
1

Online Decentralized Scheduling in Fog Computing
for Smart Cities based on Reinforcement Learning

Gabriele Proietti Mattia, Roberto Beraldi

Abstract—Fog Computing is a widely adopted paradigm that
allows distributing the computation in a geographic area. This
makes it possible to implement time-critical applications and
opens the study to a series of solutions that permit smartly
organizing the traffic among a set of fog nodes, which constitute
the core of the Fog Computing paradigm. As a typical smart city
setting is subject to a continuous change in traffic conditions, it is
necessary to design algorithms that can manage all the computing
resources by properly distributing the traffic among the nodes
in an adaptive way. In this paper, we propose a cooperative
and decentralized algorithm based on Reinforcement Learning
that is able to perform online scheduling decisions among fog
nodes. This can be seen as an improvement over the power-of-two
random choices paradigm used as a baseline. By showing results
from our delay-based simulator and then from our framework
“P2PFaaS” installed on 12 Raspberry Pis, we show how our
approach maximizes the rate of the tasks executed within the
deadline, outperforming the power-of-two random choices both
in a fixed load condition and with traffic extracted from a real
smart city scenario.

Index Terms—Fog computing, Scheduling, Real-time, Rein-
forcement Learning, Smart Cities

I. INTRODUCTION

FOG Computing [1] is a well-known computing paradigm
that is generally used for distributing the computation in

a geographic domain in order to deploy the applications as
near as possible to end users. Indeed, when the tasks that
the application should carry out are strict in their deadlines,
a cloud approach could not be feasible. For instance, when
we refer to shared Virtual or Augmented Reality (VR/AR) [2]
experiences or real-time monitoring [3], [4]. Distributing the
load involves the setup of different computing nodes, called
“fog nodes”, which, for example, can be spread across a smart
city. To make load distribution effective, it is conceptually
convenient to take the point of view where an abstract service
exists, and it is made available to the entire system of fog
nodes, although each node hosts a replica of the same service.
Data generated by fog nodes can exploit the actual service
of any other node. Aside from the delay, these nodes are
functionally equivalent, but they can be heterogeneous in their
computational power.

In our setting, the users request the service to the nearest
fog node in the form of a sequence of task execution requests,

G. Proietti Mattia and R. Beraldi are with the Department of Com-
puter, Control and Management Engineering “Antonio Ruberti”, Sapienza
University of Rome, Italy (e-mail: proiettimattia@diag.uniroma1.it, be-
raldi@diag.uniroma1.it).

This work was supported by project “FogAware” (CUP:
B89C20002240001) granted by Sapienza University of Rome.

Manuscript received August 29, 2023; revised March 18, 2024.

which may have a payload attached. This model particularly
fits the FaaS (Function-as-a-Service) paradigm of serverless
computing. As anticipated, since we target the aforementioned
applications, we remark that tasks must be completed within
a precise deadline, which can vary according to the specific
application. Since the traffic to the fog nodes, which are
generally heterogeneous [1], also varies over time, there may
be situations in which a node is no longer able to offer the
service in such a way the requests meet the given deadline.
With a network of fog nodes that can communicate with each
other, having a central entity that manages how the load must
be partitioned is not a scalable solution. Moreover, this entity
must be chosen among the nodes, and this introduces a series
of problems that are well-addressed in literature. For these
reasons, we envision the design of a cooperative, decentralized,
and distributed scheduling algorithm that decides for every
single task that arrives at a given node if the task must be
executed locally or forwarded to some neighbor, whose load
may be lower and increasing the probability for the task to
meet the deadline. As may be known to the reader, task
execution latency and the nodes’ load are bonded by a non-
decrescent function.

In the context of online, decentralized and distributed
scheduling, a well-known approach that is proven to perform
efficiently is the power-of-two random choices paradigm [5],
where every scheduling decision (that is always made on a
per-task basis) is preceded by a random probing to another
node, with the purpose to retrieve its current load. Once this
information is retrieved, the task is scheduled internally or
forwarded to a random-probed node. Since executing a probing
for each request is not always the best choice, adding a control
threshold to decide when to trigger a new probing request [6]
is shown to be an effective way to increase performance over
the standard approach. However, even this improved algorithm
has limitations. For example, the scheduling policy (i.e., when
to trigger the probing) is a fixed step function (i) of the current
load, namely, the probing is performed only if the current
workload exceeds the threshold. Moreover, it is also fixed over
time (ii), and it cannot react to load variation on the nodes.
Finally, it doesn’t take task heterogeneity into account (iii).
This work aims to overcome these limitations by designing
a dynamic scheduling policy based on the Reinforcement
Learning (RL) paradigm, where the probing decision is a
function defined over the whole set of load states and the
task performance requirements (expressed as a deadline). As a
further step from the power-of-two random choices paradigm,
we also study a scheduling policy that directly forwards

Postprint Version

2

the tasks to a specific node without probing. Beyond the
power-of-two random choices, other approaches, which, for
example, involve heuristics, may still not fit distributed online
scheduling based on deadlines since they may be able to adapt
the scheduling policy, but they are not good when the state
of the other nodes must be predicted. This is because the
best scheduling decision for meeting the deadline, which is
intuitively to assign the task to the faster and least loaded node,
requires knowing not only the exact state of all the neighbors
but also their performance factors due to the fact that nodes
are heterogeneous. Reinforcement Learning, unlike heuristics
and randomized approaches, allows inferring the state of the
other neighbors given the current state of the node and the
experience without explicitly asking for it and dynamically
changing the scheduling policy.

