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Abstract

In this thesis we study some asymptotic and validity problems concerning Vlasov-type
equations. In the �rst part of the work we focus on the Landau damping and the long-time
behavior of solutions of the Vlasov-HMF and Vlasov-Poisson equations. We do it by looking
at the scattering problem, where the asymptotic datum is �xed, in the style of the work [17,
Bibliog. Part I]. In the second part of the thesis we focus on validity problems for kinetic
equations with topological interaction. This interaction does not depend on the metric
distance but rather on the proximity rank among the agents and, in the last decade, has
been widely used to describe biological systems that exhibit collective behaviors.
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Introduction

This thesis deals with the mathematical theory of various partial di�erential equations
arising as models of phenomena belonging to two di�erent branches of physics: plasma
physics and the physics of complex systems. These models share the feature that they all
come from kinetic theory and they use a statistical description of the system.

Most of the PDE models studied in this work can be englobed in a unique de�nition,
giving them the name of Vlasov-type equations. They read as

Btfpt, x, vq ` v ¨∇xfpt, x, vq `∇v ¨

´

Krf spt, x, vqfpt, x, vq
¯

“ 0, (1)

where ft “ fpt, x, vq : RˆX ˆRd is the distribution function of the agents in the system
having position x in the con�guration space X and velocity v P Rd at time t P R. The
functional Krf s : RˆX ˆ Rd Ñ R will be the nonlocal mean-�eld interaction. This is
obtained by averaging the individual interactions between agents with the distribution
given by f . In the following we will specify its de�nition from time to time.

Concerning these equations, we focus on two main aspects:

� the asymptotic behavior of solutions of Vlasov-type equations coming from plasma
physics and, in particular, the phenomenon of Landau damping;

� the rigorous derivation of Vlasov-type equations from microscopic particle systems
modeling collective phenomena with agents interacting via “topological” interaction,
a type of irregular interaction presenting jump discontinuities.

This work is organized into two parts, each concerning one of these two topics.
The con�guration space X will depend on the problem addressed. For the plasma

physics problems of the �rst part of the thesis we work on the d-dimensional torus, i.e. the
periodic box Td “ Rd{p2πZqd, while in the case of collective dynamics problems of the
second part we work in the d-dimensional Euclidean space Rd.

xi



Introduction

Part I - Scattering approach to the Landau damping

In the �rst part of this work, we consider the Vlasov-Poisson equation, the main kinetic
equation used to describe collisionless plasmas of electrons. In this case

Krf spt, xq “ ´∇x

´

ż

TdˆRd
W px´ yqfpt, y, vqdy dv

¯

(2)

where W is the fundamental solution of the Laplace operator in Td, i.e. the Coulomb
potential on T3 if d “ 3. We consider stationary regular solutions depending only on the
velocities and we perturb them in suitable functional spaces with high regularity.

Already in the ‘40s, L. Landau in [26, Bibliog. Part I], considered an analytic stationary
state η which satis�es a precise stability condition, and noticed that the perturbed solution
of the linearized equation around η relaxes asymptotically towards a new equilibrium
causing the electric �eld to decay exponentially. This phenomenon is now called Landau
damping.

In this thesis, we focus on the nonlinear Landau damping for (1), (2) and on a scattering
approach for the existence of damped solutions introduced by E. Caglioti and C. Ma�ei
in [17, Bibliog. Part I]. The goal is to understand the relationship between the backward
scattering result and the forward result for the Cauchy problem, developed by C. Mouhot
and C. Villani in [36, Bibliog. Part I].

The analysis will concentrate especially on some resonances present in the equation
and experimentally observed, called plasma echoes. Let us brie�y explain what they are,
considering the one-dimensional case.

Referring to equation (1), (2), passing to Fourier transform and considering the equation
for the density ρpt, xq “

ş

fpt, x, vqdv, we will deal with a mode-by-mode equation of the
form

pρtpnq “ linear terms`
ÿ

k‰0

ż `8

t
pρspkq

n

k
ps´ tqphspn´ k, nt´ ksq ds, (3)

where k, n P Z and pρ denotes the Fourier transform of ρ (see (1.7) for the notations) and
hpt, x, vq “ fpt, x` vt, vq.

The modes ph should decay with a rate that depends on the regularity of f , but notice
that, when nt « ks in (3), the corresponding term has no decay and thus we expect that,
if nk ą 1, at times τ “ nt

k the density pρτ pkq would strongly in�uence pρtpnq. This e�ect is
called plasma echo and has been experimentally observed in the ‘60s by J. H. Malmberg et
al. in [32, Bibliog. Part I].

From a mathematical point of view, in the Eulerian approach, the aim is to obtain global
in-time regularity estimates on the solutions using norms quantifying the decay of its
Fourier transform. Plasma echoes make it challenging to close the a priori estimates using
the cited norms. In general the validity of the damping depends on the regularity setting,
and in particular on the choice of data with analytic or Gevrey regularity, an intermediate
class between analytic and C8 functions.

To study this issue, after reviewing some results on the Landau damping in Chapter 1,
we present two works.
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Comparative study for Vlasov-HMF equation In Chapter 2, we consider a simpli�-
cation of the Vlasov equation, called Vlasov-HMF (Hamiltonian mean-�eld model) model.
In this case d “ 1 and

Krf spt, xq “ ´Bx
´

ż

T1ˆR
cospx´ yqfpt, y, vqdy dv

¯

.

This approximated model has been widely studied in the last decades being a handy
reduction of the Vlasov-Poisson equation, in which the singularity of the kernel is removed
by replacing it with a cosine function. It can be easily implemented numerically to study
the features of a long-range interaction (see [1, 5, 18, Bibliog. Part I]). Furthermore, as we
will see, it is also a useful testing ground from a mathematical point of view for studying
issues about long-time behavior of solutions.

However, in this case the resonances due to plasma echoes are few: in fact, the equation
veri�ed by the given density ρ is not the one (3) but

pρtpnq “ linear terms`
ÿ

k“˘1

ż `8

t
ρspkqps´ tqhspn´ k, nt´ ksq ds, n “ ˘1.

So we have that nt´ ks “ 0 only when s “ ˘t. This simpli�es the treatment.
For this model, we adapt the Eulerian forward techniques to the backward problem to

make a comparison in the case of analytic solutions. What results is that in the backward
approach the a priori estimates on the solutions of the equation are greatly simpli�ed by
the exponential decay guaranteed by the analytic regularity. In the backward case, this
also allows to provide a very precise rate that describes the evolution of the regularity of
the solution over time.

We also prove a nonperturbative result, through a more accurate analysis of nonlinear
terms.

Backward approach for the Vlasov-Poisson equationwithGevrey data In Chapter
3, we focus on the scattering problem for the one-dimensional Vlasov-Poisson equation
given by (1), (2). We consider analytic and Gevrey asymptotic data, the latter case not
covered in [17, Bibliog. Part I].

In this work, a function f P L2pTdˆRdq belongs to the 1{γ-Gevrey class with regularity
parameter λ if

}f}2λ;γ;σ –
ÿ

nPZd

ż

Rd
e2λxn,ξyγ xn, ξy2σ | pfpn, ξq|2 dξ ă `8, (4)

where pf is the Fourier transform of f , xn, ξy– p1` |ξ|2 ` |η|2q1{2 and σ ą 0 is �xed.
Notice that, if (4) holds with γ=1, then the function f has analytic regularity. In general,

this class of functions has some properties - among which the existence of Gevrey functions
with compact support - which make their use in the study of evolutive PDEs very convenient
(see [20, 42, 19, Bibliog. Part I]).

Also in this Chapter we use forward techniques for the backward perturbative problem,
allowing, in the analytic case, to overcome the plasma echoes mechanism with a simple
proof. Moreover, we extend the proof to asymptotic data of 1{γ-Gevrey regularity with
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γ ą 1{3, and we recover the 3-Gevrey threshold for the existence of damped solutions that
was found in the case of the Cauchy problem by [36, 9, Bibliog. Part I].

Nonetheless, our scattering approach makes it clear that the plasma echoes mechanism
is a secondary linear e�ect. This fact allows us to formally argue that the linear part of the
backward equation is ill-posed for data with Gevrey regularity less than 1{3.

Part II - Mean-�eld limit and propagation of chaos for
particle systems with topological interaction

The second part of the thesis deals with the rigorous derivation of e�ective kinetic equations
from deterministic and stochastic particle dynamics at the microscopic level.

In Chapter 4, we review some validity results for systems with regular interactions in
the mean-�eld scaling. This is the so-called mean-�eld limit, i.e. we consider the interaction
intensity scaling with 1{N and the density of particles diverging with their number N , to
obtain an e�ective kinetic equation in the limit N Ñ8.

In Chapters 5 and 6, we focus on the derivation of kinetic equations for models coming
from the physics of complex systems, in particular from the area of collective dynamics,
focusing on interactions that are called “topological”. In these topological models, the
strength of the interaction between two agents xi and xj is a function of the proximity
rank Rpxi, xjq of xj with respect to xi:

Rpxi, xjq–
ÿ

k‰i

X t|xi ´ xk| ď |xi ´ xj |u, (5)

where X t|xi ´ xk| ď ru is the characteristic function of the set t|xi ´ xk| ď ru. So
Rpxi, xjq counts the number of agents at distance less than or equal to |xi ´ xj | from xi.

This type of interaction is widely used in biophysics to describe the collective behavior
of �ocks of birds, �sh schools and swarms. From a mathematical point of view it presents
some nontrivial di�culties since the methods usually adopted in validity problems fail due
to the exotic properties of the topological interaction: it is not Lipschitz continuous having
jump-like discontinuities and it is not a pair interaction since it depends on the state of the
other agents.

We present two results that investigate these two aspects.

Mean-�eld limit for a topological Cucker-Smale model In Chapter 5, we study the
following mean-�eld system

$

’

’

&

’

’

%

9xiptq “ viptq

9viptq “
1

N

N
ÿ

j“1

K
´Rpxi, xjq

N

¯

pvjptq ´ viptqq,
i “ 1, . . . , N (6)

where pxiptq, viptqq P RdˆRd, Rpxi, xjq is the proximity rank in (5) and K : r0, 1s Ñ R`
is a regular nondecreasing function.

This is the so-called topological Cucker-Smale model introduced by J. Haskovec in
[32, Bibliog. Part II]. The interaction is such that neighboring birds tend to align their
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velocities but with weights given by KpRpxi, xjq{Nq. It can be proved that under suitable
assumptions on the initial datum, this model exhibits asymptotic consensus in the velocities.

Here we want to prove a mean-�eld limit result for this topological model. We do this
by studying the empirical measure related to (6):

µNt –
1

N

N
ÿ

i“1

δxiptqδviptq,

where δ is the Dirac delta measure.
Having the interaction function a discontinuity of jump-type, there are several problems

in the study of this model. In particular, the dynamics of N particles does not fall within
the classical Cauchy-Lipschitz theory and it is not clear whether and when the dynamics is
well-de�ned.

Furthermore, at least formally, we expect that in the limit N Ñ 8 we recover a
Vlasov-type equation (1) with

Krf spt, x, vq “
ż

KpM rρspx, |x´ y|qqpv ´ wqfpt, y, wqdy dw, (7)

where
M rρspt, xq “

ż

|x1´x|ďr
ρpt, x1q dx1 (8)

and ρpt, xq “
ş

Rd fpt, x, vq dv. Nevertheless, the rigorous proof of the mean-�eld limit is
not trivial, since it does not �t into the so-called Dobrushin theory (see Chapter 4), which
requires a Lipschitz-type interaction.

Hence, in this Chapter we prove the following results:

• the N -particle dynamics is well-de�ned, except for a set of measure zero;

• if f0 is bounded, there exists a unique weak solution ft of the topological Cucker-
Smale equation (1) (7) with initial datum f0, which is bounded;

• µNt weakly converge to ft, provided this is true at time 0.

Propagation of chaos for a jump process In Chapter 6, a stochastic process describing
alignment via topological interaction is studied.

In this model, particles tpxi, viquNi“1 go freely, namely following the trajectories xi`vit.
At some random time dictated by a Poisson process of intensity N , a particle (say i) is
chosen with probability 1

N and a partner particle (say j) with probability πi,j equal to

πi,j –
K
´

Rpxi, xjq{N
¯

řN´1
s“1 Kp s

N´1q
,

where K : Rd Ñ R is a regular function and Rpxi, xjq is the proximity rank de�ned in
(5). Then the transition pvi, vjq Ñ pvj , vjq is performed. After that, the system goes freely
with the new velocities and so on.
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In [7, Bibliog. Part II], the authors derived formally that the kinetic equation expected
to be valid in the limit N Ñ8 is
´

Bt ` v ¨∇x

¯

fpt, x, vq “ ´fpt, x, vq ` ρpt, xq

ż

KpM rρspx, |x´ y|qqfpt, y, vqdy (9)

where M rρspx, rq is de�ned as in (8).
We underline that equation (9) cannot be reduced to the Vlasov-type equations in (1)

and it is more correct to see it as a Boltzmann-type equation coming from a collisional
stochastic model with a gain and loss term.

The rigorous derivation of the kinetic equation from the N -particle system has been
done in a later work [21, Bibliog. Part II]. The authors prove the result, comparing the N -
particle and the limit processes using the BBGKY hierarchies, assuming that the interaction
function K is real analytic.

To avoid this assumption, we present here a more natural proof that improves the
previous result, using a classical coupling technique instead of the hierarchies and assuming
K to be only Lipschitz continuous.

xvi
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Chapter 1
A brief overview on some results

about Landau damping

In this �rst Chapter we begin the study of the asymptotic behavior of some speci�c solutions
of the Vlasov-Poisson equation.

After having recalled the basic properties of the Vlasov-Poisson equation, we brie�y
review two important results about the theory of Landau damping: the linearized result
carried out by L. Landau in his pioneering work [26] and the proof of the nonlinear damping
for the one-dimensional Vlasov-Poisson equation, obtained by E. Caglioti and C. Ma�ei in
[17] using the scattering approach.

1.1 Vlasov-Poisson equation: basic properties

In the kinetic theory of plasmas, the Vlasov-Poisson equation is a nonlinear partial di�er-
ential equation that describes the time evolution of the distribution function of electrons in
a collisionless globally neutral plasma. It was �rst introduced by A. Vlasov in 1938 in [43].

Denoting Td “ Rd{p2πZqd the d-dimensional torus, the Vlasov-Poisson equation reads
as

$

’

’

’

&

’

’

’

%

Btfpt, x, vq ` v ¨∇xfpt, x, vq ` Frf spt, xq ¨∇vfpt, x, vq “ 0,

Frf spt, xq “ ´∇xV rf spt, xq, ∆xV rf spt, xq “ ´ρpt, xq ` sρ,

ρpt, xq “

ż

Rd
fpt, x, vq dv.

(1.1)

Here fpt, x, vq : R ˆ Td ˆ Rd Ñ R` is the distribution function of electrons having at
time t P R position x P Td and velocity v P R.

Due to the compatibility condition for the Poisson equation in (1.1) we are subtracting
to ρ its mean over Td called sρ. This is physically justi�ed by saying that we are considering
as a �xed background the density of ions and that, since the system has to be globally
neutral, this is equal to the mean density of electrons.
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1.1. Vlasov-Poisson eqation: basic properties

Equation (1.1) can be seen as a nonlinear Liouville equation where Frf spt, xq is the
mean-�eld force generated by the spatial density ρpt, xq of electrons. Notice that

V rf spt, xq “

ż

TdˆRd
W px´ yqfpt, y, wqdy dw,

where W is the fundamental solution of the Laplace operator on Td.
The study of the Cauchy problem for (1.1) has produced a huge literature. We mention

here the works by Arsen’ev on the existence of weak solutions and of classical solutions
for short times ([2], [3]) and the theory of Pfa�elmoser [40] and Lions-Perthame [29] for
the existence of global classical solutions. See [21] or [15] for a review.

Let fpt, x, vq be a regular solution of equation (1.1) and let us consider the �ow
Φtpx, vq “ pXpt, x, vq, V pt, x, vqq, de�ned in the phase space by the following charac-
teristics

$

’

&

’

%

9Xpt, x, vq “ V pt, x, vq
9V pt, x, vq “ Frf spt,Xpt, x, vqq
Xp0, x, vq “ x V p0, x, vq “ v.

(1.2)

Then, it is easy to see that f is conserved along the �ow, i.e.

fpt,Xpt, x, vq, V pt, x, vqq “ fp0, x, vq

and so, denoting f0px, vq “ fp0, x, vq,

fpt, x, vq “ f0ppΦtq
´1px, vqq. (1.3)

Clearly this is only a representation formula, since to determine the �ow Φtpx, vq and
solve (1.2), one must already know the solution f .

As �rst properties of equation (1.1), we have the classical conserved quantities:

Mrf s “

ż

fpt, x, vqdx dv,

Prf s “
ż

vfpt, x, vq dx dv,

Erf s “ T rf s ` Vrf s,

where
T rf s “ 1

2

ż

|v|2fpt, x, vqdx dv (1.4)

Vrf s “ 1

2

ż

W px´ x1qρpx, tqρpx1, tqdx dx1.

Moreover, as a consequence of (1.3), given an arbitrarily regular function G : RÑ R,
the quantity

ż

Gpfpt, x, vqqdx dv

is conserved. In particular, considering the entropy function Gpxq “ x logpxq, we get
ż

fpt, x, vq logpfpt, x, vqqdx dv

is constant. Hence the entropy of the system is preserved.
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1.1. Vlasov-Poisson eqation: basic properties

1.1.1 Stationary solutions

The Vlasov-Poisson equation (1.1) admits in�nitely many stationary states. Indeed, as
can be easily seen, any spatially homogeneous distribution function ηpvq is a stationary
solution of equation (1.1). This follows from

F rηspx, tq “ ∇x

´

ż

TdˆRd
W px´ yqηpwq dy dw

¯

“ 0.

It is natural to study the stability of these equilibria, and in this �rst part of the thesis
we will address some aspects of this broad problem. For now, we mention an important
theorem of C. Marchioro and M. Pulvirenti (see [33, 35]) which proves that a homogeneous
function ηp|v|q nonincreasing in |v| is an orbitally stable solution of the Vlasov-Poisson
equation.

Theorem 1.1. Let px, vq P Td ˆ Rd and consider an homogeneous solution ηp|v|q such that
Mrηs ` T rηs ă `8 (see (1.4)), where η : R` Ñ R` is a nonincreasing function. Given
ε ą 0, let f0px, vq an initial datum such that

ż

|f0px, vq ´ ηpvq|p1` v
2qdx dv ă ε,

then
sup
tPR

ż

|fpt, x, vq ´ ηpvq|dx dv ă δpεq,

where fpt, x, vq is solution1 of (1.1) with initial datum f0 and δpεq Ñ 0 if εÑ 0.

We don’t give the proof of this result, which follows from rearrangement techniques.
Beyond the homogeneous ones, there exist other types of stationary solutions. In 1951, I.

B. Bernstein, J. M. Greene e M. D. Kruskal in [14] proved the existence of stationary solutions
of (1.1) gpx, vq which are not spatially homogeneous. These stationary states are called
BGK waves, since, being the Vlasov equation invariant under Galilean transformations,
if gpx, vq is a stationary solution, then the wave gpt, x, vq – gpx ´ ct, v ´ cq solves the
equation (1.1) for any c P R.

We observe that, given the Vlasov equation (1.1), any state gpx, vq, obtained composing
a smooth function G with the mesoscopic energy of the system, i.e.

gpx, vq “ G
`

Epx, vq
˘

, where Epx, vq “
v2

2
` V rgspxq,

gives rise to a stationary solution, provided that the following compatibility condition is
veri�ed

ż

W px´ yqG
´v2

2
` V rgspyq

¯

dy dv “ V rgspxq.

For a proof of the existence of BGK solutions, we refer to section (2.2) of the next
Chapter, where in Remark (2.2) this is done in the case of the HMF approximation of the
Vlasov-Poisson equation.

1Here we are assuming that a given solution exists. Clearly it depends on the aforementioned results
about the well-posedness theory.
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1.2. Linear Landau Damping

Furthermore, we mention that in [27], Z. Lin and C. Zeng proved the existence of
solutions of BGK type for the Vlasov-Poisson equation in any small neighborhood of a
homogeneous stationary solution ηpvq with low Sobolev regularity. As will be clear from
the next section, this result implies that Landau Damping doesn’t hold around homogeneous
solutions belonging to these functional spaces.

1.2 Linear Landau Damping

In 1946, L. Landau in [26], linearizing the Vlasov-Poisson equation around a suitable analytic
spatially homogeneous equilibrium ηpvq, predicted the existence of damped solutions near
the given stationary regular state, proving that the electric �eld of the plasma decays
exponentially, so that the �ow governed by the mean-�eld force is asymptotically free.

This decay of the electric �eld would have been experimentally observed only eighteen
years later by J. H. Malmberg and C. B. Wharton in [31]. A similar phenomenon also occurs
in the dynamics of galaxies and it was observed by the astrophysicist D. Lynden-Bell in
[30].

Here we give an idea of the linear Landau damping, a classical result in the literature.
We consider solutions of the form

fpt, x, vq “ ηpvq ` ε sfpt, x, vq, (1.5)

where sf will be the perturbation and ε ą 0 its size.
We start by writing the linearized Vlasov-Poisson equation around the homogeneous

equilibrium ηpvq. Let sfpt, x, vq as in (1.5), replacing it in equation (1.1) and by linearizing
it, i.e. neglecting the terms of Opε2q, we obtain the linearized Vlasov equation

Btfpt, x, vq ` v ¨∇xfpt, x, vq ` Frf spt, xq ¨∇vηpvq “ 0, (1.6)

where from now on, we drop the sign over the perturbation and denote it by fpt, x, vq.
Landau showed that it is possible to exactly solve this linearized equation. For this

purpose, let pft be the Fourier transform of ft in both positions and velocities, i.e

pftpn, ξq “
1

p2πqd

ż

TdˆRd
e´in¨xe´iξ¨vfpt, x, vqdx dv, (1.7)

with n P Zd and ξ P Rd.
Using the Duhamel formula and applying the Fourier transform to (1.6), we get

pftpn, ξq “ pf0pn, ξ ` ntq ´xW pnq

ż t

0

pfspn, 0qpηpξ ` npt´ sqqrn ¨ pξ ` npt´ sqqsds. (1.8)

Since pρtpnq “ pftpn, 0q, setting ξ “ 0 in (1.8), we obtain a closed equation in pρtpnq for
n ‰ 0

pρtpnq “ pf0pn, ntq ´xW pnq

ż t

0
pρspnqpηpnpt´ sqq|n|

2pt´ sqds. (1.9)

We observe instead that for n “ 0, pρtp0q “ sρ is a conserved quantity.
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1.2. Linear Landau Damping

Equation (1.9) is a Volterra integral equation of the form

pρtpnq “ pf0pn, tnq `

ż t

0
jnpt´ sqpρspnq ds, (1.10)

where j is the following kernel

jnptq– ´xW pnqpηpntq|n|2t.

Fixed n, the (1.10) is of the form

αptq “ βptq `

ż t

0
jpt´ sqαpsqds, (1.11)

for α, β P L1pRq. This integral equation can be solved by using the Laplace transform

Lrαspσq “
ż `8

0
e´σtαptq dt, σ P C,

well-de�ned for <pσq ě 0. By applying the Laplace transform to the equation (1.11) we
obtain that

Lrαspσq “ Lrβspσq ` LrjspσqLrαspσq

and so
Lrαspσq “ Lrβspσq

1´ Lrjspσq
,

which is well de�ned, provided that Lrβs and Lrjs are, and that Lrjspσq ‰ 1.
To reconstruct αptq from its Laplace transform it is necessary to integrate Lrαs on a

path of the complex plane suitably chosen. In this regard we refer the reader to the next
two chapters and the reference [37]. We state the following lemma, the proof of which is
similar to the one given in Lemma (3.1).

Lemma 1.1. Let jptq be an integral kernel de�ned for t ě 0, such that

|jptq| ď c0e
´λ0t

with positive constants c0 and λ0. Given κ ą 0, suppose further that |Lrjspσq ´ 1| ě κ for
each σ P C such that <σ ě 0.

Moreover, let βptq be an analytic function such that |βptq| ď c1e
´λt, where c1 and λ are

positive constants and let αptq be a solution of the equation

αptq “ βptq `

ż t

0
jpt´ sqαpsq ds.

Then, for λ1 ă mintλ0, λu,
|αptq| ď ce´λ

1t.

