moreover suppose that | F'| » < c0. Then, if \ > /Ly andt > T, there exists
a unique solution of the flow ®,(x,v) = (X (t,z,v), V(t,x,v)) that solves

X=V
Y = F(t,X,V)
with asymptotic conditions lim;_,(X — Vt,V) = (z,v).
Moreover the flow ®¢(x,v) is Holder-continuous in the asymptotic datum and defining
ft,z,0) = w((®) " (z,0))
forw € Sy ¢, ey, it holds that f is a weak solution of
atf(tv Z, U) + vamf(t7 z, 'U) + F(ta x)avf(tv z, U) = 07 (116)

with asymptotic condition given by (1.12).

Thanks to the previous lemma, given F'(¢, ) a Lipschitz field with Lipschitz constant
Lp such that [F|) ; < o0 and w € Sy, ¢,, We can define the operator

F(F)(t,x) = J’]I‘l RB(Q: —y)f(t,y,v)dydo (1.17)

where f solves the linear problem (1.16).

We observe that, thanks to this definition, equation (1.15) can be rewritten as F’ (n) =
Z(F™=1). Moreover, in the first step of the iterations, F(?) = 0 and fM(¢,z,v) =
w(x — vt,v) so that

—_—

o, (n) = &(n, nt).

Hence
ZO)t2) < Y ’i’\w(n,m)\ <3 01|71@|1 :nge—wt < deye
n#0 n#0
that is
|7 (0)]a,r < 4e1.

A fundamental result for the proof of the theorem is the following proposition, which
guarantees the contractivity of the operator .# in the norm | - | .

Proposition 1.1. Let w € Sy ¢, ¢, With X = 15,/ca, fort > 7, F(t,x) be a Lipschitz field
with Lipschitz constant L < 24cy such that |F'|y ; < o0. Then it holds that

L |F(F)(t,x) — F(F)(t,2')] < 16ca]x — 2/

)

3. | F(F)|xr < 4c1 + 5| F|

AT

Thanks to this Proposition and to (1.14) we obtain the convergence of the fields defined
in (1.15). Hence we have the following main theorem.

10
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Theorem 1.2. Letw € S) ¢, ¢, such that X\ > 15,/cy and 7 sufficiently large, then fort > 7
there exists a weak solution of the Vlasov-Poisson equation in the sense of (1.13). Moreover
the solution verifies the asymptotic condition

Jim (t,,0) = (@ = ot,0) | (o1 ) = O

so that the electric field exponentially decays.

The presented scattering result is of nonperturbative type and provides the solution
that behaves asymptotically like w, but does not allow to characterize the initial data for
which the Landau damping occurs. In 2009, C. Villani and C. Mouhot in [36], introducing
new mathematical techniques, solve the Cauchy problem for the nonlinear Vlasov-Poisson
equation, with suitable analytic and Gevrey initial data, proving the existence of w(z, v)
such that

tEglw(f(t, z,v) —w(x — vt,v)) = 0. (1.18)

A substantial analogy exists between the Landau damping in plasma physics and the
inviscid damping for the two-dimensional Euler equation (see [25, 41, 38, 34]). In fact in
[8] the damping near the Couette flow has been proved using different techniques, this
gives rise to a new simpler proof of the Landau damping result in [9] (see also the recent
result in [22] for a more elementary proof). We refer the reader to [7] for a review of the
state of the art.

In the next two chapters we want to use the Eulerian techniques developed for the
Cauchy problem, to better understand the advantages and possible limitations of the
backward approach introduced in [17]. The results of the analysis will strongly depend on
the regularity of the asymptotic datum. In particular in the case of analytic regularity the
scattering approach demonstrates its effectiveness, since, as we have seen in this section
and as will be clear from the next chapters, the decay due to analytic regularity greatly
facilitates the proof of Landau damping.

We conclude by saying that, for what concerns the damping with Sobolev data, as
shown by Lin and Zeng ([27], [28]), for very low regularities Landau damping cannot occur.
Although, in the case of the Vlasov-HMF equation with sufficiently high Sobolev regularity,
Faou and Rousset in [18] have succeeded in proving the damping with a polynomial rate.
Moreover, in the case of the Kuramoto model, a scattering result with Sobolev regularity
has been proved in [10].

However, the Vlasov-Poisson equation differs greatly from its HMF approximation
and the Kuramoto model. Indeed, a Landau damping result for the full Vlasov-Poisson
equation with general Sobolev data is still missing, although Bedrossian in [6] has given a
negative answer to the possibility of a straightforward extension to this setting of Mouhot
and Villani’s work in [36]. This is mainly due to the analysis of the aforementioned plasma
echoes which, as we shall see in Chapter 3, is particularly challenging in the case of equation

(1.1).

11






CHAPTER

Backward vs Forward approach for
the Vlasov-HMF model

joint work with D. Benedetto and E. Caglioti ([12])

In this Chapter we present a work where we study the differences between the backward
and forward approaches for the Landau damping in the Vlasov-HMF equation. We adapt the
forward techniques to the backward problem to make a comparison in the case of analytic
solutions. In particular, we discuss the different ways the two approaches overcome the
difficulties due to the presence of the “echoes”, i.e. resonances at certain times between
the Fourier modes of the solution. This highlights a simplified structure of the norms used
in the backward approach. Moreover, we also give a nonperturbative result, i.e. without
requiring the solution to be a small perturbation of a stationary state.

2.1 The Vlasov-HMF model and the scattering problem

We recall here the Vlasov-Poisson equation in the HMF approximation which, in the
spatially periodic case, reads as

Ocf (t,2,0) + vz f(t, 2, 0) + FLf(t, 2)00 f(t,2,0) = 0, (2.1)

where
Flf](t,x) = =0y <j11‘1 . cos(z —y) f(t,y,v)dy dv) (2.2)

is the mean-field force. Here f(t,x, v) is the normalized density of electrons with position
x € T! and velocity v € R, in a collisionless electrically neutral plasma.

We consider solutions of (2.1) which are small perturbations of a spatially homogeneous
solution 7, i.e.
F(t2,0) = n(v) + er(t,,v), (23)
and we assume 7) is an analytic function of the velocities. The equation verified by the
perturbation r is

opr(t, @, v) + voyr(t, z,v) + Flr](t, z)0, (n(v) + er(t, $,v)) =0,

13




2.1. THE VLAasov-HMF MODEL AND THE SCATTERING PROBLEM

where the operator F is defined in (2.2).
To state the asymptotic behavior as in (1.18) of the previous Chapter, we define
h(t,z,v) = r(t,x + vt,v), which verifies the following equation:

oth = {w[h‘]? n+ Eh}a (2'4)

where 1 is the potential field generated by the perturbation, evaluated along the free flow
Y[h](t, z,v) = J cos(z —y + (v —w)t)h(t,y,u)dy du (2.5)
TIxR

and where {, } is the Poisson bracket.
Recalling (1.18) and (2.3), we study the damping problem by setting w(z, v) = n(v) +
eha (z,v), i.e. by searching for a solution for (2.4) such that

hm Hh(t T ’U) hOO(ZL',’U)HLoo(TlxR) =0

t—+

where h, is a mean-zero analytic datum with |[hq |\ < 400 for some A > 0.

Firstly, we study the evolution in the time interval [0, 7] considering the following
problem:

{5thT(t,m, o) = {W[hT],n+ehT} 0<t<T, 6

RY(T, x,v) = heo(z,0).
Then, we show that, for T — +o0, h1 converges to a solution h, which solves the asymp-
totic problem.

We work in Fourier transform in T' x R, using the following notation:

1

9. = 5

J e~ MTe= e (¢ 2, v) da du (2.7)
TIxR

with n € Z and ¢ € R. In Fourier space the system is

1 (1,9) = b (e —nt) =2 3 kBT 0,6 —kt) € —nt), 28

k=+1

where 17’ is the Fourier transform of 7/’ in the velocity and ¢/ (n) for n = +1 is the electric
field:

¢ (n) = AT y(n, nt). (2.9)
Integrating equation (2.8) between [t, 7] and putting £ = nt, we get an equation for ¢7:

¢ (n) = Kl (n,nt) jcs n(t - 5)) ds

€ 2 J (k)T s(n — kynt — ks)kn(s — t)ds.  (2.10)

To give a priori estimates, it is convenient to consider ({7 (41), hT) as a coupled system,
where (2.9) is a consequence of the uniqueness.

14
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We need to control the loss of analytic regularity of the solutions. For this reason we
use techniques inspired by the abstract Cauchy-Kovalevskaya theory (see [16]), adapted to
these kinds of problems in [11].

A key point in Landau damping problems is the decay of the electric field. To show
this we define the norm of the electric field ¢7 as

My r[¢T] = sup e¥|¢f (1) = sup e¥|¢] (~1)]. (2.11)
te[0,T] te[0,T]

We also define a norm that quantifies the analyticity of a function g of the phase space:

gl = sup "™ |g(n, €, (2.12)

)

where ;1 > 0 is a parameter and (n, ) = (1 + n? + 62)%.

To take into account the decay of the analytic regularity, we define the weighted-in-time
analytic norm of the solution h' (¢, z,v) as

Nago[hTl = sup  of (u,t) 2|07 (t) (2.13)
(H’7t)€D>\,T
where
D/\,T = {(M’t) € [07 )‘) X [OvT])O‘?(M’t) > O} (2-14)

and o (u,t) = A\— pu—ar s(t). The function ar s(¢) is the unique solution of the following
ordinary differential equation

(2.15)

ars(t) = —6e~ W1 4 1) if 0<t<T
ars(T) =0,

and measures the loss of analytic regularity of the solutions with respect to the final datum,
as in (2.23) below: it is 0 at time 7, and it is maximum at ¢ = 0. In view of the limit
T — 40, we need the following lemma.

Lemma 2.1. Foré > 0 the unique solution of the backward Cauchy problem (2.15) is positive
and decreasing in time, and verifies

aT,5(O) < 0(5)7
with C(6) — 0 when 6 goes to zero. The solution a, 5(t) with initial datum

an5(0) = lim az,5(0)

is positive in [0, +00) and

tEIJPoo ap,5(t) = 0.
As a consequence, given A > 0, we can choose § sufficiently small such that there exist
we (0,\) for which for anyT > 0, [0, ] x [0,T] < Dy .

15
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Proof. Here we omit the symbol ¢ from ag 5. Since ar(t) is decreasing, we have, for any
te 0,77,

t t
ar(0) = ap(t) + 5J e (1 + s)ds < ap(t) + (5f e~ 103 (1 4 ) ds
0 0

- 1 1
<ap(t) + 5m + 5%.

If § < 1, the minimum of = + 6/x + §/22, for & > 0, is less than ¢161/3 and is reached in
x < c26"/3. Then, if a7 (0) = max(cy, ¢2)6/3, the right-hand side reach the minimum for
some t, and then a7 (0) < ¢16"/3. This implies that ar(0) < max(cy, c2)01/3.

For any t < T, ar is uniformly bounded and is increasing in 7T, so it converges to a
positive function a(t). For any time interval in [0, +00), by dominated convergence in
the integral formulation of (2.15), we get that ao (t) solves the differential equation with
initial datum a (0).

Now we prove that lim;, ;o ax(t) = 0. First notice that given b > 0 there exists
bo > 0 such that the solution of

a=—6e "1 +1)

with initial datum by exists for all times and a(¢) > b for all time. To prove this, we choose
bo > b+ 6(1/b + 1/b%) and consider the first time 7 such that a(7) = b. Until 7,

' as 1,1
bo—a(t)zéj;)e (1+8)d8<5(b+b2>.

Then 7 = +o0.

Let a(0) be the initial datum of a generic solution a(t). Set

a = inf{a(0)| lim a(t) = 0},

‘ t—+00
and let a(t) the solution with initial datum a. It is easy to prove that a(t) — 0, otherwise
a is not the infimum. We conclude the proof by noticing that a«(0) < @, then aq(t) is
dominated by a(t) which is a vanishing function.

O]

We define B) 7 the space of function h(t, x, v), defined for ¢ € [0, T'], with Ny r[h] <
+00, and B), o, as the space of functions h(t, z,v) with ¢ € [0, +00) such that N o [h] <
+00, where N o [h] is defined in the region D) o, = {(i,t) € [0, X) x [0, +00), a® (1, t) >
0} with of” (11, 1) = A — 1 — aee 5(1).

2.1.1 Estimates for (7

As we show more accurately in the following lemma, eq. (2.10) for the field ¢7 has the
structure of a Volterra equation. In order to invert the term of order one in the equation,
we use the following classical result about the theory of Volterra operators.

16
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Theorem 2.1 ([23], p. 45). Given a Volterra equation of the form f(t) + j = f(t) = g(¢),
where

jf() = j J(t - 5)f(s) ds

with j € L'(R,). The resolvent kernel r, i.:. the unique solution of the equation
rejr =,
belongs to L' (R ) if and only if
L[jl(e) # -1 for Ro =0,

where
+00

Clj](o) = j (1) dt

0
is the Laplace transform of j. The solution f is then given by f(t) = g(t) — r = g(t).

We can now state the inversion lemma. We set

jilm) = 1507 (nt), (216)

and
- - T -
HT(t) = hTp(n,nt) — 3 > f CL(R)hT (n — k,nt — ks)kn(s —t)ds.  (2.17)

k=+171

Lemma 2.2. Let A > 0 with |he |\ < 400 and |n||x < +c0. Assume that
Lj(1)](e)#1, Ro=0

then
Myr[¢"] < CaMyr[H]].

We notice that the condition on the Laplace transform is fulfilled also by j(—1) since

J(1) = J(=1).
Proof. Let us define ¢y (t) = A T=O¢E (1), F.(t) = 2TV HTI (T — t). Multiplying by
e, (2.10) can be rewritten as
OA(L) + x = da(t) = Fe(t), (2.18)
for t € [0, T], where 7)(t) = —e~*j;(—1). We notice that 7, € L' (R, ) and if Ro > 0
L) = =LII(=D](o + A) # —1.

Then, from Theorem (2.1), the resolvent kernel 7 related to 7, belongs to L' (R ). Con-
volving with ry in (2.18), we get

oA(t) = Fe(t) — J ra(t — s)F:(s) ds.

0
Taking the absolute values, it holds

Myr[¢"] = S[ISPT] 6x(8)] < Mar[HIT+ |ral gy Mar[HY]
tefo,

and the thesis follows with C) = 1+ |ra[ 11w, )- O

17



2.1. THE VLAasov-HMF MODEL AND THE SCATTERING PROBLEM

We now state the main estimate of this section.

Proposition 2.1. Let (T (41) solution of (2.10) and suppose Ny r[hT] < +o0. Then, under
the hypothesis of Lemma (2.2), we have

Ci
My 7[¢T] < Cy|lho|x + My, 7[¢TINy 7 [RT]. 2.19
Ar[C] < Callheolly + 255 ) Ar[CTINAr[R7] (2.19)

Proof. From Lemma (2.2) we need only to estimate Nyr[H.]. Being hT(T,z,v) =
hoo(x,v), from (2.17) we have

MHL ()] < heolx

T o=A(s—t)—p/{n—knt—ks) 2.20
+eMyr[¢TINAr[RT] )] TANYD) (s —t)ds, (2.20)
k:il t « (:LL Y S)

for any y/ < A — ag 5(s). Then, by choosing 1/ = 0, and using that a7 5(s) < ars(0) <
ao 5(0) we get

M)\7T[CT]N>‘vT[hT] J‘T o~ A(s—t) (s —t)ds.
t

ML (O] < ol + o3 S
0,

2.1.2 Estimates for h”

Now we turn to give a Cauchy-Kovalevskaya estimate on 2’ Due to the loss of analytic
regularity in time, it is crucial to use the weighted norm introduced in (2.13).

Proposition 2.2. Let h'' a solution of (2.6) and assume M 1[¢T] < +00 then the following
estimate holds:

C C
Nar[h'] < Clho|x + gMA,T[CT]HﬁHA + EgMA,T[CT]NA,T[hT]‘ (2.21)

Proof. Fixing 1 < A — ars(t), from (2.8) we get
O IRT (0, €)| < [hoo|x + e\ DT (0, €)| + O |ET (n,€)|  (2.22)
where
i (T~
DtT(”’f) = 5n,i12nJ ¢; (n)n'(§ —ns)ds
t

and

T € T T/ NLT
E! (n,g)z5 > L CI(k)AT (0 — k, € — ks)k(€ —ns) ds.

k=+1
We estimate separately the two terms. As regards E (n, £), since

61u‘<n7£> < e,u<7lfk,£7k8> e“<k7k3>’

by the triangular inequality and taking

A+ p—ars(s
p(s) = AT 0ral)

18
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i.e. the middle point between ;2 and A — a7 5(s), we have

O EL (n, €))| Z My r[¢T]x
k=+1

T
3 f e AT (5) gy~ WP RERD € ) ds,
t

where we have also used that (£1, +s) < C + s. Noting that

2(1+s)

—(u(s)—p)n—kg—ks) ¢ _ <
e ns| < )
€ | A —p—arg(s)

we get

OB (n,€)|

C T 5e=A—1ms(1 + 5
< MA,T[CT]N/\,T[hT]f ( ) ds. (2.23)

5 L T (e
Being A — 1 > ar s(s) and using the definition of a7 5 in (2.15)
—(A=ms (1 2 d
6T—(+3) <2507, s)
al'(u,s)3/2 dds

and then

C 1
wn,) ~ T T
OB, &) < Ml I W]

As regards D] (n, €), for p < X\ — ars(t),

T
81D (n,€)] < CMA,T[CT]W‘/\f em O A& (¢ —ns) ds
t

T se—ar.s()s(1 + )
a’(u, s)

where in the last inequality we have used that A — > A\ — u — ars(s) = o (i, s) and
also that A — u > ar 5(s). Computing the integral, we get

C
< SMc Nl | ds

C T
| DT (n, €] < 6M/\,T[CT]|77|/\1H<W).