In our approach, we encode a learner agent as a fog
node. This agent chooses the correct action, that is a per-task
scheduling decision (e.g., forward the task to another node,
or execute the task locally), from a set of predefined actions
by looking at its current state. Then, after the task execution
is completed, we assign to the chosen action a reward signal
that will drive the learning process.

This reward will be positive only if the scheduling decision
that has been taken has satisfied a condition: the task has
been completed by the defined deadline. We are not interested
in creating more complex assignments of the reward since
once the task is executed within the deadline, nodes have
no advantages over tasks that are completed earlier than the
deadline. This is a typical case of video frames processing
tasks.

We can summarize the main contributions of this work as
follows.

• Design of a decentralized RL-based algorithm that selects
the best scheduling decision according to the current
load situation; this is a step ahead of the power-of-
two random choices approach since it allows for more
complex policies, it is dynamic over time, and it can
deal with different kinds of time-constrained (i.e. with
deadline requirements) tasks, moreover, our approach (i)
models the deadline as rewards, (ii) combines SARSA
average reward and Q-Table for reducing the inference
and training time of the model.

• Study of a geographic setting that involves six fog nodes
deployed in the city of New York and in which the
algorithm can be deployed.

• Simulation results on a delay-based simulator that shows
the efficiency of the algorithm in a previously defined
geographic environment compared to the classic power-
of-two random choices strategy.

• Results from a pseudo-real deployment with our proto-
type framework “P2PFaaS” in a rack of 12 Raspberry
Pis which shows that the algorithm achieves the same
performance indicators even outside the simulation.

The rest of this paper is organized as follows. In Sec-
tion II, we present some related works. In Section III, we
define the system model, while in Section IV, we describe
the Reinforcement Learning approach we propose. Then, in
Section V we show the results of the proposed algorithm in a

simulated environment, while in Section VI, we present a real
implementation infrastructure of the algorithm and the results
of the tests in that environment. Finally, we draw conclusions
in Section VII.

II. RELATED WORK

The main research area in which this work lies is the
approach to the problem of scheduling and load balancing
in the Fog or Edge computing environments by means of
Reinforcement Learning. This problem has its roots in the
classic ”job-shop” scheduling problem, which has countless
declinations and particularly fits the Fog computing paradigm
due to its distributed nature. However, one of the first attempts
to solve it with a machine learning approach was introduced in
1999 by [7]. From there, the scenario changed radically with
the development of new machine learning techniques and with
the spread of distributed systems, which concretized in the Fog
and in the Edge computing layers [1].

In this section, we first describe the works that target
our problem but are based on heuristics and mathematical
modeling. Then, we specifically focus on works that use
Reinforcement Learning.

A. Heuristics and model-based approaches

The scheduling task in Fog Computing is widely studied
in literature [8]. In particular, these studies focus on the
assignment of task execution to a particular node in the system
but follow specific constraints, which essentially regard delay
and energy. Azizi et al. in [9] propose a deadline-aware
scheduling solution based on semi-greedy approaches that aim
to minimize deadline violations. However, in our work, we
suppose that users are able to specify a tolerance limit on
the deadline that matches the minimum frame rate acceptable.
Hassan et al. [10] instead propose a heuristic called “MinRes”
that has the target of minimizing the response time. However,
the tests are conducted only in simulations. Focusing on
smart factories, Zhou et al.in [11] propose a solution for task
allocation based on a genetic scheduling algorithm. Here, the
target is to optimize task execution time and, at the same time,
balance the resources of the clusters. The solution is tested
only in simulations and the model does not follow an online
scheduling behavior, which is specifically our case. Finally,
Abdel-Basset et al. in [12] propose a task scheduling meta-
heuristic that instead targets energy but uses the Harris Hawks
optimization algorithm for improving the QoS. However, the
proposed solution does not address streaming processing but
supposes that tasks arrive in batches and then are scheduled.
In our work, instead, we specifically rely on online scheduling
for targeting users, which continuously generates tasks to be
executed, like in the case of video frames to be analyzed.
Finally, Li et al. in [13] proposes a smart resource partitioning
based on the popularity rank of a service deployed in the Fog
Computing layer. However, the approach follows a different
task model, and the scheduling is not done online.

3

B. Reinforcement Learning based studies

In Table I, we offer a summary of the related works
classified according to the following criteria: if they deal with
(a) online or offline scheduling according to the fact that the
scheduling decision is taken on a per-task basis (online) or
for a group of tasks (offline), if they consider a task deadline
(b), if they use a geographic set up (c), and finally, if they
provide (d) a real or pseudo-real implementation results and
they may propose a framework in which to run the algorithm.
Moreover, we specify which algorithm they use for finding
the policy (i.e., Q-Learning, Sarsa, A3C) and how they solve
the RL problem (for example, by using the Q-Table or Deep
Neural Networks).