Let’s apply the Lemma (1.1) to our equation (1.9): the kernel jnptq decays exponentially
provided that ηpvq is an analytic stationary solution. Similarly pf0pn, ntq decays expo-
nentially if the initial data f0 is analytic. We just have to require the following stability
condition, sometimes called Penrose condition ([39]),

inf
nPZd,<σě0

|Lrjnspσq ´ 1| ě κ ą 0.
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1.3. Scattering approach for the Landau Damping

This condition is implicit in Landau’s work [26] and is due to G. Backus, who was the �rst
to give a complete treatment of the linearized equation in [4].

We therefore observe that, by Lemma (1.1), the solution pρtpnq of the integral equation
with n ‰ 0 tends exponentially to zero and therefore ρpt, xq converges weakly to the value
sρ, so that the force �eld vanishes.

1.3 Scattering approach for the Landau Damping

Since the work of Landau, the damping phenomenon has been extensively studied and
understood, but the extension from the linear to the true nonlinear case has proved to be
particularly di�cult for the mathematical theory.

Only in 1998, E. Caglioti and C. Ma�ei in [17] gave a �rst proof in the case where
the domain is the one-dimensional torus T1. Subsequently, a proof with less restrictive
hypotheses was given in [24].

The idea of the proof in [17] is the following one: let px, vq P T1 ˆ R , as seen by the
linearized analysis we expect the distribution function fpt, x, vq to weakly converge to a
homogeneous equilibrium, so that for large times the self-consistent force in (1.1) would
be zero and ft would evolve similarly to the free evolute of a suitable asymptotic density
ωpx, vq, i.e. for large times

fpt, x, vq « ωpx´ vt, vq.

It is therefore reasonable to consider the scattering problem where, instead of studying the
evolution of a given initial datum, one looks for a solution of the equation (1.1) with the
asymptotic condition

lim
tÑ`8

}fpt, x, vq ´ ωpx´ vt, vq}L8pT1ˆRq “ 0. (1.12)

Then, if a solution of the scattering problem (1.12) exists, it is not di�cult to prove that
it weakly converges to a homogeneous equilibrium, given by the spatial mean of ω.

Indeed, taking a test function φpx, vq P CcpT1 ˆ Rq, we have that
ż

ωpx´ vt, vqφpx, vqdx dv “

ż

ωpx, vqφpx` vt, vq dx dv.

Moreover
1

2π

ż

T1ˆR
φpx` vt, vqe´inxe´iξv dx dv “ pφpn, ξ ` ntq,

where pφ is the Fourier transform of φ as in (1.7). Hence, by Plancherel theorem,
ż

ωpx, vqφpx` vt, vqdx dv “

ż

pωp0, ξqpφp0, ξq dξ `
ÿ

n‰0

ż

pωpn, ξqpφpn, ξ ` ntq dξ.

The �rst term gives the spatial mean of ω while the second term goes to zero as t goes to
in�nity, by dominated convergence.

From now on, let
Bpxq “ ´

x

2π
`

1

2
, x P r0, 2πq
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1.3. Scattering approach for the Landau Damping

and periodically extended in R, the fundamental solution of the problem

BxBpxq “ δpxq ´
1

2π

with x P T1, where the constant 1
2π has been added to make the system globally neutral.

We want to prove the existence of solutions to the backward problem (1.12) in the
following sense. Let τ ě 0 and ωpx, vq be a regular function. A weak formulation of the
Vlasov-Poisson equation (1.1) with asymptotic condition (1.12) is given requiring that

fpt, x, vq “ ωppΦtrf sq
´1px, vqq (1.13)

for t ě τ , where Φtrf spx, vq “ pXrf spt, x, vq, V rf spt, x, vqq solves
#

9Xrf s “ V rf s
9V rf s “ Frf spt,Xrf s, V rf sq

with asymptotic conditions
#

limtÑ8Xrf s ´ V rf st “ x

limtÑ8 V rf s “ v

and the force �eld must verify

Frf spt, xq “
ż

T1

Bpx´ yqfpt, y, vq dy dv.

For the thesis of the theorem to be true, the asymptotic datum ω must belong to a
suitable space of functions: we say that ω P Sλ,c1,c2 if ω ě 0 and there exist positive
constants λ, c1, c2 such that

|pωpn, ξq| ď
c1

1` n2
e´λ|ξ|.

and
ωpx, vq ď

c2

1` v4
.

We will follow an iterative strategy. Given ω P Sλ,c1,c2 , we solve the sequence of linear
problems

Btf
pnqpt, x, vq ` vf pnqpt, x, vq ` F pn´1qpt, xqBvf

pnqpt, x, vq “ 0, (1.14)

}f pnqpt, x, vq ´ ωpx´ vt, vq}L8pT1ˆRq Ñ 0

for n ě 1. Here the force �elds are given by

F pnqpt, xq “

ż

T1

Bpx´ yqρpnqpt, yqdy, F p0q “ 0. (1.15)

Then the aim is to prove that the sequence tf pnqu converges to a solution of the Vlasov-
Poisson equation in the sense of (1.13).

Before doing this, we state a lemma that ensures the well-posedness of the linear
problem in (1.14). For a given �eld F pt, xq we de�ne

}F }λ,τ “ sup
těτ

eλt}F pt, ¨q}L8pT1q.
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1.3. Scattering approach for the Landau Damping

Lemma 1.2. Let τ ě 0 e F pt, xq P CpT1 ˆ rτ,`8qq a Lipschitz force �eld with Lipschitz
constant LF . Moreover suppose that }F }λ,τ ă 8. Then, if λ ą

?
LF and t ě τ , there exists

a unique solution of the �ow Φtpx, vq “ pXpt, x, vq, V pt, x, vqq that solves
#

9X “ V
9Y “ F pt,X, V q

with asymptotic conditions limtÑ8pX ´ V t, V q “ px, vq.

Moreover the �ow Φtpx, vq is Holder-continuous in the asymptotic datum and de�ning

fpt, x, vq “ ωppΦtq
´1px, vqq

for ω P Sλ,c1,c2 , it holds that f is a weak solution of

Btfpt, x, vq ` vBxfpt, x, vq ` F pt, xqBvfpt, x, vq “ 0, (1.16)

with asymptotic condition given by (1.12).

Thanks to the previous lemma, given F pt, xq a Lipschitz �eld with Lipschitz constant
LF such that }F }λ,τ ă 8 and ω P Sλ,c1,c2 , we can de�ne the operator

F pF qpt, xq “

ż

T1ˆR
Bpx´ yqfpt, y, vq dy dv (1.17)

where f solves the linear problem (1.16).
We observe that, thanks to this de�nition, equation (1.15) can be rewritten as F pnq “

F pF pn´1qq. Moreover, in the �rst step of the iterations, F p0q “ 0 and f p1qpt, x, vq “
ωpx´ vt, vq so that

yρp1qtpnq “ pωpn, ntq.

Hence

|F p0qpt, xq| ď
ÿ

n‰0

1

|n|
|ωpn, ntq| ď

ÿ

n‰0

c1
1

|n|

1

1` n2
e´λ|n|t ď 4c1e

´λt,

that is
}F p0q}λ,τ ď 4c1.

A fundamental result for the proof of the theorem is the following proposition, which
guarantees the contractivity of the operator F in the norm } ¨ }λ,τ .

Proposition 1.1. Let ω P Sλ,c1,c2 with λ ě 15
?
c2, for t ą τ , F pt, xq be a Lipschitz �eld

with Lipschitz constant LF ď 24c2 such that }F }λ,τ ă 8. Then it holds that

1. |F pF qpt, xq ´F pF qpt, x1q| ď 16c2|x´ x
1|,

2. }F pF1q ´F pF2q}λ,τ ď
1
2}F1 ´ F2}λ,τ ,

3. }F pF q}λ,τ ď 4c1 `
1
2}F }λ,τ .

Thanks to this Proposition and to (1.14) we obtain the convergence of the �elds de�ned
in (1.15). Hence we have the following main theorem.
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1.3. Scattering approach for the Landau Damping

Theorem 1.2. Let ω P Sλ,c1,c2 such that λ ě 15
?
c2 and τ su�ciently large, then for t ą τ

there exists a weak solution of the Vlasov-Poisson equation in the sense of (1.13). Moreover
the solution veri�es the asymptotic condition

lim
tÑ8

}fpt, x, vq ´ ωpx´ vt, vq}L8pT1ˆRq “ 0,

so that the electric �eld exponentially decays.

The presented scattering result is of nonperturbative type and provides the solution
that behaves asymptotically like ω, but does not allow to characterize the initial data for
which the Landau damping occurs. In 2009, C. Villani and C. Mouhot in [36], introducing
new mathematical techniques, solve the Cauchy problem for the nonlinear Vlasov-Poisson
equation, with suitable analytic and Gevrey initial data, proving the existence of ωpx, vq
such that

lim
tÑ`8

pfpt, x, vq ´ ωpx´ vt, vqq “ 0. (1.18)

A substantial analogy exists between the Landau damping in plasma physics and the
inviscid damping for the two-dimensional Euler equation (see [25, 41, 38, 34]). In fact in
[8] the damping near the Couette �ow has been proved using di�erent techniques, this
gives rise to a new simpler proof of the Landau damping result in [9] (see also the recent
result in [22] for a more elementary proof). We refer the reader to [7] for a review of the
state of the art.

In the next two chapters we want to use the Eulerian techniques developed for the
Cauchy problem, to better understand the advantages and possible limitations of the
backward approach introduced in [17]. The results of the analysis will strongly depend on
the regularity of the asymptotic datum. In particular in the case of analytic regularity the
scattering approach demonstrates its e�ectiveness, since, as we have seen in this section
and as will be clear from the next chapters, the decay due to analytic regularity greatly
facilitates the proof of Landau damping.

We conclude by saying that, for what concerns the damping with Sobolev data, as
shown by Lin and Zeng ([27], [28]), for very low regularities Landau damping cannot occur.
Although, in the case of the Vlasov-HMF equation with su�ciently high Sobolev regularity,
Faou and Rousset in [18] have succeeded in proving the damping with a polynomial rate.
Moreover, in the case of the Kuramoto model, a scattering result with Sobolev regularity
has been proved in [10].

However, the Vlasov-Poisson equation di�ers greatly from its HMF approximation
and the Kuramoto model. Indeed, a Landau damping result for the full Vlasov-Poisson
equation with general Sobolev data is still missing, although Bedrossian in [6] has given a
negative answer to the possibility of a straightforward extension to this setting of Mouhot
and Villani’s work in [36]. This is mainly due to the analysis of the aforementioned plasma
echoes which, as we shall see in Chapter 3, is particularly challenging in the case of equation
(1.1).
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Chapter 2
Backward vs Forward approach for

the Vlasov-HMF model

joint work with D. Benedetto and E. Caglioti ([12])

In this Chapter we present a work where we study the di�erences between the backward
and forward approaches for the Landau damping in the Vlasov-HMF equation. We adapt the
forward techniques to the backward problem to make a comparison in the case of analytic
solutions. In particular, we discuss the di�erent ways the two approaches overcome the
di�culties due to the presence of the “echoes”, i.e. resonances at certain times between
the Fourier modes of the solution. This highlights a simpli�ed structure of the norms used
in the backward approach. Moreover, we also give a nonperturbative result, i.e. without
requiring the solution to be a small perturbation of a stationary state.

2.1 The Vlasov-HMF model and the scattering problem

We recall here the Vlasov-Poisson equation in the HMF approximation which, in the
spatially periodic case, reads as

Btfpt, x, vq ` vBxfpt, x, vq ` Frf spt, xqBvfpt, x, vq “ 0, (2.1)

where

Frf spt, xq “ ´Bx

˜

ż

T1ˆR
cospx´ yqfpt, y, vq dy dv

¸

(2.2)

is the mean-�eld force. Here fpt, x, vq is the normalized density of electrons with position
x P T1 and velocity v P R, in a collisionless electrically neutral plasma.

We consider solutions of (2.1) which are small perturbations of a spatially homogeneous
solution η, i.e.

fpt, x, vq “ ηpvq ` εrpt, x, vq, (2.3)
and we assume η is an analytic function of the velocities. The equation veri�ed by the
perturbation r is

Btrpt, x, vq ` vBxrpt, x, vq ` Frrspt, xqBv
`

ηpvq ` εrpt, x, vq
˘

“ 0,
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2.1. The Vlasov-HMF model and the scattering problem

where the operator F is de�ned in (2.2).
To state the asymptotic behavior as in (1.18) of the previous Chapter, we de�ne

hpt, x, vq “ rpt, x` vt, vq, which veri�es the following equation:

Bth “ tψrhs, η ` εhu, (2.4)

where ψ is the potential �eld generated by the perturbation, evaluated along the free �ow

ψrhspt, x, vq “

ż

T1ˆR
cospx´ y ` pv ´ uqtqhpt, y, uq dy du (2.5)

and where t, u is the Poisson bracket.
Recalling (1.18) and (2.3), we study the damping problem by setting ωpx, vq “ ηpvq `

εh8px, vq, i.e. by searching for a solution for (2.4) such that

lim
tÑ`8

}hpt, x, vq ´ h8px, vq}L8pT1ˆRq “ 0

where h8 is a mean-zero analytic datum with }h8}λ ă `8 for some λ ą 0.
Firstly, we study the evolution in the time interval r0, T s considering the following

problem:
#

Bth
T pt, x, vq “ tψrhT s, η ` εhT u 0 ď t ď T,

hT pT, x, vq “ h8px, vq.
(2.6)

Then, we show that, for T Ñ `8, hT converges to a solution h, which solves the asymp-
totic problem.

We work in Fourier transform in T1 ˆ R, using the following notation:

pgtpn, ξq “
1

2π

ż

T1ˆR
e´inxe´ivξgpt, x, vqdx dv (2.7)

with n P Z and ξ P R. In Fourier space the system is

Bt
xhT tpn, ξq “ δn,˘1n

i

2
ζTt pnq

rη1pξ´ntq´ε
ÿ

k“˘1

k
ζTt pkq

2
xhT tpn´k, ξ´ktqpξ´ntq, (2.8)

where rη1 is the Fourier transform of η1 in the velocity and ζTt pnq for n “ ˘1 is the electric
�eld:

ζTt pnq “
xhT tpn, ntq. (2.9)

Integrating equation (2.8) between rt, T s and putting ξ “ nt, we get an equation for ζT :

ζTt pnq “
xhT T pn, ntq ´

i

2
n

ż T

t
ζTs pnq

rη1pnpt´ sqqds

´
ε

2

ÿ

k“˘1

ż T

t
ζTs pkq

xhT spn´ k, nt´ ksqknps´ tqds. (2.10)

To give a priori estimates, it is convenient to consider pζT p˘1q, hT q as a coupled system,
where (2.9) is a consequence of the uniqueness.
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2.1. The Vlasov-HMF model and the scattering problem

We need to control the loss of analytic regularity of the solutions. For this reason we
use techniques inspired by the abstract Cauchy-Kovalevskaya theory (see [16]), adapted to
these kinds of problems in [11].

A key point in Landau damping problems is the decay of the electric �eld. To show
this we de�ne the norm of the electric �eld ζT as

Mλ,T rζ
T s “ sup

tPr0,T s
eλt|ζTt p1q| “ sup

tPr0,T s
eλt|ζTt p´1q|. (2.11)

We also de�ne a norm that quanti�es the analyticity of a function g of the phase space:

}g}µ “ sup
n,ξ

eµxn,ξy|pgpn, ξq|, (2.12)

where µ ą 0 is a parameter and xn, ξy “ p1` n2 ` ξ2q
1
2 .

To take into account the decay of the analytic regularity, we de�ne the weighted-in-time
analytic norm of the solution hT pt, x, vq as

Nλ,T rh
T s “ sup

pµ,tqPDλ,T

αTδ pµ, tq
1{2}hT ptq}µ, (2.13)

where
Dλ,T “ tpµ, tq P r0, λq ˆ r0, T s, α

T
δ pµ, tq ą 0u (2.14)

and αTδ pµ, tq “ λ´µ´aT,δptq. The function aT,δptq is the unique solution of the following
ordinary di�erential equation

#

9aT,δptq “ ´δe
´aT,δptqtp1` tq if 0 ď t ď T

aT,δpT q “ 0,
(2.15)

and measures the loss of analytic regularity of the solutions with respect to the �nal datum,
as in (2.23) below: it is 0 at time T , and it is maximum at t “ 0. In view of the limit
T Ñ `8, we need the following lemma.

Lemma 2.1. For δ ą 0 the unique solution of the backward Cauchy problem (2.15) is positive
and decreasing in time, and veri�es

aT,δp0q ď Cpδq,

with Cpδq Ñ 0 when δ goes to zero. The solution a8,δptq with initial datum

a8,δp0q “ lim
TÑ`8

aT,δp0q

is positive in r0,`8q and
lim
tÑ`8

a8,δptq “ 0.

As a consequence, given λ ą 0, we can choose δ su�ciently small such that there exist
µ P p0, λq for which for any T ą 0, r0, µs ˆ r0, T s Ă Dλ,T .
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Proof. Here we omit the symbol δ from aT,δ . Since aT ptq is decreasing, we have, for any
st P r0, T s,

aT p0q “ aT pstq ` δ

ż

st

0
e´aT psqsp1` sq ds ď aT pstq ` δ

ż

st

0
e´aT p

stqsp1` sqds

ď aT pstq ` δ
1

aT pstq
` δ

1

a2
T p
stq
.

If δ ď 1, the minimum of x` δ{x` δ{x2, for x ą 0, is less than c1δ
1{3 and is reached in

x ă c2δ
1{3. Then, if aT p0q ě maxpc1, c2qδ

1{3, the right-hand side reach the minimum for
some t̄, and then aT p0q ď c1δ

1{3. This implies that aT p0q ď maxpc1, c2qδ
1{3.

For any t ă T , aT is uniformly bounded and is increasing in T , so it converges to a
positive function a8ptq. For any time interval in r0,`8q, by dominated convergence in
the integral formulation of (2.15), we get that a8ptq solves the di�erential equation with
initial datum a8p0q.

Now we prove that limtÑ`8 a8ptq “ 0. First notice that given b ą 0 there exists
b0 ą 0 such that the solution of

9a “ ´δe´tap1` tq

with initial datum b0 exists for all times and aptq ě b for all time. To prove this, we choose
b0 ą b` δp1{b` 1{b2q and consider the �rst time τ such that apτq “ b. Until τ ,

b0 ´ aptq “ δ

ż t

0
e´asp1` sqds ď δ

ˆ

1

b
`

1

b2

˙

.

Then τ “ `8.
Let ap0q be the initial datum of a generic solution aptq. Set

ā “ inftap0q| lim
tÑ`8

aptq ě 0u,

and let āptq the solution with initial datum ā. It is easy to prove that āptq Ñ 0, otherwise
ā is not the in�mum. We conclude the proof by noticing that a8p0q ď ā, then a8ptq is
dominated by āptq which is a vanishing function.

We de�ne Bλ,T the space of function hpt, x, vq, de�ned for t P r0, T s, with Nλ,T rhs ă
`8, and Bλ,8 as the space of functions hpt, x, vq with t P r0,`8q such that Nλ,8rhs ă
`8, whereNλ,8rhs is de�ned in the regionDλ,8 “ tpµ, tq P r0, λqˆr0,`8q, α

8
δ pµ, tq ą

0u with α8δ pµ, tq “ λ´ µ´ a8,δptq.

2.1.1 Estimates for ζT

As we show more accurately in the following lemma, eq. (2.10) for the �eld ζT has the
structure of a Volterra equation. In order to invert the term of order one in the equation,
we use the following classical result about the theory of Volterra operators.
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2.1. The Vlasov-HMF model and the scattering problem

Theorem 2.1 ([23], p. 45). Given a Volterra equation of the form fptq ` j ˚ fptq “ gptq,
where

j ˚ fptq “

ż t

0
jpt´ sqfpsq ds

with j P L1pR`q. The resolvent kernel r, i.e. the unique solution of the equation

r ` j ˚ r “ j,

belongs to L1pR`q if and only if

Lrjspσq ‰ ´1 for <σ ě 0,

where

Lrjspσq “
ż `8

0
e´σtjptq dt

is the Laplace transform of j. The solution f is then given by fptq “ gptq ´ r ˚ gptq.

We can now state the inversion lemma. We set

jtpnq ” i
n

2
rη1pntq, (2.16)

and

HT
ε ptq “

xhT T pn, ntq ´
ε

2

ÿ

k“˘1

ż T

t
ζTs pkq

xhT spn´ k, nt´ ksqknps´ tqds. (2.17)

Lemma 2.2. Let λ ą 0 with }h8}λ ă `8 and }η}λ ă `8. Assume that

Lrjp1qspσq ‰ 1, <σ ě 0

then
Mλ,T rζ

T s ď CλMλ,T rH
T
ε s.

We notice that the condition on the Laplace transform is ful�lled also by jp´1q since
jp1q “ jp´1q.

Proof. Let us de�ne φλptq “ eλpT´tqζTT´tp1q, Fεptq “ eλpT´tqHT
ε pT ´ tq. Multiplying by

eλt, (2.10) can be rewritten as

φλptq ` λ ˚ φλptq “ Fεptq, (2.18)

for t P r0, T s, where λptq “ ´e´λtjtp´1q. We notice that λ P L1pR`q and if <σ ě 0

Lrλspσq “ ´Lrjp´1qspσ ` λq ‰ ´1.

Then, from Theorem (2.1), the resolvent kernel rλ related to λ belongs to L1pR`q. Con-
volving with rλ in (2.18), we get

φλptq “ Fεptq ´

ż t

0
rλpt´ sqFεpsqds.

Taking the absolute values, it holds

Mλ,T rζ
T s “ sup

tPr0,T s
|φλptq| ďMλ,T rH

T
ε s ` }rλ}L1pR`qMλ,T rH

T
ε s

and the thesis follows with Cλ “ 1` }rλ}L1pR`q.
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2.1. The Vlasov-HMF model and the scattering problem

We now state the main estimate of this section.

Proposition 2.1. Let ζT p˘1q solution of (2.10) and supposeNλ,T rh
T s ă `8. Then, under

the hypothesis of Lemma (2.2), we have

Mλ,T rζ
T s ď Cλ}h8}λ ` ε

Cλ

λ2
a

λ´ a8,δp0q
Mλ,T rζ

T sNλ,T rh
T s. (2.19)

Proof. From Lemma (2.2) we need only to estimate Nλ,T rH
T
ε s. Being hT pT, x, vq “

h8px, vq, from (2.17) we have

eλt|HT
ε ptq| ď }h8}λ

` εMλ,T rζ
T sNλ,T rh

T s
ÿ

k“˘1

ż T

t

e´λps´tq´µ
1xn´k,nt´ksy

αT pµ1, sq1{2
ps´ tq ds,

(2.20)

for any µ1 ă λ´ aT,δpsq. Then, by choosing µ1 “ 0, and using that aT,δpsq ď aT,δp0q ă
a8,δp0q we get

eλt|HT
ε ptq| ď }h8}λ ` ε

Mλ,T rζ
T sNλ,T rh

T s

pλ´ a8,δp0qq1{2

ż T

t
e´λps´tqps´ tqds.

2.1.2 Estimates for hT

Now we turn to give a Cauchy-Kovalevskaya estimate on hT . Due to the loss of analytic
regularity in time, it is crucial to use the weighted norm introduced in (2.13).

Proposition 2.2. Let hT a solution of (2.6) and assumeMλ,T rζ
T s ă `8 then the following

estimate holds:

Nλ,T rh
T s ď C}h8}λ `

C

δ
Mλ,T rζ

T s}η}λ ` ε
C

δ
Mλ,T rζ

T sNλ,T rh
T s. (2.21)

Proof. Fixing µ ă λ´ aT,δptq, from (2.8) we get

eµxn,ξy|xhT tpn, ξq| ď }h8}λ ` e
µxn,ξy|DT

t pn, ξq| ` e
µxn,ξy|ETt pn, ξq| (2.22)

where
DT
t pn, ξq “ δn,˘1

i

2
n

ż T

t
ζTs pnq

rη1pξ ´ nsq ds

and
ETt pn, ξq ”

ε

2

ÿ

k“˘1

ż T

t
ζTs pkq

xhT spn´ k, ξ ´ ksqkpξ ´ nsq ds.