We conclude the proof multiplying (2.22) by o (u, t)l/ 2, and taking the supremum over
Dy . O

2.1.3 The backward result

Theorem 2.2. Let hy, € LY(T! x R) analytic such that |hel||x < 400 with A > 0. Consider
n € LY(R) analytic such that |n|y < -+c0. Moreover, assume

L[HD](0) #1, Ro>0

with j(1) as in (2.16). Then, for small values of €, there exists a unique solution hy = h(t, x,v)
of (2.4) with N o[h] < 400 such that

tgffoo 1Pt — oo Loo (1 xm) = O

with exponential rate.
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2.1. THE VLAasov-HMF MODEL AND THE SCATTERING PROBLEM

Proof. For every T we get the unique solution h” of (2.6) using the following iterative
procedure. For j > 0and 0 <t < T'let

SR () — 5, Hnic,ﬁ”’T(n)ﬁ%f —nt)
(O (2.24)
—e 3 R RIT (0 kg k) (€ ),

k=+1

where Qt(j )’T( 1) is defined by

¢ (1) = hoo(1,) —f COT (D) (t — ) ds
_ < Z f ¢OLT DT (n — k,t — ks)k(s — t) ds,
k +1

where ()7 (1) = ¢()T(1) and with initial step h(°T (¢, 2, v) = ho(z,v).
Then h9)T verifies the same bounds of the a priori estimates in (2.19) and (2.21):

My [¢DT] < Clhos |y + eCMy7[COTINy £ [ROT]

and
Ny [RTDT] < Clg |y + CMATICDTI (Il + N [R977)
< Cllholy +2OMyr[COT] (Na g [AOVT] + Ny [10+11]),

where we have used (2.19) in the last inequality and where C'is a generic constant depending
on X and 8. Since Ny 7[h(OT] < C|h |, taking e[ hos |5 sufficiently small, we get that
My, 7[¢9)T] and Ny 7[hU+1D-T] are uniformly bounded in j > 0. Then, taking &' > § in
Lemma (2.1), the time derivative of h()-T is uniformly bounded in Ny [-]. Hence there
exists a subsequence hUk)T which converge to a function h” € BT, while CURT (+1)
converge to a function (T (41) such that M r[¢?] < +oo. Then AL (t,nt) = ¢I'(n) for
n = +1 and it is a solution of the nonlinear problem (2.6).

We now extend h' (¢, z,v) = he(z,v) for t > T and we consider the sequence of solutions
{hT}, with hT € By .. We can see that h'' fulfills the Cauchy property as a function of T'
in By o with A > X > a5 ,,(0). In fact, fixed T*, taking 77 > T > T*, we have for t < T

0, 8) — . €) = Sy [ () 00 )Fe — o)
—€ Z k:jT <€3T(k) _2 STI(k)> f/ﬁs(n— k& —ks)(§ —ns)ds
+1 Vit

k=+

T T — —~
e ) k:f G (F) (hTs(n—k,g—ks)—hT’s(n—k,g—ks))(g—ns)ds
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2.2. NONPERTURBATIVE REGIME

and an analogous of equation (2.10) holds for ¢7 — ¢7". Doing estimates in the style of
(2.19) and (2.21), we get

’ 7 7 C _ —_\/
My [T = ¢T < eOMy 7[¢T = ¢ + eCNy oo [T — BT +eiae (A=2T*

and

Nyvo[h" = b < OMyr[¢" = ("] + eCMy r[¢" = (7]
(1+e)C  _0xgw (2.25)
min{I, A — X}3° '

+eCNy [T = hT] +

Hence, using again the smallness of €, we conclude that

. !/
lim sup Ny o[hh —hT]=0.
T*—+00 pr>p>*

Being uniformly bounded in B} o, the sequence {hT} converge to a function h € B A0
and, passing to the limit by dominated convergence in the integral formulation, h(¢, x, v)
is solution of the nonlinear equation (2.4) in [0, +0). So, taking /i < A — a« 5(0), we have
that ||h(¢, z,v) — heo(x,v) |z — 0.

We get the uniqueness of the solutions with a similar procedure. Let g(¢, z,v) and h(t, x, v)
be two solutions of (2.4) with the same asymptotic datum hy,. Proceeding as before, we
can prove that they verify the estimates (2.19) and (2.21). Hence, denoting ¢}, the electric
field associated to h, we get

max (N [h], Mace[Gi]) < Ol

and analogously for g(¢, z, v). Estimating N (g — h|, we obtain the same estimates as in
(2.25) without the rest terms:

A= max(NA7oo[g —h], M) (¢ — Ch]) < C(e)A.

Using the smallness on ¢ as before, we have C(¢) < 1, from which the uniqueness follows.

We remark that in [17], in the case of the scattering problem for the Vlasov-Poisson
equation, the uniqueness is guaranteed for a wider class of solutions, not necessarily
analytic. O

2.2 Nonperturbative regime

Using the backward approach for large times it is possible to construct solutions without
perturbating around the homogeneous equilibrium 7(v), in the style of [17]. The price to
pay is that the analytic estimates hold only in [7, +00) for 7 large enough.

Fixed an analytic asymptotic state w(z, v), consider (2.1) and write

f(t,x,v) = J)(U) + g(t,fﬁ,v),

where w is the mean of w(x, v) with respect to the x variable. Then h(t, z,v) = g(t,z +
vt, v) verifies the equation

Oth = {w[th + h}
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2.2. NONPERTURBATIVE REGIME

where 1) is defined as in (2.5). For T" > 7, let us consider the following sequence of problems

{athT — (Y[hT, o+ hT} T<t<T,
RY(T,z,v) = (w—&)(z,v).

We introduce the weighted norm

k"= sup 07 (u, )2 |RT (1)),
(1,t)EQN, T

with the weight 67 (11,t) = (A — pn — Aar(s)), where A = X Ja (1), N < Xand a7 (s) is
defined as in (2.15) putting 6 = 1. Notice now that A is a diverging quantity for sufficiently
large 7. Here Q) 7 = {(11,t) € [0, \) x [7,T],67 (u,t) > 0} and, as in the previous case,
we can give the analogous definitions for Q «[-], 0 and Q) .

We define ¢/ (n) = hT;(n,nt),n = £1, then ¢7 verifies the following equation:

T
I (n) = f ¢T ()t — ) ds + WT(2), (2.26)

where we have defined

T Y
WT () =&(n,nT) — % > L CT(k)RT o(n — k,nt — ks)kn(t — s) ds
k=+1

and "~
ji(n) = iiw’o(nt). (2.27)

Asin (2.11) we denote

Por[¢"] = sup M (1) = sup M| (-1)].
te[7,T] te[r,T]

We can now state the following theorem.
Theorem 2.3. Letw € L'(T! x R) analytic such that |w|y < 400 and assume that
Llj(D)](e) #1, Ro =0, (2.28)
with j(1) as in (2.27). Then, for sufficiently large T, there exists a unique solution h(t,x,v) of
Oth = {Y[h],w+ h} if T<t<+0,
with Qx «0[h] < +00 such that
Jim k= (W = @) e (rixry = 0

with exponential rate.

Proof of Theorem (2.3). The proof goes in the same way of Theorem (2.2) but instead of
using the smallness of €, we can use the size of A. Indeed as in Proposition (2.2) we can
estimate h” in [7, T] where h' verifies the equation

o~ t AT —~
BT y(n,€) = Di(n,€) — Y L k@é’%g(n € — ks)(€ — ns) ds

k=%1
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2.2. NONPERTURBATIVE REGIME

with . -
Di(n.§) = nagn | T (e = ns)ds.
We first treat the case n # +1. As in (2.23) and using A — u > Aarp(s) > ar(s) we have
~Omie(1 4 o)
OT (1, 5)3/2

r[¢T1Qxr[h7T] fT Aer(93(] 4 5)
A t @T(N) 8)3/2

ds

—~ T
T (0, €)] < el + CPur Q1] [ €
t

Py
< |w|y + C—=

and thus, since

d T
&@ ()uv t)

Lyp A (1 ys)
T2 0T ()

we get

_ P r[¢]Qxr[h"]
W €S\ T AT )
(& ’h t(nag)’ < HWHA +C A@T(Mv 8)1/2 ’

(2.29)

Now we estimate D;(n,{), n = +1. Take p < A — Aap(t), hence A — p > (A — p —
Aar(s))/2, so we get

T
8| Dy(n, )] < CPA,T[CT]!wAf em e A9 (¢ —ns)ds
t

T —aT(s)s(l + S)
< CP T f A .
el [ g

PA,T[CT]HWHAI <@T(MaT)>
A ol (u,t) /-

ds (2.30)

<C

Hence, multiplying by ©7 (1, )'/2 in (2.29) and (2.30) we get

C C
Qur[p’] < Clwly+ T ParlCMwly + F Parl¢T1Qar(h"].

Regarding ¢7 in (2.26), using (2.28) and (2.1) we have
Prr[¢T] < CaPAr[WT].

We need better estimates than that in (2.20). We get them by splitting the two modes
k= +1in

T —~
D f TS (1 — kit — ks)k(t — s)ds — By + B_1. (2.31)
k=+1"t
Ifk=—1for ' < A— Aax(r) =X — N, we get
T nT /
MBa| < Pralc”) [ 0 I e gy

t 9(:“/’ 5)1/2
—2u'T T
¢ J e M5 (s — 1) ds
t

()\ _ 'u/ _ )\/)1/2

< Par[¢T]Qar[h"]

< CP (¢ IQua BT Yy e O,
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2.2. NONPERTURBATIVE REGIME

where we have taken the infimum on y/ € [0, A — X'] in the last inequality. In the other
case, using that w — W has mean zero in the x variable, we have

hT (0,1 — s) = > f L (k)RT (—k,t — s — kDk(t — s) dl. (2.32)
k=+1

Replacing (2.32) in (2.31) we obtain

T

M| < PurlcT) [ e s = OlITL (0, - 5)] s
t

hT T T
<CPA7T[§T]7QA’T[ ]f e A (s — )2 J e Mdl
t S

A—N
Py r[¢T]Qxr[hT] a7
SO
Hence
—AT T
Pyr[¢"] < |W||A+CPAT[CT]QAT[hT]<\/\€€ (=) +€,\:3(1>\DA;T,[\€)]>

and we can reason as in the proof of the main theorem avoiding to use the smallness of
€. O

Remark 2.1. We notice that in this setting we have obtained an Eulerian analog of the
scattering result in [17], in the special case of the HMF model. In [17] Caglioti and Maffei,
using the Lagrangian description of the flow, obtain the damping result for the Vlasov-
Poisson equation, by a fixed point technique, considering an asymptotic state w with

|wl|lx < 40 such that
M

w(z,v) < m

for some M > 0 and A > Cv M, with C' some purely numerical constant. Here we show
that such class of final data fulfills condition (2.28), if A > w+/ M. Indeed, taking n = 1 in
(2.26) and multiplying by e* we get as in (2.18)

X () + 9% * (1) = ATTIWT(T — 1)

with 7, (t) = —e™;j_1(t) and ¢7 (t) = XTI (T — ). So it is sufficient to notice that,
since |&g| < M2, we have
2 [ wot_ i o M
IL[73(£1)](0)| < M= Jo e e Mdt < SV 1, Ro=0

hence (2.1) holds.

Remark 2.2. The nonperturbative scattering result in Theorem (2.3) allows the choice of
asymptotic states w within a distance of O(1) from a given homogeneous state 1(v). This
fact poses a significant difference with respect to the forward perturbative results where,
as we show in the next section (2.3), given an equilibrium 7(v) which verify some stability
properties, there exists an €9 > 0 such that every initial data in an analytic neighborhood
of n of O(e) with € < ¢¢ verifies the Landau damping.
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2.3. TaHe CAUCHY PROBLEM

Actually, solutions of the backward and forward problems are of a different type. Indeed, in
the case of the attractive HMF model !, it is easy to find nonhomogeneous BGK stationary
solutions w(x, v) of the HMF that can be chosen as scattering asymptotic datum for the
HME, i.e. such that there exists a solution f, (¢, z, v) such that

tli}—il-lw wa(t,ﬂi‘,ﬂ) - W({L‘ —ut, U)”LOO(TIXR) = 0.

This solution f,, could never be a Landau Damping solution because it is not close, in a
strong norm, say L, to its weak asymptotic limit 7(v) which is given by the average in x
of w(z,v). Indeed at the same L' distance from 7 there exists a BGK stationary solution of
the HMF model.

We give an example of such BGK solution, which can be constructed using that any function
of the mean-field energy is an equilibrium. In this example we consider the attractive HMF
model with

"r[f] (t, J:) =0y (J’H‘lxR COS(JZ - y)f(tv Y, U) dy dv)

in (2.1) and we choose, for 3, v > 0 to be fixed,

ef/BHV(x,'U)
wg (T, v) = ———
ﬁ7 ’ Z 9
where H,(z,v) = % — vcosx and Z is the normalizing constant. Using the simple

structure of the potential, we have that w, (x, v) is a stationary solution of the attractive
HMF model, provided that the following compatibility condition is fulfilled:

Qp(v) = J‘w[g’,,(x,v) coszdzrdv = .

By Taylor expansion Qg(v) = fv/2 4+ o(fv) as v — 0, while Qg(v) — 1if v — +o0.
Hence for 5 > 2 there exists at least one value 7 such that Qg(v) = 1.

Remark 2.3. In section (2.1) we have proved exponential damping of solutions of the HMF
model in the scattering setting in the perturbative case, while in this section we prove the
result for 7 large. These two sections could have been partially joined by considering as a
smallness parameter ¢ = e~*7. However, given the different nature of the problems faced,
we believe it is clearer to derive the two results separately.

2.3 The Cauchy problem

In this section, instead of fixing an asymptotic condition, we study the Cauchy problem for
equation (2.1), with initial condition at time zero. We refer to the last section (2.4) for the
discussion of the differences and advantages of the backward approach compared to this.
Putting (2.8) in integral form we get

~ ~ 1 t ~
B, €) = ho.€) + Bneany | GwFIE = ns)ds
0 (2.33)

£ t ~
- ; kLgs(k)hs(n_k,g_ks)(g—ns)ds,

"Except this paragraph, the choice of an attractive or repulsive potential is indifferent in this Chapter.
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2.3. TaHe CAUCHY PROBLEM

and taking £ = nt for n = +1 in (2.33), we obtain the equation for the electric field:

t

Gi(n) = ho(n,nt) + nz | Gn)y'(n(t = s)) ds
0
. ¢ R (2.34)
-5 Z k:nj Cs(k)hs(n — k,nt — ks)(t — s)ds
k=+1 0

We introduce the weight AM(n, &) = eX™& (n, )P and the corresponding analytic norm
of a generic function f as

1 fxp = up AMP(n, )| f(n, ).

In the following we take a mean-zero initial datum hq such that |hg |, , < +0, for some
Ao and p to be fixed.

As done before, we want to study the coupled system (¢(+1), h). For this purpose, we
define the norm of the electric field ¢ as

I = sup M BP[G(£1)]. (2.35)
B(\t)>0
Here
B(A,t) = Ao — A — d arctan(t) (2.36)

with § < 2\o/7 measures the loss of analytic regularity with respect to Ao.

We remark that the choice of the arctan function is not mandatory, contrary to the back-
ward case previously described, in which the regularity decay is more precisely prescribed
by the structure of the estimates.

We define a weighted-in-time norm on h with two terms:

KT [h] = K°[h] + K7 (A], (2.37)
where
K3[h] = sup |A(t)|rs
B0

e 1R (t)
Aprl
EP ] = sup B(A )=t

B(A)>0 ()

The occurrence of the last term is in the spirit of the abstract Cauchy-Kovalevskaya theorem,
while the term &C3 is due to the treatment of the two echoes term in the equation for ¢(+1),
as we show in Prop. (2.3).