(a) o. (b) d. (c) g. (d) i. RL Policy Alg. RL Solver

Ale et al. [14] ✓ ✓ - - Q-Learning Two DNNs
Pandit et al. [15] ✓ - - - Q-Learning Two-level DNNs
Nath et al. [16] - - - - DDPG Two DNNs
Mai et al. [17] ✓ ✓ - - Custom Single DNN
Bian et al. [18] ✓ - - - Custom RNN
Zhang et al. [19] ✓ - - - Q-Learning Two DNNs
Li et al. [20] - - ✓ - Q-Learning Single DNN
Yang et al. [21] - - - - Q-Learning Single DNN
Park et al. [22] ✓ ✓ - - Q-Learning Q-Table
Sen et al. [23] ✓ ✓ - - Q-Learning Q-Table
Tuli et al. [24] - ✓ - - A3C Residual RNN
Orhean et al. [25] - - - - Q-Learning, Sarsa Q-Table
Aydin et al. [7] - - - - Actor-Critic Residual RNN
Wang et al. [26] - - - - Q-Learning Two DNNs
Yu et al. [27] - - - - Custom Two DNNs
He et al. [28] - - - - Actor-Critic Custom
Safavifar et al. [29] - - - - Q-Learning Q-Table
Santos et al. [30] - - - - Q-Learning DNNs
Sami et al. [31] - - - - Q-Learning DNNs
Zhou et al. [32] - - - - Actor-Critic DNNs
Lan et al. [33] - - - - DDPG Two DNNs
Wang et al. [34] - - - - MRL Custom
Alorbani et al. [35] ✓ - - - Q-Learning Q-Table
Houidi et al. [36] - - ✓ - DDPG Custom
Talaat et al. [37] - - - - Q-Learning Q-Table
Wang et al. [38] ✓ - ✓ - Q-Learning Q-Table
our work ✓ ✓ ✓ ✓ Sarsa Lin. Approx. + Q-Table

TABLE I
SUMMARY OF RELATED WORKS TO SCHEDULING SOLUTION WITH
REINFORCEMENT LEARNING IN FOG OR EDGE COMPUTING. THE

CRITERIA LISTED IN COLUMNS ARE: (A) ONLINE SCHEDULING, (B) TASK
DEADLINES, (C) GEOGRAPHIC APPROACH, (D) REAL IMPLEMENTATION.

As in our work, [25] uses Sarsa and Q-Table for imple-
menting the scheduling in a generic heterogeneous distributed
system by using Reinforcement Learning, however, the authors
do not consider task deadlines and differently from this work,
they do not consider the average reward approach that best fits
a continuous learning task. A similar geographic approach, by
using a similar traffic dataset is followed by [38], instead [35]
focuses on smart cities but does not use a real traffic dataset,
and [36] which uses a real node topology.

In [14], the authors present a Deep Reinforcement Learn-
ing approach in a MEC environment that is based on Q-
Learning for selecting the best edge server for offloading
in order to minimize the energy consumption (also studied
in [21], [23], [30]) while at the same time maximizing the
number of tasks that meet the deadline. In this work, two
DNNs are used: one is kept fixed during an episode, while
the other is updated and at the end of the episode they are
swapped. Differently from our work, that approach is not
fully decentralized and requires a central entity that collects
information about the state of each node and takes the decision
(as also studied in [29]). However, the followed approach
is very common and also used in [16], [19], [26] and [33].

Other works instead rely, for example, on Meta Reinforcement
Learning (MRL) [34], blockchain [28], or even a genetic
algorithm [37].

Pandit et al., in [15], propose a scheduling scheme based
again on two DNNs, but they are used for two different
decisions. The first one is in charge of deciding if the task
should be offloaded to the cloud, but if not, the second decision
level chooses the most suitable fog node to which to schedule
the task. In our work, instead, we do not rely on a neural
network, since we keep the state as small as possible since
when dealing with deadlines, the inference time is critical.

The approach followed by [16], but in the context of
MEC cells (as in [27]), is the one of defining the reward
as the weighted sum of energy consumption, delay, and
cache fetching cost, then the Deep Reinforcement Learning
approach is followed by using a Deep Deterministic Policy
Gradient (DDPG) method which solves the problem of the
state discretization in the standard Q-Learning approach. In
our work, instead, the state is discrete, and we rely on a basic
RL approach for reducing the inference time.

In [18], an approach based on a recurrent neural network
(RNN) is proposed for online task scheduling. However, the
authors suppose the existence of a central orchestrator which is
able to maintain the state and take the decision. Although this
can work in simulations, in real scenarios, with task deadlines,
this could introduce a non-negligible scheduling latency, which
we avoid by making each node a learner agent.

Tuli et al. [24] uses the Asynchronous Advantage Actor
Critic (A3C) algorithm in an Edge-Cloud environment for
scheduling in a supposed high number of host nodes. However,
the task deadlines are not considered, and the authors did not
provide a real-world prototype implementation since they used
simulators. Instead, [32] uses the Actor-Critic paradigm for a
size adaptive caching scheme.

In a broader sense of schedule, other works are instead
focused on resource allocation [39], [40], [26], [30], [31], but
the task model does not fit the one that is studied in this paper.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In order to reach our goal of adaptability and optimality, we
follow the approach presented in [41], and we frame our prob-
lem as a Markov Decision Process (MDP), which is solved
using Reinforcement Learning (RL). We use a model-free
approach with the advantage that it doesn’t require knowledge
of the details of the underlying mathematical model, such
as the state transition probabilities. Rather, it is enough to
observe and interact with the environment. In addition, once
tested using simulations, the algorithm has been ported on a
real deployment. To proceed with our discussion, we need
preliminarily to identify the two main entities of RL: the
environment and the agent.