We estimate separately the two terms. As regards ETt pn, ξq, since

eµxn,ξy ď eµxn´k,ξ´ksyeµxk,ksy,

by the triangular inequality and taking

µpsq “
λ` µ´ aT,δpsq

2
,
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2.1. The Vlasov-HMF model and the scattering problem

i.e. the middle point between µ and λ´ aT,δpsq, we have

eµxn,ξy|ETt pn, ξq| ď
ÿ

k“˘1

Mλ,T rζ
T sˆ

ˆ

ż T

t
e´pλ´µqs}hT psq}µpsqe

´pµpsq´µqxn´k,ξ´ksy|ξ ´ ns| ds,

where we have also used that x˘1,˘sy ď C ` s. Noting that

e´pµpsq´µqxn´k,ξ´ksy|ξ ´ ns| ď
2p1` sq

λ´ µ´ aT,δpsq
,

we get

eµxn,ξy|ETt pn, ξq| ď
C

δ
Mλ,T rζ

T sNλ,T rh
T s

ż T

t

δe´pλ´µqsp1` sq

αT pµ, sq3{2
ds. (2.23)

Being λ´ µ ą aT,δpsq and using the de�nition of aT,δ in (2.15)

e´pλ´µqsp1` sq

αT pµ, sq3{2
ď ´

2

δ

d

ds
αT pµ, sq´1{2

and then
eµxn,ξy|Etpn, ξq| ď

C

δ
Mλ,T rζ

T sNλ,T rh
T s

1

αT pµ, tq1{2
.

As regards DT
t pn, ξq, for µ ă λ´ aT,δptq,

eµxn,ξy|DT
t pn, ξq| ď CMλ,T rζ

T s}η}λ

ż T

t
e´pλ´µqse´pλ´µqxξ´nsy xξ ´ nsyds

ď
C

δ
Mλ,T rζ

T s}η}λ

ż T

t

δe´aT,δpsqsp1` sq

αT pµ, sq
ds

where in the last inequality we have used that λ´ µ ą λ´ µ´ aT,δpsq “ αT pµ, sq and
also that λ´ µ ą aT,δpsq. Computing the integral, we get

eµxn,ξy|DT
t pn, ξq| ď

C

δ
Mλ,T rζ

T s}η}λ ln
´αT pµ, T q

αT pµ, tq

¯

.

We conclude the proof multiplying (2.22) by αT pµ, tq1{2, and taking the supremum over
Dλ,T .

2.1.3 The backward result

Theorem 2.2. Let h8 P L1pT1ˆRq analytic such that }h8}λ ă `8 with λ ą 0 . Consider
η P L1pRq analytic such that }η}λ ă `8. Moreover, assume

Lrjp1qspσq ‰ 1, <σ ě 0,

with jp1q as in (2.16). Then, for small values of ε, there exists a unique solution ht “ hpt, x, vq
of (2.4) with Nλ,8rhs ă `8 such that

lim
tÑ`8

}ht ´ h8}L8pT1ˆRq “ 0

with exponential rate.
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2.1. The Vlasov-HMF model and the scattering problem

Proof. For every T we get the unique solution hT of (2.6) using the following iterative
procedure. For j ě 0 and 0 ď t ď T let

Btph
pj`1q,T
t pn, ξq “ δn,˘1n

i

2
ζ
pjq,T
t pnqrη1pξ ´ ntq

´ ε
ÿ

k“˘1

k
ζ
pjq,T
t pkq

2
ph
pj`1q,T
t pn´ k, ξ ´ ktqpξ ´ ntq,

(2.24)

where ζpjq,Tt p1q is de�ned by

ζ
pjq,T
t p1q “ ph8p1, tq ´

i

2

ż T

t
ζpjq,Ts p1qrη1pt´ sqds

´
ε

2

ÿ

k“˘1

ż T

t
ζpjq,Ts pkqphpjq,Ts pn´ k, t´ ksqkps´ tq ds,

where ζpjq,T p´1q “ Ğζpjq,T p1q and with initial step hp0q,T pt, x, vq “ h8px, vq.
Then hpjq,T veri�es the same bounds of the a priori estimates in (2.19) and (2.21):

Mλ,T rζ
pjq,T s ď C}h8}λ ` εCMλ,T rζ

pjq,T sNλ,T rh
pjq,T s

and

Nλ,T rh
pj`1q,T s ď C}h8}λ ` CMλ,T rζ

pjq,T s

´

}η}λ ` εNλ,T rh
pj`1q,T s

¯

ď C}h8}λ ` εCMλ,T rζ
pjq,T s

´

Nλ,T rh
pjq,T s `Nλ,T rh

pj`1q,T s

¯

,

where we have used (2.19) in the last inequality and whereC is a generic constant depending
on λ and δ. Since Nλ,T rh

p0q,T s ď C}h8}λ, taking ε}h8}λ su�ciently small, we get that
Mλ,T rζ

pjq,T s and Nλ,T rh
pj`1q,T s are uniformly bounded in j ě 0. Then, taking δ1 ą δ in

Lemma (2.1), the time derivative of hpjq,T is uniformly bounded in Nλ,T r¨s. Hence there
exists a subsequence hpjkq,T which converge to a function hT P Bλ,T , while ζpjkq,T p˘1q
converge to a function ζT p˘1q such that Mλ,T rζ

T s ă `8. Then hTn pt, ntq “ ζTt pnq for
n “ ˘1 and it is a solution of the nonlinear problem (2.6).
We now extend hT pt, x, vq “ h8px, vq for t ě T and we consider the sequence of solutions
thT u, with hT P Bλ,8. We can see that hT ful�lls the Cauchy property as a function of T
in Bλ1,8 with λ ą λ1 ą aδ,8p0q. In fact, �xed T ˚, taking T 1 ě T ě T ˚, we have for t ď T

xhT 1 tpn, ξq ´
xhT tpn, ξq “ δn,˘1n

i

2

ż T

t

´

ζTs pnq ´ ζ
T 1

s pnq
¯

rη1pξ ´ nsq ds

´ ε
ÿ

k“˘1

k

ż T

t

´

ζTs pkq ´ ζ
T 1
s pkq

¯

2
xhT spn´ k, ξ ´ ksqpξ ´ nsqds

´ ε
ÿ

k“˘1

k

ż T

t

ζT
1

s pkq

2

´

xhT spn´ k, ξ ´ ksq ´
xhT 1spn´ k, ξ ´ ksq

¯

pξ ´ nsq ds

` δn,˘1n
i

2

ż T 1

T
ζT

1

s pnq
rη1pξ ´ nsq ds

` ε
ÿ

k“˘1

k

ż T 1

T

ζT
1

s pkq

2
xhT 1spn´ k, ξ ´ ksqpξ ´ nsq ds
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2.2. Nonperturbative regime

and an analogous of equation (2.10) holds for ζT ´ ζT
1 . Doing estimates in the style of

(2.19) and (2.21), we get

Mλ1,T rζ
T 1 ´ ζT s ď εCMλ1,T rζ

T 1 ´ ζT s ` εCNλ1,8rh
T 1 ´ hT s ` ε

C

λ12
e´pλ´λ

1qT˚

and

Nλ1,8rh
T 1 ´ hT s ď CMλ1,T rζ

T 1 ´ ζT s ` εCMλ1,T rζ
T 1 ´ ζT s

` εCNλ1,8rh
T 1 ´ hT s `

p1` εqC

mint1, λ´ λ1u3
e´

pλ´λ1q
2

T˚ .
(2.25)

Hence, using again the smallness of ε, we conclude that

lim
T˚Ñ`8

sup
T 1ěTěT˚

Nλ1,8rh
T 1 ´ hT s “ 0.

Being uniformly bounded in Bλ,8, the sequence thT u converge to a function h P Bλ,8
and, passing to the limit by dominated convergence in the integral formulation, hpt, x, vq
is solution of the nonlinear equation (2.4) in r0,`8q. So, taking sµ ă λ´ a8,δp0q, we have
that }hpt, x, vq ´ h8px, vq}sµ Ñ 0.
We get the uniqueness of the solutions with a similar procedure. Let gpt, x, vq and hpt, x, vq
be two solutions of (2.4) with the same asymptotic datum h8. Proceeding as before, we
can prove that they verify the estimates (2.19) and (2.21). Hence, denoting ζh the electric
�eld associated to h, we get

max
´

Nλ,8rhs,Mλ,8rζhs
¯

ď C}h8}λ

and analogously for gpt, x, vq. Estimating Nλ,8rg ´ hs, we obtain the same estimates as in
(2.25) without the rest terms:

A ” max
´

Nλ,8rg ´ hs,Mλ,8rζg ´ ζhs
¯

ď CpεqA.

Using the smallness on ε as before, we have Cpεq ă 1, from which the uniqueness follows.
We remark that in [17], in the case of the scattering problem for the Vlasov-Poisson

equation, the uniqueness is guaranteed for a wider class of solutions, not necessarily
analytic.

2.2 Nonperturbative regime

Using the backward approach for large times it is possible to construct solutions without
perturbating around the homogeneous equilibrium ηpvq, in the style of [17]. The price to
pay is that the analytic estimates hold only in rτ,`8q for τ large enough.

Fixed an analytic asymptotic state ωpx, vq, consider (2.1) and write

fpt, x, vq “ sωpvq ` gpt, x, vq,

where sω is the mean of ωpx, vq with respect to the x variable. Then hpt, x, vq “ gpt, x`
vt, vq veri�es the equation

Bth “ tψrhs, sω ` hu
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2.2. Nonperturbative regime

where ψ is de�ned as in (2.5). For T ě τ , let us consider the following sequence of problems
#

Bth
T “ tψrhT s, sω ` hT u τ ď t ď T,

hT pT, x, vq “ pω ´ sωqpx, vq.

We introduce the weighted norm

Qλ,T rh
T s “ sup

pµ,tqPΩλ,T

θT pµ, tq1{2}hT ptq}µ,

with the weight θT pµ, tq “ pλ´ µ´∆aT psqq, where ∆ “ λ1{a8pτq, λ1 ă λ and aT psq is
de�ned as in (2.15) putting δ “ 1. Notice now that ∆ is a diverging quantity for su�ciently
large τ . Here Ωλ,T “ tpµ, tq P r0, λq ˆ rτ, T s, θ

T pµ, tq ą 0} and, as in the previous case,
we can give the analogous de�nitions for Qλ,8r¨s, θ8 and Ωλ,8.
We de�ne ζTt pnq “ xhT tpn, ntq, n “ ˘1, then ζT veri�es the following equation:

ζTt pnq “

ż T

t
ζTs pnqjnpt´ sqds`W T ptq, (2.26)

where we have de�ned

W T ptq ” pωpn, nT q ´
1

2

ÿ

k“˘1

ż T

t
ζTs pkq

xhT spn´ k, nt´ ksqknpt´ sqds

and
jtpnq “ i

n

2
rω10pntq. (2.27)

As in (2.11) we denote

Pλ,T rζ
T s “ sup

tPrτ,T s
eλt|ζTt p1q| “ sup

tPrτ,T s
eλt|ζTt p´1q|.

We can now state the following theorem.

Theorem 2.3. Let ω P L1pT1 ˆ Rq analytic such that }ω}λ ă `8 and assume that

Lrjp1qspσq ‰ 1, <σ ě 0, (2.28)

with jp1q as in (2.27). Then, for su�ciently large τ , there exists a unique solution hpt, x, vq of

Bth “ tψrhs, sω ` hu if τ ď t ă `8,

with Qλ,8rhs ă `8 such that

lim
tÑ`8

}ht ´ pω ´ sωq}L8pT1ˆRq “ 0

with exponential rate.

Proof of Theorem (2.3). The proof goes in the same way of Theorem (2.2) but instead of
using the smallness of ε, we can use the size of ∆. Indeed as in Proposition (2.2) we can
estimate hT in rτ, T s where hT veri�es the equation

xhT tpn, ξq “ Dtpn, ξq ´
ÿ

k“˘1

ż t

0
k
ζTs pkq

2
xhT spn´ k, ξ ´ ksqpξ ´ nsq ds
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2.2. Nonperturbative regime

with
Dtpn, ξq “ δn,˘1

i

2
n

ż T

t
ζTs pnq

Ăω10pξ ´ nsqds.

We �rst treat the case n ‰ ˘1. As in (2.23) and using λ´ µ ą ∆aT psq ą aT psq we have

eµxn,ξy|xhT tpn, ξq| ď }ω}λ ` CPλ,T rζ
T sQλ,T rh

T s

ż T

t

e´pλ´µqsp1` sq

ΘT pµ, sq3{2
ds

ď }ω}λ ` C
Pλ,T rζ

T sQλ,T rh
T s

∆

ż T

t

∆e´aT psqsp1` sq

ΘT pµ, sq3{2
ds

and thus, since
d

dt
ΘT pµ, tq´1{2 “ ´

∆

2

e´aT psqsp1` sq

ΘT pµ, tq3{2

we get

eµxn,ξy|xhT tpn, ξq| ď }ω}λ ` C
Pλ,T rζ

T sQλ,T rh
T s

∆ΘT pµ, sq1{2
. (2.29)

Now we estimate Dtpn, ξq, n “ ˘1. Take µ ă λ ´ ∆aT ptq, hence λ ´ µ ą pλ ´ µ ´
∆aT psqq{2, so we get

eµxn,ξy|Dtpn, ξq| ď CPλ,T rζ
T s}ω}λ

ż T

t
e´pλ´µqse´pλ´µqxξ´nsy xξ ´ nsyds

ď CPλ,T rζ
T s}ω}λ

ż T

t

e´aT psqsp1` sq

ΘT pµ, sq
ds

ď C
Pλ,T rζ

T s}ω}λ
∆

ln
´ΘT pµ, T q

ΘT pµ, tq

¯

.

(2.30)

Hence, multiplying by ΘT pµ, tq1{2 in (2.29) and (2.30) we get

Qλ,T rh
T s ď C}ω}λ `

C

∆
Pλ,T rζ

T s}ω}λ `
C

∆
Pλ,T rζ

T sQλ,T rh
T s.

Regarding ζT in (2.26), using (2.28) and (2.1) we have

Pλ,T rζ
T s ď CλPλ,T rW

T s.

We need better estimates than that in (2.20). We get them by splitting the two modes
k “ ˘1 in

ÿ

k“˘1

ż T

t
ζTs pkq

xhT sp1´ k, t´ ksqkpt´ sq ds “ B1 `B´1. (2.31)

If k “ ´1, for µ1 ă λ´∆a8pτq “ λ´ λ1, we get

eλt|B´1| ď Pλ,T rζ
T s

ż T

t
e´λps´tq

Qλ,T rh
T s

Θpµ1, sq1{2
e´µ

1pt`sqps´ tqds

ď Pλ,T rζ
T sQλ,T rh

T s
e´2µ1τ

pλ´ µ1 ´ λ1q1{2

ż T

t
e´λps´tqps´ tqds

ď CPλ,T rζ
T sQλ,T rh

T s

?
τ

λ2
e´pλ´λ

1qτ ,
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2.2. Nonperturbative regime

where we have taken the in�mum on µ1 P r0, λ´ λ1s in the last inequality. In the other
case, using that ω ´ sω has mean zero in the x variable, we have

xhT sp0, t´ sq “
ÿ

k“˘1

ż T

s
ζTl pkq

xhT lp´k, t´ s´ klqkpt´ sq dl. (2.32)

Replacing (2.32) in (2.31) we obtain

eλt|B1| ď Pλ,T rζ
T s

ż T

t
e´λps´tqps´ tq|xhT sp0, t´ sq|ds

ď CPλ,T rζ
T s
Qλ,T rh

T s

λ´ λ1

ż T

t
e´λps´tqps´ tq2

ż T

s
e´λl dl

ď C
Pλ,T rζ

T sQλ,T rh
T s

λ3pλ´ λ1q
e´λτ .

Hence

Pλ,T rζ
T s ď }ω}λ ` CPλ,T rζ

T sQλ,T rh
T s

˜?
τ

λ2
e´pλ´λ

1qτ `
e´λτPλ,T rζ

T s

λ3pλ´ λ1q

¸

and we can reason as in the proof of the main theorem avoiding to use the smallness of
ε.

Remark 2.1. We notice that in this setting we have obtained an Eulerian analog of the
scattering result in [17], in the special case of the HMF model. In [17] Caglioti and Ma�ei,
using the Lagrangian description of the �ow, obtain the damping result for the Vlasov-
Poisson equation, by a �xed point technique, considering an asymptotic state ω with
}ω}λ ă `8 such that

ωpx, vq ď
M

p1` v2q2

for some M ą 0 and λ ě C
?
M , with C some purely numerical constant. Here we show

that such class of �nal data ful�lls condition (2.28), if λ ą π
?
M . Indeed, taking n “ 1 in

(2.26) and multiplying by eλt we get as in (2.18)

φTλ ptq ` φ
T
λ ˚ λptq “ eλpT´tqW T pT ´ tq

with λptq “ ´e´λtj´1ptq and φTλ ptq “ eλpT´tqζT1 pT ´ tq. So it is su�cient to notice that,
since |Ăω0| ďMπ2, we have

|Lrp˘1qspσq| ďMπ2

ż `8

0
e´<σte´λtt dt ď π2M

λ2
ă 1, <σ ě 0

hence (2.1) holds.

Remark 2.2. The nonperturbative scattering result in Theorem (2.3) allows the choice of
asymptotic states ω within a distance of Op1q from a given homogeneous state ηpvq. This
fact poses a signi�cant di�erence with respect to the forward perturbative results where,
as we show in the next section (2.3), given an equilibrium ηpvq which verify some stability
properties, there exists an ε0 ą 0 such that every initial data in an analytic neighborhood
of η of Opεq with ε ă ε0 veri�es the Landau damping.
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2.3. The Cauchy problem

Actually, solutions of the backward and forward problems are of a di�erent type. Indeed, in
the case of the attractive HMF model 1, it is easy to �nd nonhomogeneous BGK stationary
solutions ωpx, vq of the HMF that can be chosen as scattering asymptotic datum for the
HMF, i.e. such that there exists a solution fωpt, x, vq such that

lim
tÑ`8

}fωpt, x, vq ´ ωpx´ vt, vq}L8pT1ˆRq “ 0.

This solution fω could never be a Landau Damping solution because it is not close, in a
strong norm, say L1, to its weak asymptotic limit ηpvq which is given by the average in x
of ωpx, vq. Indeed at the same L1 distance from η there exists a BGK stationary solution of
the HMF model.
We give an example of such BGK solution, which can be constructed using that any function
of the mean-�eld energy is an equilibrium. In this example we consider the attractive HMF
model with

Frf spt, xq “ Bx

˜

ż

T1ˆR
cospx´ yqfpt, y, vqdy dv

¸

in (2.1) and we choose, for β, ν ą 0 to be �xed,

ωβ,νpx, vq “
e´βHνpx,vq

Z
,

where Hνpx, vq “
v2

2 ´ ν cosx and Z is the normalizing constant. Using the simple
structure of the potential, we have that ωνpx, vq is a stationary solution of the attractive
HMF model, provided that the following compatibility condition is ful�lled:

Ωβpνq ”

ż

ωβ,νpx, vq cosx dx dv “ ν.

By Taylor expansion Ωβpνq “ βν{2 ` opβνq as ν Ñ 0, while Ωβpνq Ñ 1 if ν Ñ `8.
Hence for β ą 2 there exists at least one value sν such that Ωβpsνq “ sν.

Remark 2.3. In section (2.1) we have proved exponential damping of solutions of the HMF
model in the scattering setting in the perturbative case, while in this section we prove the
result for τ large. These two sections could have been partially joined by considering as a
smallness parameter ε “ e´λτ . However, given the di�erent nature of the problems faced,
we believe it is clearer to derive the two results separately.

2.3 The Cauchy problem

In this section, instead of �xing an asymptotic condition, we study the Cauchy problem for
equation (2.1), with initial condition at time zero. We refer to the last section (2.4) for the
discussion of the di�erences and advantages of the backward approach compared to this.
Putting (2.8) in integral form we get

phtpn, ξq “ ph0pn, ξq ` δn,˘1n
i

2

ż t

0
ζspnqrη1pξ ´ nsq ds

´
ε

2

ÿ

k“˘1

k

ż t

0
ζspkqphspn´ k, ξ ´ ksqpξ ´ nsqds,

(2.33)

1Except this paragraph, the choice of an attractive or repulsive potential is indi�erent in this Chapter.
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2.3. The Cauchy problem

and taking ξ “ nt for n “ ˘1 in (2.33), we obtain the equation for the electric �eld:

ζtpnq “ ph0pn, ntq ` n
i

2

ż t

0
ζspnqrη1pnpt´ sqqds

´
ε

2

ÿ

k“˘1

kn

ż t

0
ζspkqphspn´ k, nt´ ksqpt´ sqds.

(2.34)

We introduce the weight Aλ,ppn, ξq “ eλxn,ξy xn, ξyp and the corresponding analytic norm
of a generic function f as

}f}λ,p “ sup
n,ξ

Aλ,ppn, ξq| pfpn, ξq|.

In the following we take a mean-zero initial datum h0 such that }h0}λ0,p ă `8, for some
λ0 and p to be �xed.

As done before, we want to study the coupled system pζp˘1q, hq. For this purpose, we
de�ne the norm of the electric �eld ζ as

Jpλ0rζs “ sup
βpλ,tqą0

eλt xtyp |ζtp˘1q|. (2.35)

Here
βpλ, tq “ λ0 ´ λ´ δ arctanptq (2.36)

with δ ă 2λ0{π measures the loss of analytic regularity with respect to λ0.
We remark that the choice of the arctan function is not mandatory, contrary to the back-

ward case previously described, in which the regularity decay is more precisely prescribed
by the structure of the estimates.

We de�ne a weighted-in-time norm on h with two terms:

K3,p`1
λ0,q

rhs “ K3rhs `Kp`1
q rhs, (2.37)

where
K3rhs “ sup

βpλ,tqą0
}hptq}λ,3

and
Kp`1
q rhs “ sup

βpλ,tqą0
βpλ, tq1{2

}hptq}λ,p`1

xtyq
.

The occurrence of the last term is in the spirit of the abstract Cauchy-Kovalevskaya theorem,
while the term K3 is due to the treatment of the two echoes term in the equation for ζp˘1q,
as we show in Prop. (2.3).

2.3.1 Estimates for ζ

In the sequel, for γ ą λ0, it is useful to introduce the quantity

jtpnq “ i
n

2
rη1pntqeλ0t (2.38)

and de�ne

Gεptq ” ph0pn, ntq ´
ε

2

ÿ

k“˘1

ż t

0
ζspkqphspn´ k, nt´ ksqknpt´ sq ds. (2.39)
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2.3. The Cauchy problem

Lemma 2.3. Let ηpvq analytic such that }η1}γ ă `8 with γ ą λ0. If

Lrjp1qspσq ‰ 1 for <σ ě 0

then
Jpλ0rζs ď Cpγ, λ0qJ

p
λ0
rGεs.

Proof. Assume p “ 0 and take λ ą 0 such that βpλ, tq ą 0 then

eλtζtp1q “

ż t

0
λpt´ sqe

λsζsp1q ds` eλtGεptq

with λptq ” e´pλ0´λqtjtp1q. From Theorem (2.1), since λ P L1pR`q for γ ą λ0 and

Lrλspσq “ Lrjp1qspσ ` λ0 ´ λq ‰ 1 for <σ ě 0,

there exists a unique resolvent kernel rλ associated to λ with rλ P L1pR`q. Doing the
convolution with rλ, we get

eλtζt “

ż t

0
rλpt´ sqe

λsGεpsqds` eλtGεptq.

Taking the absolute value, we obtain

eλt|ζt| ď p1` }rλ}L1pR`qqJ
0
λ0rGεs, (2.40)

and we get the thesis for p “ 0 taking the supremum over βpλ, tq ą 0.
Let us give the proof in the case p “ 1, which is not di�cult to extend to the general

one.

teλtζt “

ż t

0
λpt´ sqse

λsζs ds` Zεptq

with

Zεptq ”

ż t

0
λpt´ sqpt´ sqe

λsζs ds` teλtGεptq.

Using (2.40), we get
J1
λ0rζs ď Cpγ, λ0q sup

βpλ,tqą0
|Zεptq|

and
|Zεptq| ď Cpγ, λ0qJ

0
λ0rζs ` J

1
λ0rGεs ď Cpγ, λ0qJ

1
λ0rGεs,

using again (2.40).