2.3.1 Estimates for (

In the sequel, for v > Ao, it is useful to introduce the quantity

ji(n) = i (nt)e! (2.38)

and define

s(n—k,nt —ks)kn(t — s) ds. (2.39)

Q
™
—~
=

Il

>

(=)
S

S
=

|
[
~
N
—~
N
>
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2.3. TaHe CAUCHY PROBLEM

Lemma 2.3. Letn(v) analytic such that ||, < +00 with~y > X. If
Llj(D)](c)#1 for Ro=0

then
I3, [C] < C (v, M) Iy, [Gel.

Proof. Assume p = 0 and take A > 0 such that 5(\,¢) > 0 then
¢

Me(1) = f (= $)eMC(1) ds + MG (1)
0

with 7 (t) = e~ (0=t (1). From Theorem (2.1), since 75 € L' (R ) for v > Ag and
L](e) = LW+ —A) #1 for Ro >0,

there exists a unique resolvent kernel r) associated to 7, with r, € L!(R, ). Doing the
convolution with ry, we get

t
MG = J ra(t — 8)eMGe(s) ds + eMGL(t).
0

Taking the absolute value, we obtain
MG < (L+ [rallpr ey ) I3 [Gel, (2.40)

and we get the thesis for p = 0 taking the supremum over S(\,t) > 0.

Let us give the proofin the case p = 1, which is not difficult to extend to the general
one.

t
teM¢, = J Ia(t — s)se*¢ods + Zo(t)
0
with
t
Z.(t) = J (= 8)(t — 8)e™C, ds + teMGL (D).
0

Using (2.40), we get

Ta[¢] < C(v,2) sup |Z5(1))
B(At)>0

and

1 Z5(t)] < C (v, M) I [C] + Iy, [Gel < C(, Xo) Jy, [Gel,

using again (2.40). O

Proposition 2.3. In the hypothesis of the previous lemma, letp > q + 3 with g > 3 fixed.
Given h(t,x,v) such that Ki;)p;l[h] < 40 we have

JL[C] < C +eCJ [CIKPH [h].
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2.3. TaHe CAUCHY PROBLEM

Proof. From the previous lemma, we only need to estimate .J fo [G.]. Multiplying by e ()P

in (2.39) and using {(¢)’ < C (<t — s + <s>p> we have

AP |G[CDI)] < [h(0)[xg,p + (T + I2)

where
I - L 2 ()N ([ha(0, £ = 9)|(t = 5) + B2, 8+ 5)[( — 5)) ds
t 1 1
< jo SWOIGIN ( =R S>2> ds
and

' t—s <t_s>p ~ ~
I, = L ZA,p(S)eA( ) 0% <|hs(0,t —8)|(t — ) + |hs(2,t + 8)|(t + 5)) ds

t
1
< | 2rp(8)1R(5) np1—p ds.
L A @I o1 77

Thus we obtain,

I < J2 [P L <<t —15>2 g +13>2> ds < CJ2 [IKP[A]

while, if p — q = 2,

t 1
L<J [g‘]Kg’“[h]fO Ty & < ORI

and this concludes the proof.

2.3.2 Estimates for h
We start by showing how to split the term with |£ — ns| in (2.33).

Lemma 2.4. Let{ € R,pe N,n € Z and X\ > 0 then

AMP(n, €)|E—ns| < C(AA’erl(n—k,§—ks)A’\’1(1,s)+A’\’1(n—k,§—ks)A’\’p+1(1, s))

withk = £1.
Proof. We notice that
€ —ns| = —ks+ (k—n)s| <{s){n—k,&—ks).
Using the triangular inequality
n, &) <n—k,&—ks)+ (k,ks),
the fact that
(¢ — k& — hs) + <k, ks>)p < C((n— k€ = ks + I o))

and k = £1, we get (2.41).
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2.3. TaHe CAUCHY PROBLEM

We now turn to estimate equation (2.33). As usual, we define

. t ~
D, €) = Sy | Gl (€ — ms)d.
0

Lemma 2.5. Given (;(+1), for \,q > 0 we have

[A(1)]

g S HhOHAO,q + HD(t)

|/\,q

+e [ sran()lhe

(2.42)

A1t 2 1(8)[|h(s)[ag+1 ds.

Proof. Multiplying by AM(n, £) in (2.33) and using (2.41), we get
AM(n, &) (1, €)] < [[hollng.q + AM(1,€)| Di(n, €)]

+e ), f AM(1,8)[C(R)| AN (n — K, € — ks)|hs(n — k, € — ks)| ds
k=+1"0

+e ), Jt AN 8)| ¢ (k)| AM (n — K, € — ks)|hs(n — k, & — ks)| ds.
k=+1"0

Since e (1,5)7 < Ce* (s)%, after taking the supremum over n, & we obtain the
thesis. g

Proposition 2.4. Letp > ¢ + 3 with q > 3 fixed. Given ((+1) such that J} [(] < +00 we
have

1
K2 ) < Cllholag + CIR[NI'| +2C (1 + 3 ) I3 [CHER2 S [A).

Proof. We first estimate the term of order one in (2.33). If m > p,

t
AN (n,€)| Dy(n, €)| < CJY, [C]IH’IL emOmNETD ()P (¢ —ms)P ds
< CTL Sl 1™

where we have used that AM(n, £) < CAM(n, ¢ — ns)AM(n, ns) and the hypothesis
on 1.

(2.43)

Now, since the norm (2.37) is composed of two parts, we start giving an estimate of the
K3 norm. Using the result in (2.42) we obtain

LK) g

h
H (t) 0 <s>p*4 <S>p717q

x3 < [A0) [0 + D)1 + T3, [¢]

Using (2.43), we get
I3 [R] < [1(0) 5 + CIL[CUIN |y + C TR [CIESPH [A).

Next, we focus on K(];H. Using (2.42) with p + 1, we get
[h®)[xpr1 < ClRO0) [xgp + D) Ixpr1 + eJ5, [Cl(A1 + Az),
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2.3. TaHe CAUCHY PROBLEM

where

,p+2

_ [ g2 s < 3[h [7(5)
[ @ maas <o, - [

For what concern Ay we take

Ao — darctan(s) — A

N =
(5) !
then Ih(s)]
N.p+1
Hh( ) ’)\7P+2 = \ — Ap

and we get the bound
Kp+1 h Kp+1 h
AgéC’f — 1 []dségqi[]
0 (PTIT BN ) 0 BN 1)
where we have used that p > ¢ + 3 and the fact that the integral is exactly computable by

d IS S
ai’ T = SRy o

Then we get, using ¢ > 3,

1/2
ﬁ(z;;);dﬁ’o [C(A1 + As) < eJE [¢] (CIC3[h] v %K{;“[h]). (2.44)

It remains to estimate the term of order one D;(n,£). Using (2.43), we obtain

1/2
]

Collecting the terms in (2.44) and (2.45) we conclude the proof. O

a1 < O [ (2.45)

2.3.3 The forward result

Theorem 2.4. Let us fixp > q + 3 with ¢ > 3 and consider ho(z,v) € L'(T' x R) a
mean-zero analytic initial perturbation such that |ho|y,, < +0 for some Ao > 0. Let
n(v) € L'(R) analytic such that |n'|, < +00 with \g < 7. Moreover, assume

L[F(W](e)#1 if Ro=0

with j(1) as in (2.38). Then there exists a unique solution hy = h(t,x,v) of (2.4) with initial
datum hg such that K ’pﬂ[h] < +00 and exist ho, with |heoy , < +00 for X < \o — /2
such that

B [y — hool[ Lo (71 ) = 0

with exponential rate.

Proof. The proof is analogous to the first part of Theorem (2.2). By a standard iterative
procedure as in (2.24) and using the smallness of the parameter €, we get the existence of
the unique solution A in the class of functions such that X, g P+ < 4 0. Then the damping
property follows from the estimate

Ioh(®)lop < Ce™
with A < Ao — d7/2. It follows that h(t) — he with exponential rate. O
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2.4. BACKWARD VS FORWARD

2.4 Backward vs forward

In the scattering problem, the decay of the analytic regularity, in the spirit of the abstract
Cauchy-Kovalevskaya theorem, is more difficult to establish (compare the definition of
al'(u,t) in (2.14), (2.15) with that of B(\,t) in (2.36)). Despite this fact, the scattering
approach is easier. In particular, the bound on the norm (2.11) guarantees that for any ¢t > 0

G(£1)] < ce™,

while the bound on the norm (2.35) guarantees an estimate with a time correction: for any
t>0and A < \g — darctant

[Ge( )] < ce ™ K.

More in general, the norm on A in (2.12), (2.13) is simpler than that in (2.37), in which
we have to introduce algebraic weights like (¢)? in order to obtain closed estimates.

This technical issue is mainly due to the different treatment of the plasma echoes, the
resonances which occur in (2.10) and (2.34) when nt = ks, i.e. whenn =k = +1, and
t = s. In the a-priori estimate of (11 in Proposition (2.1), there are no difficulties and we
control the resonant terms, those with k& = n, in the same way as the nonresonant ones,
those with K = —n. In Proposition (2.3), the echoes force us to introduce the additional
term C3 in the norm of h. Note also that, in Theorem (2.3), we perform a more subtle
control of the echoes in (2.31), with an estimate in two-time steps, by using (2.32) and the
mean zero of w — w. In this way, we obtain the backward nonperturbative result.

The main reason for this different behavior is that the solution A(t), with asymptotic
datum h,, gains regularity as ¢ increases, thanks to the damping properties of the free flow,
while the solution A(t), with initial datum h, loses regularity as ¢ increases. This property,
together with the hypothesis of analytical regularity, allows to tackle the problem without
having to study resonances coming from the echo terms.
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CHAPTER

On the scattering approach for the
Vlasov-Poisson equation: analytic
and Gevrey data

joint work with D. Benedetto and E. Caglioti ([13])

In this Chapter, we apply the Eulerian techniques to the backward Landau damping
problem for the Vlasov-Poisson equation. We cover the cases of asymptotic data with
analytic and 1/v-Gevrey regularity, with v > 1/3 (see (4) in the Introduction). The
asymptotic regime allows us to provide a simplified proof in the perturbative setting with
analytic regularity. In the Gevrey case, we recover the 3-Gevrey threshold. This is due to
the resonance terms that, in our formulation, are hidden in a linear term of the equation.

3.1 The framework

We recall that, in the spatially periodic case, the one-dimensional Vlasov-Poisson equation
reads as

Of(t,x,v) + v, f(t,x,v) + F[f](t,x)0, f(t, z,v) =0, (3.1)

where

T1xR

]:[f](t,CB) = _aﬂc< W(l‘ —y)f(t,y,v) dydv) (3~2)

is the mean-field force. Here W () is the fundamental solution of the Laplace operator on
TL

In the previous Chapter, we compared the scattering approach and the forward approach
in the case of the Vlasov-HMF (Hamiltonian mean-field) equation. Indeed, concerning the
backward Landau damping problem in the perturbative setting with analytic regularity,
we showed that no estimates are needed to suppress the echoes, i.e. resonances at certain
times between the Fourier modes of the solution, allowing a simple proof of the result.
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3.2. NOTATIONS AND CONVENTIONS

Here we extend the study of the backward problem to the Vlasov-Poisson equation,
also exploring the case of asymptotic data with Gevrey regularity. In this case we recover
the 3-Gevrey threshold, also obtained in [9, 22] for the Cauchy problem.

However, in the perturbative setting, the asymptotic regime allows us to observe that:

« in the case of analytic regularity, as in [17, 12], the echo terms are irrelevant, greatly
facilitating the proof;

« in the case of Gevrey regularity, the echo terms cannot be neglected and lead to
the 3-Gevrey regularity threshold, but it is possible to isolate naturally the reaction
term (using the terminology in [36, 9]), i.e. the term of the equation where the echo
mechanism is revealed. This allows us to highlight how the echo mechanism is
inherent in a linear part of the equation (see also [44] where the echo chains are
defined as a secondarily linear effect).

For this reason we divide the proof of the result into the two cases in which the
asymptotic datum has analytic or Gevrey regularity. This is also done because in the former
case simpler norms than the Gevrey case are used and there is no need to use the energy
method in the estimates for the distribution function.

3.2 Notations and conventions

As in the previous Chapter, we introduce the Fourier transform in T! x R, using the
following notation:

1

§06) = 5 | e g dado

withn € Z and € € R.

In order to quantify the regularity of the solutions, we will use L?-type Gevrey norms

l91Erme =D f X8 (n, £ (|g(n, €)1 + |0¢G(n, ©)?) e, (3.3)
n
with A\,0 > 0 and 0 < 7 < 1. In the analytic case, we will work with L*-type analytic
norms
lglxe = sup A (n, &7 |g(n, ) (3.4)
n,

while, when working with the spatial density p;, we will use

|Pe(n)]

nf*

1ot ry,000 = sup eXnnt)? {n,nt)’ (3.5)
n

where 5/12 < a < 1/2. We consider solutions f;(x,v) = f(t,x,v) of (3.1) which are
small perturbations of a spatially homogeneous solution 7, i.e.

fi(x,v) = n(v) + ery(z,v),

and we assume 7 to be an analytic function of the velocities. The equation verified by the
perturbation r is

orre(z,v) + vopry(x,v) + Flr](t, x)0, (77(11) + Ert(x,v)) =0,
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3.3. THE ANALYTIC CASE

where the operator F is defined in (3.2).

Let h¢(x,v) = r¢(x + vt,v), then it verifies the following equation:
0th = {¢[hl,n + eh}, (3.6)

where v is the potential field generated by the perturbation, evaluated along the free flow

Y[h](t, z,v) = - W(x—y+ (v—u)t)h(y,u)dydu

and where {, } is the Poisson bracket.

We study the damping problem by searching for a solution for (3.6) such that
tl}{?@ 1At (2, ) — hoo(2,0) || Lo (11 xR) = O

where hy is a mean-zero analytic datum with ||hy| \,; < 400 for some A > 0,0 > 0 as in
(3.4).
Firstly, we study the evolution in the time interval [0, 7] considering the following

problem:

ohl = {Y[hf],n+ehl} 0<t<T, 57
hL(z,v) = ho(z,v). '
Then, we show that, for T — +o0, hT converges to a solution h, which solves the asymp-

totic problem.

The system (3.7) in Fourier space reads as

o€ =i e —nt) = Y PO T kg ke n). G

k#0

o~

where 77/ is the Fourier transform of 17’ in the velocity and pl(n) = hl (n,nt) is the Fourier
transform of the spatial density.
Integrating equation (3.8) between [t, 7] and putting ¢ = nt, we get an equation for p’:

T _

ol (n) = Fea(nant) = | (e = 5))(s = 1) ds

— _t —
ey f T = [ ) kont— k) ds. (39)
As usual, we are going to give a priori estimates on the coupled system (p’, h7).

3.3 The analytic case

In this section we give a proof of the scattering result for an analytic asymptotic state
heo (2, v) such that |hey |y, < 400, for a given A\, 0 > 0. As we know from [17, 12], the
asymptotic regime facilitates the analysis quite well in the analytic setting.
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3.3. THE ANALYTIC CASE

To do this, we define the following norm which quantifies the decaying of the spatial
density

A
Myr[p"] = sup e2'|p}
(m,t)eDx T

;0

where, with little abuse of notation, we denoted by ||p/ | ..c the quantity |pf [ :1.0,1.

Here
Dyr = {(p, 1) € [0,7/2) x [0, T], p < ar(t)}

and ar(t) = /2 — Ca((f%t — e~ 171, with C,, such that \/2 — Cy, > 0.

To take into account the decay of the analytic regularity, we define the weighted-in-time
analytic norm of (h] — hy) as

PN
Nygr[hf —ho] = sup  (ar(t) — p)" et |h] — hoo |0 (3.10)
(Mat)ED/\,T

3.3.1 Analytic a priori estimates for p’

As we show more accurately in the following proposition, eq. (3.9) for the field p” has the
structure of a Volterra equation.