A. Environment

The environment is composed of a set of N communicating
and nearby fog nodes F = {F1, F2, . . . , FN} with the same
computing power. Every fog node serves an area from where
users can require the execution of a task, and we define the

4

Learning Environment

AG Learner agent
ENV Environment in which the agent acts
F Set of fog nodes
A Set of actions which comprehends execute-locally

and probe-and-forward actions
A′

i Set of actions of node i which comprehends A plus the direct
forwarding to a specific neighbor node

R Reward for task j
ϵ Parameter of the ϵ-greedy strategy for action selection
ι In-deadline rate
Z Window size of completed tasks that trigger the training process

Fog Nodes

K Maximum number of parallel executing tasks
Ke Maximum length of the execution queue Qe

λi Rate of arrival to node i (task/s)
µ Service rate of node i (task executed per second)
ρi Load to node i (λi/µ)
µ̂X Arrival rate for a node i starting from which request are dropped

for payload Image X (A or B)
γ Percentage over dt that is added to the deadline of a task

Queues

Qe Execution Queue
Qp Probing Queue
Qt Transmission Queue

Times and Delays

de Total time spent in Qe for a given task
dp Total time spent in Qp for a given task
dt Total time spent in Qt for a given task
W Total completion time of task (as seen by clients)
T Task deadline

Probabilities

PB Probability of a task to be rejected by the node
Pf Probability of a task to be forwarded to another node

TABLE II
LIST OF SYMBOLS USED

total rate of the arriving requests to a node i to be λi req/s. One
example of an application scenario for such tasks is Virtual
Reality (VR), where a user needs to execute compute-intensive
tasks like recognizing and tracking objects or activities. Tasks
have a deadline T associated with them, which represents the
absolute time before which they must be processed, e.g., 10ms
in a VR scenario [2]. They also have a physical size b, which
is represented by the number of bytes of the payload that it
is needed to transmit for executing the task (e.g., an image, a
set of video frames).

A fog node Fi has a performance profile defined by its
queue capacity Ki, representing the maximum number of
pending tasks waiting to be processed and the rate of execution
of the tasks that is µ task/s that is supposed to be equal for
each node. A fog node is capable of executing one task at
a time, but since it has a queue of Ki this is exactly equal
to saying that it is capable of executing Ki tasks at a time
in time-sharing with no queue, that is a mechanism closer to
reality.

The total load to a specific node i is:

ρi =
λi

µ
(1)

Nodes can communicate with each other, and each trans-

mission requires a time interval dt, determined by the data
rate, r of the link connecting the two communicating nodes:

dt =
b

r
(2)

Moreover, node A can probe another node B, meaning that
A can ask B its current queue length in order to make a
scheduling decision. The queue length of a node is usually
referring to its current “state”. We remark that there’s no
broadcast of states between the nodes, the only way for a
node to know the state of another node is to explicitly ask for
it with the probing.

B. Agent

Upon each task request’s arrival to a fog node from a
client, a scheduling decision has to be taken. This is an online
decision process that is carried out by an agent, running at each
fog node. Each agent has associated the same set of actions A
that can be performed. The action a ∈ A to take is determined
by a function π(s), called policy, of the current observed state
s ∈ S.

π : S → A (3)

1) Observed states: The agent running on node Fi is able
to observe its current state, which refers to the number of tasks
in its execution queue Qe at time t, i.e. kti ≤ Ki. Moreover,
we consider the case in which tasks of multiple types can
arrive in the node, for this reason, the final observed state by
the agent is the aggregation of the number of tasks in the
queue for each type and the type of the newly arrived task.
This means that the decision about the action to choose is only
made by observing the queue length of the current node. As
stated in the introduction (Section I), since the environment
is fully distributed we cannot have updated information about
the state of the other nodes, each node only knows who are
their neighbors, and in our specific case, the topology is a
fully connected graph. In any case, the agent should be able to
perform the correct decision, this is because the load condition
is inferred from the reward of a given action in a particular
state.

Finally, the state that is derived as described and used
for the learning process is not taken as is, indeed the tiling
technique [42] is used to represent it as a vector v ∈ N8.

2) Actions: We studied separately two sets of actions that
can be performed by the agent. In the first case (i), the agent
selects an action from the set A = {0, 1}, where 0 means
to execute the task locally, while 1 to probe another node at
random and offloading the execution of the task to that node
only if its queue length is lesser than the one of the current
node (we call this strategy “probe-and-forward”) otherwise the
task is executed locally. In the second case (ii) instead, the
agent of node i selects an action from A′

i = A∪Fi, where Fi

contains additional direct forwarding actions that depends on
the fog node i. The action fj ∈ Fi means directly forwarding
a task to the neighbor j without probing, obviously with j ̸= i.

It is worth reminding that, in any case, when the task is
scheduled to be executed locally, despite being forwarded from

5

another node, it can be rejected if there is no room for being
executed, i.e. the queue is full (at a certain time t, kti = Ki).
Moreover, when a task is forwarded, the remote node does
not apply the learning process, indeed the task is added the to
internal execution queue Qe if there is room otherwise it is
rejected.

C. Reward

The immediate reward given to a specific action is given by
the fact that the task has been executed within the deadline
or not. Therefore, the reward is a function of the state and
the action performed given the state. For a given task j, the
reward assigned to action a performed when the state was s
is, given the total completion time W :

Rj(s, a) =

{
1 if W ≤ T

0 otherwise
(4)

The agent cannot know the reward until a task has com-
pleted its execution path and in the meantime, other tasks may
arrive and need to be scheduled. Moreover, even if two tasks
are scheduled sequentially, the second can terminate before
the first, altering the causal order for the decision path. To
overcome this problem, the learning step is put on hold until
a number equal to Z (the window size) of tasks has been
completed. This is discussed in Section IV.

For measuring the performances of the algorithm, we use
the reward rate, also called the in-deadline rate ι, which is the
average reward per second.

D. Delay model

Dealing with deadlines requires a fine-grained model of the
delays. In our study, the environment is both simulated and
represented by a real-world deployment. While we leave the
discussion about how the algorithm has been implemented in
the real deployment in Section VI, we now deepen how the
simulator has been conceived to represent a great part of the
delays that can exist in the described environment.