Proposition 2.3. In the hypothesis of the previous lemma, let p ě q ` 3 with q ě 3 �xed.
Given hpt, x, vq such thatK3,p`1

λ0,q
rhs ă `8 we have

Jpλ0rζs ď C ` εCJpλ0rζsK
3,p`1
λ0,q

rhs.
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2.3. The Cauchy problem

Proof. From the previous lemma, we only need to estimate Jpλ0rGεs. Multiplying by eλt xtyp

in (2.39) and using xtyp ď C
´

xt´ syp ` xsyp
¯

we have

eλt xtyp |Gεrζp1qsptq| ď }hp0q}λ0,p ` εpI1 ` I2q

where

I1 “

ż t

0
zλ,ppsqe

λpt´sq
´

|phsp0, t´ sq|pt´ sq ` |phsp2, t` sq|pt´ sq
¯

ds

ď

ż t

0
zλ,ppsq}hpsq}λ,3

˜

1

xt´ sy2
`

1

xt` sy2

¸

ds

and

I2 “

ż t

0

zλ,ppsqe
λpt´sq xt´ sy

p

xsy
p

´

|phsp0, t´ sq|pt´ sq ` |phsp2, t` sq|pt` sq
¯

ds

ď

ż t

0

zλ,ppsq}hpsq}λ,p`1
1

xsy
p ds.

Thus we obtain,

I1 ď Jpλ0rζsK
3rhs

ż t

0

˜

1

xt´ sy2
`

1

xt` sy2

¸

ds ď CJpλ0rζsK
3rhs

while, if p´ q ě 2,

I2 ď Jpλ0rζsK
p`1
q rhs

ż t

0

1

xsyp´q β1{2pλ, sq
ds ď CJpλ0rζsK

p`1
q rhs

and this concludes the proof.

2.3.2 Estimates for h

We start by showing how to split the term with |ξ ´ ns| in (2.33).

Lemma 2.4. Let ξ P R, p P N, n P Z and λ ą 0 then

Aλ,ppn, ξq|ξ´ns| ď C

˜

Aλ,p`1pn´k, ξ´ksqAλ,1p1, sq`Aλ,1pn´k, ξ´ksqAλ,p`1p1, sq

¸

(2.41)
with k “ ˘1.

Proof. We notice that

|ξ ´ ns| “ |ξ ´ ks` pk ´ nqs| ď xsy xn´ k, ξ ´ ksy .

Using the triangular inequality

xn, ξy ď xn´ k, ξ ´ ksy ` xk, ksy ,

the fact that
´

xn´ k, ξ ´ ksy ` xk, ksy
¯p
ď C

`

xn´ k, ξ ´ ksyp ` xk, ksyp
¯

and k “ ˘1, we get (2.41).
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2.3. The Cauchy problem

We now turn to estimate equation (2.33). As usual, we de�ne

Dtpn, ξq “ δn,˘1n
i

2

ż t

0
ζspnqrη1pξ ´ nsqds.

Lemma 2.5. Given ζtp˘1q, for λ, q ě 0 we have

}hptq}λ,q ď }h0}λ0,q ` }Dptq}λ,q

` ε

ż t

0
zλ,q`1psq}hpsq}λ,1 ` zλ,1psq}hpsq}λ,q`1 ds.

(2.42)

Proof. Multiplying by Aλ,qpn, ξq in (2.33) and using (2.41), we get

Aλ,qpn, ξq|htpn, ξq| ď }h0}λ0,q `A
λ,qpn, ξq|Dtpn, ξq|

` ε
ÿ

k“˘1

ż t

0
Aλ,1p1, sq|ζspkq|A

λ,q`1pn´ k, ξ ´ ksq|hspn´ k, ξ ´ ksq|ds

` ε
ÿ

k“˘1

ż t

0
Aλ,q`1p1, sq|ζspkq|A

λ,1pn´ k, ξ ´ ksq|hspn´ k, ξ ´ ksq|ds.

Since eλx1,sy x1, syq ď Ceλs xsyq , after taking the supremum over n, ξ we obtain the
thesis.

Proposition 2.4. Let p ě q ` 3 with q ě 3 �xed. Given ζp˘1q such that Jpλ0rζs ă `8 we
have

K3,p`1
λ0,q

rhs ď C}h0}λ0,p ` CJ
p
λ0
rζs}η1} ` εC

´

1`
1

δ

¯

Jpλ0rζsK
3,p`1
λ0,q

rhs.

Proof. We �rst estimate the term of order one in (2.33). If m ě p,

Aλ,mpn, ξq|Dtpn, ξq| ď CJpλ0rζs}η
1}

ż t

0
e´pγ´λqxξ´nsy xsym´p xξ ´ nsyp ds

ď CJpλ0rζs}η
1} xtym´p

(2.43)

where we have used that Aλ,qpn, ξq ď CAλ,qpn, ξ ´ nsqAλ,qpn, nsq and the hypothesis
on η1.

Now, since the norm (2.37) is composed of two parts, we start giving an estimate of the
K3 norm. Using the result in (2.42) we obtain

}hptq}λ,3 ď }hp0q}λ0,p ` }Dptq}λ,3 ` εJ
p
λ0
rζs

ż t

0

K3rhs

xsyp´4 `
Kp`1
q rhs

xsyp´1´q ds.

Using (2.43), we get

K3rhs ď }hp0q}λ0,p ` CJ
p
λ0
rζs}η1}γ ` εCJ

p
λ0
rζsK3,p`1

λ0,q
rhs.

Next, we focus on Kp`1
q . Using (2.42) with p` 1, we get

}hptq}λ,p`1 ď C}hp0q}λ0,p ` }Dptq}λ,p`1 ` εJ
p
λ0
rζspA1 `A2q,
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2.3. The Cauchy problem

where

A1 “

ż t

0
xsy2 }hpsq}λ,1 ds ď C xty3 K3rhs, A2 “

ż t

0

}hpsq}λ,p`2

xsyp´1 ds.

For what concern A2 we take

λ1psq “
λ0 ´ δ arctanpsq ´ λ

2

then
}hpsq}λ,p`2 ď

}hpsq}λ1,p`1

λ1 ´ λ
and we get the bound

A2 ď C

ż t

0

1

xsyp´q´1

Kp`1
q rhs

β3{2pλ, sq
ds ď

C

δ

Kp`1
q rhs

β1{2pλ, tq

where we have used that p ě q ` 3 and the fact that the integral is exactly computable by
d

dt
β´1{2pλ, tq “

δ

2

1

β3{2pλ, tq xty2
.

Then we get, using q ě 3,

βpλ, tq1{2

xtyq
εJpλ0rζspA1 `A2q ď εJpλ0rζs

´

CK3rhs `
C

δ
Kp`1
q rhs

¯

. (2.44)

It remains to estimate the term of order one Dtpn, ξq. Using (2.43), we obtain

βpλ, tq1{2

xtyq
}Dptq}λ,p`1 ď CJpλ0rζs}η

1}. (2.45)

Collecting the terms in (2.44) and (2.45) we conclude the proof.

2.3.3 The forward result

Theorem 2.4. Let us �x p ě q ` 3 with q ě 3 and consider h0px, vq P L
1pT1 ˆ Rq a

mean-zero analytic initial perturbation such that }h0}λ0,p ă `8 for some λ0 ą 0. Let
ηpvq P L1pRq analytic such that }η1}γ ă `8 with λ0 ă γ. Moreover, assume

Lrjp1qspσq ‰ 1 if <σ ě 0,

with jp1q as in (2.38). Then there exists a unique solution ht “ hpt, x, vq of (2.4) with initial
datum h0 such thatK3,p`1

λ0,q
rhs ă `8 and exist h8 with }h8}sλ,p ă `8 for sλ ă λ0´ δπ{2

such that
lim
tÑ8

}ht ´ h8}L8pT1ˆRq “ 0

with exponential rate.

Proof. The proof is analogous to the �rst part of Theorem (2.2). By a standard iterative
procedure as in (2.24) and using the smallness of the parameter ε, we get the existence of
the unique solution h in the class of functions such that K3,p`1

q ă `8. Then the damping
property follows from the estimate

}Bthptq}0,p ď Ce´
sλt

with sλ ă λ0 ´ δπ{2. It follows that hptq Ñ h8 with exponential rate.
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2.4. Backward vs forward

2.4 Backward vs forward

In the scattering problem, the decay of the analytic regularity, in the spirit of the abstract
Cauchy-Kovalevskaya theorem, is more di�cult to establish (compare the de�nition of
αT pµ, tq in (2.14), (2.15) with that of βpλ, tq in (2.36)). Despite this fact, the scattering
approach is easier. In particular, the bound on the norm (2.11) guarantees that for any t ě 0

|ζtp˘1q| ď ce´λt,

while the bound on the norm (2.35) guarantees an estimate with a time correction: for any
t ě 0 and λ ă λ0 ´ δ arctan t

|ζtp˘1q| ď ce´λt{xtyp.

More in general, the norm on h in (2.12), (2.13) is simpler than that in (2.37), in which
we have to introduce algebraic weights like xtyq in order to obtain closed estimates.

This technical issue is mainly due to the di�erent treatment of the plasma echoes, the
resonances which occur in (2.10) and (2.34) when nt “ ks, i.e. when n “ k “ ˘1, and
t “ s. In the a-priori estimate of ζ˘1 in Proposition (2.1), there are no di�culties and we
control the resonant terms, those with k “ n, in the same way as the nonresonant ones,
those with k “ ´n. In Proposition (2.3), the echoes force us to introduce the additional
term K3 in the norm of h. Note also that, in Theorem (2.3), we perform a more subtle
control of the echoes in (2.31), with an estimate in two-time steps, by using (2.32) and the
mean zero of ω ´ sω. In this way, we obtain the backward nonperturbative result.

The main reason for this di�erent behavior is that the solution hptq, with asymptotic
datum h8, gains regularity as t increases, thanks to the damping properties of the free �ow,
while the solution hptq, with initial datum h0, loses regularity as t increases. This property,
together with the hypothesis of analytical regularity, allows to tackle the problem without
having to study resonances coming from the echo terms.
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Chapter 3
On the scattering approach for the
Vlasov-Poisson equation: analytic

and Gevrey data

joint work with D. Benedetto and E. Caglioti ([13])

In this Chapter, we apply the Eulerian techniques to the backward Landau damping
problem for the Vlasov-Poisson equation. We cover the cases of asymptotic data with
analytic and 1{γ-Gevrey regularity, with γ ą 1{3 (see (4) in the Introduction). The
asymptotic regime allows us to provide a simpli�ed proof in the perturbative setting with
analytic regularity. In the Gevrey case, we recover the 3-Gevrey threshold. This is due to
the resonance terms that, in our formulation, are hidden in a linear term of the equation.

3.1 The framework

We recall that, in the spatially periodic case, the one-dimensional Vlasov-Poisson equation
reads as

Btfpt, x, vq ` vBxfpt, x, vq ` Frf spt, xqBvfpt, x, vq “ 0, (3.1)

where

Frf spt, xq “ ´Bx

˜

ż

T1ˆR
W px´ yqfpt, y, vq dy dv

¸

(3.2)

is the mean-�eld force. Here W pxq is the fundamental solution of the Laplace operator on
T1.

In the previous Chapter, we compared the scattering approach and the forward approach
in the case of the Vlasov-HMF (Hamiltonian mean-�eld) equation. Indeed, concerning the
backward Landau damping problem in the perturbative setting with analytic regularity,
we showed that no estimates are needed to suppress the echoes, i.e. resonances at certain
times between the Fourier modes of the solution, allowing a simple proof of the result.
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3.2. Notations and conventions

Here we extend the study of the backward problem to the Vlasov-Poisson equation,
also exploring the case of asymptotic data with Gevrey regularity. In this case we recover
the 3-Gevrey threshold, also obtained in [9, 22] for the Cauchy problem.

However, in the perturbative setting, the asymptotic regime allows us to observe that:

• in the case of analytic regularity, as in [17, 12], the echo terms are irrelevant, greatly
facilitating the proof;

• in the case of Gevrey regularity, the echo terms cannot be neglected and lead to
the 3-Gevrey regularity threshold, but it is possible to isolate naturally the reaction
term (using the terminology in [36, 9]), i.e. the term of the equation where the echo
mechanism is revealed. This allows us to highlight how the echo mechanism is
inherent in a linear part of the equation (see also [44] where the echo chains are
de�ned as a secondarily linear e�ect).

For this reason we divide the proof of the result into the two cases in which the
asymptotic datum has analytic or Gevrey regularity. This is also done because in the former
case simpler norms than the Gevrey case are used and there is no need to use the energy
method in the estimates for the distribution function.

3.2 Notations and conventions

As in the previous Chapter, we introduce the Fourier transform in T1 ˆ R, using the
following notation:

pgpn, ξq “
1

2π

ż

T1ˆR
e´inxe´ivξgpx, vqdx dv

with n P Z and ξ P R.
In order to quantify the regularity of the solutions, we will use L2-type Gevrey norms

}g}2Gλ;γ,σ “
ÿ

n

ż

e2λxn,ξyγ xn, ξy2σ p|pgpn, ξq|2 ` |Bξpgpn, ξq|
2q dξ, (3.3)

with λ, σ ą 0 and 0 ă γ ă 1. In the analytic case, we will work with L8-type analytic
norms

}g}λ;σ “ sup
n,ξ

eλxn,ξy xn, ξyσ |pgpn, ξq| (3.4)

while, when working with the spatial density ρt, we will use

}ρt}λ;γ,σ,α “ sup
n
eλxn,nty

γ

xn, ntyσ
|pρtpnq|

|n|α
, (3.5)

where 5{12 ă α ă 1{2. We consider solutions ftpx, vq “ fpt, x, vq of (3.1) which are
small perturbations of a spatially homogeneous solution η, i.e.

ftpx, vq “ ηpvq ` εrtpx, vq,

and we assume η to be an analytic function of the velocities. The equation veri�ed by the
perturbation r is

Btrtpx, vq ` vBxrtpx, vq ` Frrspt, xqBv
`

ηpvq ` εrtpx, vq
˘

“ 0,
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3.3. The analytic case

where the operator F is de�ned in (3.2).
Let htpx, vq “ rtpx` vt, vq, then it veri�es the following equation:

Bth “ tψrhs, η ` εhu, (3.6)

where ψ is the potential �eld generated by the perturbation, evaluated along the free �ow

ψrhspt, x, vq “

ż

T1ˆR
W px´ y ` pv ´ uqtqhtpy, uq dy du

and where t, u is the Poisson bracket.
We study the damping problem by searching for a solution for (3.6) such that

lim
tÑ`8

}htpx, vq ´ h8px, vq}L8pT1ˆRq “ 0

where h8 is a mean-zero analytic datum with }h8}λ;σ ă `8 for some λ ą 0, σ ą 0 as in
(3.4).

Firstly, we study the evolution in the time interval r0, T s considering the following
problem:

#

Bth
T
t “ tψrh

T
t s, η ` εh

T
t u 0 ď t ď T,

hTT px, vq “ h8px, vq.
(3.7)

Then, we show that, for T Ñ `8, hT converges to a solution h, which solves the asymp-
totic problem.

The system (3.7) in Fourier space reads as

Bt
xhTt pn, ξq “ i

xρTt pnq

n
pη1pξ ´ ntq ´ ε

ÿ

k‰0

xρTt pkq

k
xhTt pn´ k, ξ ´ ktqpξ ´ ntq, (3.8)

where rη1 is the Fourier transform of η1 in the velocity and xρTt pnq “
xhTt pn, ntq is the Fourier

transform of the spatial density.
Integrating equation (3.8) between rt, T s and putting ξ “ nt, we get an equation for ρT :

xρTt pnq “
xh8pn, ntq ´

ż T

t

xρTs pnqpηpnpt´ sqqps´ tq ds

´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
xhTs pn´ k, nt´ ksq ds. (3.9)

As usual, we are going to give a priori estimates on the coupled system pρT , hT q.

3.3 The analytic case

In this section we give a proof of the scattering result for an analytic asymptotic state
h8px, vq such that }h8}λ;σ ă `8, for a given λ, σ ą 0. As we know from [17, 12], the
asymptotic regime facilitates the analysis quite well in the analytic setting.
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To do this, we de�ne the following norm which quanti�es the decaying of the spatial
density

Mλ,T rρ
T s “ sup

pµ,tqPDλ,T

e
λ
2
t}ρTt }µ;σ,

where, with little abuse of notation, we denoted by }ρTt }µ;σ the quantity }ρTt }µ;1,σ,1.
Here

Dλ,T “ tpµ, tq P r0, λ{2q ˆ r0, T s, µ ă αT ptqu

and αT ptq “ λ{2´ Cαpe
´λ

4
t ´ e´

λ
4
T q, with Cα such that λ{2´ Cα ą 0.

To take into account the decay of the analytic regularity, we de�ne the weighted-in-time
analytic norm of phTt ´ h8q as

Nλ,T rh
T
t ´ h8s “ sup

pµ,tqPDλ,T

pαT ptq ´ µq
1{2e

λ
4
t}hTt ´ h8}µ;σ. (3.10)

3.3.1 Analytic a priori estimates for ρT

As we show more accurately in the following proposition, eq. (3.9) for the �eld ρT has the
structure of a Volterra equation.

We set
jnptq ” tpηp´ntq (3.11)

and

HT
ε ptq “

xh8pn, ntq ´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
xhTs pn´ k, nt´ ksqds. (3.12)

In order to invert the term of order one in the equation, we use the following result.

Lemma 3.1. Let λ ą 0 with }h8}λ;σ ă `8 and }η}λ;σ ă `8. Assume that

inf
nPZ;<σě0

|Lrjnspσq ` 1| ě κ ą 0, (3.13)

where

Lrjspσq “
ż `8

0
e´σtjptq dt

is the Fourier-Laplace transform of j. Then

Mλ,T rρ
T s ď CMλ,T rH

T
ε s.

Proof. Let us de�ne φnptq “ ρTT´tpnq, Fεptq “ HT
ε pT ´ tq. Then, (3.9) can be rewritten as

φnptq ` jn ˚ φnptq “ Fεptq, (3.14)

for t P r0, T s, where

j ˚ fptq “

ż t

0
jpt´ sqfpsq ds

is the convolution between j and f .
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Taking the Laplace transform on both sides, we get

Lrφnspσq “
LrFεspσq

1` Lrjnspσq
“ LrFεspσq ´

Lrjnspσq
1` Lrjnspσq

LrFεspσq,

provided that 1 ` Lrjnspσq ‰ 0, which is guaranteed by (3.13). Moreover, taking the
inverse Laplace transform, we get that φnptq “ Fεptq ´ rn ˚ Fεptq where

rnptq “
1

2πi

ż σ0`i8

σ0´i8
eσt

Lrjnspσq
1` Lrjnspσq

dσ, (3.15)

with σ0 su�ciently large. Then, it is not di�cult to show that

Lrjnspσq
1` Lrjnspσq

is holomorphic in <σ ě ´µ, for any 0 ă µ ă λ and that, integrating by parts, it veri�es
ˇ

ˇ

ˇ

Lrjnspσq
1` Lrjnspσq

ˇ

ˇ

ˇ
ď

C

1` |=σ|2

for <σ “ ´µ (see [22] for more details). Then, by contour deformation in (3.15), we get
that |rnptq| ď Ce´ν|nt| with λ{2 ă ν ă λ.
Multiplying by eµxn,npT´tqy xn, npT ´ tqyσ {|n|, using the triangular inequality and taking
the sup over n, we get

}ρTT´t}µ;σ ď }H
T
ε pT ´ tq}µ;σ ` C

ż T

0
e´pν´λ{2qps´tq}ρTs }µ;σ ds.

Multiplying by e
λ
2
pT´tq and taking the sup over Dλ,T , we conclude that

Mλ,T rρ
T s ďMλ,T rH

T
ε s ` CλMλ,T rH

T
ε s.

We now arrive at the main estimate of this section. In the proof we will notice that the
echoes terms will be easily neglected thanks to the decay given by the analytic regularity.

Proposition 3.1. Let ρT solution of (3.9) and suppose Nλ,T rh
T s ă `8. Then, under the

hypothesis of Lemma (3.1), we have

Mλ,T rρ
T s ď }h8}λ;σ ` εCλMλ,T rρ

T sNλ,T rh
T ´ h8s ` εCλMλ,T rρ

T s}h8}λ;σ.

Proof. From Lemma (3.1) we need only to estimate Mλ,T rH
T
ε s. From (3.12), we have

HT
ε ptq “

xh8pn, ntq ´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
{phTs ´ h8qpn´ k, nt´ ksq ds

´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
xh8pn´ k, nt´ ksqds.
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By simple computations, we have

eµxn,nty xn, ntyσ
|HT

ε ptq|

|n|
ď e´

λ
2
t}h8}λ;σ

` εMλ,T rρ
T sNλ,T rh

T ´ h8s
ÿ

k‰0

´ 1

xn´ kyσ
`

1

xkyσ

¯

ż T

t

e´
λ
2
sps´ tqe´

λ
4
s

pαT psq ´ µq1{2
ds

` ε
ÿ

k‰0

Mλ,T rρ
T s}h8}λ;σ

ż T

t
e´

λ
2
sps´ tqe´

λ
2
xn´k,nt´ksy ds.

Then, taking the sup over n, multiplying by e
λ
2
t and using the de�nition of αT ptq we have:

Mλ,T rH
T
ε s ď }h8}λ;σ ` εCλMλ,T rρ

T sNλ,T rh
T ´ h8s ` εCλMλ,T rρ

T s}h8}λ;σ.

3.3.2 Analytic a priori estimates for hT ´ h8

Now we turn to give a Cauchy-Kovalevskaya estimate on hT ´ h8. Due to the loss of
analytic regularity in time, it is crucial to use the weighted norm introduced in (3.10).

Proposition 3.2. Under the hypothesis of the previous Proposition, let hT a solution of (3.7)
and assumeMλ,T rζ

T s ă `8 then the following estimate holds:

Nλ,T rh
T ´ h8s ď CλMλ,T

´

}η}λ ` εNλ,T rh
T ´ h8s ` ε}h8}λ;σ

¯

.

Proof. From (3.8) we have

{phTt ´ h8qpn, ξq “ DT
t pn, ξq ` εE

T
t pn, ξq ` εF

T
t pn, ξq,

where
DT
t pn, ξq “ ´

i

n

ż T

t

xρTs pnq
pη1pξ ´ nsq ds,

ETt pn, ξq “
ÿ

k‰0

ż T

t

xρTs pkq

k
{phTs ´ h8qpn´ k, ξ ´ ksqpξ ´ nsq ds

and

F Tt pn, ξq “
ÿ

k‰0

ż T

t

xρTs pkq

k
xh8pn´ k, ξ ´ ksqpξ ´ nsq ds.

Fixing µ ă αT ptq, we estimate separately the three terms. As regards Dt, by the triangular
inequality we get

eµxn,ξy xn, ξyσ |DT
t pn, ξq| ď CMλ,T rρ

T s}η}λ;σ

ż T

t
e´

λ
2
s ds.

Taking the supremum over n, ξ, multiplying by e
λ
4
t and taking the supremum over Dλ,T ,

we arrive at
Nλ,T rD

T s ď CMλ,T rρ
T s}η}λ;σ.
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Concerning ET , using that

xn, ξyσ

xk, ksyσ xn´ k, ξ ´ ksyσ
ď

´ 1

xn´ kyσ
`

1

xkyσ

¯

, (3.16)

we have

eµxn,ξy xn, ξyσ |ETt pn, ξq| ď
ÿ

k‰0

´ 1

xn´ kyσ
`

1

xkyσ

¯

Mλ,T rρ
T sˆ

ˆ

ż T

t
e´

λ
2
s}hTs ´ h8}µs;σe

´pµs´µqxn´k,ξ´ksy|ξ ´ ns|ds.

Taking µs “ pαT psq ` µq{2, i.e. the middle point between µ and aT,δpsq, we have

e´pµpsq´µqxn´k,ξ´ksy|ξ ´ ns| ď
2p1` sq

αT psq ´ µ
.

Hence

eµxn,ξy xn, ξyσ |ETt pn, ξq| ď CMλ,T rρ
T sNλ,T rh

T ´ h8s

ż T

t

e´
3λ
4
sp1` sq

pαT psq ´ µq3{2
ds.

Taking the supremum over n, ξ, multiplying by e
λ
4
t and that, from the de�nition of αT

e´
λ
4
s

pαT psq ´ µq3{2
“ ´

2

Cα

d

ds
pαT psq ´ µq

´1{2,

we get
Nλ,T rE

T s ď CλMλ,T rρ
T sNλ,T rh

T ´ h8s.

We need only to estimate F T . In this case we have

eµxn,ξy xn, ξyσ |F Tt pn, ξq| ď
ÿ

k‰0

Mλ,T rρ
T s

ż T

t
e´

λ
2
s}h8}λ;σe

´λ
2
xn´k,ξ´ksy|ξ ´ ns| ds

and we use the extra-decay in h8 to control the derivative and the sum in k. In the end,
taking the supremum over n, ξ and multiplying by e

λ
4
t, we conclude

Nλ,T rF
T s ď CλMλ,T rρ

T s}h8}λ;σ.

By collecting the estimates we get the thesis.