We set
Jn(t) = th(—nt) (3.11)

and

T )~
HI(t) = f?o\o(n,nt) —€ Z f psT(/f)MSkt)hST(n — k,nt — ks) ds. (3.12)

k40t
In order to invert the term of order one in the equation, we use the following result.
Lemma 3.1. Let A > 0 with ||ho | x,0 < +00 and ||n||x,; < +00. Assume that

inf |L[jn](0) +1] =K >0, (3.13)

neZ;Ro=0

where

is the Fourier-Laplace transform of j. Then
Myr[p'] < CMyr[H]].
Proof. Let us define ¢,,(t) = pL._,(n), Fe(t) = HI (T —t). Then, (3.9) can be rewritten as
On(t) + Jin * on(t) = Fe(t), (3.14)
for t € [0, T], where t
Jo ) = | gt - s fe)as
is the convolution between j and f.
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3.3. THE ANALYTIC CASE

Taking the Laplace transform on both sides, we get

L[F](o)

L[jn](o)
Lpn](o) = T4 Ln](0)

= L[F.](0) — T3 Lhlo) [F2](),

provided that 1 + L[j,](0) # 0, which is guaranteed by (3.13). Moreover, taking the
inverse Laplace transform, we get that ¢,,(t) = F.(t) — 7y, * F-(t) where

rn(t) = L o ot Llinl(2)

oco—io 1+ L[jn](0)

with og sufficiently large. Then, it is not difficult to show that

Lljnl(0)
L+ Ljnl(0)

is holomorphic in Ro > —p, for any 0 < 1 < A and that, integrating by parts, it verifies

Llido) [ C
L+ L[Ga](o)] ~ 1+ |So?

do, (3.15)

for 8o = —p (see [22] for more details). Then, by contour deformation in (3.15), we get
that |r,,(t)] < Ce "™ with \/2 < v < A

Multiplying by e#™T=) (p n(T — t))°
the sup over n, we get

, using the triangular inequality and taking

165 < |HT(T —wua+cf N0 T

Multiplying by 2Tt and taking the sup over D) 7, we conclude that
My r[p"] < My r[HI] + CAMy o[H!].

O]

We now arrive at the main estimate of this section. In the proof we will notice that the
echoes terms will be easily neglected thanks to the decay given by the analytic regularity.

Proposition 3.1. Let pT solution of (3.9) and suppose Ny r[h'] < +o0. Then, under the
hypothesis of Lemma (3.1), we have

M)HT[pT] < HhooH)\;g + EC)\MA,T[pT]N)\’T[hT — hoo] + EC)\M)\7T[ T

Proof. From Lemma (3.1) we need only to estimate M) T[H ]. From (3.12), we have

HT(t) = hy(n,nt) —52J pL( )(hT ho)(n — k,nt — ks) ds
k#0
—EEJ )f;;)(n—k,nt—ks)ds.
k#0
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3.3. THE ANALYTIC CASE

By simple computations, we have

\

eu(n,nt>< t>U | ’z-: (’ )‘

: . 1 1y (T e 35(s — t)e 3° )
+eMyrlp” INx 7[R — hoo] I;O(@ A <k>") L (ar(s) — p)1/? ¢

T
+e X Marlpllhlng [ e 55 e B knt ko g
k#0 t

Then, taking the sup over n, multiplying by 2! and using the definition of cvp(t) we have:

M,\ T[H ] HhoOH/\U + 60,\M)\ T[ T]N,\j[hT — hoo] + EC)\M)\7T[pT]

3.3.2 Analytic a priori estimates for h7 — h,

Now we turn to give a Cauchy-Kovalevskaya estimate on h? — h,. Due to the loss of
analytic regularity in time, it is crucial to use the weighted norm introduced in (3.10).

Proposition 3.2. Under the hypothesis of the previous Proposition, let h™ a solution of (3.7)
and assume M) 7[¢T] < +00 then the following estimate holds:

Nar[hT = ho < C’AMA,T<H77HA + eNyp[hT — ho] + 6||hoo|\,\;0).

Proof. From (3.8) we have

(hf = hoo)(n,€) = DY (n,€) + eEf (n,&) + eF (n,€),

where
Tine) = - [ Fmp
DY (1.6) = = | #E ()it (€ =) s,
El(n,¢) = EJ PS k hT — ho)(n — k,& — ks)(€ —ns)ds
k#0
and

L(n, &) = ZJ ps n—k:§ ks)(& —ns)ds.

Fixing < ap(t), we estimate separately the three terms. As regards Dy, by the triangular
inequality we get

T
<m0 (€57 | DT (n,€)] < CMA,T[pT]muA;af ¢34 ds.
t

A
Taking the supremum over n, &, multiplying by 1" and taking the supremum over D, r,
we arrive at

Nxr[DT] < CMr[p" 1] x0-
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3.4. THE GEVREY CASE

Concerning E7, using that

(3.16)

(n, & 1 1
Teks)? (n— k€ —ksy® = (<n R T <k>")’

we have

8 (n, 57 |EL (n, €)| < ! 5 + 10 Myr[p"]%
,§)<<n—k> o7 Male

T
X j e 3 nT — hoo | jgzee ™ W THTRETED 1€ ] dis.
t

Taking 15 = (ar(s) + p)/2, i.e. the middle point between y and az 5(s), we have

e~ e =)=k e _ ot o 20 +8)
ar(s) —p
Hence

T _—3g
n o e 4 1+ s
e (n, )7 | (n,6)] < CMr (o Worlh” — h) [ Lrs) 4

v (ar(s) —p)*?

Taking the supremum over n, £, multiplying by et and that, from the definition of ar

e

et 2
(ar(s) —w)*? ~ Ca

S

>

2 (ar(s) — )7,

we get

Nxr[ET] < CaMar[p" INx [T — hoo].

We need only to estimate F'7. In this case we have

—ns|ds

eﬂ<n,§> <7’L £> ‘FT TL g 2 M)\T J
t

k#0

and we use the extra-decay in ho, to control the derivative and the sum in k. In the end,

taking the supremum over n, £ and multiplying by e%t, we conclude

Nar[FT] < CyMy7[p"]

By collecting the estimates we get the thesis. O

3.4 The Gevrey case

In this section, we give a priori estimates for the Gevrey regularity setting. It is worth
noticing that the norms that will be introduced are more general than the ones introduced
in the previous paragraph, hence the following estimates include also the analytic case.

In the Gevrey setting, we define the norm for the spatial density as

4 640
M [p 1= sup B ]
(wt)eDx T

Y50,
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3.4. THE GEVREY CASE

where | - | :v,0,q is defined in (3.5), 0 < § « 1 and

Dy = {(p:t) € [0,1/2) x [0, T], p < ar ()},

where ap(t) = A/2 — Co[1/(t)° — 1/{T)’] and C, > 0 such that \/2 — C, > 0.

To take into account the decay of the Gevrey regularity, we define the weighted-in-time
analytic norm of h! — h, as

Nl — bl = sup (an(®) — VAP — holgune,  (317)
' (u,t)eDx T

where | - [guiv.o as in (3.3).

3.4.1 Gevrey a priori estimates for (7

We now turn to give Gevrey estimates for (3.9). As before, we're going to use Lemma (3.1)
to invert the linear part of the equation. We recall the notations in (3.11) and (3.12).

Lemma 3.2. Lety < 1 and assume that he, is a Gevrey function such that ||he |y 0 =
|hoollxiy,0,0 < 400 (see (3.5)). Assume that 1) is analytic with || ., < +0o0 and such that

inf |L[jn](0) +1] =k >0,

neZ;Ro=0
then
M;\Y,T[pT] < CM;\Y,T[HE]-

Proof. With the same notations of (3.14), equation (3.9) can be rewritten as

Gn(t) + Jn * Pu(t) = Fo(2),
for t € [0, T']. Then, from Lemma (3.1), we know that
t
on(t) = F(t) —f rn(t — s)Fe(s)ds
0
and |r,,(t)| < Ce 1"l with v < \.

Taking p < ap(T — t), multiplying by e®™(T=t)" (n_n(T — ¢))° and using the
triangular inequalities as in (3.16), we have

lo(2)

proa < [Fe(1)]

t
iy, T J e_CA(s_t)qu(S”M;%a,a ds.
0

Therefore, multiplying by (T — t>4/ Y+6-+9

and taking the sup, we get
MX,T[/’T] < M;\/T[HaT] + CAMZ,T[HE]'

O
The main result of this paragraph concerns the Gevrey estimate of the nonlinear part
of equation (3.9). Here we will discover how the echo mechanism is revealed in a linear

term of the equation and we will understand the need for the Gevrey regularity threshold
v >1/3.
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3.4. THE GEVREY CASE

Proposition 3.3. Let p” solution of (3.9) and suppose N;T[hT] < 400. Then, under the
hypothesis of Lemma (3.2), we have

M (0" < Clhalxiyo + €CMY [T IN] p[BT = hoo] + €CM 7 [p" ] oo

|>\;'Yzo"

Proof. From Lemma (3.2) we need only to estimate M, X, T[H ]. From (3.12) we have that

HI(t) = hoonnt —EZJ pL( )(hf{/—\hoo)(n—k,nt—k:s)ds
k#0
—62 J )hoo( k:,ntfks)dszl{(;(n,nt)+Bl(t)+Bg(t). (3.18)
k#0

Taking p1 < ap(t), multiplying by e*<™"©" (n_nt)” and using the triangular inequalities
as in (3.16), we get | B1 ()| 4:v,0,o is bounded by

3 [ Gt (s )

oIhE = hoo|| g ds.
D R T T

(3.19)
Choosing p(s) = p + ar(s) — ar(t), we have that
exp{—(p(s) — ) (n,nt)"} < exp{—ay(s)(s — t)|nt|"}.

From which follows that

<S>(1+5)(1—0<)/7
ORCED

e~ (u(s)=p){n,nt)” |n|1—a(s —1) <

Hence

| B1(8)|xr.0 < M plp T]N]T[hT — ho] %

<S> 4/y—6—48 1 )
k¢0< >’ f O (s — 1) 5t (ar(s) — )4 ‘

vy 1. T 13T 1 4 <3>_4/7 60
<eM N,/ [h —h ds.
M I~ hel s || e as

Noting that I_Ta —3/4 < 1since 1/3 < v < 1and 5/12 < a < 1/2, multiplying by
(YY7+6+9 and taking the sup,
M;,T[Bl] < CEM;,T[PT]N;,TULT — heol.

We now give an estimate of By(t). As in (3.19),

Bs(t)] 37,0, is bounded by

S S n - n—k,n S
I R

iy, ds.
k#0
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3.4. THE GEVREY CASE

We divide the estimate in two cases: if |[nt — ks| > t/2 then
A A
exp{—§ {n—k,nt —ks)'} < exp{—§ {n—k,t/2)7},

from which is easy to close the estimate, since we have sufficient decay.

If |nt — ks| < t/2 then |k| < |n|, since s > t. If k = n, we get sufficient decay

, where we have to overcome the
<5< |n|+l/2

as in the previous case. Hence we reduce to
In|— 1/2

resonances due to plasma echoes. Here, since t, we get that, choosing

p(s) = p+ar(s) — ar(t),

exp{~(u(s) — ) (k. k)7 < exp{ oy LMo},

]
It follows that, if |n — k| > |n|/2, then we get sufficient decay one more time. Hence, we
focus on |n — k| < |n|/2, that means |k| > |n|/2. Then, we get

(s =) _ —cuorlz=ljap-s |n— k| In| 255
R BT
and we have that —2 + < 01if y > 1/3. Hence, we get
M)Y,T[Bﬂ S CfM;,T[PT]Hhongkmo-
Collecting the estimates on By and By we get the thesis.
O

3.4.2 A priori Gevrey estimates for h”

This proof is analogous to the one given in [22]. Here, instead of the generator functions
approach, we use the global-in-time norms defined in (3.17).

Given u < ap(t), the Fourier multiplier operator
Au(V) = V()
is defined by

(Au(V)R)(n,€) = ™" (n, €)% h(n, €).

From (3.6), we have
d T 2 d T 2
a”ht _hoougw%“ - &HA (V)(hy = hoo) 3
- 2<A (V)(RT = hap) ]A ) {W[hT] n}>
+25<A (V)(RT = hao) ‘A W [hT] hoo}>
+25<A (V)(RT = hap) ‘A Wa[hT], kT — hoo}>

(3.20)

where (-|-) is the L? scalar product. We rewrite the last term as
{Ap(V)BF = ho) | A (VHIRE L T = oo} = (0[hT), Au(V) (BT = hio)} )
+ (AT = o) [{BTRT], A (V) (BT = ho)} )
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3.4. THE GEVREY CASE

and we notice that
(Au(V)(BF = ho) [{WIAT1, Au(V) (BT = hao)}) = 0,

since (f|{1, g}) is skew-symmetric. We denote the three terms we are going to estimate
in (3.20) by

Al = (A (V)] = heo) ’A Tl ),
A2 = <Au( YhT — heo) ‘A V[T hoo}>
4} = (Au(V) (A — heo)|[Au(V).U - VY] ~ b))

where [, -] is the commutator and U = (—0,%), 0z1)).

By the Plancherel identity we have that

_ Tl ~
4l < X [ aeaun, 91T = )0 1400, LN e — )

oF (n) — N
< O3 Aunt) PEI [ Qe (0, )67 o) (1, ) A€ — Ol (¢ — )

o 1/2 - 1/2
; <ZAi<n,nt> pin) ) (Zfdei(naé)l(hT—hoc)(n7§)\2> ,

where in the second estimate we have used the triangular inequality, while in the third we
have used two times the Cauchy-Schwartz inequality (firstly in the £ variable and then in

The estimate on A} is closed using the definition of the norm | - ||x.,.».o and the fact
that o < 1/2:

EHES allbi = heolgrr.e.

For A? we get

| Ak, k) pT ()|
k

A< Y [T = b)) € — ntl| Ayl (n — ki € — k)|

n,k#0

<X ([ 14,07 = ho)m. o) ae)

Ak k) of (K _ /
3 RO ([ G0 - o)

k#0

T - 211/2
<{t) ||h,? — ho|gn [Z (2 |A#(k’ k]j)pt (k)| <f |A,thoo(n _ k,§)|2 dﬁ) 1/2) ]

n \k#0

and noting that, in the square brackets, we have the Lo-norm of a convolution in n, we get
by the Young inequality:

T2
| Ao (t)| < (&) CA|AT — hep|griso (Z |A,, (K, ktgpt (k)| )

k#0 k
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3.4. THE GEVREY CASE

Using the definition of the norm M} . and the fact that & < 1/2 we obtain:

| A2(t)] < (& Callh{ — hellgrorelof

We conclude by estimating A?. We have that

EHESDY fdsA (n, O(hf = hoo) (n, f)l"’f( )

n,k#0
X | Ap(n, €) = Au(n — b, € = B)||E = ntl|(he — hoo) (n — b, € — kt)].
We split the estimate into two dichotomous cases:

@) <k, kt) = <{n,&) /2 and (b){n—k,§—kt) > (n,§) /2.

In case (a) we have that:

|§_nt||A (n7§)+A (n_k7§_kt)’ 1 1
Ak kA ke k< OO (e )

In case (b) we use that

|k7 kt|AM(n7 é)AM(n - k7£ - kt)
O+ ln— k& —ktYTT

‘Au(nag) - Au(n - k7§ - kt)| < C
gaining that

€ = ntl|Au(n, &) — Au(n — k€ —kt)| _ € —nt| k, k)~
Au(k, k) Au(n — k, € — kt) T+ {n—k, & — kty! T
<Oy, & n— k€ — k)"
Then we have, using again that 2ab < a? + b%:

4% 3 (% + S8 I i [ (007 4200 1T )0

n,k#0

A —k, & —nt
u(nk,22§ n)|(htT*hoo)(n*k¢,§fk:t)|d§,

+{n—k,&—kt)!

obtaining

[A°(1)] < <& Calloi

t hOOHép;’y,a+'y/2‘

Moreover 8t0§(hﬁw)(n, €) verifies the equation

o~

T(n) . ~
0T Per)m,€) =2 e —

p W — o) (n — k€ — kt)(€ — nt)
k;éO
k20 k#0
_ f’t — k& — kt).
k+#0

44



3.5. THE BACKWARD RESULT

Since the new terms appearing don’t have derivatives, they are easier to analyze and similar
estimates to the previous one hold. We omit the details.

Putting all togheter, we get

T T
f |45l ds < Calln | xo f 5 Invoal e = haollgee ds
t t

T
C
< Ol o MY L [pT INY [T — R J N
H H /\,T[ ] )\,T[ 00] . <S>4/'y+6+6+2/'y+2 (GT(S)—M)1/4

ds,

while

T T
f A2l ds < Cx|Vha IAW,UJ ()05 Inmoalhs = haollguo.o ds
t t

Ca 1

< Oy|Vhe <8>4/7+5+6 (Y (ap(s) — p) /A

T
’A;%UM;\/,T[PT]N)Y,T[hT — hoo] f ds,
¢
and, choosing p(s) = (ar(s) + p)/2, we have

T T
L 143)ds < Gy j (s o7

|M§’Y»U,Oé ’hz — heo ”éu;%o+7/2 ds
th - h(x) ”éu(s);'y,a

0 ) — )

T C 1
Y o, TINY pT 2 a
< C,\M/\T[P ]NA’T[h o) L <8>4/'y+5+5 <8>4/7+4 (ar(s) — p)32 ds

T
<o | @l
t

Hence, integrating in time (3.20), multiplying by <t>4+4/ 7 (ap(t) — p)'?, taking the
sup and dividing by Ny [T — hy], we have proved the following Proposition.

Proposition 3.4. Let h” a solution of (3.7) and assume M .[¢*] < +o0, then the following
estimate holds:

N p[h" = heo] < CAM] 1[p"] (HnHA;U +eNJ 2 [A" = hoo] + £]hos ||AW),

3.5 The backward result

We can now present the main theorem of this Chapter. Since it is more general, we will
state it considering the Gevrey case.