In the simulator, the environment is seen as a network of
N nodes in which every node is composed of three different
internal queues:

• the execution queue (Qe) represents the queue of tasks
that have been scheduled to be run in the current node; a
node can execute one task at a time, and the total time that
a task spends on this queue is de, but the actual execution
time of a single task follows a Gaussian distribution;

• the transmission queue (Qt) represents the queue of tasks
that are in the transmission phase; the transmission can
occur: (i) from client to node, (ii) from node to node, (iii)
from node to client. The total time that a task spends on
this queue is dt, and it follows a Gaussian distribution
with µ equal to Equation 2;

• the probing queue (Qp) represents the queue of tasks for
which there is a probing request to run; the total time that
a task spends on this queue is dp;

The flow according to which a task transits among the
queues is represented in Figure 1. Suppose that a client sends

a task request to node i that can decide to forward the task to
node j. The task enters the transmission queue Qt:

1) when the client transmits it to a node i, in this case, after
the scheduling decision is taken, if it includes the probing,
then the task will be added to the probing queue Qp;

2) when it is transmitted from a node i to a node j;
3) when it returns from a node j to a node j;
4) when it returns to the client from node i.
When the task is scheduled to be run in the current node,

the task is added to the execution queue Qe.

A task is sent to
Node i from the

Client

Take scheduling
decision

ProbingExecute Locally
Task returns

to Client/Node

Check the load

Task scheduled
locally

Qe

Qp

Qt
Task forwarded
to other node

Qt

Has task executed in
another node

No

Yes, returns to Client

Has task returned
to client

Yes

No

A task is sent to
Node i from the

Node j

Is the task coming
from another node

No

Yes

Remote Node

Fig. 1. The logic of the delay model used in the simulator.

The total time of a task to be executed, from the client’s
perspective, is the summation of all the time spent in all the
queues during its entire execution path, it is referred to as W
and it is measured in seconds.

E. Geographic Traffic

A peculiar characteristic of Fog Computing is that nodes can
be positioned in a geographic scenario [1]. In order to evaluate
the adaptivity of our solution in real traffic conditions, we used
open data of New York city1 to estimate the average daily
traffic in specific points of the city. The data is referred to taxi
trips in the year 2013, and for every trip, we considered the
start coordinates, the end coordinates, and the total trip time.
Then we placed six fog nodes, considering 1 km of radius for
the service to be available, this is in line with the capability
of an RRU to which has been attached a computing node. We
estimated the taxi traffic by dividing the day into 15-minute
time slots (for a total of 96 time slots) and counting the number
of taxis within the area of the nearest fog nodes during their
trip. We used the first three months of data by averaging the
daily traffic within each time slot for every fog node.

By normalizing in the range between 0 and 0.9, the final
traffic distribution is represented in Figure 2. This range is
given for simplicity and derives from a reasonable assumption

1https://web.archive.org/web/20210424121526/https://chriswhong.com/
open-data/foil nyc taxi/

https://web.archive.org/web/20210424121526/https://chriswhong.com/open-data/foil_nyc_taxi/
https://web.archive.org/web/20210424121526/https://chriswhong.com/open-data/foil_nyc_taxi/

6

that fog nodes never saturate, leaving the opposite case as
future work. Moreover, the final curves have been smoothed
with the Savitzky-Golay filter, using an order 4 polynomial
and a window of size 17.

0 20 40 60 80
Time Slot

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ρ

Node#0
Node#1
Node#2
Node#3
Node#4
Node#5

Fig. 2. The average distribution of the traffic during the day for the picked
fog nodes.

The number of the nodes and their position has been chosen
arbitrarily without loss of generality. Indeed, the load traces
are fundamentally heterogeneous and variable in time, and
this allows us to test the adaptiveness of the algorithms in
dynamic traffic situations. Then, the number of nodes is kept
relatively low because we envision the algorithm to be applied
to a specific and limited district of the city. For addressing
scalability, multiple sets of nodes can be installed in multiple
districts and use the same proposed solution. This is because,
due to the deadline constraints, we do not expect user requests
to be migrated too far distant from the user position.

The final result of this study has been used both in the
simulation environment (Section V) and in the (pseudo) real
deployment (Section VI) by setting the load to a specific fog
node i (ρi) to be equal to the value of the respective curve in
that precise moment of the simulation.

IV. ONLINE SCHEDULING DECISIONS WITH RL

The final objective of the agent is learning a scheduling
policy π that maximizes the long-term reward. Since each
decision must be taken online, we cannot envision episodes,
but we treat the problem as a continuous learning task.

In a continuing learning task, it is not useful to discount
future rewards, but it is better to consider the current average
reward for taking the right direction. Given a state s ∈ S, we
perform the action a ∈ A, we obtain the immediate reward r
the next state is s′ ∈ S then the optimal policy (that is the
policy which maximizes the long-term reward) will result in
the optimal q∗ function defined as [42]:

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)
[
r −max

π
r(π) + max

a′
q∗(s

′, a′)
]

(5)

Where r(π) is a function that returns the average reward of
the policy π. Since we assume that the underlying model of
the system is not known, we recur to the temporal difference
approach for finding the policy. The classic strategy based on
the temporal difference approach is Q-Learning, however, Q-
Learning is an off-policy method. This means that the next
action is chosen by not following the current learned policy.
This, in our specific context, increases the convergence times
and makes the solution unstable. For all of these reasons, we
choose the Sarsa approach which is an on-policy method [42].
At a certain time t and given a weight’s vector w⃗ the
differential form of the error, following the Sarsa approach
for learning the policy, can be expressed as [42]:

δt = Rt+1 − R̄t+1 + q̂(St+1, At+1, w⃗t)− q̂(St, At, w⃗t) (6)

Therefore the δt describes that from the immediate reward
Rt+1 we subtract the current average reward R̄t+1 and we sum
the value of the next action, chosen by using the current policy,
in the next state. When used in practice, the q(s, a, w⃗) is ap-
proximated by using the linear combination of the coordinates
given by the tiling technique, as described in Section III-B.
The final strategy for learning the policy in the simulator is
called Differential Semi-Gradient Sarsa (Algorithm 2).