3.4 The Gevrey case

In this section, we give a priori estimates for the Gevrey regularity setting. It is worth
noticing that the norms that will be introduced are more general than the ones introduced
in the previous paragraph, hence the following estimates include also the analytic case.

In the Gevrey setting, we de�ne the norm for the spatial density as

Mγ
λ,T rρ

T s “ sup
pµ,tqPDλ,T

xty4{γ`6`δ
}ρTt }µ;γ,σ,α,
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where } ¨ }µ;γ,σ,α is de�ned in (3.5), 0 ă δ ! 1 and

Dλ,T “ tpµ, tq P r0, λ{2q ˆ r0, T s, µ ă aT ptqu,

where aT ptq “ λ{2´ Car1{ xty
δ
´ 1{ xT yδs and Ca ą 0 such that λ{2´ Ca ą 0.

To take into account the decay of the Gevrey regularity, we de�ne the weighted-in-time
analytic norm of hTt ´ h8 as

Nγ
λ,T rh

T
t ´ h8s “ sup

pµ,tqPDλ,T

paT ptq ´ µq
1{4 xty2{γ`2

}hTt ´ h8}Gµ;γ,σ , (3.17)

where } ¨ }Gµ;γ,σ as in (3.3).

3.4.1 Gevrey a priori estimates for ζT

We now turn to give Gevrey estimates for (3.9). As before, we’re going to use Lemma (3.1)
to invert the linear part of the equation. We recall the notations in (3.11) and (3.12).

Lemma 3.2. Let γ ă 1 and assume that h8 is a Gevrey function such that }h8}λ;γ,σ “

}h8}λ;γ,σ,0 ă `8 (see (3.5)). Assume that η is analytic with }η}λ;σ ă `8 and such that

inf
nPZ;<σě0

|Lrjnspσq ` 1| ě κ ą 0,

then
Mγ
λ,T rρ

T s ď CMγ
λ,T rH

T
ε s.

Proof. With the same notations of (3.14), equation (3.9) can be rewritten as

φnptq ` jn ˚ φnptq “ Fεptq,

for t P r0, T s. Then, from Lemma (3.1), we know that

φnptq “ Fεptq ´

ż t

0
rnpt´ sqFεpsqds

and |rnptq| ď Ce´ν|nt| with ν ă λ.
Taking µ ă aT pT ´ tq, multiplying by eµxn,npT´tqyγ xn, npT ´ tqyσ and using the

triangular inequalities as in (3.16), we have

}φptq}µ;γ,σ,α ď }Fεptq}µ;γ,σ,α `

ż t

0
e´Cλps´tq}φpsq}µ;γ,σ,α ds.

Therefore, multiplying by xT ´ ty4{γ`6`δ and taking the sup, we get

Mγ
λ,T rρ

T s ďMγ
λ,T rH

T
ε s ` CλM

γ
λ,T rH

T
ε s.

The main result of this paragraph concerns the Gevrey estimate of the nonlinear part
of equation (3.9). Here we will discover how the echo mechanism is revealed in a linear
term of the equation and we will understand the need for the Gevrey regularity threshold
γ ą 1{3.
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Proposition 3.3. Let ρT solution of (3.9) and suppose Nγ
λ,T rh

T s ă `8. Then, under the
hypothesis of Lemma (3.2), we have

Mγ
λ,T rρ

T s ď C}h8}λ;γ,σ ` εCM
γ
λ,T rρ

T sNγ
λ,T rh

T ´ h8s ` εCM
γ
λ,T rρ

T s}h8}λ;γ,σ.

Proof. From Lemma (3.2) we need only to estimate Mγ
λ,T rH

T
ε s. From (3.12) we have that

HT
ε ptq “

xh8pn, ntq ´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
{phTs ´ h8qpn´ k, nt´ ksqds

´ ε
ÿ

k‰0

ż T

t

xρTs pkq
nps´ tq

k
xh8pn´ k, nt´ ksq ds ” xh8pn, ntq `B1ptq `B2ptq. (3.18)

Taking µ ă aT ptq, multiplying by eµxn,ntyγ xn, ntyσ and using the triangular inequalities
as in (3.16), we get }B1ptq}µ;γ,σ,α is bounded by

ε
ÿ

k‰0

ż T

t

e´pµpsq´µqxn,nty
γ

xn, ntyσ

xn´ k, nt´ ksyσ xk, ksyσ
|n|1´αps´ tq

|k|1´α
}ρTs }µpsq;γ,σ}h

T
s ´ h8}Gµ;γ,σ ds.

(3.19)

Choosing µpsq “ µ` aT psq ´ aT ptq, we have that

expt´pµpsq ´ µq xn, ntyγu ď expt´a1T psqps´ tq|nt|
γu.

From which follows that

e´pµpsq´µqxn,nty
γ

|n|1´αps´ tq ď
xsyp1`δqp1´αq{γ

xty1´α ps´ tq
1´α
γ
´1
.

Hence

}B1ptq}λ;γ,σ ď εMγ
λ,T rρ

T sNγ
λ,T rh

T ´ h8sˆ

ˆ
ÿ

k‰0

1

xkyσ

ż T

t

xsy´4{γ´6´δ

xty1´α ps´ tq
1´α
γ
´1

1

paT psq ´ µq1{4
ds

ď εMγ
λ,T rρ

T sNγ
λ,T rh

T ´ h8s
1

xty1´α

ż T

t

xsy´4{γ´6´δ

xsy3{4 ps´ tq
| 1´α
γ
´3{4|

ds.

Noting that 1´α
γ ´ 3{4 ă 1 since 1{3 ă γ ď 1 and 5{12 ă α ă 1{2, multiplying by

xty4{γ`6`δ and taking the sup,

Mγ
λ,T rB1s ď CεMγ

λ,T rρ
T sNγ

λ,T rh
T ´ h8s.

We now give an estimate of B2ptq. As in (3.19), }B2ptq}µ;γ,σ,α is bounded by

ε
ÿ

k‰0

1

xkyσ

ż T

t
e´pµpsq´µqxk,ksy

γ |n|1´αps´ tq

|k|1´α
}ρTs }µpsq;γ,σe

´λxn´k,nt´ksyγ{2}h8}λ;γ,σ ds.
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We divide the estimate in two cases: if |nt´ ks| ą t{2 then

expt´
λ

2
xn´ k, nt´ ksyγu ď expt´

λ

2
xn´ k, t{2yγu,

from which is easy to close the estimate, since we have su�cient decay.
If |nt ´ ks| ă t{2 then |k| ď |n|, since s ą t. If k “ n, we get su�cient decay

as in the previous case. Hence we reduce to |k| ă |n|, where we have to overcome the
resonances due to plasma echoes. Here, since |n|´1{2

|k| t ă s ă |n|`1{2
|k| t, we get that, choosing

µpsq “ µ` aT psq ´ aT ptq,

expt´pµpsq ´ µq xk, ksyγu ď exp
!

´Ca xky
γ |n´ k|

|n|
|s|γ´δ

)

.

It follows that, if |n´ k| ě |n|{2, then we get su�cient decay one more time. Hence, we
focus on |n´ k| ă |n|{2, that means |k| ą |n|{2. Then, we get

expt´pµpsq ´ µq xk, ksyγu
ps´ tq

|k|
ď e

´Caxky
γ |n´k|
|n|

|s|γ´δ
s
|n´ k|

|n||k|
ď C

|n|
´2` 1´γ

γ´δ

|n´ k|
1

γ´δ
´1

and we have that ´2` 1´γ
γ´δ ă 0 if γ ą 1{3. Hence, we get

Mγ
λ,T rB2s ď CεMγ

λ,T rρ
T s}h8}Gλ;γ,σ .

Collecting the estimates on B1 and B2 we get the thesis.

3.4.2 A priori Gevrey estimates for hT

This proof is analogous to the one given in [22]. Here, instead of the generator functions
approach, we use the global-in-time norms de�ned in (3.17).

Given µ ă aT ptq, the Fourier multiplier operator

Aµp∇q “ eµx∇y
γ

x∇yσ

is de�ned by
p {Aµp∇qhqpn, ξq– eµxn,ξy

γ

xn, ξyσ phpn, ξq.

From (3.6), we have
d

dt
}hTt ´ h8}

2
Gµ;γ,σ “

d

dt
}Aµp∇qphTt ´ h8q}22

“ 2
A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, ηu

E

` 2ε
A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, h8u

E

` 2ε
A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, hTt ´ h8u

E

,

(3.20)

where x¨|¨y is the L2 scalar product. We rewrite the last term as
A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, hTt ´ h8u ´ tψrhTt s, Aµp∇qphTt ´ h8qu

E

`

A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
tψrhTt s, Aµp∇qphTt ´ h8qu

E
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and we notice that
A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
tψrhTt s, Aµp∇qphTt ´ h8qu

E

“ 0,

since xf |tψ, guy is skew-symmetric. We denote the three terms we are going to estimate
in (3.20) by

A1
t “

A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, ηu

E

,

A2
t “

A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
Aµp∇qtψrhTt s, h8u

E

,

A3
t “

A

Aµp∇qphTt ´ h8q
ˇ

ˇ

ˇ
rAµp∇q,U ¨∇sphTt ´ h8q

E

,

where r¨, ¨s is the commutator and U “ p´Bvψ, Bxψq.
By the Plancherel identity we have that

|A1
t | ď

ÿ

n

ż

dξAµpn, ξq|
{phTt ´ h8qpn, ξq|Aµpn, ξq

|xρTt pnq|

n
|pη1pξ ´ ntq|

ď C
ÿ

n

Aµpn, ntq
|xρTt pnq|

n

ż

dξAµpn, ξq|
{phT ´ h8qpn, ξq|Aµpξ ´ ntq|pη1pξ ´ ntq|

ď Cλ}η
1}λ;σ

˜

ÿ

n

A2
µpn, ntq

|xρTt pnq|
2

n2

¸1{2˜
ÿ

n

ż

dξA2
µpn, ξq|

{phT ´ h8qpn, ξq|
2

¸1{2

,

where in the second estimate we have used the triangular inequality, while in the third we
have used two times the Cauchy-Schwartz inequality (�rstly in the ξ variable and then in
n).

The estimate on A1
t is closed using the de�nition of the norm } ¨ }λ;γ,σ,α and the fact

that α ă 1{2:
|A1

t | ď Cλ}η
1}λ;σ}ρ

T
t }λ;γ,σ,α}h

T
t ´ h8}Gµ;γ,σ .

For A2
t we get

|A2
t | ď

ÿ

n,k‰0

ż

dξ|Aµ
{phTt ´ h8qpn, ξq|

|Aµpk, ktq
xρTt pkq|

k
|ξ ´ nt||Aµxh8pn´ k, ξ ´ ktq|

ď xty
ÿ

n

´

ż

|Aµ
{phTt ´ h8qpn, ξq|

2 dξ
¯1{2

ˆ

ˆ
ÿ

k‰0

|Aµpk, ktq
xρTt pkq|

k

´

ż

|Aµz∇h8pn´ k, ξ ´ ktq|2 dξ
¯1{2

ď xty }hTt ´ h8}Gµ

«

ÿ

n

˜

ÿ

k‰0

|Aµpk, ktq
xρTt pkq|

k

´

ż

|Aµz∇h8pn´ k, ξq|2 dξ
¯1{2

¸2ff1{2

and noting that, in the square brackets, we have the L2-norm of a convolution in n, we get
by the Young inequality:

|A2ptq| ď xtyCλ}h
T
t ´ h8}Gµ;γ,σ

˜

ÿ

k‰0

|Aµpk, ktq
xρTt pkq|

2

k2

¸

}∇h8}λ;γ,σ.
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Using the de�nition of the norm Mγ
λ,T and the fact that α ă 1{2 we obtain:

|A2ptq| ď xtyCλ}h
T
t ´ h8}Gµ;γ,σ}ρ

T
t }µ;γ,σ,α}∇h8}λ;γ,σ.

We conclude by estimating A3
t . We have that

|A3
t | ď

ÿ

n,k‰0

ż

dξAµpn, ξq|
{phTt ´ h8qpn, ξq|

|xρTt pkq|

k
ˆ

ˆ |Aµpn, ξq ´Aµpn´ k, ξ ´ ktq||ξ ´ nt|| {pht ´ h8qpn´ k, ξ ´ ktq|.

We split the estimate into two dichotomous cases:

(a) xk, kty ě xn, ξy {2 and (b) xn´ k, ξ ´ kty ě xn, ξy {2.

In case (a) we have that:
|ξ ´ nt||Aµpn, ξq `Aµpn´ k, ξ ´ ktq|

Aµpk, ktqAµpn´ k, ξ ´ ktq
ď C xty

´ 1

xn´ kyσ´1 `
1

xkyσ´1

¯

.

In case (b) we use that

|Aµpn, ξq ´Aµpn´ k, ξ ´ ktq| ď C
|k, kt|Aµpn, ξqAµpn´ k, ξ ´ ktq

xn, ξy1´γ ` xn´ k, ξ ´ kty1´γ
,

gaining that

|ξ ´ nt||Aµpn, ξq ´Aµpn´ k, ξ ´ ktq|

Aµpk, ktqAµpn´ k, ξ ´ ktq
ď C

|ξ ´ nt| xk, kty´σ`1

xn, ξy1´γ ` xn´ k, ξ ´ kty1´γ

ď C xky´σ`1
xn, ξyγ{2 xn´ k, ξ ´ ktyγ{2 .

Then we have, using again that 2ab ď a2 ` b2:

|A3
t | ď

ÿ

n,k‰0

´

xty

xn´ kyσ
`
xty

xkyσ

¯

}ρTt }µ;γ,σ,α

ż

xn, ξyγ A2
µpn, ξq|

{phTt ´ h8qpn, ξq|
2

` xn´ k, ξ ´ ktyγ
A2
µpn´ k, ξ ´ ntq

k2´2α
| {phTt ´ h8qpn´ k, ξ ´ ktq|dξ,

obtaining
|A3ptq| ď xtyCλ}ρ

T
t }µ;γ,σ,α}h

T
t ´ h8}

2
Gµ;γ,σ`γ{2 .

Moreover BtBξ {phTt ´ h8qpn, ξq veri�es the equation

BtBξ
{phTt ´ h8qpn, ξq “ i

xρTt pnq

n
Bξ
pη1pξ ´ ntq

´ ε
ÿ

k‰0

xρTt pkq

k
Bξ

{phTt ´ h8qpn´ k, ξ ´ ktqpξ ´ ntq

´ ε
ÿ

k‰0

xρTt pkq

k
{phTt ´ h8qpn´ k, ξ ´ ktq ´ ε

ÿ

k‰0

xρTt pkq

k
Bξ

xh8pn´ k, ξ ´ ktqpξ ´ ntq

´ ε
ÿ

k‰0

xρTt pkq

k
xh8pn´ k, ξ ´ ktq.
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3.5. The backward result

Since the new terms appearing don’t have derivatives, they are easier to analyze and similar
estimates to the previous one hold. We omit the details.

Putting all togheter, we get
ż T

t
|A1

s| ds ď Cλ}η
1}λ;σ

ż T

t
}ρTs }λ;γ,σ,α}h

T
s ´ h8}Gµ;γ,σ ds

ď Cλ}η
1}λ;σM

γ
λ,T rρ

T sNγ
λ,T rh

T ´ h8s

ż T

t

Ca

xsy4{γ`6`δ`2{γ`2
paT psq ´ µq1{4

ds,

while
ż T

t
|A2

s| ds ď Cλ}∇h8}λ;γ,σ

ż T

t
xsy }ρTs }λ;γ,σ,α}h

T
s ´ h8}Gµ;γ,σ ds

ď Cλ}∇h8}λ;γ,σM
γ
λ,T rρ

T sNγ
λ,T rh

T ´ h8s

ż T

t

Ca

xsy4{γ`5`δ

1

xsy4{γ`4
paT psq ´ µq1{4

ds,

and, choosing µpsq “ paT psq ` µq{2, we have
ż T

t
|A3

s| ds ď Cλ

ż T

t
xsy }ρTs }µ;γ,σ,α}h

T
s ´ h8}

2
Gµ;γ,σ`γ{2 ds

ď Cλ

ż T

t
xsy }ρTs }µ;γ,σ,α

}hTs ´ h8}
2
Gµpsq;γ,σ

pµpsq ´ µq
ds

ď CλM
γ
λ,T rρ

T sNγ
λ,T rh

T ´ h8s
2

ż T

t

Ca

xsy4{γ`5`δ

1

xsy4{γ`4
paT psq ´ µq3{2

ds.

Hence, integrating in time (3.20), multiplying by xty4`4{γ
paT ptq ´ µq1{2, taking the

sup and dividing by Nγ
λ,T rh

T ´ h8s, we have proved the following Proposition.

Proposition 3.4. Let hT a solution of (3.7) and assumeMγ
λ,T rζ

T s ă `8, then the following
estimate holds:

Nγ
λ,T rh

T ´ h8s ď CλM
γ
λ,T rρ

T s

´

}η}λ;σ ` εN
γ
λ,T rh

T ´ h8s ` ε}h8}λ;γ,σ

¯

.

3.5 The backward result

We can now present the main theorem of this Chapter. Since it is more general, we will
state it considering the Gevrey case.

Theorem 3.1. Let h8 P L1pT1 ˆ Rq of Gevrey regularity such that }h8}λ;γ,σ,0 ă `8,
with λ ą 0, σ ą 3, γ P p1{3, 1s. Consider η P L1pRq analytic such that }η}λ;σ ă `8 and
assume that

inf
nPZ;<σě0

|Lrjnspσq ` 1| ě κ ą 0,

with jn as in (3.11). Then, for small values of ε, there exists a unique Gevrey regular solution
htpx, vq of (3.6) such that

lim
tÑ`8

}htpx, vq ´ h8px, vq}L8pT1ˆRq “ 0

with exponential rate.

We don’t give the proof of this result, which is similar to the one given in Theorem
(2.2) of the previous Chapter.
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3.6. On the linear part of the eqation for γ ă 1{3

3.6 On the linear part of the equation for γ ă 1{3

Here we want to give a formal argument to show that the linear part of the equation is
ill-posed for asymptotic data of Gevrey regularity 0 ă γ ă 1{3.

Let us consider the equation for the density in (3.18) and assume that T “ `8.
Neglecting the Volterra linear term and the nonlinear one, we get

pρtpnq “ xh8pn, ntq ´ ε
ÿ

k‰0

ż `8

t
pρspkq

nps´ tq

k
xh8pn´ k, nt´ ksqds.

Assume n ą 0, as we have seen in the previous section, the challenging terms presenting
resonances due to plasma echoes are those with 0 ă k ă n in the integral. We restrict our
analysis to these modes and in the sum over k we take only the worst term k “ n´ 1.

We get, after a change of variable,

φtpnq “
xh8pn, ntq

n
´ εt

ż `8

1
φtτ pn´ 1qpτ ´ 1qt xh8p1, tpn´ pn´ 1qτqqdτ,

where φtpnq “ pρtpnq{n.
We expect that, as tÑ `8, the given function

t xh8

´

1, tpn´ pn´ 1qτq
¯

á δ
´

pn´ 1qpτ ´
n

n´ 1
q

¯

“
1

n´ 1
δ
´

τ ´
n

n´ 1

¯

.

Hence, we want to study the toy model

φtpnq “
xh8pn, ntq

n
´ ε

t

pn´ 1q2
φ n
n´1

tpn´ 1q. (3.21)

Iterating (3.21), we get the expression

φtpnq “
n´1
ÿ

k“0

p´1qkpεtnqk
”

pn´ kq!

n!

ı3 xh8pn´ k, ntq

n´ k
.

By Laplace’s method and by using that h8 is analytic, after some computations we get that

|φtpnq| « Cεn
”

pn´ 1qn´1e´pn´1q
ı1{γ 1

pn!q3
« Cεnrpn´ 1q!s1{γ´3,

where we used the Stirling formula in the last inequality.
From this it follows that φtpnq is unbounded in n for γ ă 1{3 and this suggests the

ill-posedness of the problem in this setting. We note that, di�erently from what happens in
the forward problem, the resonant terms due to the echoes are �nite in number for each
�xed n. It is not yet clear what this might imply.
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Chapter 4
The validity problem in the

mean-�eld scaling

By validity problems we mean those procedures in mathematical physics which justi�es
the use of a limit e�ective partial di�erential equation by a rigorous derivation from a
system of N particles in a suitable scaling limit as N Ñ `8.

In this Chapter, we mainly focus on a review of the classic works by Dobrushin [23]
and Neunzert and Wick [47] on the validity of the Vlasov equation for regular potentials,
starting from an N -body system in the mean-�eld scaling.

In particular, the point of view of Neunzert and Wick in [47] - the �rst work to give
a mean-�eld limit result - will be very useful in the next Chapter to study topological
interactions.

4.1 Mean-�eld scaling and empirical measures

We focus on a N -particle system governed by the following ODEs1

9ziptq “
1

N

N
ÿ

j“1

F pzi ´ zjq, i “ 1, . . . , N, (4.1)

where zi P Rn and F : Rn Ñ Rn is a bounded two-body interaction such that F is globally
Lipschitz with Lipschitz constant LF “ LippF q.

The justi�cation of the 1{N scaling in (4.1) is insidious since it is not a priori clear why
the magnitude of the single-particle interaction should depend on the number of particles
in the system. It can be motivated by considering a dynamic with a di�erent time scaling:
if z̄iptq is a solution of the N -body problem

9̄ziptq “
N
ÿ

j“1

F pz̄i ´ z̄jq, i “ 1, . . . , N,

1Only in this Chapter, not considering mechanical systems but ODEs generally de�ned by (4.1), the
dimension of the space will not be denoted by d as in the rest of the thesis but by n.
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4.1. Mean-field scaling and empirical measures

then ziptq “ z̄ip
t
N q solves the equation (4.1).

Otherwise one can consider phenomenological examples in which for �xed N " 1 the
term NF is approximately of order 1, justifying both the use of the model (4.1) and the
validity problem thanks to the size of the system considered.

For example, let n “ 6, z “ px, vq and z̄iptq “ px̄iptq, v̄iptqq P R3 ˆ R3. Considering
the Milky Way with all the stars with average mass m and F px, vq “ pv,´Gmx{|x|3q, we
have

9̄xi “ v̄i, 9̄vi “ ´
N
ÿ

j‰i

Gmpx̄i ´ x̄jq
|x̄i ´ x̄j |3

, 1 ď i ď N

where G “ 6.67ˆ 10´11 N ¨m2 ¨ kg´2 is the gravitational constant.
Writing the equation in adimensional coordinates:

pxiptq, viptqq “
´ x̄ipτtq

L
,
τ

L
x̄ipτtq

¯

,

where τ « 2.4 ¨ 108 years is the typical temporal dimension related to the rotational period
of the sun and L is the typical spatial dimension related to the volume of the galaxy, we get

9xi “ vi, 9vi “ ´
1

N

N
ÿ

j‰i

N
Gmτ2

L3

pxi ´ xjq

|xi ´ xj |3
, 1 ď i ď N.

Using thatN « 2¨1011, the solar massesm « 1031 kg and that the Milky Way is 1.7´2¨105

ly in diameter and approximately 103 ly thick, we have

N
Gmτ2

L3
“ Op1q.

4.1.1 Empirical measures

The N -particle dynamics in (4.1) lives in the con�guration space RnN which depends on
N . It is useful to introduce the notion of empirical measure related to (4.1):

µNt “
1

N

N
ÿ

i“1

δziptq, (4.2)

which is an element of PpRnq, the space of Borel probability measures on the single-particle
con�guration space. Notice that µNt is invariant under permutations of tz1ptq, . . . , zN ptqu.

It is easy to see that, if F p0q “ 0, then µNt solves in the weak sense the following
Vlasov equation

Btft `∇z ¨

´

Frftsft
¯

“ 0, (4.3)

where ft “ fpt, zq and
Frftspzq “

ż

F pz ´ wqftpdwq

is the mean-�eld force. Since F is bounded and globally Lipschitz we have that

}Frf s}8 ď }F }8, |Frftspxq ´ Frftspyq| ď LippF q|x´ y|. (4.4)
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4.2. The Dobrushin approach

The mean-�eld limit thus consists in proving that, for large N , the empirical measure
µNt , already solution of the kinetic limit equation, closely approximates a given solution f
of (4.3), possibly providing an estimate with a convergence rate in N .

In the case of regular potentials, this result is classical and has been given in various
independent works in [47], [10] and [23].