Theorem 3.1. Let ho, € LY(T! x R) of Gevrey regularity such that |ho|xy.00 < +0,
with A > 0,0 > 3,y € (1/3,1]. Considern € L*(R) analytic such that || ., < +o and
assume that

inf |L[jn](0) +1| = k>0,

neZ;Ro=0

with j,, as in (3.11). Then, for small values of €, there exists a unique Gevrey regular solution
hi(x,v) of (3.6) such that

i @, 0) = o) o i) = O

with exponential rate.

We don’t give the proof of this result, which is similar to the one given in Theorem
(2.2) of the previous Chapter.
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3.6. ON THE LINEAR PART OF THE EQUATION FOR 7y < 1/3

3.6 On the linear part of the equation for 7 < 1/3

Here we want to give a formal argument to show that the linear part of the equation is
ill-posed for asymptotic data of Gevrey regularity 0 < v < 1/3.

Let us consider the equation for the density in (3.18) and assume that 7' = +oo0.
Neglecting the Volterra linear term and the nonlinear one, we get
+o0
~ —~ ~ — 1)~
pe(n) = hop(n,nt) — e Z f ps(k:)n(sk)hoo(n — k,nt — ks) ds.
k0"

Assume n > 0, as we have seen in the previous section, the challenging terms presenting
resonances due to plasma echoes are those with 0 < £ < n in the integral. We restrict our
analysis to these modes and in the sum over k£ we take only the worst term k = n — 1.

We get, after a change of variable,
hos (11, i) e

et | dn(n—1)(r - Dt hop (1, t(n — (n — 1)7)) dr,

Pr(n) =

where ¢.(n) = pi(n)/n.

We expect that, as t — +00, the given function

o (L t(n— (0= 1)7)) = 5((n - — ")) = Los(r - ).

n—1 n—1

Hence, we want to study the toy model

 he(n,nt) t
I P ¢_n_4(n—1). (3.21)

Pr(n)

Iterating (3.21), we get the expression

! n—k!3@n—k,nt
¢t(n):]€2_0(_1)k(€m)k[( n! )] (nk: )

By Laplace’s method and by using that i, is analytic, after some computations we get that

/v 1
(n!)?

where we used the Stirling formula in the last inequality.

ér(m)| ~ Ce"|(n = 1) e ~ Cn[(n — VS,

From this it follows that ¢;(n) is unbounded in n for v < 1/3 and this suggests the
ill-posedness of the problem in this setting. We note that, differently from what happens in
the forward problem, the resonant terms due to the echoes are finite in number for each
fixed n. It is not yet clear what this might imply.
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CHAPTER

The validity problem in the
mean-field scaling

By validity problems we mean those procedures in mathematical physics which justifies
the use of a limit effective partial differential equation by a rigorous derivation from a
system of N particles in a suitable scaling limit as N — +co0.

In this Chapter, we mainly focus on a review of the classic works by Dobrushin [23]
and Neunzert and Wick [47] on the validity of the Vlasov equation for regular potentials,
starting from an N-body system in the mean-field scaling.

In particular, the point of view of Neunzert and Wick in [47] - the first work to give
a mean-field limit result - will be very useful in the next Chapter to study topological
interactions.

4.1 Mean-field scaling and empirical measures

We focus on a N-particle system governed by the following ODEs'
1
2i(t)=Nj;F(Zi—Zj), t1=1,...,N, (4.1)

where z; € R™ and F' : R™ — R" is a bounded two-body interaction such that F' is globally
Lipschitz with Lipschitz constant Ly = Lip(F').

The justification of the 1/N scaling in (4.1) is insidious since it is not a priori clear why
the magnitude of the single-particle interaction should depend on the number of particles
in the system. It can be motivated by considering a dynamic with a different time scaling:
if Z;(¢) is a solution of the N-body problem

N
()= D F(z - %), i=1,....N,
j=1

'Only in this Chapter, not considering mechanical systems but ODEs generally defined by (4.1), the
dimension of the space will not be denoted by d as in the rest of the thesis but by n.
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4.1. MEAN-FIELD SCALING AND EMPIRICAL MEASURES

then z;(t) = z;(4) solves the equation (4.1).

Otherwise one can consider phenomenological examples in which for fixed N >» 1 the
term N F' is approximately of order 1, justifying both the use of the model (4.1) and the
validity problem thanks to the size of the system considered.

For example, let n = 6, 2 = (v, v) and z;(t) = (Z;(t), v:(t)) € R® x R3. Considering
the Milky Way with all the stars with average mass m and F(z,v) = (v, —Gmaz/|z|?), we
have

N mez—x] )
T, = U;, z__E Tz , 1<i1<N
J#i J

where G = 6.67 x 10" N - m? - kg2 is the gravitational constant.

Writing the equation in adimensional coordinates:

zi(rt) T

(wi(t), wi(t) = (F= FE(D),

where 7 ~ 2.4 - 108 years is the typical temporal dimension related to the rotational period
of the sun and L is the typical spatial dimension related to the volume of the galaxy, we get

Using that N ~ 210!, the solar masses m ~ 103! kg and that the Milky Way is 1.7—2-10°
ly in diameter and approximately 10? ly thick, we have

Gmr?

NL3

— O(1).

4.1.1 Empirical measures

The N-particle dynamics in (4.1) lives in the configuration space R™Y which depends on

N. 1t is useful to introduce the notion of empirical measure related to (4.1):

1 N
= ; (4.2)
which is an element of P(R"), the space of Borel probability measures on the single-particle
configuration space. Notice that y¥ is invariant under permutations of {21 (t), ..., zx(t)}.

It is easy to see that, if F/(0) = 0, then p}¥ solves in the weak sense the following
Vlasov equation

oufi+ V.- (FLFS) =0, (@3)
where f; = f(t,z) and
FIRIE) = | Pl = w)fidv)
is the mean-field force. Since F' is bounded and globally Lipschitz we have that

[ F L oo < IF oo, 1FLf)(2) = FLF(y)] < Lip(F)|z - yl. (4.4)
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4.2. THE DOBRUSHIN APPROACH

The mean-field limit thus consists in proving that, for large N, the empirical measure
pl¥, already solution of the kinetic limit equation, closely approximates a given solution f
of (4.3), possibly providing an estimate with a convergence rate in N.

In the case of regular potentials, this result is classical and has been given in various
independent works in [47], [10] and [23].

In the next sections we will explain the point of view of Dobrushin in [23] and Neunzert-
Wick in [47]. Dobrushin’s approach relies more on the fact that x¥ and f are both solutions
of the kinetic equation in the same functional space, on which it is possible to introduce
a structure of metric space. Neunzert and Wick were inspired more by the results on the
uniform distribution of sequences and the discrepancy theory (see [41, 40, 36]) and their
approach is more involved but interesting for the following chapters of the thesis.

4.2 The Dobrushin approach

In 1979 the Russian mathematician Roland L. Dobrushin strengthened the connection
between statistical mechanics and optimal transport problems - already noted in works of
the “70s about the theory of stochastic fields [24, 15] - using for the first time the Wasserstein
(or Kantorovich-Rubinshtein?) distance in kinetic theory problems, to prove uniqueness’
of solutions of the Vlasov equation.

The approach in [23] is to construct a contractive map in the metric space of probability
measures equipped with the Wasserstein distance. Thus existence and uniqueness of the
solution follow from the usual Banach fixed point theorem. The same approach also allows
proving continuity with respect to the initial data, providing the necessary stability estimate
from which the mean-field limit follows.

As mentioned before, the tool used to prove stability estimates is the Wasserstein
distance on P(R™). Given two measures p, v € P(R"), in this Chapter we define it in the
following way:

Wi(uv) = inf f min{|e — y|, 1} dn(z, y).
meC(p,v) JRn xR

where C(ju, 1) is the set of all possible couplings between 1 and v, i.e. the set of Borel
probability measures m € P(R™ x R™) such that

T(AxR") =p(A) and 7(R" x B) =v(B),

for all A, B € BB, the o-algebra of the Borel sets.

Note that, with this definition, the Wasserstein distance between two measures is
necessarily finite, having replaced the usual euclidean distance |x — y| between two points
x,y € R™ with the bounded distance min{|z — y|, 1} (otherwise we would have had to
give the definition only for measures with finite first moment).

®The attribution of the distance to the name of Wasserstein was given by Dobrushin in [24] after having
come into contact with the work of Leonid N. Vaserstein [57]. This distance had already been used in the ‘40s
in the theory of transportation of mass (see [38] and [39]). Only later in [23] this incorrect attribution was
recognized.

*In [23] the focus is on the proof of uniqueness since existence was already obtained in [10].
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4.2. THE DOBRUSHIN APPROACH

We refer to [60] and [61] for the proof that W) is indeed a distance and for a discussion
of its properties, including the fact that

pg — = Wi(uj, p) — 0, (4.5)
where 1; — ;1 denotes the weak convergence of the sequence of measures {/:;} to /.
Theorem 4.1 ([23]). It holds that:

i) Given an initial datum fy € P(R"™) and a bounded interaction I’ that is globally Lipschitz,
there exists a unique global weak solution f € C([O, +0); P(R”)) of the Vlasov mean-
field equation (4.3).

ii) Solutions of (4.3) are weakly-continuous with respect to the initial datum. It follows that,
fixedT' > 0 and being f; solution of the Vlasov equation (4.3) with initial datum f, and
ulY the empirical measure in (4.2) related to the particle system (4.1) with initial datum
,uév,forO <t <T,itholds

Wi (fr, 1) < e2maxliFlo LTy, (0,
Proof of i) of Theorem 6.1. We divide the proof into several steps.
Step 1 Given f € C’([O, T; P(R”)) and z € R", we define the flow
() =2/ (t, 2)

that solves

(4.6)

() = FLAIGE ()
21 (0) = z.

Note that F[f;](z) is also continuous in ¢ since in general, given two probability
measures [, Vv € P(R"),

| Flul(z) = Flv](@)| < max{Lip(F), 2| Flo }W1 (s, v). (4.7)

Indeed, let ™ € C(u, ), from the hypothesis on F' we have

|Flp](x) — Flv](z)| = UR2n F(x —x)dm(x1, 20) — o F(x — x9)dm(z1, 22)

< jR% |F(x —x1) — F(x — x2)| dm (1, 22)

< max{Lip(F), 2| F|sx} J i min{|z; — zo|, 1} dn(z1, 22).
]R n

Taking the infimum between the couplings we get (4.7).

By this and thanks to (4.4), we know that the solution (4.6) is uniquely defined, globally
in [0,T.

Step 2 Given a fixed T' > 0 and fp € P(R"), we define the map
@: C([0,TLEP(R™)) — ([0, T PR™)),
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4.2. THE DOBRUSHIN APPROACH

where (®f); is the push-forward of f; along the flow 2/ (¢, z) defined in (4.6), i.e. (® f); is
defined by the relation

| a@ @) = | a2 dhe) (48)

n

for any function o € C(R™).

Thanks to (4.8), (® f); is a probability measure for each ¢t € [0, T']. The weak continuity
of (® f); with respect to time ¢ follows from the continuity of 2/ (¢). Hence the map ® is
well-defined.

Notice that if f € C'([0,T]; P(R™)) is a fixed point of the map ®, then it is a weak
solution of the Vlasov equation. Hence, introducing the following distance

T
Wi(f,g) = fo Wi(firg2) dt, (4.9)

for f,ge C ([0, T, P(R”)), the aim is to prove that & is a contractive map with respect
to Wl.
Step 3 Given z € R", let
d(z) = max ’zf(t,z) —29(t, 2)| .

te[0,T]

By the triangular inequality, we have

T
5(2) < | [FLAIG! (1.2) - Fland (2. 2))

OT T
< | e o) - e o e | IFLRIE ) - Flade )]

Using (4.4) and (4.7), we obtain

T
5(2) < Lip(F)T8(z) + max{|F|.o, Lip(F)} f Wi(fi, o) .

Hence, if Lip(F)T" < 1 we have that

max{|F| o, Lip(F)}
1 — TLip(F)

5(2) < Wi(f,9). (4.10)

Step 4 We now pass to the proof of the contractivity of ®. Let 7, € C((® f)¢, (Pg)¢) defined
in this way:

J Oé(ZI,ZQ) d’rrt(zlazQ) = f a(zf(t,z),zg(t, Z))df(](z),
R™ xR"™ n

for any function o € Cp(R™ x R™), i.e. 7 is the push-forward of fy along the product flow
defined by z/ (¢, z) and 29(t, 2).
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Using (4.10), we have

JR% min{|z; — 22|, 1} dmy(21, 22) = o min{|z/ (t,z) — 29(t, 2)|, 1} dfo(2)
< [ sraste) < 2Ly i

and since the Wasserstein is an infimum over the couplings,

max{ || F'| o, Lip(F)}

Hence, from (4.9), o -
e s Tmax{IFle Lip(F)}
) = =T
for T' small. O

To prove the second part of Theorem (4.1), we introduce a duality formulation of the
Wasserstein distance. This point of view is much used in the theory of optimal transport
and it will also be useful in the next Chapter.

Theorem 4.2 (Kantorovich duality). Given two probability measures pu, v € P(R"™), we have

vie) vl _ )

. < (4.11)
z,yeR” mln{la ’.1‘ - y’}

Wi (p,v) = Sup{ o Yd(p—v)i st

We refer to [60] and [61] for the proof of this result, we note only that from (4.11) it is
clear that (4.5) holds.

Moreover, we introduce the “intermediate” dynamics that, fori = 1,..., N and f €
C([0,T]; P(R™)), is given by
) = FLAIED,

and the empirical measure
N
1
N _ -
= X

The initial datum is v’ = p), ie.
(= O} = {=}s.
Proof of ii) of Theorem (4.1). We estimate W (f, 4 ) using the triangular inequality
Wilfe i) S WFe ) + Wi ).

Given a function ¢ : R® — R which is Lipschitz with respect to the bounded distance in
(4.11) and such that
oy 9@ =0 _
z,yeR™ mln{lv ‘:L’ - y‘}
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we have
f Bd(f — ) = j B (1, 2)) d(fo — o) (2),

this because both f; and vVt are the push-forward of (respectively) fy and yq along the
flow 2/ (t).

Since
t
|zf(t, z) — zf(t, 2| < |z — 2| + max{2||F| o, LF}J |zf(s, z) — zf(s, 2')| ds,
0
we have that
127 (t, 2) — 2 (¢, 2)| < eIl Lrdt ming1, 2 — 2|}

Hence 2/(t, z) is Lipschitz with respect to the bounded distance and so the function
(21 (t, z)) is Lipschitz too with constant e™2X{IFle.LF}t hence

fwd(ft _UN) < emne 2Pl Ly (fo .
by the Kantorovich duality in (4.11).
From this and from the definition of Wasserstein distance we get

Wi(fesut') < Jmin{l, |27 (¢, 2) = 2i(t, 2)|} dug (2) + ™o o3 (fo, ).

We now estimate:

S 1l )~ 50| < IFLRIE 0) - il 1 0)

< LA @) = Fla' 16 O) + 1P 1 (6) = Flu )z 0)
< max(2|F oo, Lip(F)} (Wi (i, 1Y) + mind1, |/ () = 2:(0)]}),
where we have used again the Kantorovich duality in the first term.

By Gronwall’s lemma, we get

min{1,[£(0) - =)} < [ AW (o) ds,
0

where 5 := max{2|F|, Lip(F)}. We arrive at

t
Wi (fe, 1) < ﬁf PEIW (fo, 1) ds + PWi(fo, 1))
0

Multiplying on both sides by e~?* and using again Gronwall’s lemma, we obtain the
thesis

Wi (fe, 1) < ezﬁtwl(fo,ﬂév).
O]

We cite that this approach by duality is also used in the proof of the mean-field limit
given by W. Braun and W. K. Hepp in [10], where they work with the so-called bounded
Lipschitz norm defined by

o= s [wdn

lblloo+Villoo<1
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4.3. THE NEUNZERT AND WICK APPROACH

4.3 The Neunzert and Wick approach

In 1974, Helmut Neunzert and Joachim Wick in [47] gave the first proof of the mean-field
limit, inspired by the work [63] of Hermann Weyl on equidistributed sequences modulo 1
of real numbers and using the discrepancy theory.

We are particularly interested in this result for two reasons: it is historically the first
rigorous proof of the mean-field limit; moreover, its strategy is generalizable to cases with
nonsmooth interaction, as in the proof of the mean-field limit for topological interactions
given in the next Chapter.

The authors work in R? and use the following notion of discrepancy distance

f dPl—J dﬂ2‘
R(z) R(2)

where R(z) = {w € R?s.t.w < 2} and w < z is the product order (or component-wise
order) on R?.