In the experimental setting (section VI), we used a variant
of this scheme since the state space is so small that a table
for storing the Q values can be used. Therefore we used the
Q-Table as the final function approximation mechanism, and
in practice, the cells of the table have been updated according
to the following Equation 7.

Q(St, At)← Q(St, At) + α∆t (7)

The ∆t can be written by following the Sarsa approach and
still considering the average reward R̄t+1, as in the following
Equation 7.

∆t = [Rt+1 − R̄t+1 +Q(St+1, At+1)−Q(St, At)] (8)

As in the linear approximation solution, we also apply a
discount factor to the average reward, which becomes as in
Equation 9.

R̄t+1 = R̄t + β∆t (9)

However, in our specific setting, we do not have a real
notion of immediate reward because it can be known only
after a task has been executed or rejected, for this reason, we
set a window size of Z tasks and right after the execution of
every task, we check if the window is reached and every task
in the window has been executed or rejected, the training is
then started by following a FIFO order. This is explained in
the following algorithm’s description.

The Algorithm 1 is run whenever a new task to be executed
arrives. First of all, we append the task to the array of pending
tasks (“TasksArray”) then we compute the state (as described
in Section III) and we retrieve the best action to perform given
the current q(s, a, w⃗). If the action is 0, the task is immediately

7

executed locally, if is 1 the node asks the state to a random
node and the task is forwarded only if the random node’s state
is better than the current one. These two actions are of A1,
in any other case, the task is directly forwarded to the chosen
node (A2), unless the picked node is the current one, in that
case, the function forwardTo() only executes the task locally.

Algorithm 1 Scheduling Decision
Require: Node, Task, TasksArray, w⃗, A

TasksArray.append(Task)
s ← aggregate(Node.getLoad(), Task.getType())
a ← maxa∈A q(s, a, w⃗) with prob. 1− ϵ otherwise random(A)
Task.saveStateAction(s, a)
if a == 0 (Execute Locally) then

Node.execute(Task)
else if a == 1 (Probe-and-Forward) then

RandomNode ← pickRandom(Node.getNeighbors())
if RandomNode.getLoad() < Node.getLoad() then

forwardTo(RandomNeighbor, Task)
else

Node.execute(Tasks)
end if

else
Node ← pickNode(a)
forwardTo(Node, Tasks)

end if

Every time that a task completes its execution (that means
that the result payload of the task is returned to the client),
whether it is local or remote, Algorithm 2 is executed. First
of all, we record the task reward, and then we start to iterate
over the array of pending tasks (“TasksArray”) to check if the
first Z tasks of the array are finished and if this is not the
case, the function returns, otherwise we go on by retrieving
the information about the first Z tasks by popping them from
the array. This information is used to train the weights vector
w⃗ using the semi-gradient differential Sarsa algorithm in the
case of simulation, while in the real deployment, we update
the Q-Table according to Equation 7.

Algorithm 2 Learning with Differential Semi-Gradient Sarsa
Require: Task, TasksArray, Z, w⃗, R̄, α, β

Task.setReward()
i ← 0
for all j in TasksArray do

if !j.isDone() then
return

end if
if i == Z then

break
end if
i ← i + 1

end for
i ← 0
j0 ← TasksArray.pop(0); s ← j0.getStateSnapshot()
a ← j0.getAction(); r ← j0.getReward()
for i = 0; i < Z; i++ do

j ← TasksArray.pop(0)
s′ ← j.getStateSnapshot()
a′ ← j.getAction()
δ ← r - R̄ + q(s′, a′, w⃗) - q(s, a, w⃗)
R̄ ← R̄ + βδ; w⃗ ← w⃗ + αδ∇q(s, a, w⃗)
s← s′; a← a′; r ← j.getReward()

end for

A. Complexity and Convergence Analysis

In this section, we give an analysis of the convergence and
complexity of the proposed solution. In our approach, as we
described in Section IV, we start training the model after we
have exactly Z tasks that have been completed, and therefore,
for each task j, we have a triple which contains the state, the
action and the reward, namely (sj , aj , rj).

First of all, regarding the complexity of the training algo-
rithm, we anticipate that we used the Tile Code technique in
simulations and the Q-Table approach in real experiments with
Raspberry Pi boards. The usage of different methods is due
to software libraries’ dependencies. In simulations, we used a
pre-written solution to the problem, while in the real environ-
ment, we rewrote the training code from scratch, and we chose
the Q-Table approach for function approximation. In both
cases, the weights update algorithm requires a constant number
of operations, independently from the input, and therefore its
cost is O(1). This is because, in the Tile Code technique
weights are arranged through a hash table, and also in the
Q-Table the access to the weights by index. Moreover, we
highlight that by not using a Deep Neural Network for training
the model we do not have the cost of the backpropagation for
updating the weights.