In the next sections we will explain the point of view of Dobrushin in [23] and Neunzert-
Wick in [47]. Dobrushin’s approach relies more on the fact that µNt and f are both solutions
of the kinetic equation in the same functional space, on which it is possible to introduce
a structure of metric space. Neunzert and Wick were inspired more by the results on the
uniform distribution of sequences and the discrepancy theory (see [41, 40, 36]) and their
approach is more involved but interesting for the following chapters of the thesis.

4.2 The Dobrushin approach

In 1979 the Russian mathematician Roland L. Dobrushin strengthened the connection
between statistical mechanics and optimal transport problems - already noted in works of
the ‘70s about the theory of stochastic �elds [24, 15] - using for the �rst time the Wasserstein
(or Kantorovich-Rubinshtein2) distance in kinetic theory problems, to prove uniqueness3

of solutions of the Vlasov equation.
The approach in [23] is to construct a contractive map in the metric space of probability

measures equipped with the Wasserstein distance. Thus existence and uniqueness of the
solution follow from the usual Banach �xed point theorem. The same approach also allows
proving continuity with respect to the initial data, providing the necessary stability estimate
from which the mean-�eld limit follows.

As mentioned before, the tool used to prove stability estimates is the Wasserstein
distance on PpRnq. Given two measures µ, ν P PpRnq, in this Chapter we de�ne it in the
following way:

W1pµ, νq– inf
πPCpµ,νq

ż

RnˆRn
mint|x´ y|, 1u dπpx, yq,

where Cpµ, νq is the set of all possible couplings between µ and ν, i.e. the set of Borel
probability measures π P PpRn ˆ Rnq such that

πpAˆ Rnq “ µpAq and πpRn ˆBq “ νpBq,

for all A,B P B, the σ-algebra of the Borel sets.
Note that, with this de�nition, the Wasserstein distance between two measures is

necessarily �nite, having replaced the usual euclidean distance |x´ y| between two points
x, y P Rn with the bounded distance mint|x ´ y|, 1u (otherwise we would have had to
give the de�nition only for measures with �nite �rst moment).

2The attribution of the distance to the name of Wasserstein was given by Dobrushin in [24] after having
come into contact with the work of Leonid N. Vaserstein [57]. This distance had already been used in the ‘40s
in the theory of transportation of mass (see [38] and [39]). Only later in [23] this incorrect attribution was
recognized.

3In [23] the focus is on the proof of uniqueness since existence was already obtained in [10].
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4.2. The Dobrushin approach

We refer to [60] and [61] for the proof that W1 is indeed a distance and for a discussion
of its properties, including the fact that

µj á µ ðñ W1pµj , µq Ñ 0, (4.5)

where µj á µ denotes the weak convergence of the sequence of measures tµju to µ.

Theorem 4.1 ([23]). It holds that:

i) Given an initial datum f0 P PpRnq and a bounded interactionF that is globally Lipschitz,
there exists a unique global weak solution f P C

´

r0,`8q;PpRnq
¯

of the Vlasov mean-
�eld equation (4.3).

ii) Solutions of (4.3) are weakly-continuous with respect to the initial datum. It follows that,
�xed T ą 0 and being ft solution of the Vlasov equation (4.3) with initial datum f0 and
µNt the empirical measure in (4.2) related to the particle system (4.1) with initial datum
µN0 , for 0 ď t ď T , it holds

W1pft, µ
N
t q ď e2 maxt}F }8,LippF quTW1pf0, µ

N
0 q.

Proof of i) of Theorem 6.1. We divide the proof into several steps.

Step 1 Given f P C
´

r0, T s;PpRnq
¯

and z P Rn, we de�ne the �ow

zf ptq ” zf pt, zq

that solves
#

9zf ptq “ Frftspzf ptqq
zf p0q “ z.

(4.6)

Note that Frftspxq is also continuous in t since in general, given two probability
measures µ, ν P PpRnq,

|Frµspxq ´ Frνspxq| ď maxtLippF q, 2}F }8uW1pµ, νq. (4.7)

Indeed, let π P Cpµ, νq, from the hypothesis on F we have

|Frµspxq ´ Frνspxq| “
ˇ

ˇ

ˇ

ż

R2n

F px´ x1qdπpx1, x2q ´

ż

R2n

F px´ x2qdπpx1, x2q

ˇ

ˇ

ˇ

ď

ż

R2n

|F px´ x1q ´ F px´ x2q|dπpx1, x2q

ď maxtLippF q, 2}F }8u
ż

R2n

mint|x1 ´ x2|, 1u dπpx1, x2q.

Taking the in�mum between the couplings we get (4.7).
By this and thanks to (4.4), we know that the solution (4.6) is uniquely de�ned, globally

in r0, T s.
Step 2 Given a �xed T ą 0 and f0 P PpRnq, we de�ne the map

Φ: C
´

r0, T s;PpRnq
¯

Ñ C
´

r0, T s;PpRnq
¯

,
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4.2. The Dobrushin approach

where pΦfqt is the push-forward of f0 along the �ow zf pt, xq de�ned in (4.6), i.e. pΦfqt is
de�ned by the relation

ż

Rn
αpzqdpΦfqtpzq “

ż

Rn
αpzf pt, zqqdf0pzq (4.8)

for any function α P CbpRnq.
Thanks to (4.8), pΦfqt is a probability measure for each t P r0, T s. The weak continuity

of pΦfqt with respect to time t follows from the continuity of zf ptq. Hence the map Φ is
well-de�ned.

Notice that if f P C pr0, T s;PpRnqq is a �xed point of the map Φ, then it is a weak
solution of the Vlasov equation. Hence, introducing the following distance

ĎW1pf, gq “

ż T

0
W1pft, gtq dt, (4.9)

for f, g P C
´

r0, T s;PpRnq
¯

, the aim is to prove that Φ is a contractive map with respect
to ĎW1.

Step 3 Given z P Rn, let

δpzq– max
tPr0,T s

ˇ

ˇ

ˇ
zf pt, zq ´ zgpt, zq

ˇ

ˇ

ˇ
.

By the triangular inequality, we have

δpzq ď

ż T

0

ˇ

ˇ

ˇ
Frftspzf pt, zqq ´ Frgtspzgpt, zqq

ˇ

ˇ

ˇ
dt

ď

ż T

0

ˇ

ˇ

ˇ
Frftspzf pt, zqq ´ Frftspzgpt, zqq

ˇ

ˇ

ˇ
dt`

ż T

0
|Frftspzgpt, zqq ´ Frgtspzgpt, zqq| dt.

Using (4.4) and (4.7), we obtain

δpzq ď LippF qTδpzq `maxt}F }8, LippF qu
ż T

0
W1pft, gtq dt.

Hence, if LippF qT ă 1 we have that

δpzq ď
maxt}F }8, LippF qu

1´ TLippF q
ĎW1pf, gq. (4.10)

Step 4 We now pass to the proof of the contractivity of Φ. Let πt P CppΦfqt, pΦgqtq de�ned
in this way:

ż

RnˆRn
αpz1, z2q dπtpz1, z2q “

ż

Rn
αpzf pt, zq, zgpt, zqqdf0pzq,

for any function α P CbpRn ˆRnq, i.e. πt is the push-forward of f0 along the product �ow
de�ned by zf pt, zq and zgpt, zq.
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4.2. The Dobrushin approach

Using (4.10), we have
ż

R2n

mint|z1 ´ z2|, 1udπtpz1, z2q “

ż

Rn
mint|zf pt, zq ´ zgpt, zq|, 1u df0pzq

ď

ż

Rn
δpzq df0pzq ď

maxt}F }8, LippF qu
1´ TLippF q

ĎW1pf, gq

and since the Wasserstein is an in�mum over the couplings,

W1ppΦfqt, pΦgqtq ď
maxt}F }8, LippF qu

1´ TLippF q
ĎW1pf, gq.

Hence, from (4.9),
ĎW1pΦf,Φgq ď λpT qĎW1pf, gq,

where
λpT q “

T maxt}F }8, LippF qu
1´ TLippF q ă 1

for T small.

To prove the second part of Theorem (4.1), we introduce a duality formulation of the
Wasserstein distance. This point of view is much used in the theory of optimal transport
and it will also be useful in the next Chapter.

Theorem 4.2 (Kantorovich duality). Given two probability measures µ, ν P PpRnq, we have

W1pµ, νq “ sup
!

ż

Rn
ψ dpµ´ νq; ψ s. t. sup

x,yPRn

|ψpxq ´ ψpyq|

mint1, |x´ y|u
ď 1

)

. (4.11)

We refer to [60] and [61] for the proof of this result, we note only that from (4.11) it is
clear that (4.5) holds.

Moreover, we introduce the “intermediate” dynamics that, for i “ 1, . . . , N and f P
Cpr0, T s;PpRnqq, is given by

9zfi ptq “ Frftspzfi q,

and the empirical measure

νNt –
1

N

N
ÿ

i“1

δ
zfi ptq

.

The initial datum is νN0 “ µN0 , i.e.

tzfi p0qu
N
i“1 “ tziu

N
i“1.

Proof of ii) of Theorem (4.1). We estimate W1pft, µ
N
t q using the triangular inequality

W1pft, µ
N
t q ďW1pft, ν

N
t q `W1pν

N
t , µ

N
t q.

Given a function ψ : Rn Ñ R which is Lipschitz with respect to the bounded distance in
(4.11) and such that

sup
x,yPRn

|ψpxq ´ ψpyq|

mint1, |x´ y|u
ď 1,
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4.2. The Dobrushin approach

we have
ż

ψ dpft ´ ν
N
t q “

ż

ψpzf pt, zqqdpf0 ´ µ0qpzq,

this because both ft and νN t are the push-forward of (respectively) f0 and µ0 along the
�ow zf ptq.

Since

|zf pt, zq ´ zf pt, z1q| ď |z ´ z1| `maxt2}F }8, LF u

ż t

0
|zf ps, zq ´ zf ps, z1q|ds,

we have that

|zf pt, zq ´ zf pt, z1q| ď emaxt2}F }8,LF ut mint1, |z ´ z1|u.

Hence zf pt, zq is Lipschitz with respect to the bounded distance and so the function
ψpzf pt, zqq is Lipschitz too with constant emaxt}F }8,LF ut, hence

ż

ψ dpft ´ ν
N
t q ď emaxt2}F }8,LF utW1pf0, µ0q,

by the Kantorovich duality in (4.11).
From this and from the de�nition of Wasserstein distance we get

W1pft, µ
N
t q ď

ż

mint1, |zf pt, zq ´ zipt, zq|u dµN0 pzq ` e
maxt2}F }8,LF utW1pf0, µ

N
0 q.

We now estimate:
d

dt
|zfi ptq ´ ziptq| ď |Frftspz

f
i ptqq ´ FrµNt spziptqq|

ď |Frftspzfi ptqq ´ FrµNt spz
f
i ptqq| ` |Frµ

N
t spz

f
i ptqq ´ FrµNt spziptqq|

ď maxt2}F }8, LippF qu
´

W1pft, µ
N
t q `mint1, |zfi ptq ´ ziptq|u

¯

,

where we have used again the Kantorovich duality in the �rst term.
By Gronwall’s lemma, we get

mint1, |zfi ptq ´ ziptq|u ď β

ż t

0
eβpt´sqW1pfs, µ

N
s q ds,

where β – maxt2}F }8, LippF qu. We arrive at

W1pft, µ
N
t q ď β

ż t

0
eβpt´sqW1pfs, µ

N
s q ds` eβtW1pf0, µ

N
0 q.

Multiplying on both sides by e´βt and using again Gronwall’s lemma, we obtain the
thesis

W1pft, µ
N
t q ď e2βtW1pf0, µ

N
0 q.

We cite that this approach by duality is also used in the proof of the mean-�eld limit
given by W. Braun and W. K. Hepp in [10], where they work with the so-called bounded
Lipschitz norm de�ned by

}µ}BL – sup
}ψ}8`}∇ψ}8ď1

ż

ψ dµ.
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4.3. The Neunzert and Wick approach

4.3 The Neunzert and Wick approach

In 1974, Helmut Neunzert and Joachim Wick in [47] gave the �rst proof of the mean-�eld
limit, inspired by the work [63] of Hermann Weyl on equidistributed sequences modulo 1
of real numbers and using the discrepancy theory.

We are particularly interested in this result for two reasons: it is historically the �rst
rigorous proof of the mean-�eld limit; moreover, its strategy is generalizable to cases with
nonsmooth interaction, as in the proof of the mean-�eld limit for topological interactions
given in the next Chapter.

The authors work in R2 and use the following notion of discrepancy distance

D˚pρ1, ρ2q “ sup
zPR2

ˇ

ˇ

ˇ

ż

Rpzq
dρ1 ´

ż

Rpzq
dρ2

ˇ

ˇ

ˇ

where Rpzq “ tw P R2 s.t.w ď zu and w ď z is the product order (or component-wise
order) on R2.

In this work F is assumed to be of bounded variation in the sense of Hardy-Krause:
this means that F has one-dimensional bounded variation in each variable F pz1, ¨q and
F p¨, z2q, z “ pz1, z2q and moreover that

V2rF s “ sup
R

ÿ

i,k

|∆Ri,kpF q| ă `8,

where R “
Ť

i,k Ri,k is the �nite union of ordered intervals Ri,k “ pz1
i , z

2
kq with z1

1 ă

¨ ¨ ¨ ă z1
i , z2

1 ă ¨ ¨ ¨ ă z2
k and

∆Ri,kpF q “ F pz1
i`1, z

2
k`1q ` F pz

1
i , z

2
kq ´ F pz

1
i`1, z

2
kq ´ F pz

1
i , z

2
k`1q.

Then VHpF q is de�ned as the sum of V2rF s and of the one-dimensional total variations.
We introduce again the intermediate dynamic that, given f P Cpr0, T s;L1pR2qq and

i “ 1, . . . , N , is given by
9zfi ptq “ Frftspzfi q,

and the empirical measure

νNt –
1

N

N
ÿ

k“1

δ
zfk ptq

.

The initial datum is νN0 “ µN0 , i.e.

tzfi p0qu
N
i“1 “ tziu

N
i“1.

For functions F of bounded variation in the above sense, the following inequalities hold.
They are widely used in the study of uniform distributions of sequences and discrepancy
theory (see [41, 40, 36, 48]) and can be generalized to any dimension.

Proposition 4.1 (Koksma-Hlawka inequality). Given an interaction F of bounded variation
in the Hardy-Krause sense and a probability measure f P Cpr0, T s;L1pR2qq, we have that

|Frftspzq ´ FrµNt spzq| ď VHpF qD˚pft, µNt q,

where µNt is the empirical measure in (4.2). Moreover

|FrµNt spzq ´ FrνNt spzq| ď VHpF qD˚pµNt , νNt q ` 2D˚pνNt , ftq.
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4.3. The Neunzert and Wick approach

Thanks to these properties, a version of the mean-�eld limit can be proved. Notice that
we don’t specify the convergence rate.

Theorem 4.3. Let F : R2 Ñ R2 be a function of bounded Hardy-Krause variation. Given
a probability measure f P Cpr0, T s;L1pR2qq solution of the Vlasov equation, assume that
Frfts is globally Lipschitz with Lipschitz constant LF . Given the empirical measure µNt
related to (4.2), we have that

lim
NÑ`8

D˚pft, µNt q “ 0

if
lim

NÑ`8
D˚pf0, µ

N
0 q “ 0.

Proof of Theorem (4.3). We avoid giving all the details since a similar proof will be given in
detail in the next Chapter. We have that

D˚pft, µNt q ď D˚pft, νNt q `D˚pνNt , µNt q.

It can be proved that the �rst term goes to zero, since
ˇ

ˇ

ˇ

ż

zf pt,Rpzqq
dpf0 ´ µ

N
0 q

ˇ

ˇ

ˇ
Ñ 0.

Concerning the second term, we use the following lemma which we don’t prove (see
[47] and Proposition (5.3) where an exact analog of this is proved).

Lemma 4.1. Let

µN “
1

N

N
ÿ

i“1

δzi and νN “
1

N

N
ÿ

i“1

δwi

be two empirical measures on R2 and take δ ą 0 such that |zi´wi| ď δ for all i “ 1, . . . , N .
It holds that, for any probability measure f P L1pR2q,

D˚pµN , νN q ď 2σf pδq `D˚pνN , fq,

where
σf pδq “ sup

z2PR2

´

sup
|z1´z2|ăδ

ˇ

ˇ

ˇ

ż

Rpz2q
fpz1qdz1 ´

ż

Rpz1q
fpz1q dz1

ˇ

ˇ

ˇ

¯

.

The proof follows by estimating the di�erence of the �ows |zfi pt, zq ´ zipt, zq| and
using the Koksma-Hlawka inequalities (4.1) and Gronwall’s lemma.

Besides what is brie�y introduced here, there would be many interesting topics on
mean-�eld validity problems such as the approach with BBGKY hierarchies, the quantum
mean-�eld limit and the validity for the Vlasov-Poisson equation which are not covered
here. We refer the reader to the many references on the subject ([17, 18, 29, 37, 53, 52, 54]).

We only mention that, although the theory for regular pairwise interactions is su�-
ciently well understood, going beyond it considering singular potentials, is a harder task.
This is the case of the three-dimensional Vlasov-Poisson equation. In this equation, the
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4.3. The Neunzert and Wick approach

potential 1{r is singular at the origin and does not belong to any Lp space. Although the
mean-�eld limit for the Vlasov-Poisson equation remains an open problem, there has been
important progress in recent years, see the works [34, 35] where the mean-�eld limit is
proven for potentials with singularities “weaker than 1{r” and also [42, 43].

However, in the case of the one-dimensional Vlasov-Poisson equation, the problem has
been solved in [55, 56] and with a simpler proof in [33], being the force discontinuous, but
not diverging. The analogy with the discontinuity of the Coulomb/Newton interaction in
the one-dimensional case suggested the strategy for the proof of the mean-�eld limit for
topological models which will be presented in the next Chapter.
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Chapter 5
Topological interaction: mean-�eld

limit for a Cucker-Smale type
model

joint work with D. Benedetto and E. Caglioti ([5])

In this Chapter we present a mean-�eld limit result for the Cucker-Smale model with
topological interaction. In topological models an agent reacts to the presence of another
not according to the distance, but according to the proximity rank (see eq.s (5.1), (5.2), (5.3)
below for a rigorous formulation). Due to this dependence on the rank, the interaction
comes out of the two-body case, and present various problems in the kinetic treatment.
In particular, in the case considered here, solutions of the kinetic equation are not weakly
continuous with respect to the initial datum and there are also some di�culties in de�ning
particle motion.

5.1 Topological Cucker-Smale model

In recent years, the conceptual and mathematical apparatus of kinetic equations has been
used in the study of self-propelled particle systems of biological nature undergoing local
interactions, as the motion of migrating cells [28], locust swarms [3] and �sh schools [44].
Starting with the pioneering paper in [58], several models have been proposed to explain
the evolution of these systems (see [59]). In the simplest [19, 20, 58], a bird is modeled
as a self-propelling particle that interacts with its neighbors. The interaction is such that
neighboring birds tend to align their velocities. For many of these models, the mean-�eld
limit has often been used to obtain a kinetic description of the dynamics (see, for instance,
[31, 14, 12, 13, 30, 4]).

A few years ago, supported by observational data ([2, 16, 1]), “topological” models for
interaction were introduced: in these models, the strength of the interaction of an agent
with another one is a function of the proximity rank of the latter with respect to the former.
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5.1. Topological Cucker-Smale model

The seminal paper [2] has been followed by several papers studying various aspects of this
phenomenon see e.g. [9, 11, 27, 49, 50].

Mathematically, �ocking of systems of topologically interacting particles has been
investigated in [45, 51, 62] and as regards stochastic models with topological interaction
also in [7, 8].

In [32], the author introduced the topological Cucker-Smale model which we are going
to consider here. In addition to studying �ocking, he proposes kinetic and �uid models
derived from this mean-�eld topological interaction and a �rst mean-�eld limit result is
proved for a smoothed version of the model in which the weak continuity in the initial
datum is recovered.

In this Chapter instead, besides studying the well-posedness of the microscopic dynam-
ics and the kinetic equation, we prove the mean-�eld limit for the e�ective dynamics with
topological interaction, without hypotheses of further regularizations.

A Cucker-Smale type model for the motion of N agents, in the mean-�eld scaling, is
the system

$

’

’

&

’

’

%

9xiptq “ viptq

9viptq “
1

N

N
ÿ

j“1

pijpvjptq ´ viptqq,
(5.1)

where the “communication weights” tpijuNi,j“1 are positive functions that take into account
the interactions between agents. In classical models, pij depends only on the distance
|xi ´ xj | between the agents. In topological models the weights depend on the positions of
the agents by their rank

pij – K
`

Mpxi, |xi ´ xj |q
˘

, (5.2)

where K : r0, 1s Ñ R` is a positive decreasing Lipschitz continuous function such that
ş1
0 Kpzq dz “ γ and, for r ą 0, the function

Mpxi, rq–
1

N

N
ÿ

k“1

X t|xi ´ xk| ď ru (5.3)

counts the number of agents at distance less than or equal to r from xi, normalized with N .
Here and after, X t|xi´xk| ď ru “ XBrpxiqpxkqwhere XA is the characteristic function

of the set A and Brpxq denotes the closed ball of center x and radius r in Rd. Note that in
this case pij is a stepwise function of the positions of all the agents.

In the mean-�eld limit N Ñ `8, the one-agent distribution function ft “ fpt, x, vq
is expected to verify the equation

Btft ` v ¨∇xft `∇v ¨ pW rSft, ftspx, vqftq “ 0, (5.4)

where, in this Chapter, instead of ρ we denote by Sftpxq –
ş

ftpx, vqdv the spatial
distribution and where, given a probability density f in Rd ˆ Rd and a probability density
ρ in Rd,

W rρ, f spx, vq–

ż

K pM rρspx, |x´ y|qq pw ´ vqfpy, wq dy dw, (5.5)
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with
M rρspx, rq–

ż

|x1´x|ďr
ρpx1q dx1. (5.6)

A weak formulation of this equation is given requiring that the solution ft ful�lls
ż

αpx, vqdftpx, vq “

ż

α
´

xf pt, x, vq, vf pt, x, vq
¯

df0px, vq

for any α P CbpRd ˆ Rdq, where f0 is the initial probability measure and pxf ptq, vtpfqq ”
pxf pt, x, vq, vf pt, x, vqq is the �ow de�ned by

$

’

&

’

%

9xf pt, x, vq “ vf pt, x, vq

9vf pt, x, vq “W rSft, ftspx
f pt, x, vq, vf pt, x, vqq

xp0, x, vq “ x, vp0, x, vq “ v.

(5.7)

In other words, ft is the push-forward of f0 along the �ow generated by the velocity �eld,
determined by ft itself.

It is easy to verify that the empirical measure

µNt –
1

N

N
ÿ

i“1

δxNi ptq
δvNi ptq

associated with the solution of (5.1), (5.2) and (5.3) is a weak solution of (5.4). Namely,
M rSµNt spx, rq is exactly Mpx, rq de�ned in (5.3) (from now on we use the more complete
notation M rSµNt spx, rq). Thus, we can rewrite the agent evolution in (5.1) as

#

9xNi ptq “ vNi ptq

9vNi ptq “W rSµNt , µ
N
t spx

N
i ptq, v

N
i ptqq.

(5.8)

As seen in the previous Chapter, in the Dobrushin approach to the mean-�eld limit, the
result is achieved from this fact and from the weak continuity, with respect to the initial
datum, of the weak solutions of (5.4).

We cannot use this approach in presence of topological interaction, since in general the
solutions of (5.7) are not weakly continuous with respect to the initial datum (see section
(5.3)).

We can overcome this di�culty if the solution of (5.4) has a bounded density. To obtain
our result, we were inspired by the work of Trocheris [55] in which the author uses the
previously mentioned discrepancy theory techniques of Neunzert and Wick [47, 48] to
prove the mean-�eld limit for the one-dimensional Vlasov-Poisson equation, where the
interaction has a jump-type discontinuity at the origin.

5.2 Distances and weak convergence

In this Chapter we use the following de�nition of the 1-Wasserstein distance W between
two probability measures ρ1 and ρ2 on Rd:

W pρ1, ρ2q “ sup
φPCbpRdq,Lippφqď1

ż

φpdρ1 ´ dρ2q

“ sup
φPC1

b pRdq,}∇φ}8ď1

ż

φpdρ1 ´ dρ2q,
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where Lippφq is the Lipschitz constant of φ.
The counter of the number of particles in (5.6) is not continuous with respect to W , so

we work with the weaker topology induced by another distance, the discrepancy, de�ned
as

Dpρ1, ρ2q– sup
x,rą0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Brpxq
dρ1 ´

ż

Brpxq
dρ2

ˇ

ˇ

ˇ

ˇ

ˇ

.