D*(p1, p2) = sup

2€R2

In this work F' is assumed to be of bounded variation in the sense of Hardy-Krause:
this means that F' has one-dimensional bounded variation in each variable F(z!,-) and
F(-,2?), z = (2!, 2?) and moreover that

Va[F] = sup Y |Ag,  (F)| < +oo,
ik
1

where R = | J, ;, Ri . is the finite union of ordered intervals R; ;, = (z; ,zi) with z% <

1.2 2
< zp,zi <+ < zjand

ARi,k<F) = F(z}H,ng) + F(z},zg) - F<Zz'1+1vzlz) - F(Zzl?Zl%H)-
Then Vi (F) is defined as the sum of V5[ F'] and of the one-dimensional total variations.

We introduce again the intermediate dynamic that, given f € C([0, T]; L'(R?)) and
1=1,...,N,is given by
) = FIFIED,

and the empirical measure

The initial datum is v} = ), i.e.
N N
{sz(o)}izl = {ai}it1

For functions F' of bounded variation in the above sense, the following inequalities hold.
They are widely used in the study of uniform distributions of sequences and discrepancy
theory (see [41, 40, 36, 48]) and can be generalized to any dimension.

Proposition 4.1 (Koksma-Hlawka inequality). Given an interaction F' of bounded variation
in the Hardy-Krause sense and a probability measure f € C([0,T]; L' (R?)), we have that

FLf(z) = FLui 1) < Vi (F)D*(fe, 1),
where Y is the empirical measure in (4.2). Moreover

(Flui'1(2) = FIo 1) < Va(F)D* (i, 17Y) + 2D* (v, ).
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4.3. THE NEUNZERT AND WICK APPROACH

Thanks to these properties, a version of the mean-field limit can be proved. Notice that
we don’t specify the convergence rate.

Theorem 4.3. Let ' : R? — R? be a function of bounded Hardy-Krause variation. Given
a probability measure f € C([0,T]; L*(R?)) solution of the Vlasov equation, assume that
FL[f:] is globally Lipschitz with Lipschitz constant L. Given the empirical measure 113’
related to (4.2), we have that

lim D*(fp, ul¥) =0

N—+00
if
lim D*(fo,ud’) = 0.

N—+00

Proof of Theorem (4.3). We avoid giving all the details since a similar proof will be given in
detail in the next Chapter. We have that

D*(feout') < D*(fer ) + D, plY).

It can be proved that the first term goes to zero, since

d(fo— Ko ) — 0.
2/ (t,R(2))

Concerning the second term, we use the following lemma which we don’t prove (see
[47] and Proposition (5.3) where an exact analog of this is proved).

Lemma 4.1. Let
1 i N 1 i
=— > 0, and v’ = — ) Oy,
Nizl Nz':l

be two empirical measures on R? and take § > 0 such that |z; — w;| < 6 foralli =1,..., N.
It holds that, for any probability measure f € L'(R?),

D*(,uN,VN) < 204(9) + D*(VN,f),

where

).

The proof follows by estimating the difference of the flows ‘sz (t,z) — zi(t,z)| and
using the Koksma-Hlawka inequalities (4.1) and Gronwall’s lemma.

of(0) = sup sup ’f " dz —f f(zhd
R(z2) R(z1)

z0€R2 |z1 22| <é

d

Besides what is briefly introduced here, there would be many interesting topics on
mean-field validity problems such as the approach with BBGKY hierarchies, the quantum
mean-field limit and the validity for the Vlasov-Poisson equation which are not covered
here. We refer the reader to the many references on the subject ([17, 18, 29, 37, 53, 52, 54]).

We only mention that, although the theory for regular pairwise interactions is suffi-
ciently well understood, going beyond it considering singular potentials, is a harder task.
This is the case of the three-dimensional Vlasov-Poisson equation. In this equation, the

61



4.3. THE NEUNZERT AND WICK APPROACH

potential 1/r is singular at the origin and does not belong to any LP space. Although the
mean-field limit for the Vlasov-Poisson equation remains an open problem, there has been
important progress in recent years, see the works [34, 35] where the mean-field limit is
proven for potentials with singularities “weaker than 1/r” and also [42, 43].

However, in the case of the one-dimensional Vlasov-Poisson equation, the problem has
been solved in [55, 56] and with a simpler proof in [33], being the force discontinuous, but
not diverging. The analogy with the discontinuity of the Coulomb/Newton interaction in
the one-dimensional case suggested the strategy for the proof of the mean-field limit for
topological models which will be presented in the next Chapter.

62



CHAPTER

Topological interaction: mean-field
limit for a Cucker-Smale type
model

joint work with D. Benedetto and E. Caglioti ([5])

In this Chapter we present a mean-field limit result for the Cucker-Smale model with
topological interaction. In topological models an agent reacts to the presence of another
not according to the distance, but according to the proximity rank (see eq.s (5.1), (5.2), (5.3)
below for a rigorous formulation). Due to this dependence on the rank, the interaction
comes out of the two-body case, and present various problems in the kinetic treatment.
In particular, in the case considered here, solutions of the kinetic equation are not weakly
continuous with respect to the initial datum and there are also some difficulties in defining
particle motion.

5.1 Topological Cucker-Smale model

In recent years, the conceptual and mathematical apparatus of kinetic equations has been
used in the study of self-propelled particle systems of biological nature undergoing local
interactions, as the motion of migrating cells [28], locust swarms [3] and fish schools [44].
Starting with the pioneering paper in [58], several models have been proposed to explain
the evolution of these systems (see [59]). In the simplest [19, 20, 58], a bird is modeled
as a self-propelling particle that interacts with its neighbors. The interaction is such that
neighboring birds tend to align their velocities. For many of these models, the mean-field
limit has often been used to obtain a kinetic description of the dynamics (see, for instance,
[31, 14, 12, 13, 30, 4]).

A few years ago, supported by observational data ([2, 16, 1]), “topological” models for
interaction were introduced: in these models, the strength of the interaction of an agent
with another one is a function of the proximity rank of the latter with respect to the former.
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The seminal paper [2] has been followed by several papers studying various aspects of this
phenomenon see e.g. [9, 11, 27, 49, 50].

Mathematically, flocking of systems of topologically interacting particles has been
investigated in [45, 51, 62] and as regards stochastic models with topological interaction
also in [7, 8].

In [32], the author introduced the topological Cucker-Smale model which we are going
to consider here. In addition to studying flocking, he proposes kinetic and fluid models
derived from this mean-field topological interaction and a first mean-field limit result is

proved for a smoothed version of the model in which the weak continuity in the initial
datum is recovered.

In this Chapter instead, besides studying the well-posedness of the microscopic dynam-
ics and the kinetic equation, we prove the mean-field limit for the effective dynamics with
topological interaction, without hypotheses of further regularizations.

A Cucker-Smale type model for the motion of N agents, in the mean-field scaling, is
the system

i(t) = vi(t)
N
= % 3 bl — it o

where the “communication weights” {p;; }f\g-:l are positive functions that take into account
the interactions between agents. In classical models, p;; depends only on the distance
|z; — ;| between the agents. In topological models the weights depend on the positions of
the agents by their rank

pij = K (M(z;, |z; — zj])), (5.2)

where K:[0,1] — R is a positive decreasing Lipschitz continuous function such that
SO ) dz = v and, for r > 0, the function

1 N
M (xi,1) = NZ Xli —we| <7} (5:3)

counts the number of agents at distance less than or equal to  from x;, normalized with N.

Here and after, X'{|x; — 21| < r} = X (5,)(7x) where X4 is the characteristic function
of the set A and B,.(z) denotes the closed ball of center - and radius r in R?. Note that in
this case p;; is a stepwise function of the positions of all the agents.

In the mean-field limit N — 400, the one-agent distribution function f; = f(¢,z,v)
is expected to verify the equation

Ocft +v-Vofe + V- (WSS, fil(x,v) f) =0, (5.4)

where, in this Chapter, instead of p we denote by Sf;(z) = { f;(z,v)dv the spatial

distribution and where, given a probability density f in R? x Rd and a probability density
- d

pin R%,

Wip. fliw) = | K (M[p)(olo =) (w = 0)flgo0) dy dw, (59
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with

M) = [ ) a (5.

|2/ —z|<r

A weak formulation of this equation is given requiring that the solution f; fulfills

fa(:c, v)dfi(x,v) = fa (a:f(tjx,v),vf(t, x, v)) dfo(z,v)
for any a € Cy(R? x R?), where f; is the initial probability measure and (zf(¢), v*(f)) =
(zf (t,z,v),v7 (t, ,v)) is the flow defined by
il (t,x,0) = ol (t,z,0)
ol (t,z,v) = W[S S, fi](zf (t,z,0), 07 (t, z,v)) (5.7)
z(0,z,v) =z, v(0,z,v) =wv.

In other words, f; is the push-forward of fj along the flow generated by the velocity field,
determined by f; itself.

It is easy to verify that the empirical measure

L
N ._
My = N;_l‘szﬁv () Ol (1)

associated with the solution of (5.1), (5.2) and (5.3) is a weak solution of (5.4). Namely,
M[Su]N](x,r) is exactly M (z,r) defined in (5.3) (from now on we use the more complete
notation M [Su¥](z,r)). Thus, we can rewrite the agent evolution in (5.1) as

{ifv (t) = v (t)
o (1) = WIS, w1 (t), o (1))
As seen in the previous Chapter, in the Dobrushin approach to the mean-field limit, the

result is achieved from this fact and from the weak continuity, with respect to the initial
datum, of the weak solutions of (5.4).

(5.8)

We cannot use this approach in presence of topological interaction, since in general the
solutions of (5.7) are not weakly continuous with respect to the initial datum (see section

(5.3)).

We can overcome this difficulty if the solution of (5.4) has a bounded density. To obtain
our result, we were inspired by the work of Trocheris [55] in which the author uses the
previously mentioned discrepancy theory techniques of Neunzert and Wick [47, 48] to
prove the mean-field limit for the one-dimensional Vlasov-Poisson equation, where the
interaction has a jump-type discontinuity at the origin.

5.2 Distances and weak convergence

In this Chapter we use the following definition of the 1-Wasserstein distance %" between
two probability measures p; and py on R%:

W (p1,p2) = sup fﬁﬁ dp1 — dpe)
$eCp(R9),Lip(¢)<1

= sup Jqﬁ dp1 — dp2),
$eCH(RY), [V ]o<1

65



5.2. DISTANCES AND WEAK CONVERGENCE

where Lip(¢) is the Lipschitz constant of ¢.

The counter of the number of particles in (5.6) is not continuous with respect to #, so
we work with the weaker topology induced by another distance, the discrepancy, defined

as
J dp1 — j dpo|.
By (x) By ()

In the sequel, we also indicate by B the closed ball Br(0).

P(p1, p2) = sup

z,r>0

As discussed in the previous Chapter, the discrepancy distance is mostly used to quantify
the uniformity of sequences of points (see [41, 26]), but its multidimensional version is used
for the proof of the mean-field limit in [47] and is mentioned by Neunzert in his lecture
notes[46].

By definition, it holds the following proposition.

Proposition 5.1 (Lipschitzianity of M with respect to &). Let p1 and py be two probability
measures on R?. Then, for any x € R? andr > 0,

[Mp1](z,7) = M{pa] (2, 7)| < Z(p1, p2)-

We can also define 2 in terms of regular functions. Let X be the subset of C} ([0, +00); R),
and define
+00
ol = | 1o)ar
Then

D(p1,p2) =  sup supfqﬁ(\w—y\)(dpl(y) —dpa(y)).
eX:|p|x<1 @

This assertion is an easy consequence of the following lemma.

Lemma 5.1. Let g1 and g2 be two probability measures on [0, +0). Then

f dgl_J dgo
[0,7] [0,7]

Proof. Fix r > 0, there exists ¢, . € X with |¢,.|x = 1 and such that ¢, (s) = 1if
0 <s<rand¢,.(s) =0if s > r + e. For any measure g,

+00

= sup ¢ (dg1 — dgo) . (5.9)
¢eX: o) x<1J0

sup
r=0

+oo
111% (¢re(s) — X{s e [0,r]})dg(s) =0,
E—> 0
then
+00 +0
J[ ](d91 —dg) = iiﬂ(l) ¢re(dgr —dge) < sup #(dgr — dga).
0,r —vJo

PeX: o) x<1J0

To prove the opposite inequality, we denote by (71 and G2 the distribution functions of g;
and gs:
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Then, integrating by parts,

400 400

. ¢(dg1 — dga) = — ; ¢'(r)(G1(r) — Ga(r)) dr < 6] x|G1 — Galloo-

We conclude the proof by noticing that | G; — G2 |« is exactly the left-hand-side of (5.9). [

For our purposes, we need the equivalence of & and #  in the case in which one of the
two measures has bounded density. We note that in the general case the equivalence is
false, as can be easily checked by considering two Dirac measures ., and d,,: #  vanishes
when |r1 — z2| — 0, while Z is one whenever z; # x2. Nevertheless, using the covering
principles as in [6], for measures on a compact set, it can be proved the continuity of
the Wasserstein distance % with respect to the discrepancy distance 2. We refer to the
appendix of [5] for a proof of this fact.

In the sequel, in the definition of & we choose functions in ¢ € C([0, +0), R), with
first derivative continuous up to a finite number of jumps. With abuse of notation, we keep
calling this set of functions X. Let us expose some technical properties.

Given ¢ € X, we define some useful regularizations, ¢*, ¢ and 1., with e > 0, as
follows. Denoting by ¢ the function

3(r) = fo "16/(s)] ds.

we define

L0+ 6(r)), ifr >0,
Qbi (7’) = 2 1
+ §QJ)(O), ifr < 0,
and
Pe(r) =" (r+e) — ¢~ (r —e). (5.10)
Finally, fixed a regular mollifier 7 supported in (0, 1), we define
Ye(r) = J ne(s)pT (r +s)ds — J Ne(s)p™ (r — s)ds. (5.11)
0 0

where 1-(s) = e~ 1n(s/e).

We summarize the properties of these regularizations in the following lemma, where
we indicate with c any constant which does not depends on ¢ and e.

Lemma 5.2. i) ¢T are not decreasing. Moreover

+a0
f (65)(r) dr < |6 (5.12)

0
and ¢(r) = ¢ (r) — ¢~ (r) forr = 0.
ii) p: € X, ¢(r) < ¢c(r) and

FOO(@(T) — $(r) dr < 2] x. (5.13)

0
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iii) 1. (r) = ¢(r). Moreover 1. is a C' function in X,

2
1) oo < Zlmleolélx (5.14)

and

+o0
fo [e(r) — $(r)] dr < celd]x. (5.15)

Proof. The proof is elementary, we only describe how to get the bounds in ii) and iii).
Since ¢ = ¢ — ¢, we rewrite the Lh.s. of (5.13) as

fo OO(ng*(r +e)— gz§+(r)) + (gb*(r) —¢ (r— 5)) dr

I

The estimate in (5.14) is immediate while, regarding (5.15), we rewrite 1. (1) — ¢(r) as

[[(eye+o+6r6-9) dé) dr < 2:]6] x.

0

[ 667 e = 6% () 4 6701 = 67— ) s
e fo Can(s) (f:(as*)’(r T est)de + Ll(df)’(?“ ~ est) d£> ds.

We conclude by integrating in r, switching the order of integration and using (5.12). [

Now we can prove the following proposition.

Proposition 5.2. Let p and v be two probability measures on R with support in a ball Bg
and such that p € L*(R?). Then

D(v, p) < C(|plloo; R)N/H (v, p),

where C'is a constant that depends on the dimension d, as well as on | p||o and on R.

Proof. Let ¢ be in X and consider v, as in (5.11). Fixed z € R% let ® and ¥, be the
functions

®(y) = ¢(lz —yl|) and V. (y) = Ye(|z — yl).

Then, from iii) of Lemma (5.2),

J@du—f@dpé f\lfadl/—ffl)dpz JWEd(V—p)+J(W5—@)dp.

From (5.14) of Lemma (5.2), the first term is bounded by £|/¢|x % (v, p). Regarding the
second term, denoting by o, the uniform measure on 0B, (x), we have

+00

| v -0 < 1ol |

0

< ceRH 9] x |l

dr (6e(r) — 6(r) L LBt

where in the last inequality we have used (5.15). Optimizing on ¢ and passing to the
supremum in ¢, we get the proof. O
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Note that if 41V is an empirical measure and v a probability measure that does not give
mass to the atoms of u~, 2(u, p) = 1/N. With this constraint, the discrepancy between
two empirical measures is “small” if the measures are close in the sense specified in the
following proposition.

Proposition 5.3. Let
1N 1N
N _ N _
W= Nizgléwi and v = Nizgldyi

be two empirical measures on R? and take § > 0 such that |x; —y;| < 6 foralli = 1,...,N.
Then, for any probability measure p € L*(R?) supported on a ball Bg,

2™, vN) < R pllow + c2 (1, p).-
Proof. Given ¢ € X with ||¢|x < 1, we construct ¢; as in (5.10) and, fixed 2 € RY, we

consider ®(y) = ¢(|z — y|), Ps(y) = ds(|z — y]).