Inference and training time are critical in this particular
situation. Indeed, when a task arrives to a node, the time
needed for deciding the action will necessarily consume part
of the available time for executing the tasks, which always
have a deadline. This means that the inference must be as fast
as possible since tasks may have deadlines in the order of tens
of milliseconds. Moreover, the training time can also have an
impact on the convergence of the model, and this is explained
in Figure 3. Suppose that at a certain time tZ , all the tasks have
been completed (even in a different order with respect to the
one that they arrived). This means that at time tZ , the training
can start, and triple by triple, the weights are accordingly
updated. Unfortunately, during this period, other new tasks
arrive at the node. For these tasks, the node necessarily has
to decide by using an RL model that is not fully updated. We
call this period ∆tstale, and we remark that it is critical only
to the convergence time of the training algorithm and not to
the convergence itself. Indeed, the assumptions that guarantee
the convergence as in Chapter 10.3 of [42] are not violated.
Moreover, in order to avoid saturating the queue that keeps the
training triples, ∆tstale < tZ , in other words, the time needed
for training the model with the Z tasks triples must be lower
than the time for completing all the Z tasks. For this reason,
Z cannot be too small, for example, to be equal to one, as we
tested empirically, and we treat the Z parameter as a learning
hyperparameter of the system.

V. SIMULATION RESULTS

The results that we are going to present in this section
follow the assumption that there are 6 fog nodes (N = 6), and
for every fog node i the maximum queue length is Ki = 5.
Moreover, the arrival distribution of the tasks is a Poisson with
mean µi. We suppose that nodes are connected with a link of
1Gbps, the payload of each task is 100kb, and the probing

8

0 tZj1 j2 j3

j3 j1 j2

incoming task completed task

time
2tZtZ + Δtstale

training
start

training
end

Δtstale

Fig. 3. Time diagram, which involves the job arrival, execution, and training
of the RL model. The ∆tstale is the time between Z tasks completed their
execution and the time in which the training of the model ends. In the image,
Z is supposed to be equal to three.

delay is 5ms. Qt and Qp are unlimited in size for each node.
The rationale behind this number of nodes is that to avoid a
high offloading delay among nodes, the cooperating nodes are
physically close to each other, hence they amount to a few
units. In other words, cooperation occurs only among nearby
nodes. The simulator that we wrote for performing these tests
has been published as open source2, and it relies on discrete
event simulator library “Simpy”.

In the following subsections, we evaluate the proposed
algorithm in the scope of two settings.In the first setting
(Section V-A), we set different traffic loads λ to the nodes,
but we make them fixed over time. Here we show how
the RL approach can outperform the classic power-of-two
random choices strategy finding a solution that maximizes
ι in every node when using the set of actions A′. In the
second setting (Section V-B), we apply the traffic study results
(Section III-E), and we make nodes to follow the load traces
in Figure 2. In this setting, we again show how the RL
approach can outperform the standard one when the traffic
is variable over time.

In all of these experiments, the proposed RL algorithm is
labeled as “Sarsa” while the power-of-two random choices
one “Pwr2”, that specifically refers to the two random choices
since only one node is probed random and therefore, the
scheduling decision is between the current node and the probed
one, that are two choices.

A. Heterogeneous Loads

In this experiment, we used two kinds of tasks, one (type
0) that is expected to run at 60fps and therefore, we supposed
that it has a deadline of 16ms and mean duration of 8ms (σ =
0.4ms) and one (type 1) that is expected to run at 30fps and
therefore it has a deadline of 40ms and a mean duration of
20ms (σ = 0.4ms).

Figure 4 shows the behavior of the in-deadline rate ι, and
therefore of the reward, when every node has a different
load (from node 0 to 5, we set λi: 0.2, 0.4, 0.6, 0.7, 0.8,
0.9) but it is stationary over time. The chart compares the
proposed Reinforcement Learning approach and the power-
of-two random choices with the threshold set to 2 (i.e., policy
00111). What emerges again is that the learning approach

2https://gitlab.com/gabrielepmattia/simulator-2023-tccn

exactly mimics the power-of-two random choices from the
point of view of the performances (ι). Since here we use the
set of actions A we also deduce that the policy is likely to
be the same as the power-of-two random choices with the
threshold set to 2.

Fig. 4. Comparison between Sarsa and Pwr2: behavior of the in-deadline rate
ι for every node when the load is fixed and the same to every node

At this point, we wonder how we can increase the perfor-
mance by using the same reduced set of policies. One of the
ways to do is to increase the action space of the agent. For
this reason, we introduced the set of actions A′

i. Figure 5
shows the behavior of the in-deadline rate when the loads are
not balanced, as in the previous experiment, but stationary
over time. The only difference here is that the agent can
choose to forward tasks directly to a given node. After the
first 1000s, which is the period in which the ϵ is greater than
0.1 (the lower limit), we can observe how ι is fixed over
time and is equal to every node. This means that even the
nodes that, with the policy 001111 could have a better reward
but they are not selfish and voluntarily decrease their reward
for making the others achieve the best reward. We do believe
that this behavior is inherent to the distributed usage of the
Reinforcement Learning approach since every node is able to
understand the situation only from the reward, that in the end,
declares the goodness of the chosen action. This means that
by allowing the nodes to forward directly (set of actions A′

i)
we make them understand which is the best node to forward
the jobs in a given time, and this enables the fact that acting
like selfish will deteriorate its reward.

B. Geographic Scenario

As described in Section III the open data for New York
City has been used for generating the traffic to six fog nodes.
Starting from this setting, by using the same assumptions
of the previous experiment, we only enable the load to
change according to the derived distribution for the open data
(Figure 2). In Figure 6, we can observe how the behavior that

9

Fig. 5. Comparison between Sarsa and Pwr2: behavior of the in-deadline rate
ι for every node when load is fixed but heterogeneous

was shown in the fixed load case is again confirmed even if
the load follows a variable distribution. Every node reaches the
same level of the reward, even if following the policy 001111
(power-of-two random choices with threshold 2) could make
a node able to reach a better reward, and this behavior is
invariant with respect to the traffic variability.