In the sequel, we also indicate by BR the closed ball BRp0q.
As discussed in the previous Chapter, the discrepancy distance is mostly used to quantify

the uniformity of sequences of points (see [41, 26]), but its multidimensional version is used
for the proof of the mean-�eld limit in [47] and is mentioned by Neunzert in his lecture
notes[46].

By de�nition, it holds the following proposition.

Proposition 5.1 (Lipschitzianity of M with respect to D ). Let ρ1 and ρ2 be two probability
measures on Rd. Then, for any x P Rd and r ą 0,

|M rρ1spx, rq ´M rρ2spx, rq| ď Dpρ1, ρ2q.

We can also de�ne D in terms of regular functions. LetX be the subset ofC1
b pr0,`8q;Rq,

and de�ne
}φ}X –

ż `8

0
|φ1prq|dr.

Then
Dpρ1, ρ2q “ sup

φPX: }φ}Xď1
sup
x

ż

φ
`

|x´ y|
˘`

dρ1pyq ´ dρ2pyq
˘

.

This assertion is an easy consequence of the following lemma.

Lemma 5.1. Let g1 and g2 be two probability measures on r0,`8q. Then

sup
rě0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r0,rs
dg1 ´

ż

r0,rs
dg2

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
φPX: }φ}Xď1

ż `8

0
φ pdg1 ´ dg2q . (5.9)

Proof. Fix r ą 0, there exists φr,ε P X with }φr,ε}X “ 1 and such that φr,εpsq “ 1 if
0 ď s ď r and φr,εpsq “ 0 if s ě r ` ε. For any measure g,

lim
εÑ0

ż `8

0

`

φr,εpsq ´ X ts P r0, rsu
˘

dgpsq “ 0,

then
ż

r0,rs
pdg1 ´ dg2q “ lim

εÑ0

ż `8

0
φr,εpdg1 ´ dg2q ď sup

φPX: }φ}Xď1

ż `8

0
φpdg1 ´ dg2q.

To prove the opposite inequality, we denote by G1 and G2 the distribution functions of g1

and g2:
Giprq–

ż

r0,rs
dgi.
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Then, integrating by parts,
ż `8

0
φpdg1 ´ dg2q “ ´

ż `8

0
φ1prq

`

G1prq ´G2prq
˘

dr ď }φ}X}G1 ´G2}8.

We conclude the proof by noticing that }G1´G2}8 is exactly the left-hand-side of (5.9).

For our purposes, we need the equivalence of D and W in the case in which one of the
two measures has bounded density. We note that in the general case the equivalence is
false, as can be easily checked by considering two Dirac measures δx1 and δx2 : W vanishes
when |x1 ´ x2| Ñ 0, while D is one whenever x1 ‰ x2. Nevertheless, using the covering
principles as in [6], for measures on a compact set, it can be proved the continuity of
the Wasserstein distance W with respect to the discrepancy distance D . We refer to the
appendix of [5] for a proof of this fact.

In the sequel, in the de�nition of D we choose functions in φ P Cpr0,`8q,Rq, with
�rst derivative continuous up to a �nite number of jumps. With abuse of notation, we keep
calling this set of functions X . Let us expose some technical properties.

Given φ P X , we de�ne some useful regularizations, φ˘, φε and ψε, with ε ą 0, as
follows. Denoting by φ̃ the function

φ̃prq–

ż r

0
|φ1psq|ds,

we de�ne

φ˘prq–

$

’

&

’

%

1

2
pφ̃prq ˘ φprqq, if r ě 0,

˘
1

2
φp0q, if r ă 0,

and
φεprq– φ`pr ` εq ´ φ´pr ´ εq. (5.10)

Finally, �xed a regular molli�er η supported in p0, 1q, we de�ne

ψεprq–

ż ε

0
ηεpsqφ

`pr ` sqds´

ż ε

0
ηεpsqφ

´pr ´ sqds. (5.11)

where ηεpsq– ε´1ηps{εq.
We summarize the properties of these regularizations in the following lemma, where

we indicate with c any constant which does not depends on φ and ε.

Lemma 5.2. i) φ˘ are not decreasing. Moreover
ż `8

0
pφ˘q1prq dr ď }φ}X (5.12)

and φprq “ φ`prq ´ φ´prq for r ě 0.

ii) φε P X , φprq ď φεprq and
ż `8

0

`

φεprq ´ φprq
˘

dr ď 2ε}φ}X . (5.13)
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iii) ψεprq ě φprq. Moreover ψε is a C1 function in X ,

}pψεq
1}8 ď

2

ε
}η}8}φ}X (5.14)

and
ż `8

0
|ψεprq ´ φprq|dr ď cε}φ}X . (5.15)

Proof. The proof is elementary, we only describe how to get the bounds in ii) and iii).
Since φ “ φ` ´ φ´, we rewrite the l.h.s. of (5.13) as

ż `8

0

`

φ`pr ` εq ´ φ`prq
˘

`
`

φ´prq ´ φ´pr ´ εq
˘

dr

“

ż `8

0

ˆ
ż ε

0

`

pφ`q1pr ` ξq ` pφ´q1pr ´ ξq
˘

dξ

˙

dr ď 2ε}φ}X .

The estimate in (5.14) is immediate while, regarding (5.15), we rewrite ψεprq ´ φprq as
ż 1

0
ηpsq

`

φ`pr ` εsq ´ φ`prq ` φ´prq ´ φ´pr ´ εsq
˘

ds

“ ε

ż 1

0
sηpsq

ˆ
ż 1

0
pφ`q1pr ` εsξq dξ `

ż 1

0
pφ´q1pr ´ εsξq dξ

˙

ds.

We conclude by integrating in r, switching the order of integration and using (5.12).

Now we can prove the following proposition.

Proposition 5.2. Let ρ and ν be two probability measures on Rd with support in a ball BR
and such that ρ P L8pRdq. Then

Dpν, ρq ď Cp}ρ}8, Rq
a

W pν, ρq,

where C is a constant that depends on the dimension d, as well as on }ρ}8 and on R.

Proof. Let φ be in X and consider ψε as in (5.11). Fixed x P Rd, let Φ and Ψε be the
functions

Φpyq– φp|x´ y|q and Ψεpyq– ψεp|x´ y|q.

Then, from iii) of Lemma (5.2),
ż

Φ dν ´

ż

Φ dρ ď

ż

Ψε dν ´

ż

Φ dρ “

ż

Ψε dpν ´ ρq `

ż

pΨε ´ Φq dρ.

From (5.14) of Lemma (5.2), the �rst term is bounded by c
ε}φ}XW pν, ρq. Regarding the

second term, denoting by σr the uniform measure on BBrpxq, we have
ż

pΨε ´ Φq dρ ď }ρ}8

ż `8

0
dr pψεprq ´ φprqq

ż

BBrpxq
X tz P BRuσpdzq

ď cεRd´1}φ}X}ρ}8,

(5.16)

where in the last inequality we have used (5.15). Optimizing on ε and passing to the
supremum in φ, we get the proof.
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Note that if µN is an empirical measure and ν a probability measure that does not give
mass to the atoms of µN , DpµN , ρq ě 1{N . With this constraint, the discrepancy between
two empirical measures is “small” if the measures are close in the sense speci�ed in the
following proposition.

Proposition 5.3. Let

µN “
1

N

N
ÿ

i“1

δxi and νN “
1

N

N
ÿ

i“1

δyi

be two empirical measures on Rd and take δ ą 0 such that |xi´ yi| ď δ for all i “ 1, . . . , N .
Then, for any probability measure ρ P L8pRdq supported on a ball BR,

DpµN , νN q ď cRd´1δ}ρ}8 ` cDpµ
N , ρq.

Proof. Given φ P X with }φ}X ď 1, we construct φδ as in (5.10) and, �xed x P Rd, we
consider Φpyq– φp|x´ y|q, Φδpyq– φδp|x´ y|q.

Since |x´ xi| ´ δ ď |x´ yi| ď |x´ xi| ` δ, we have that

Φpyiq “ φ`p|x´ yi|q ´ φ
´p|x´ yi|q ď Φδpxiq.

Then
ż

Φ dpνN ´ µN q ď

ż

pΦδ ´ Φq dµN “

ż

pΦδ ´ Φq dpµN ´ ρq `

ż

pΦδ ´ Φqdρ.

Since pφδ ´ φq P X , the �rst term is bounded by cDpµN , ρq. Using (5.13) and reasoning as
in (5.16) we estimate the second term with cδRd´1}ρ}8.

5.3 Agent dynamics

One of the di�culties in handling (5.8) is that the dynamic is not continuous with respect
to the initial datum. For instance, consider three agents tXiu

3
i“1 on a line, such that

x1p0q “ ´1, x2p0q “ ε, x3p0q “ 1,
v1p0q “ ´1, v2p0q “ 0, v3p0q “ 1,

(5.17)

with ε P p´1, 1qzt0u. Then pi,j “Mpxi, |xi ´ xj |q takes the values 1{3, 2{3, 1. Suppose
for simplicity that Kp2{3q “ 3 and Kp1q “ 0, then the equations for v1 and v3 read as

#

9v1ptq “ v2ptq ´ v1ptq

9v3ptq “ v2ptq ´ v3ptq,

while

9v2ptq “

#

v3ptq ´ v2ptq if ε P p0, 1q
v1ptq ´ v2ptq if ε P p´1, 0q.

It follows that
$

’

&

’

%

v1ptq “ ´p1` e
´2tq{2

v2ptq “ ´p1´ e
´2tq{2

v3ptq “ p´1` 4e´t ´ e´2tq{2
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5.3. Agent dynamics

if ε P p´1, 0q, while
$

’

&

’

%

v1ptq “ ´p´1` 4e´t ´ e´2tq{2

v2ptq “ p1´ e
´2tq{2

v3ptq “ p1` e
´2tq{2

if ε P p0, 1q, so that txiptq, viptqu3i“1 is discontinuous in ε “ 0. Note that the discontinuity
of the trajectories in the phase space is easily translated in the weak discontinuity of the
empirical measure at time t, with respect to the initial measure.

This discontinuity re�ects the fact that, for data as in (5.17) with ε “ 0, there is no a
unique way to de�ne the dynamics. Nevertheless, we can prove that the system (5.8) is
well-posed for almost all initial data. To do so, let us de�ne some subsets of the phase space

!

pXN , VN q– px1, . . . , xN , v1, . . . , vN q P RNd ˆ RNd
)

,

where d ě 1 is the dimension of the con�guration space of the agents.

De�nition 5.1. R is the set of “the regular points”, i.e. the set of points pXN , VN q
such that for each triad of di�erent indices it holds that |xi ´ xk| ‰ |xj ´ xk|.

S is the “iso-rank” manifold, i.e. the set of points pXN , VN q such that there exists a
triad of di�erent indices i, j, k for which |xi ´ xk| “ |xj ´ xk|, i.e. the agents i and
j have the same rank with respect to the agent k.

Sr is the set of the “regular points” of the iso-rank manifold, i.e. the subset of points
pXN , VN q P S such that if |xi ´ xk| “ |xj ´ xk| then xi, xj , xk are di�erent and
pvi ´ vkq ¨ n̂ik ‰ pvj ´ vkq ¨ n̂jk, where n̂ab – pxa ´ xbq{|xa ´ xb|.

We can de�ne the dynamics locally in time, not only for initial data in R, but also
in Sr. Namely, if initially the agents i and j have the same rank with respect to the
agent k, we can rede�ne the force exerted on the agent k accordingly to the velocities: if
pvi ´ vkq ¨ n̂ik ą pvj ´ vkq ¨ n̂jk we evaluate the rank as if |xi ´ xk| ą |xj ´ xk| for t ą 0
and as if |xi ´ xk| ă |xj ´ xk| for t ă 0. In other words, the di�erent speeds of change of
the distances among the agents allow the dynamics to leave S instantaneously.

We discuss the existence of the dynamics, so rede�ned.

Lemma 5.3. If pXN , VN q P R Y Sr , there exists τ ą 0 such that the system (5.8) has a
unique solution for t P p´τ, τq, with initial datum pXN , VN q. Moreover the solution is locally
Lipschitz in t and in pXN , VN q.

We omit the proof.

In R the solution is regular, so we can compute the determinant of the Jacobian of the
�ow Jptq ” JpXN , VN , tq. It veri�es the equation

d

dt
Jptq “ ´

˜

d

N

ÿ

i,j:i‰j

pij

¸

Jptq “ ´dNγNJptq, (5.18)
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where

γN –
1

N

N
ÿ

n“2

K pn{Nq .

Thus, volumes of the phase space are shrunk in time at a constant rate, therefore their
measure cannot vanish in �nite time. This implies the following fact, of which we omit the
proof.

Lemma 5.4. The subset of initial data pXN , VN q P R such that the trajectory, at a �rst time
in the future or in the past, intersects SzSr , has Lebesgue measure zero. Namely, SzSr has
dimension 2Nd´ 2.

This lemma guarantees that, except for a subset of Lebesgue measure zero, we can
prolong the dynamics with initial data in R also after a crossing in S . To de�ne the
dynamics for all times, we need to control the number of crossings.

Lemma 5.5. The subset of initial data pXN , VN q P R such that the trajectory intersects Sr
in�nitely many times in �nite time, has Lebesgue measure zero.

Proof. FixT ą 0 and suppose to take pXN , VN q P R such that the solution
`

XN ptq, V N ptq
˘

“

px1ptq, . . . , xN ptq, v1ptq, . . . , vN ptqq with initial data pXN , VN q intersects Sr a �nite num-
ber of times in r0, T ´ εq and in�nitely many times in r0, T q. The number of particles is
�nite, so we can assume that there exists a triad of indices such that |xi ´ xk| “ |xj ´ xk|
in�nitely many times. Since the velocities vi are bounded by a constant, as follows by
simple considerations (see also Theorem (5.1)), from the equation we have that |xi ´ xk|
and |xj ´ xk| are C1 functions, with time derivatives uniformly Lipschitz, if |xi ´ xk| and
|xj ´ xk| remain far from 0. Then, as tÑ T , either |xi ´ xk| Ñ 0 or pvi ´ vkq ¨ n̂ik and
pvj ´ vkq ¨ n̂jk converge to the same limit. In both cases, the trajectory reaches S at a
point that is not in Sr . We conclude the proof by observing that the initial point with these
properties lives in a subset of dimension 2Nd´ 1.

From these lemmas and other few considerations, we obtain the following theorem.

Theorem 5.1. Except for a set of measure zero, given pXN , VN q P RNd ˆ RNd, there exists
a unique global solution

`

XN pt,XN , VN q, V
N pt,XN , VN q

˘

P C1pR`,R2dN q ˆ CpR`,R2dN q

with initial datum pXN , VN q.

Moreover, given Rx ą 0 and Rv ą 0, we have that

|xNi ptq| ď Rx ` tRv, |v
N
i ptq| ď Rv

for any i, if |xi| ď Rx and |vi| ď Rv . Therefore vNi pt,XN , VN q has Lipschitz constant
bounded by 2RvKp0q.

Proof. The proof follows easily from Lemma (5.3), Lemma (5.4) and Lemma (5.5).
The a-priori bound on the support follows from (5.18) and by noticing that

d

dt
|vNi ptq|

2 “ ´2
ÿ

j‰i

pij
`

|vNi ptq|
2 ´ vNi ptq ¨ v

N
j ptq

˘

71



5.4. The mean-field eqation in L8

is null or negative if |vNi |2 is maximum in i.

5.4 The mean-�eld equation in L8

In this section we show how to get an existence and uniqueness result for bounded weak
solutions of equation (5.4). We start by stating some elementary facts.

Lemma 5.6. Let ρ P L8pRdq be a probability density.

i) Given r1, r2 ą 0,

|M rρspx, r1q ´M rρspx, r2q| ď c}ρ}8

ˇ

ˇ

ˇ
rd1 ´ r

d
2

ˇ

ˇ

ˇ
.

ii) Given x1, x2 P Rd and r ą 0,

|M rρspx1, rq ´M rρspx2, rq| ď c}ρ}8r
d´1|x1 ´ x2|.

Proof. The proof of the �rst assertion is immediate. For the second, we use the following
splitting

X t|x1 ´ y| ă ru ´ X t|x2 ´ y| ă ru “ X t|x1 ´ y| ă ruX t|x2 ´ y| ě ru

´ X t|x2 ´ y| ă ruX t|x1 ´ y| ě ru

and we note that, if |x1 ´ x2| ě r,
ż

|x1´y|ăr
X t|x2 ´ y| ě ru dy ď crd ď crd´1|x1 ´ x2|,

while, if |x1 ´ x2| ă r,
ż

|x1´y|ăr
X t|x2 ´ y| ě rudy ď

ż

X tr ´ |x1 ´ x2| ă |x1 ´ y| ă ru dy

“ crd
´

1´ p1´ |x1 ´ x2|{rq
d
¯

ď cdrd´1|x1 ´ x2|.

In the following, we denote byBr the closed ball of center 0 and radius r inL8pRdˆRdq
and by Cw

`

r0,`8q;L8pRd ˆ Rdq
˘

the set of families of bounded probability densities
tftutě0 which are weakly continuous in time in the sense of measures.

Lemma5.7. Let tftutě0 be a family of probability densities such that tftu P Cw
`

r0,`8q;Brptq
˘

,
with rptq a continuous nondecreasing function. Suppose that

supppftq Ă BRxptq ˆBRvptq, (5.19)

where Rvptq and Rxptq are two continuous non-decreasing functions. Then, for any initial
datum px, vq P Rd ˆ Rd, there exists a unique global solution of (5.7).
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Proof. From the classical Cauchy-Lipschitz theory, we only have to verify thatW rSft, ftspx, vq
is bounded on compact sets, locally Lipschitz and continuous in t.

Recalling (5.5), the boundedness on compact sets follows from

|W rSft, ftspx, vq| ď }K}8 pRvptq ` |v|q .

Since from i) and ii) of Lemma (5.6)

|M rSftspx1, |x1 ´ y|q ´M rSftspx2, |x2 ´ y|q|

ď c}Sft}8p|x1| ` |x2| ` |y|q
d´1|x1 ´ x2|

,

we have that, if px1, v1q and px2, v2q belong to a compact subset of Rd ˆ Rd,

|W rSft, ftspx1, v1q ´W rSft, ftspx2, v2q| ď Cp|x1 ´ x2| ` |v1 ´ v2|q,

where C depends on Rx, Rv and the diameter of the compact set.
In order to prove thatW rSft, ftspx, vq is continuous in t, we �rst observe that from the

Lipschitzianity of K and Propositions (5.1) and (5.2), since W pSft, Sfsq ď W pft, fsq, we
have K pM rSftspx, |x´ y|qq is continuous in t. Since KpM rSftspx, |x´ y|qq is Lipschitz
in y, also

ż

K pM rSftspx, |x´ y|qq pv ´ wq pftpy, wq ´ fspy, wqqdy dw

vanishes when W pft, fsq Ñ 0.

Now we can prove the main theorem of this section.

Theorem 5.2. Let f0px, vq P L
8pRd ˆ Rdq be a probability density such that supppf0q Ă

BRxˆBRv . Given T ą 0, there exists a unique weak solution f P Cw
`

r0, T s;L8pRd ˆ Rdq
˘

of the topological Cucker-Smale equation. Moreover

supppftq Ă BRx`tRv ˆBRv . (5.20)

Proof. We �rst note that, if the solution exists, (5.20) follows from an argument similar to
the one used in the discrete case (see Theorem (5.1)).

We now prove the existence. As in Lemma (5.7), consider a family of probability
densities tgtutě0 P Cw pr0, T s;BM q , with M – }f0}8e

dγT and such that (5.19) holds
withRxptq “ Rx` tRv andRvptq “ Rv . The push-forward of f0 along the �ow generated
by gt, denoted by g̃t, is weakly continuous in t, uniformly in gt, with t P r0, T s. Moreover,
the determinant of the Jacobian of the �ow Jptq “ Jpt, x, vq veri�es

d

dt
Jptq “ ´Jptqdγ.

So the push-forward g̃t is bounded by }f0}8e
dγt.

With a standard construction we can prove that, for T su�ciently small, the map
tgtu ÞÑ tg̃tu is a contraction inCw pr0, T s;BM q, with the distance de�ned by the supremum
on time of the Wasserstein distance; in this way we prove local existence and uniqueness.
Using the a-priori estimate on the supremum and the support, we get the global result.
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5.5 The mean-�eld limit

In this section we prove the main result regarding the mean-�eld limit for the topological
Cucker-Smale equation. In the sequel, ft is the �xed global solution of eq. (5.7) as in
Theorem (5.2), with initial datum f0, and µNt is the global solution of equation (5.8) in the
sense of Theorem (5.1), with initial datum

µN0 “
1

N

N
ÿ

i“0

δxiδvi .

We assume that f0 and µN0 are supported in BRx ˆ BRv . Fixed T , we indicate by CpT q
any constant that depends only on T , Rx, Rv and }f0}8.

To get the result, we compare the N -agent dynamics with the “intermediate” dynamics
given by

#

9xfi ptq “ vfi ptq

9vfi ptq “W rSft, ν
N
t spx

f
i , v

f
i q,

where

νNt –
1

N

N
ÿ

k“1

δ
xfkptq

δ
vfk ptq

is the empirical measure. The initial datum is νN0 “ µN0 , i.e.

tpxfi p0q, v
f
i p0qqu

N
i“1 “ tpxi, viqu

N
i“1.

Proposition 5.4. Given T ą 0, it holds that

i) For t P r0, T s,
W pft, ν

N
t q ď CpT qW pf0, µ

N
0 q. (5.21)

ii) For t P r0, T s, the distance

δptq– max
i“1,...,N

´

|xfi ptq ´ x
N
i ptq| ` |v

f
i ptq ´ v

N
i ptq|

¯

veri�es

δptq ď CpT q
b

W pf0, µN0 q. (5.22)

Proof. Since ft is bounded, K pM rSftspx, |x´ y|qq is locally Lipschitz in x and y (see i)
and ii) of Lemma (5.6)) and then W rSft, νspx, vq is weakly continuous in ν in the sense
that

sup
x,v
|W rSf , ν1spx, vq ´W rSf , ν2spx, vq| ď CpT qW pν1, ν2q.

It is straightforward to prove that the solution νt of the system
$

’

&

’

%

9xt “ vt

9vt “W rSft, νtspxt, vtq

νt “ push-forward of ν0 along the �ow pxt, vtq
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is continuous in W with respect to the initial datum ν0. Taking ν0 “ f0 and ν0 “ µN0 we
get the proof of i).

In order to estimate δptq, we need to evaluate, for 0 ď s ď t and for i “ 1, . . . , N , the
di�erence | 9vfi psq ´ 9vNi psq| given by

|W rSfs, ν
N
s spx

f
i , v

f
i q ´W rSµ

N
s , µ

N
s spx

N
i , v

N
i q|.

We estimate this quantity with the sum of three terms:

paq |W rSfs, ν
N
s spx

f
i , v

f
i q ´W rSfs, ν

N
s spx

N
i , v

N
i q|,

pbq |W rSfs, ν
N
s spx

N
i , v

N
i q ´W rSfs, µ

N
s spx

N
i , v

N
i q|,

pcq |W rSfs, µ
N
s spx

N
i , v

N
i q ´W rSµ

N
s , µ

N
s spx

N
i , v

N
i q|.

Since K pM rSfsspx, |x´ y|qq is Lipschitz in x, from the de�nition of W it is easy to prove
that (a) is bounded by

´

c LippKq}Sfs}8Rd´1
x psqRv ` c}K}8

¯

δpsq

and that (b) is estimated by

c LippKq}Sfs}8Rd´1
x psqRvδpsq.

Note that }Sfs}8 ď cRdv}fs}8. From Proposition (5.1) we have that (c) is bounded by

cLippKqRvDpSfs, SµNs q.

Since
DpSfs, Sµ

N
s q ď DpSfs, Sν

N
s q `DpSνNs , Sµ

N
s q,

by Proposition (5.3) with ρ “ Sfs, µN “ SνNs and νN “ SµNs , we get

DpSνNs , Sµ
N
s q ď cδpsq ` cDpSfs, Sν

N
s q.

Writing δptq in terms of the time integral of δpsq and the di�erence of the interaction terms
and using the Gronwall lemma, we readily get the estimate

δptq ď CpT q

ż t

0
DpSfs, Sν

N
s qds,

valid for 0 ď t ď T . We conclude the proof by using Proposition (5.2), equation (5.21) and
the fact that W pSfs, Sν

N
s q ď W pfs, ν

N
s q.