Since |x — ;| — 6 < |z — yi| < |z — x;] + 0, we have that

O(yi) = ¢ (lz = wil) — ¢ (Jo = wil) < ().

Then
JodoX =) < (@5 - @) ap = (@5 - 0)a — ) + [ (@5 - )

Since (¢s — ¢) € X, the first term is bounded by cZ(u', p). Using (5.13) and reasoning as
in (5.16) we estimate the second term with c6 R%~1| p| 5. O

5.3 Agent dynamics

One of the difficulties in handling (5.8) is that the dynamic is not continuous with respect
to the initial datum. For instance, consider three agents {X;}?_; on a line, such that

1'1(0) = —1, {L‘Q(O) =

€
v1(0) = =1, v2(0) =0, wv3(0) =1, (5.17)

with e € (—1,1)\{0}. Then p; ; = M (z;, |x; — x;|) takes the values 1/3,2/3, 1. Suppose
for simplicity that K (2/3) = 3 and K (1) = 0, then the equations for v; and v3 read as

v1(t)
v3(t)

bo(t) = {US(t) —w(t) ifee(0,1)
vi(t) —wva(t) ifee (~1,0).

2(t) —vi(t)

(%] (t) — U3 (t),

while

It follows that
vi(t) =—(1+ e_Qt)/Q

ur(t) = —(1— )2
v3(t) = (=1 +de™t —e721)/2
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ife € (—1,0), while
vi(t) = —(—1+4e " —e72)/2
va(t) = (1—e™)/2
vs(t) = (1 +e7)/2
if e € (0, 1), so that {w;(t),v;(¢)}3_, is discontinuous in ¢ = 0. Note that the discontinuity

of the trajectories in the phase space is easily translated in the weak discontinuity of the
empirical measure at time ¢, with respect to the initial measure.

This discontinuity reflects the fact that, for data as in (5.17) with € = 0, there is no a
unique way to define the dynamics. Nevertheless, we can prove that the system (5.8) is
well-posed for almost all initial data. To do so, let us define some subsets of the phase space

{(XN,VN) = (561,...,13]\[,1)1,...,11]\7) ERNd X RNd},

where d > 1 is the dimension of the configuration space of the agents.

Definition 5.1. R is the set of “the regular points”, i.e. the set of points (Xx, Vi)
such that for each triad of different indices it holds that |z; — x| # |z; — x|

S is the “iso-rank” manifold, i.e. the set of points (X, Viv) such that there exists a
triad of different indices i, j, k for which |z; — x| = |z; — x4/, i.e. the agents ¢ and
7 have the same rank with respect to the agent k.

S, is the set of the “regular points” of the iso-rank manifold, i.e. the subset of points
(Xn,Vn) € S such that if |z; — 2% = |z; — x| then z;, x;, z}, are different and
(vi = vg) - A, # (vj — vk) - Mgk, where Ngp = (24 — Tp)/|2a — |-

We can define the dynamics locally in time, not only for initial data in R, but also
in §,. Namely, if initially the agents ¢ and j have the same rank with respect to the
agent k, we can redefine the force exerted on the agent k accordingly to the velocities: if
(vi —vg) - R > (vj — Vi) - Nji, we evaluate the rank as if |x; — x| > | — x| fort > 0
and as if |z; — x| < |x; — x| for t < 0. In other words, the different speeds of change of
the distances among the agents allow the dynamics to leave S instantaneously.

We discuss the existence of the dynamics, so redefined.

Lemma 5.3. If (Xn,VN) € R U S,, there exists T > 0 such that the system (5.8) has a
unique solution fort € (—, T), with initial datum (X, V). Moreover the solution is locally
Lipschitz int and in (Xn, Vy).

We omit the proof.

In R the solution is regular, so we can compute the determinant of the Jacobian of the
flow J(t) = J(Xn, Vn,t). It verifies the equation

‘ij(t) = — (;é > pij> J(t) = —dN~nJ(t), (5.18)

de U
i
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where
1N
YN = N;ZK(”/N)‘

Thus, volumes of the phase space are shrunk in time at a constant rate, therefore their
measure cannot vanish in finite time. This implies the following fact, of which we omit the
proof.

Lemma 5.4. The subset of initial data (X n, V) € R such that the trajectory, at a first time
in the future or in the past, intersects S\S,, has Lebesgue measure zero. Namely, S\S, has
dimension 2Nd — 2.

This lemma guarantees that, except for a subset of Lebesgue measure zero, we can
prolong the dynamics with initial data in R also after a crossing in S. To define the
dynamics for all times, we need to control the number of crossings.

Lemma 5.5. The subset of initial data (X, V) € R such that the trajectory intersects S,
infinitely many times in finite time, has Lebesgue measure zero.

Proof. Fix T > 0 and suppose to take (X, Viv) € R such that the solution (X (¢), VY (¢))
(x1(t),...,xNn(t),v1(t),...,vn(t)) with initial data (X, Vi) intersects S, a finite num-
ber of times in [0,T — ¢) and infinitely many times in [0, T"). The number of particles is
finite, so we can assume that there exists a triad of indices such that |z; — x| = |z; — x|
infinitely many times. Since the velocities v; are bounded by a constant, as follows by
simple considerations (see also Theorem (5.1)), from the equation we have that |z; — x|
and |r; — x| are C* functions, with time derivatives uniformly Lipschitz, if |z; — x| and
|z; — x| remain far from 0. Then, as t — T, either |z; — 23| — 0 or (v; — vi) - 7, and
(vj — vi) - Ny, converge to the same limit. In both cases, the trajectory reaches S at a
point that is not in S,. We conclude the proof by observing that the initial point with these
properties lives in a subset of dimension 2Nd — 1. O

From these lemmas and other few considerations, we obtain the following theorem.

Theorem 5.1. Except for a set of measure zero, given (X, V) € RN? x RN? there exists
a unique global solution

(XNt XN, V), VNt XN, Vi) € CHRT,R?) x O(RT, RN
with initial datum (X, V).
Moreover, given R, > 0 and R,, > 0, we have that

2N (t)] < Ry + Ry, [N (t)] < R,

)

for any i, if |x;| < Ry and |v;| < R,. Therefore v}¥ (t, X, V) has Lipschitz constant
bounded by 2R, K (0).
Proof. The proof follows easily from Lemma (5.3), Lemma (5.4) and Lemma (5.5).
The a-priori bound on the support follows from (5.18) and by noticing that
d
&\%N(tw = —222%‘;' (Y @) = oM (1) - v (1))
J#i
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is null or negative if |v}|? is maximum in i.

5.4 The mean-field equation in L*

In this section we show how to get an existence and uniqueness result for bounded weak
solutions of equation (5.4). We start by stating some elementary facts.

Lemma 5.6. Let p € L®(R?) be a probability density.
i) Givenry,r9 > 0,

[M[p](w,m1) = Mp)(z,2)] < clplln | = r5).

ii) Given z1, x5 € R% andr > 0,
|M[p](1,7) = M[p](x2,7)| < cllplloor? a1 — 2]

Proof. The proof of the first assertion is immediate. For the second, we use the following
splitting

X{ler =y <rp = X{fes —y[ <r} = X{fo1 —y| < r}X{[z2 -y

> r}
— X{|ze —y| < r}X{|lz1 —y| =1}

and we note that, if |z — x3| > 7,
f X{|x2—yl>r}dy<crd<crd’l T1 — Tal,
|z1—y|<r
while, if |z — o] < T,

| X gz iy < [ Xl ol < o -] <)y
lz1—yl<r
= crd (1 — 1=z — ;r2|/7“)d) < edr@ Yo, — ).
O

In the following, we denote by 3, the closed ball of center 0 and radius r in L* (R x R?)
and by C,, ([0, +90); L*(R? x R%)) the set of families of bounded probability densities
{ ft}+=0 which are weakly continuous in time in the sense of measures.

Lemma5.7. Let { fi};>0 be a family of probability densities such that { f;} € Cy, ([0, +%0); B,()).
with r(t) a continuous nondecreasing function. Suppose that

supp(fi) © Br,(t) X Br, (), (5.19)

where R, (t) and R, (t) are two continuous non-decreasing functions. Then, for any initial
datum (x,v) € R? x RY, there exists a unique global solution of (5.7).
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5.4. THE MEAN-FIELD EQUATION IN L%

Proof. From the classical Cauchy-Lipschitz theory, we only have to verify that WS f, fi](z,v)
is bounded on compact sets, locally Lipschitz and continuous in ¢.

Recalling (5.5), the boundedness on compact sets follows from

(WIS fi, fil(z, 0)| < [ Koo (Ru(t) + [0]) -

Since from i) and ii) of Lemma (5.6)

| M[Sfil(x1, |21 — y|) — M[S fe](z2, [v2 — y])]
< o|Sfilloo (21| + |2o| + [y)* oy — zof

we have that, if (21, v1) and (2, v2) belong to a compact subset of R? x R¢,

(WS fe, fel(z1,v1) = WIS S, fe](x2,v2)] < C(|z1 — 22| + |01 — v2]),

where C' depends on R, R, and the diameter of the compact set.

In order to prove that W[S f, f](x, v) is continuous in ¢, we first observe that from the
Lipschitzianity of K and Propositions (5.1) and (5.2), since #/ (S fi, Sfs) < # (fi, fs), we
have K (M[S fi](x, |z — y|)) is continuous in ¢. Since K (M [S f](z, |z — y|)) is Lipschitz
in y, also

[ 7 a8l = o) ©0 = 0) (lyew) = St 0) dy o
vanishes when # (f, fs) — 0. O

Now we can prove the main theorem of this section.

Theorem 5.2. Let fo(z,v) € L®(R? x R?) be a probability density such that supp(fo)
Bp, x Bg,. GivenT > 0, there exists a unique weak solution f € Cy, ([0,T]; L (R? x R?))
of the topological Cucker-Smale equation. Moreover

supp(ft) © Br,+tr, X BR,- (5.20)

Proof. We first note that, if the solution exists, (5.20) follows from an argument similar to
the one used in the discrete case (see Theorem (5.1)).

We now prove the existence. As in Lemma (5.7), consider a family of probability
densities {g:}¢=0 € Cy ([0, T]; Bas) , with M = || fo|0e®? and such that (5.19) holds
with R;(t) = Ry +tR, and R,(t) = R,. The push-forward of fj along the flow generated
by g¢, denoted by g, is weakly continuous in ¢, uniformly in ¢;, with ¢ € [0, T"]. Moreover,
the determinant of the Jacobian of the flow J(¢) = J(¢, x, v) verifies

I = —T(t)dv.

So the push-forward §; is bounded by | fo|l,e®

With a standard construction we can prove that, for 7" sufficiently small, the map
{g+} — {Gt} isa contraction in Cy, ([0, T']; Br), with the distance defined by the supremum
on time of the Wasserstein distance; in this way we prove local existence and uniqueness.
Using the a-priori estimate on the supremum and the support, we get the global result. []
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5.5 The mean-field limit

In this section we prove the main result regarding the mean-field limit for the topological
Cucker-Smale equation. In the sequel, f; is the fixed global solution of eq. (5.7) as in
Theorem (5.2), with initial datum fy, and p" is the global solution of equation (5.8) in the
sense of Theorem (5.1), with initial datum

1N
ONZ

We assume that fo and p are supported in Br, x Bg,. Fixed T, we indicate by C(T)
any constant that depends only on 7', R, R, and || fo| -

To get the result, we compare the N-agent dynamics with the “intermediate” dynamics
given by

&l (t) = ol (t)
ol (t) = WIS fo, v (], v]),

where
1 N
- N Z_] (t)

is the empirical measure. The initial datum is 1) = p{), i.e.

{2 (0), 0] )}y = {(mi, v}
Proposition 5.4. Given T > 0, it holds that
i) Fort e [0,T],
W (fe.v]) < CDVW (fo, 1d))- (5.21)

ii) Fort e [0,T)], the distance
6(t) = max (|of (1) =2l @] + [of (1) = o} (1))

verifies

(t) < C(T)\H (fo, 15)- (5.22)

Proof. Since f; is bounded, K (M[S f¢](x, |x — y|)) is locally Lipschitz in = and y (see i)
and ii) of Lemma (5.6)) and then WS f;, v](x, v) is weakly continuous in v in the sense
that

sup |W[S, vi](z,v) = W[Ss, vo](z,v)| < C(T)# (v1,1v2).

z,v

It is straightforward to prove that the solution v; of the system

Cbt = Ut
vy = W[Sft, Vt](xtﬂ)t)
v; = push-forward of 1 along the flow (x4, v;)
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is continuous in % with respect to the initial datum 1. Taking vy = fy and vy = uév we
get the proof of i).

In order to estimate §(¢), we need to evaluate, for 0 < s < tandfori =1,..., N, the
difference |sz (5) — 9N (s)| given by

(WIS fo, v (] o)) = WSEY, i (@, o).
We estimate this quantity with the sum of three terms:
(a) [WISfs, v (@], v]) = WISfo, vl (=, )],

W
(b) ‘W[Sf&ys ](mzj'vvva)_W[Sf&:us ](‘Tz )y Vs )’,
() IWISFfs 11 (@, 0f) = WISk, i 1(@, vl)].

Since K (M[Sfs](x, |z — y|)) is Lipschitz in z, from the definition of W it is easy to prove
that (a) is bounded by

(cLip(K) ISl RS () Ry + el K 0) 8(5)
and that (b) is estimated by
cLip(K)|S sl RS (5)Rud(s).
Note that | S fs|e < cRY| fs]oo. From Proposition (5.1) we have that (c) is bounded by
Lip(K)Ry2(S o, S,

Since

D(Sfs, SuN) < D(Sf,, SvN) + 2(SvN, Sul),
by Proposition (5.3) with p = Sfs, /¥ = Sy and vV = Spul¥, we get

2(SvN, SuN) < ¢d(s) + cD(Sfs, SUN).

Writing (¢) in terms of the time integral of §(s) and the difference of the interaction terms
and using the Gronwall lemma, we readily get the estimate

5(t) < C(T) f: P(Sfs,SvN)ds

valid for 0 < ¢ < T'. We conclude the proof by using Proposition (5.2), equation (5.21) and
the fact that % (S fs, SUlN) < # (fs, vN). O

Theorem 5.3. FixedT > 0, let f; be a solution of eq. (5.7) as in Theorem (5.2) with initial
datum fo and let ;i be a solutzon of equation (5.8) in the sense of Theorem (5.1) with initial
datum No . Then, for0 <t < T,

W (o) < C(T)maX{W(fo,MéV N >} |

Proof. By the triangular inequality,

W (foo i) S W Foi) + W @0 -
From (5.21), using that # (v}, ul¥) < 6(t) and (5.22), we get the thesis. O
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CHAPTER

Propagation of chaos for a jump
process with topological
interactions

joint work with P. Degond and M. Pulvirenti ([22])

In this Chapter we consider a system of particles that interact through a jump process.
The jump intensities are of topological type, being functions of the proximity rank of
the particles. We show that, in the large number of particles limit and under minimal
smoothness assumptions on the data, the model converges to a kinetic equation which was
rigorously derived in the earlier work [21] under more stringent regularity assumptions.
We do this by showing that the total variation distance between the two processes tends to
zero as the number of particles tends to infinity, with an error typical of the law of large
numbers.

6.1 Presentation of the model and main results

In [7] the authors introduced the following stochastic model. We consider a N-particle
systemin R%, d = 1,2,3... (orin T the d-dimensional torus). Each particle, say particle
1, has a position x; and velocity v;. The configuration of the system is denoted by

Zy = {zi}ily = {(zi,v)} iy = (X, Viv).
Given the particle ¢, we order the remaining particles ji, jo, - - - jy—1 according to their
distance from %, namely by the following relation
|£L’i—l‘jh|<|l'i—l‘jh+1|, h=1,2---N—1.

The rank R(i, k) of particle k = jj;, (with respect to ) is h. Note that, if B, (x) denotes
the closed ball of center z € R? and radius r > 0, we have

R(ik) =}, XBe, (@) (Th);
1<hsN
hoti
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where X4 is the characteristic function of the set A.

Considering a nonincreasing Lipschitz continuous function
1

K:[0,1] - R" st J K(r)dr =
0

we introduce the transition probabilities

N K(r(i, 5))

Tij = N1 ) 5\
2s-1 K(x57)
where 7 (i, 7) is the normalized rank:

. R(,j) 1 9
r(i,7) = N(—l E{N—I’N—l""}'

This is similar to the function M (z;, |x; — x;|) introduced in (5.3) of the previous Chapter,
but with a different normalization.