Theorem 5.3. Fixed T ą 0, let ft be a solution of eq. (5.7) as in Theorem (5.2) with initial
datum f0 and let µNt be a solution of equation (5.8) in the sense of Theorem (5.1) with initial
datum µN0 . Then, for 0 ď t ď T ,

W pft, µ
N
t q ď CpT qmax

"

W pf0, µ
N
0 q,

b

W pf0, µN0 q

*

.

Proof. By the triangular inequality,

W pft, µ
N
t q ď W pft, ν

N
t q `W pνNt , µ

N
t q.

From (5.21), using that W pνNt , µ
N
t q ď δptq and (5.22), we get the thesis.

75





Chapter 6
Propagation of chaos for a jump

process with topological
interactions

joint work with P. Degond and M. Pulvirenti ([22])

In this Chapter we consider a system of particles that interact through a jump process.
The jump intensities are of topological type, being functions of the proximity rank of
the particles. We show that, in the large number of particles limit and under minimal
smoothness assumptions on the data, the model converges to a kinetic equation which was
rigorously derived in the earlier work [21] under more stringent regularity assumptions.
We do this by showing that the total variation distance between the two processes tends to
zero as the number of particles tends to in�nity, with an error typical of the law of large
numbers.

6.1 Presentation of the model and main results

In [7] the authors introduced the following stochastic model. We consider a N -particle
system in Rd, d “ 1, 2, 3 . . . ( or in Td the d-dimensional torus). Each particle, say particle
i, has a position xi and velocity vi. The con�guration of the system is denoted by

ZN “ tziu
N
i“1 “ tpxi, viqu

N
i“1 “ pXN , VN q.

Given the particle i, we order the remaining particles j1, j2, ¨ ¨ ¨ jN´1 according to their
distance from i, namely by the following relation

|xi ´ xjh | ď |xi ´ xjh`1
|, h “ 1, 2 ¨ ¨ ¨N ´ 1.

The rank Rpi, kq of particle k “ jh (with respect to i) is h. Note that, if Brpxq denotes
the closed ball of center x P Rd and radius r ą 0, we have

Rpi, kq “
ÿ

1ďhďN
h‰i

XB|xi´xk|pxiqpxhq,
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6.1. Presentation of the model and main results

where XA is the characteristic function of the set A.
Considering a nonincreasing Lipschitz continuous function

K : r0, 1s Ñ R` s.t.
ż 1

0
Kprqdr “ 1,

we introduce the transition probabilities

πNi,j “
Kprpi, jqq

řN´1
s“1 Kp s

N´1q
, (6.1)

where rpi, jq is the normalized rank:

rpi, jq “
Rpi, jq

N ´ 1
P

! 1

N ´ 1
,

2

N ´ 1
, . . .

)

.

This is similar to the function Mpxi, |xi ´ xj |q introduced in (5.3) of the previous Chapter,
but with a di�erent normalization.

Thanks to the normalization in (6.1), we have that
ř

j π
N
i,j “ 1. We can also rewrite

πNi,j as
πNi,j “ αNK

´

rpi, jq
¯

, (6.2)

where
αN “

1

pN ´ 1qp1´ eKpNqq
(6.3)

and eKpNq is the error given by the Riemann sums

eKpNq “

ż 1

0
Kpxq dx´

1

N ´ 1

ÿ

s

K
´ s

N ´ 1

¯

. (6.4)

We are now in position to introduce a stochastic process describing alignment via a
topological interaction. The particles go freely: xi ` vit. At some random time dictated by
a Poisson process of intensity N , choose a particle (say i) with probability 1

N and a partner
particle, say j, with probability πi,j . Then perform the transition

pvi, vjq Ñ pvj , vjq.

After that the system goes freely with the new velocities and so on.
The process is described by the following Markov generator given, for any Φ P

C1
b pR2dN q, by

LNΦpXN , VN q “
N
ÿ

i“1

vi ¨∇xiΦpXN , VN q

`

N
ÿ

i“1

ÿ

1ďjďN
i‰j

πNi,j
“

ΦpXN , V
i
N pvjqq ´ ΦpXN , VN q

‰

, (6.5)

where V i
N pvjq “ pv1 . . . vi´1, vj , vi`1 . . . vN q if VN “ pv1 . . . vi´1, vi, vi`1 . . . vN q.

78



6.1. Presentation of the model and main results

Note that πNi,j depends not only on N but also on the whole spatial con�guration XN .
Therefore the law of the processWN ptq “WN pt, ZN q is driven by the following evolution
equation

Bt

ż

WN ptqΦ “

ż

WN ptq
N
ÿ

i“1

vi ¨∇xiΦ

`

ż

WN pt, ZN q
N
ÿ

i“1

ÿ

1ďjďN
i‰j

πNi,j
“

ΦpXN , V
i
N pvjqq ´ ΦpXN , VN q

‰

, (6.6)

for any test function Φ.
We assume that the initial measure WN p0q factorizes, namely WN p0q “ fbN0 where

f0 is the initial datum for the limit kinetic equation we are going to establish. Note also
that WN pt, ZN q, for t ě 0, is symmetric in the exchange of particles.

The strong form of equation (6.6) is
´

Bt `

N
ÿ

i“1

vi ¨∇xi

¯

WN ptq “ ´NWN ptq ` LNWN ptq

where

LNWN pt,XN , VN q “
N
ÿ

i“1

ÿ

1ďjďN
i‰j

ż

duπNi,jW
N pt,XN , V

piq
N puqqδpvi ´ vjq.

6.1.1 Heuristic derivation

We now want to derive the kinetic equation we expect to be valid in the limit N Ñ 8.
Setting ΦpZN q “ ϕpz1q in (6.6), we obtain

Bt

ż

fN1 ϕ “

ż

fN1 v ¨∇xϕ´

ż

fN1 ϕ`

ż

WN
ÿ

j‰1

πNi,jϕpx1, vjq. (6.7)

Here fN1 denotes the one-particle marginal of the measureWN . We recall that the s-particle
marginals are de�ned by

fNs pZsq “

ż

WN pZs, zs`1 ¨ ¨ ¨ zN qdzs`1 ¨ ¨ ¨ dzN , s “ 1, 2 ¨ ¨ ¨N (6.8)

and are the distribution of the �rst s particles (or of any group of s tagged particles).
In order to describe the system in terms of a single kinetic equation, we expect that

chaos propagates. Actually sinceWN is initially factorizing, although the dynamics creates
correlations, we hope that, due to the weakness of the interaction, factorization still holds
approximately also at any positive time t, namely

fNs « fbs1 .

In this case the law of large numbers does hold, that is
1

N

ÿ

j

δpz ´ zjq « fN1 pt, zq
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6.1. Presentation of the model and main results

for WN - almost all ZN “ tz1 ¨ ¨ ¨ zNu. Then

πNi,j «
1

N ´ 1
K
´ 1

N ´ 1

ÿ

k

XB|xi´xj |pxiqpxkq
¯

«
1

N ´ 1
K
´

M rρN1 spx1, |x1 ´ x2|q

¯

where, given a measure ρ P PpRdq,

M rρspx,Rq “

ż

BRpxq
ρpyqdy, (6.9)

and ρN1 pxq “
ş

dvfN1 px, vqdv is the spatial density. Motivated by this remark and similarly
to the previous Chapter, from now on we use the following notation

M rXN spxi, |xi ´ xj |q “ rpi, jq “
1

N ´ 1

ÿ

k

XB|xi´xj |pxiqpxkq.

Here M stands for ‘mass’ and the notation introduced is justi�ed by the law of large
numbers.

In conclusion we expect that, by (6.7), in the limit N Ñ 8, fN1 Ñ f and fN2 Ñ fb2,
where f solves

Bt

ż

fϕ “

ż

fv ¨∇xϕ´

ż

fϕ`

ż

fpz1qfpz2qϕpx1, v2qK
´

M rρspx1, |x1 ´ x2|q

¯

which is the weak form of the equation

´

Bt`v¨∇x

¯

fpt, x, vq “ ´fpt, x, vq`ρpt, xq

ż

K
´

M rρspx, |x´y|q
¯

fpt, y, vq dy. (6.10)

We remark that existence and uniqueness of global solutions in L1pR2dq for the kinetic
equation (6.10) can be proved by using a standard Banach �xed-point argument.

Once known f , we can construct the one-particle nonlinear process given by the
generator

L
p1q
1 φpx, vq “ pv ¨∇x ´ 1qφpx, vq `

ż

fpy, wqφpx,wqK
´

M rρspx, |x´ y|q
¯

dy dw.

We also introduce the N -particle process given by N independent copies of the above
process. Its generator is

L
p1q
N ΦpZN q “ VN ¨∇XNΦpZN q

`
ÿ

i

”

ż

ΦpXN , V
i
N pwiqqK

´

M rρspxi, |xi ´ yi|q
¯

fpyi, wiqdyi dwi ´ ΦpXN , VN q
ı

.

(6.11)
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6.1. Presentation of the model and main results

6.1.2 Motivations and main result

We want to prove propagation of chaos for the N -particle process described by (6.5).
Propagation of chaos consists in preparing a system ofN particles with initial con�gurations
i.i.d with a given law f0 and show that, considering any group of �xed s particles between
the N ones, this independence (chaos) is also recovered for future times for the �xed
s-group when N Ñ 8. This is expressed mathematically by saying that the s-particle
marginal fNs ptq introduced in (6.8) approximates fbsptq for positive times, where fptq is
the solution with initial datum f0 of the kinetic equation (6.10).

The work [22] presented here is strongly aligned with [7, 8, 21] where kinetic models
are derived for topological interaction models based on jump processes. More precisely,
[21] proves propagation of chaos and provides a rigorous proof of the model introduced
before and formally derived in [7]. On the other hand, [8] formally derives a kinetic model
for a more singular interaction. The mathematical validity of this formal result is still open.

The proof of [21] makes the limiting assumption that the interaction strength is an
analytic function of the normalized rank and is based on the BBGKY hierarchy. Indeed,
the BBGKY hierarchies are a powerful approach but in this case the nonbinary nature of
the topological interaction does not allow to derive this hierarchical structure, unless the
interaction function K is real analytic and so expandable in series.

Here we want to provide a di�erent derivation of the limit kinetic equation, using the
classic probabilistic coupling technique. In general, given two stochastic processes X and
Y , a coupling is a realization of a new process on a product probability space that has as
marginal distributions those of X and Y .

The advantage of the coupling method over the BBGKY hierarchy is that it only
requires the interaction strength to be Lipschitz continuous, a much more general and
natural assumption than that of [21].

Theorem 6.1. Let f P Cpr0, T s;L1pR2dqq solution of the kinetic equation (6.10) with initial
datum f0 P L

1pR2dq. Assume that the interaction function K is Lipschitz-continuous and
consider the N -particle dynamics such thatWN p0q “ fbN0 .

If fNs denotes the s-marginal as de�ned in (6.8), for t P r0, T s and s P t1, . . . , Nu, it
holds that

}fNs ptq ´ f
bsptq}L1pR2dsq ď s

eCKT
?
N ´ 1

, (6.12)

where CK is a constant depending on the Lipschitz constant ofK .

The topological character of the interaction bring us naturally to work with norms of
strong type and in particular with the L1/Total variation distance (coherently with [5] and
the previous Chapter where the similar Discrepancy distance has been used to prove the
validity of the mean-�eld limit for the deterministic Cucker-Smale model with topological
interactions introduced in [32]).

Indeed, given two measures ρ1 and ρ2, from (6.9) we have

|M rρ1spx, rq ´M rρ2spx, rq| ď }ρ1 ´ ρ2}TV
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6.2. Proof of the result

where, given pX,Aq a measurable space and two measures µ and ν over X , the total
variation distance is de�ned as

}µ´ ν}TV “ sup
APA

|µpAq ´ νpAq|.

In the sequel, we use the equivalence between the L1 distance and the Total variation for
regular measures and the characterization of the TV distance given by the Wasserstein
distance

}µ´ ν}TV “ inf
πPCpµ,νq

ż

XˆX
dpx, yq dπpx, yq,

where Cpµ, νq is the set of all couplings, i.e. measures on the product space with marginals
respectively µ and ν in the �rst and second variables, and dpa, bq “ 1´ δa,b is the discrete
distance (see [60]).

6.2 Proof of the result

6.2.1 Coupling and strategy of the proof

We introduce, as a coupling between (6.5) and (6.11), the process tÑ pZN ptq; ΣN ptqq on
the product space R2dN ˆ R2dN , where ΣN ptq “ pYN ptq,WN ptqq. The generator of the
new process is

QN “ Q0 ` rQN ,

where
Q0ΦpZN ; ΣN q “ pVN ¨∇XN `WN ¨∇YN qΦpZN ; ΣN q (6.13)

is the free-stream operator, while

rQNΦpZN ; ΣN q “

N
ÿ

i“1

ÿ

j‰i

λi,jrΦpXN , V
i
N pvjq;YN ,W

piq
N pwjqq ´ ΦpZN ; ΣN qs (6.14a)

`

N
ÿ

i“1

ÿ

j‰i

rπNi,jpXN q ´ λi,jsrΦpXN , V
i
N pvjq; ΣN q ´ ΦpZN ; ΣN qs (6.14b)

`

N
ÿ

i“1

ÿ

j‰i

rπf pyi, yjq ´ λi,jsrΦpZN ;YN ,W
piq
N pwjqq ´ ΦpZN ; ΣN qs (6.14c)

`

N
ÿ

i“1

ż

du ENi puqrΦpZN ;YN ,W
piq
N puqq ´ ΦpZN ; ΣN qs (6.14d)

tends to penalize the discrepancies that can occur over time between ZN and ΣN .
Indeed, in (6.14a) the process jumps jointly on both variables with a rate given by

λi,jpXN ; yi, yjq– mintπNi,jpXN q, π
f pyi, yjqu, (6.15)

where
πf pyi, yjq– αNK

´

M rρspyi, |yi ´ yj |q
¯

. (6.16)
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6.2. Proof of the result

In (6.14b) and (6.14c) the jumps occur only for one of the pair, with a transition proba-
bility given by the error between λi,j and πN or πf . Finally, in (6.14d),

ENi puq “
ż

K
´

M rρspyi, |yi ´ y|q
¯

fpy, uqdy ´
ÿ

j‰i

πf pyi, yjqδpu´ wjq

is the last error due to the approximation of the limit kinetic equation by the N -particle
dynamics with transition probabilities given by πf and will be treated using the law of
large numbers.

We remark that, since
ş

Kpxq dx “ 1, formally we have1,
ż

K
´

M rρspx, |x´ y|q
¯

ρpyq dy “

ż `8

0
drKpM rρspx, rqq

ż

|x´y|“r
ρpyqdHn´1pdyq

“

ż `8

0
drKpM rρspx, rq

d

dr
rM rρspx, rqs “

ż

Kpxq dx “ 1.

From this fact, it follows that QN is a coupling of the two previously described processes,
i.e. we recover, considering test functions depending only ZN and ΣN respectively, the
two processes as the two marginals.

We want to prove that f and fN1 (de�ned as in (6.8)) agree asymptotically in the limit
N Ñ `8. To do this we consider RN ptq “ RN pt, ZN ,ΣN q the law at time t for the
coupled process. As initial distribution at time 0 we assume

RN p0q “ fbN0 pZN qδpZN ´ ΣN q. (6.17)

Let DN ptq be the average fraction of particles having di�erent positions or velocities, i.e.
using the symmetry of the law,

DN ptq “

ż

dRN ptq
” 1

N

N
ÿ

i“1

dpzi, σiq
ı

“

ż

dRN ptqdpz1, σ1q, (6.18)

where zi “ pxi, viq, σi “ pyi, wiq and dpa, bq “ 1´ δa,b is the discrete distance.
The aim is to show that DN ptq Ñ 0. This means the following: initially the coupled

system has all the pairs of particles overlapping. The dynamics creates discrepancies and
the average number of separated pairs is exactly DN which is also the Total Variation
distance (L1px, vq in our case) between fN1 and f .

Notice that the convergence of the s-marginals fNs to fbs claimed in (6.12) is easily
recovered by the fact that

}fNs ptq ´ f
bsptq}TV ď

ż

δpZs,ΣsqdRN pt, ZN ,ΣN q

ď

s
ÿ

i“1

ż

dpzi, σiq dRN pt, ZN ,ΣN q “ sDN ptq

where δpa, bq denotes the discrete distance on the space R2ds ˆ R2ds.
1In general, the formula is true for ρ P L1

pRdq and it is a consequence of the coarea formula (see [25,
Thm 3.12, p. 140]).
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6.2.2 Convergence estimates

Let SNt be the semigroup de�ned by the free-stream generator Q0 in (6.13). To estimate
DN ptq we apply the Duhamel formula in (6.18) and we get

ż

dRN ptqdpz1, σ1q “

ż

dRN p0qd
´

SNt pz1, σ1q

¯

`

ż t

0
dτ

ż

dRN pτq rQNd
´

SNt´τ pz1, σ1q

¯

, (6.19)

where rQN is de�ned in (6.14).
The �rst term in (6.19) is negligible: indeed, from (6.17), we have

ż

dRN p0qd
´

SNt pz1, σ1q

¯

“

ż

dfbN0 pZN qd
´

SNt pz1, z1q

¯

” 0.

Concerning the second term in (6.19), we de�ne

sz1 “ px1 ` v1pt´ τq, v1q, sz
pjq
1 “ px1 ` v1pt´ τq, vjq

and sXN “ px1 ` v1pt´ τq, . . . , xN ` vN pt´ τqq; similarly for sσ, sσpjq and sYN .
By (6.14) we get

ż

dRN pτq rQNd
´

SNt´τ pz1, σ1q

¯

“ A1pτq `A2pτq `A3pτq,

where
A1pτq “

ÿ

j‰1

ż

dRN pτqλ1,jp sXN ; sy1, syjqrdpsz
pjq
1 ; sσ

pjq
1 q ´ dpsz1; sσ1qs

is due to the term of the generator rQN where the velocities of the particles jump simulta-
neously;

A2pτq “
ÿ

j‰1

ż

dRN pτqpπN1,jp
sXN q ´ λ1,jqrdpsz

pjq
1 ; sσ1q ´ dpsz1; sσ1qs

`
ÿ

j‰1

ż

dRN pτqpπf psy1, syjq ´ λ1,jqrdpsz1; sσ
pjq
1 q ´ dpsz1; sσ1qs

is due to the terms of the generator where only one of the two coupled processes jump and

A3pτq “

ż

dRN pτq

ż

du sEN1 puqrdpsz1; sσ
puq
1 q ´ dpsz1; sσ1qs

is due to the remainder term. Here sEN1 puq is EN1 puq evaluated along the moving frame of
the free transport.

Here, we have used that dpz1, σ1q depends only on the con�gurations of the �rst
particle; hence, the only nonzero contribution in the sum over i is given for i “ 1.

Concerning A1pτq, it follows from (6.3) and (6.4) that

|eKpNq| ď
LippKq
N ´ 1
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and that, for N ą 2Lip(K)` 1,

αN ď
4e

LippKq
N´1

N ´ 1
,

using the inequality 1{p1´ xq ď 4ex for x P p0, 1{2q. Therefore, from (6.15) we get

λ1,j ď αN}K}8 ď
4
?
e LippKq
N ´ 1

.

By the symmetry of RN and denoting CK – 8
?
e LippKq,

A1pτq ď
CK

2pN ´ 1q

ÿ

j‰1

ż

dRN pτqrdpzj , σjq ` dpz1, σ1qs ď CKDN pτq, (6.20)

since dpszpjq1 ; sσ
pjq
1 q ď dpzj , σjq ` dpz1;σ1q. Indeed the right-hand side is vanishing i�

z1 “ σ1 and zj “ σj and, in this case, also the left-hand side is clearly vanishing.

We now give a bound on A2pτq. Since λ1,j is the minimum between πN1,j and πfi,j , we
have

|A2pτq| ď
ÿ

j‰1

ż

dRN pτq|πN1,jp
sXN q ´ π

f
1,jpsy1, syjq|. (6.21)

From (6.2) and (6.16),

|πN1,jp
sXN q ´ π

f
1,jpsy1, syjq| ď αNLippKq|M r sXN spsx1, |sx1 ´ sxj |q ´M rρspsy1, |sy1 ´ syj |q|.

From now on we use the shorthand notation M r sXN sp sB
x
1,jq “M r sXN spsx1, |sx1 ´ sxj |q

and M rρsp sBy
1,jq “M rρspsy1, |sy1 ´ syj |q|, where we have introduced the balls

sBx
1,j “ B|sx1´sxj |psx1q and sBy

1,j “ B|sy1´syj |psy1q.

By the triangular inequality

|M r sXN sp sB
x
1,jq ´M rρsp

sBy
1,jq| ď |M r

sXN sp sB
x
1,jq ´M r

sXN sp sB
y
1,jq|

` |M r sXN sp sB
y
1,jq ´M r

sYN sp sB
y
1,jq| ` |M r

sYN sp sB
y
1,jq ´M rρsp

sBy
1,jq|.

Hence we divide the estimate (6.21) respectively in three terms:

|A2pτq| ď T1pτq ` T2pτq ` T3pτq.

In T1pτq we are considering particles with spatial con�guration given by XN and we
want to estimate the discrepancy of the con�guration over two di�erent balls sBx

1,j and
sBy

1,j . Since sBx
1,j “

sBy
1,j i� z1 “ σ1 and zj “ σj , using that M r sXN s P r0, 1s, we have

|M r sXN sp sB
x
1,jq ´M r

sXN sp sB
y
1,jq| ď dpz1, σ1q ` dpzj , σjq.

Therefore, by the symmetry of RN ,

T1pτq ď αNLippKq
ÿ

j‰1

ż

dRN pτqrdpz1, σ1q ` dpzj , σjqs

ď CKDN pτq.
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Regarding T2pτq, we are considering the discrepancy of two di�erent con�gurations
over the same ball sBy

1,j . Since

|M r sXN sp sB
y
1,jq ´M r

sYN sp sB
y
1,jq| ď

1

N

N
ÿ

i“1

dpzi, σiq,

using again the symmetry of the law, we get

T2pτq ď αNLippKq
ÿ

j‰1

ż

dRN pτqdpz1, σ1q ď CKDN pτq.

The last estimate on T3pτq is a consequence of the law of large numbers. After a change
of variable, using the symmetry of the law RN and the fact that this last term depends only
on the YN con�guration, we have that

T3pτq “ αNLippKq
ÿ

j‰1

ż

dρbN pτq|M rYN spB
y
1,jq ´M rρspB

y
1,jq|,

where By
1,j “ B|y1´yj |py1q. By Cauchy-Schwartz,

ˇ

ˇ

ˇ

ż

dρbN pτq|M rYN spB
y
1,jq ´M rρspB

y
1,jq|

ˇ

ˇ

ˇ

2

ď

ż

dρbN pτq
ˇ

ˇ

ˇ

1

N ´ 1

ÿ

h‰1

”

XBy1,j pyhq ´M rρspB
y
1,jq

ı
ˇ

ˇ

ˇ

2

ď
ÿ

h1,h2‰1

ż

dρbN pτq

pN ´ 1q2

”

XBy1,j pyh1q ´M rρspB
y
1,jq

ı”

XBy1,j pyh2q ´M rρspB
y
1,jq

ı

.

Thanks to the independence of the limit process, we get that the only nonzero contributions
are given when h1 “ h2 and this happens only for N ´ 1 terms. Hence

T3pτq ď
CK

?
N ´ 1

.

Collecting the estimates on T1, T2 and T3, we obtain that

A2pτq ď CK

´

DN pτq `
1

?
N ´ 1

¯

. (6.22)

We conclude the proof estimating A3pτq. Since this term depends only on the indepen-
dent YN con�guration

|A3pτq| ď

ż

dfbN pτq

N ´ 1

ÿ

j‰1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K
´

M rρspB|sy1´y|psy1qq

¯

ρpyq dy ´KpM rρsp sBy
1,jqq

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

N ´ 1

ż

dfbN pτq
eKpNq

1´ eKpNq

ÿ

j‰1

KpM rρsp sBy
1,jqq,

where we added and subtracted the term
ř

jKpM rρsp
sBy

1,jqq{pN ´ 1q.
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6.2. Proof of the result

Applying again the law of large numbers on the �rst term and estimating the second
term thanks to

eKpNq

1´ eKpNq
ď

CK
N ´ 1

,

we arrive at
|A3pτq| ď

CK
?
N ´ 1

. (6.23)

Collecting the estimates in (6.20), (6.22) and (6.23) and using Gronwall’s lemma, we conclude
the proof of the theorem.
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