Thanks to the normalization in (6.1), we have that y Trl]\; = 1. We can also rewrite

N

w5 = ank (1(0,9)), (62

where
1

(N =11 —ex(N))

and e (V) is the error given by the Riemann sums

JK dx—il K(NS_1>. (6.4)

We are now in position to introduce a stochastic process describing alignment via a
topological interaction. The particles go freely: x; + v;t. At some random time dictated by
a Poisson process of intensity IV, choose a particle (say ¢) with probability % and a partner
particle, say j, with probability 7; ;. Then perform the transition

ay =

(vi, vj) = (v, ;).
After that the system goes freely with the new velocities and so on.

The process is described by the following Markov generator given, for any ¢ €
CI(R2dN ) b
b » DY

N
LNQ(XN, VN) = Z (%A v:ci(p(XNu VN)
i=1
+ Z > mg[®(XN, Vi (v) — @(Xn, V)], (6.5)
i=11<j<N
1]

where Vj@(vj) = (v1...0i—1,0§,Vi41...0N) if Vv = (V1 ... 0i—1,0i, Vig1 ... ON).
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6.1. PRESENTATION OF THE MODEL AND MAIN RESULTS

Note that 7., ; depends not only on IV but also on the whole spatial configuration X .

Therefore the law of the process W (t) = W¥ (¢, Zy ) is driven by the following evolution
equation

(?thN(t)cID fWN(t)Zvi.vxiq>
+fWN(t,ZN)Z Dl [e(Xn, Vi () — ®(Xn, V)], (6.6)

for any test function ®.

We assume that the initial measure W (0) factorizes, namely W (0) = & where
fo is the initial datum for the limit kinetic equation we are going to establish. Note also
that W (t, Zx), for t > 0, is symmetric in the exchange of particles.

The strong form of equation (6.6) is
N
(at + Y in)WN(t) = NWN() + LW (@)
i=1
where

N
LyWN (¢ XN, V) :Z D fduwf’ijN(t,XN,V]E;)(u))&vi—vj).
i=11<j<N
1#]

6.1.1 Heuristic derivation
We now want to derive the kinetic equation we expect to be valid in the limit N — oo.
Setting ®(Zy) = ¢(21) in (6.6), we obtain
o | o= [0 up— [ fes [WY Y alptern). )
Jj#1

Here f{¥ denotes the one-particle marginal of the measure W*'. We recall that the s-particle
marginals are defined by

fs s JW Z57ZS+1 )dZSJrl"'dZNa s = 172N (68)

and are the distribution of the first s particles (or of any group of s tagged particles).

In order to describe the system in terms of a single kinetic equation, we expect that
chaos propagates. Actually since W is initially factorizing, although the dynamics creates
correlations, we hope that, due to the weakness of the interaction, factorization still holds
approximately also at any positive time ¢, namely

N
N~ s

In this case the law of large numbers does hold, that is

36— ) ~ £Vt 2)
J
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for WN-almost all Zy = {21 --- zy}. Then

1 1
N
TN IK(N —1 ; XB\zrzﬂ(mi)(x’“D

1
T N1

1 (M), a1 — )

where, given a measure p € P(R?),

M[p](z, R) = f oly) dy. (69)

Br(x)

and p¥ (z) = [ dvf{¥ (2, v) dv is the spatial density. Motivated by this remark and similarly
to the previous Chapter, from now on we use the following notation

1
N .o
MX (24, |z — $j|) =r(i,j) = ]\H;XBMi_xj(xi)('rk)'

Here M stands for ‘mass’ and the notation introduced is justified by the law of large
numbers.

In conclusion we expect that, by (6.7), in the limit N — o, f{¥ — f and f&¥ — f®2,
where f solves

o o= [ f0- Vo= [ o+ [ HE0sGaIeta e (Mlpl(ar, o1~ )

which is the weak form of the equation
(0rr0-Va) £t 2,0) = = f(t 2, 0)+plt, ) jK(M[p] (2. lo=y)) f(t,9,0) dy. (6.10)

We remark that existence and uniqueness of global solutions in L'(R?) for the kinetic
equation (6.10) can be proved by using a standard Banach fixed-point argument.

Once known f, we can construct the one-particle nonlinear process given by the
generator

L6(a,0) = (v Vs = Do) + [ Fw)o(e, )k (Mlpl(a o - y)) dy du.

We also introduce the N-particle process given by /N independent copies of the above
process. Its generator is

LYd(Zy) = Vi - Vi, ®(Z)
= 30 [ [0t Victw) 5 (Mot s — i) ) £ o 1) s s — @K, Vi)
(6.11)
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6.1.2 Motivations and main result

We want to prove propagation of chaos for the N-particle process described by (6.5).
Propagation of chaos consists in preparing a system of IV particles with initial configurations
iid with a given law fy and show that, considering any group of fixed s particles between
the N ones, this independence (chaos) is also recovered for future times for the fixed
s-group when N — o0. This is expressed mathematically by saying that the s-particle
marginal £ (t) introduced in (6.8) approximates f®*(t) for positive times, where f(t) is
the solution with initial datum fj of the kinetic equation (6.10).

The work [22] presented here is strongly aligned with [7, 8, 21] where kinetic models
are derived for topological interaction models based on jump processes. More precisely,
[21] proves propagation of chaos and provides a rigorous proof of the model introduced
before and formally derived in [7]. On the other hand, [8] formally derives a kinetic model
for a more singular interaction. The mathematical validity of this formal result is still open.

The proof of [21] makes the limiting assumption that the interaction strength is an
analytic function of the normalized rank and is based on the BBGKY hierarchy. Indeed,
the BBGKY hierarchies are a powerful approach but in this case the nonbinary nature of
the topological interaction does not allow to derive this hierarchical structure, unless the
interaction function K is real analytic and so expandable in series.

Here we want to provide a different derivation of the limit kinetic equation, using the
classic probabilistic coupling technique. In general, given two stochastic processes X and
Y, a coupling is a realization of a new process on a product probability space that has as
marginal distributions those of X and Y.

The advantage of the coupling method over the BBGKY hierarchy is that it only
requires the interaction strength to be Lipschitz continuous, a much more general and
natural assumption than that of [21].

Theorem 6.1. Let f € C ([0, T]; L*(R?%)) solution of the kinetic equation (6.10) with initial
datum fo € L'(R??). Assume that the interaction function K is Lipschitz-continuous and
consider the N -particle dynamics such that Wy (0) = f&N.

If fN denotes the s-marginal as defined in (6.8), fort € [0,T] ands € {1,...,N}, it
holds that

I () = £2° ()] L1 m2asy < 5= (6.12)

where C'i¢ is a constant depending on the Lipschitz constant of K.

The topological character of the interaction bring us naturally to work with norms of
strong type and in particular with the L!/Total variation distance (coherently with [5] and
the previous Chapter where the similar Discrepancy distance has been used to prove the
validity of the mean-field limit for the deterministic Cucker-Smale model with topological
interactions introduced in [32]).

Indeed, given two measures p; and p2, from (6.9) we have

|M[p1](z,7) — M[p2](z,7)| < p1 — p2|Tv
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where, given (X, A) a measurable space and two measures p and v over X, the total
variation distance is defined as

|l = viry = sup [u(A) — v(A4)].
AcA

In the sequel, we use the equivalence between the L! distance and the Total variation for
regular measures and the characterization of the TV distance given by the Wasserstein
distance

li—vlry = inf f d(z,y) dr (2, y),
meC(u,v) JX x X

where C(p, v) is the set of all couplings, i.e. measures on the product space with marginals
respectively 1 and v in the first and second variables, and d(a, b) = 1 — d, is the discrete
distance (see [60]).

6.2 Proof of the result

6.2.1 Coupling and strategy of the proof

We introduce, as a coupling between (6.5) and (6.11), the process t — (Zn(t); Xn(t)) on
the product space R?¥N x R24V where Y (t) = (Yy(t), Wi (t)). The generator of the
new process is

Qn = Qo+ Qn,

where

QoP(Zn;EN) = (VN - Vxy + Wa - Vyy)®(Zn; EN) (6.13)

is the free-stream operator, while

QNP (Zy:Sn) = ZZ)\” (Xn, Vie () Yo, W (w))) — ®(Zn; Sn)]  (6.142)

1=1j#1
N
+ 2 Z[WZN; (XN) = Aij][@(Xn, Vi (v)); Bn) — D(Zn; T)] (6.14b)
i—lj;ﬁi
+ Z S Wi ys) — Mgl ®(Zn: Yo, WY (w;)) — ©(Zn; Z)] (6.14c)
i=1j5#1
N : '
+ ] fdu ENW)[®(Zn: Y, WP () — (Zn; Sn)] (6.14d)

tends to penalize the discrepancies that can occur over time between Zy and X .

Indeed, in (6.14a) the process jumps jointly on both variables with a rate given by

Ai ,j(XNayzvyj) = mln{ﬂ' (XN) f(yiayj)}a (6'15)

where

(i, y;) = aNK<M[,0](yi, lys — ?/j|)>- (6.16)
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In (6.14b) and (6.14c) the jumps occur only for one of the pair, with a transition proba-
bility given by the error between \; ; and 7V or /. Finally, in (6.14d),

() = [ 1 (M1p1 o i — o) £ dy = 370 (05 35)60 = )

J#i

is the last error due to the approximation of the limit kinetic equation by the /N-particle
dynamics with transition probabilities given by 7/ and will be treated using the law of
large numbers.

We remark that, since §{ K’ () dz = 1, formally we have',

[ & (i te =)oty = [ arkcatiol(o.r) . e
- [ ark Ol 5 el 0] = [ K do -1
0

From this fact, it follows that () is a coupling of the two previously described processes,
i.e. we recover, considering test functions depending only Zy and Xy respectively, the
two processes as the two marginals.

We want to prove that f and f{¥ (defined as in (6.8)) agree asymptotically in the limit
N — +o0. To do this we consider RV (t) = RN (t, Zy, ¥ ) the law at time ¢ for the
coupled process. As initial distribution at time 0 we assume

RN(0) = f&N(ZN)0(Zn — Zn). (6.17)

Let Dy (t) be the average fraction of particles having different positions or velocities, i.e.
using the symmetry of the law,

Dy (t) = deN(t) [% i d(zi,07)] = J ARY (1)d(21, 1), (6.18)
=1

where z; = (z4,v;), 0; = (y;, w;) and d(a, b) = 1 — 6, is the discrete distance.

The aim is to show that Dy (t) — 0. This means the following: initially the coupled
system has all the pairs of particles overlapping. The dynamics creates discrepancies and
the average number of separated pairs is exactly Dy which is also the Total Variation
distance (L' (z, v) in our case) between f{¥ and f.

Notice that the convergence of the s-marginals f¥ to f® claimed in (6.12) is easily
recovered by the fact that

() = 1% Ollrv < | 6(22,%2) dRY ¢, 2y, S)
<] fd(zi,oi) dRN(t, Zn,Sn) = sDn(t)
i=1

where 6(a, b) denotes the discrete distance on the space R?% x R24s,

'In general, the formula is true for p € L' (R?) and it is a consequence of the coarea formula (see [25,
Thm 3.12, p. 140]).
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6.2.2 Convergence estimates

Let S}V be the semigroup defined by the free-stream generator Qg in (6.13). To estimate
Dy (t) we apply the Duhamel formula in (6.18) and we get

| ¥ (1,00 = [aRY (5 a1, r0)
—i—Lth JdRN(T) @Nd<5ﬁ7(21701))7 (6.19)

where @ n is defined in (6.14).

The first term in (6.19) is negligible: indeed, from (6.17), we have
JdRN(())d(StN(Zla Ul)) = deggN(ZN)d<StN(zl, z1)> = 0.

Concerning the second term in (6.19), we define

zZ1 = (x1 +vi(t —7),v1), Egj) = (z1 +v1(t —7),v5)

and Xy = (1 +v1(t —7),..., x5 + vn(t — 7)); similarly for , ) and Yy.
By (6.14) we get

[ar¥ ) Gua(s (e1.00) = 41(0) + 4a() + A,

where

Ay(r) =] j ARN (M)A (X o, gp)[d(z);50)) — d(z1:51)]
j#1

is due to the term of the generator Q~ where the velocities of the particles jump simulta-
neously;

Ao =Y f ARY (1) (r(Xx) = M)A 1) — d(z0501)]
j#1

= 3 [aRY @ @1m) — MpldGriol) — dzs o)
Jj#1

is due to the terms of the generator where only one of the two coupled processes jump and
Az(r) = J dRN (7) f du &) (w)[d(z1;5\") — d(z1;01)]

is due to the remainder term. Here £ (u) is & (u) evaluated along the moving frame of
the free transport.

Here, we have used that d(z1,01) depends only on the configurations of the first
particle; hence, the only nonzero contribution in the sum over ¢ is given for ¢ = 1.

Concerning A;(7), it follows from (6.3) and (6.4) that

Lip(K)

N)| <
e (V)] < 22
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and that, for N > 2Lip(K) + 1,

Lip(K)
4e N-1
N-1"

using the inequality 1/(1 — z) < 4e” for z € (0, 1/2). Therefore, from (6.15) we get

4\/e Lip(K)
N-1 ~

ay <

Aj < an|[Kleo <
By the symmetry of R and denoting C; := 8y/e Lip(K),

A1) < 2(}\%1) > f dRY (1)[d(z;,0;) + d(z1,01)] < CxDn(7), (6.20)

71
since d(Z&j); E(j)) < d(zj,05) + d(z1;01). Indeed the right-hand side is vanishing iff
21 = o1 and zj = o and, in this case, also the left-hand side is clearly vanishing.

N and 7/ . we

We now give a bound on Az(7). Since Ay ; is the minimum between 7', S

have

A< Y f AR (1) [xl(Xn) — L (31, 5). (6.21)
j#1
From (6.2) and (6.16),

|7 (XN) — W{,j(gl,gjﬂ < anLip(K)|M[XN](Z1, %1 — Z;]) — M[p] (71, |71 — ;1)

From now on we use the shorthand notation M[X y] (Bf’j) = M[XN](71, |21 — Z4])
and M[p](B%’j) = M|[p](1, |71 — yj;|)|, where we have introduced the balls

ij - B'fl—fy‘(fl) and B]Z_JJ == B'gl_yj‘(gl)
By the triangular inequality
IM[XNI(BY,) — MIpl(BY,))| < [M[Xy1(BT;) - MIXx|(BY,)|
+ [M[XN](BY ;) = MIYN](BY )| + IM[YN](BY ;) — M[p](Bf ;)|

Hence we divide the estimate (6.21) respectively in three terms:

’AQ(T)‘ < T1(7'> + TQ(T) + Tg(’]’).

In T’ (7) we are considering particles with spatial configuration given by Xy and we
want to estimate the discrepancy of the configuration over two different balls BY ; and
BY ;. Since Bf ; = BY ; iff 21 = 0 and z; = 0, using that M[Xy] € [0, 1], we have

|M[XN](BY ;) — MIXN](BY ;)| < d(z1,01) + d(2), 7).

Therefore, by the symmetry of R,

Ti(r) < anLip(K) Y j ARN (D)[d(z1,01) + d(z7, )]
j#1
< CgDpn (7).
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Regarding T5(7), we are considering the discrepancy of two different configurations
over the same ball BY ;- Since

IM[XN](BY ;) — M[YN](BY )| < d(zz',ffi),

an

<L
N
using again the symmetry of the law, we get

Ts(7) < ayLip(K Z deN d(z1,01) < CxgDn(T).
7#1

The last estimate on 73(7) is a consequence of the law of large numbers. After a change
of variable, using the symmetry of the law R” and the fact that this last term depends only
on the Yy configuration, we have that

7,(r) = anLip(K) 3 [ o™ ()| MIVNI(BE) ~ Mol (B,
Jj#1

where BY ; = By, _,.|(y1). By Cauchy-Schwartz,
®N y v I
| o @IMINI(BY,) — MIpI(BY,)|

<JdP®N(7)‘N1—1 [XB@l/’j(yh)_M[p](lel,j)]F

h#1

< Y [H= dp@N o () = MIpI(BY) || Aoy () = M) (BY) |-

h1,ho#1

Thanks to the independence of the limit process, we get that the only nonzero contributions
are given when h; = hy and this happens only for N — 1 terms. Hence

Ck

Ty(r) < .
< TN

Collecting the estimates on 77, 75 and 73, we obtain that

Ax(r) < Ok (D) + o). (622)

We conclude the proof estimating A3z(7). Since this term depends only on the indepen-
dent Y configuration

4(r)] < j

J I (M[p) (Bl - y|<y1>>)p<y> dy — K(M[p](BY))

Jj#1
1 eK
®N
+ o f df Z K(M )
where we added and subtracted the term }; K (M|p] (B%J))/(N —1).
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6.2. PROOF OF THE RESULT

Applying again the law of large numbers on the first term and estimating the second
term thanks to

eK(N) < CK
I—exg(N)  N-1

we arrive at o
As(r)| € —=2—. 6.23
[As(r)] < <2 629
Collecting the estimates in (6.20), (6.22) and (6.23) and using Gronwall’s lemma, we conclude
the proof of the theorem.
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