Fig. 6. Comparison between Sarsa and Pwr2: behavior of the in-deadline
rate ι for every node when the load is variable according to the geographic
scenario, Figure 2

As a final note, we remark that the policy that is chosen
by this Reinforcement Learning approach, both in the fixed
and in the geographic scenario, is not trivial and easy to be
manually determined but it dynamically changes over time,
and unfortunately, it is not feasible to be represented in a
figure, for this reason, its chart has been skipped.

VI. EXPERIMENTAL SETTING

In this section, we introduce and describe the implementa-
tion of the proposed RL scheduling policy in a pseudo-real
setting by using our open-source framework “P2PFaaS” [43]
which has been installed on 12 Raspberry Pi 4 (six of which
with 4GB of RAM and size with 8GB of RAM) by using
the OpenBalena3 framework, a partial open-source framework
which allows deploying sets of Docker containers on a fleet
of SBCs (Single-Board Computers). Indeed, the framework
is composed of a set of Docker containers that implement
scheduling, discovery, and scheduling policy learning capabil-
ities. We then used a Dell XPS 8900 desktop PC with Fedora
to generate the traffic toward all the nodes. The PC has an
Intel i7-6700 processor and 16GB of RAM. All the entities
have been attached to a private subnetwork by using a 1Gbps
Ethernet wired connection.

This environment is called “pseudo-real” because the hard-
ware is real, but the nodes are not placed in a real smart city,
and the traffic is still simulated. However, we believe that this
does not have a great impact on the trustworthiness of the final
results achieved.

A. Practical Setting

The P2PFaaS framework has been installed in a cluster of
twelve Raspberry Pis 4. In particular, the nodes from #0 to
#5 have 4GB of RAM and the nodes from #6 to #11 have
8GB of RAM. The installation of the framework to all of the
nodes and its continuous updating during the development has
been made possible thanks to the open-source OpenBalena4

IaaS framework which allows the simultaneous deployment
and management of Docker containers in clusters of devices
of the same type. In the final deployment, the Raspberry Pi
nodes are attached to a 1 Gigabit network switch, then there is
a router and a server which has two purposes: the first is to host
the OpenBalena framework, and the second is to generate the
traffic to the nodes and collect the data. The traffic generator
script is still written in Go, and it generates one thread of traffic
to each node. We preferred it over Python since Python threads
are not true parallel threads due to the Global Interpreter Lock
(GIL).

B. Single Node behavior

The FaaS function used in all the following tests is a
face detection function5 written in Go and ported from the
OpenFaaS project. The function takes as input payload an
image and returns the same image with the faces highlighted
in JPG format with compression of 80%. The image payload
has a great impact on the duration of the function. Indeed, as
shown in Table III, we used two different images. In the table,
we can observe both the effective execution time de and the
total one dt and how the difference among them is in the order
of ≈ 8ms. That specific delay comprehends the transmission
time of the payload (both when invoking the function and

3https://www.balena.io/open
4https://github.com/balena-io/open-balena
5https://github.com/esimov/pigo-openfaas

https://www.balena.io/open

10

when receiving the output) and the TCP connection time that
is irreducible unless we do not relay anymore on HTTP calls
for triggering the function, but we use raw sockets. Again, the
keep-alive feature cannot be used for the same aforementioned
reasons.

Image A Image B

Resolution 320x210 180x118
Size (kB) 28.3 23.8
de (ms) 180.08 ± 7.25* 67.19 ± 0.64*
dt (ms) 188.24 ± 7.27* 74.95 ± 0.81*

TABLE III
RESOLUTION, SIZE AND DELAYS OF THE IMAGE PAYLOADS USED FOR THE
TESTS. THE DELAYS ARE COMPUTED ON THE AVERAGE OF 200 REQUESTS

WITH λ = 1.0, THE ERROR IS COMPUTED FROM T-STUDENT
DISTRIBUTION (P-VALUE = 0.01)

Differently from the simulations, in the experimental setting,
we use real devices. In the simulations, for the sake of simplic-
ity, we assumed that a node could be able to execute one task at
a time and have a queue of length three tasks, this means that
the maximum number of tasks in the system is four (K = 4),
if a new request arrives when the maximum is reached then it
will be “blocked”, i.e. discarded. This assumption is not very
far from reality when we deal with low latency tasks and it
is equal to saying that the node is able to execute four tasks
at a time with a single core that interleaves the execution of
the tasks. Indeed, the total time for executing all the tasks,
on average, is four times their execution. Now, Raspberry Pi
4’s CPU has four processing cores, therefore the simulation
assumptions do not hold anymore but we still expect to have
similar results. However, in this real environment, to have
four processing cores is not equal to saying that we have
four independent servers, as in the M/M/k/k queue model,
which is normally used ([6], [5]) for modeling a fog node.
In real world, due to the underlying operating system (in
our case balenaOS and in the end, the Linux Kernel) that
continuously balances the load among the different cores
and therefore it is quite difficult to have a task that strictly
holds a core for its entire processing time, moreover, there
is an underlying set of programs which has to be scheduled
meanwhile. This means that we cannot know in advance which
is the processing capability of a single node and therefore
we cannot establish the load to give to each node in order
to obtain the desired load level ρ. Since we do not have a
reliable model for a real Raspberry Pi node we proceeded
to make an estimate. Therefore, for the two payload images
we used a benchmark script that triggered the execution of a
FaaS at gradually increasing (λ) rates, the node is configured
without a queue, with three executable tasks in parallel6, and
the arrival distribution is deterministic (i.e. inter-arrival time
is fixed). Figure 7 shows the results of this experiment, on the
left the blocking probability (PB) is the percentage of requests
that are blocked, while on the right the average execution time
de. The blocking probability allows us to understand when a
node starts to reject requests, in the case of Image A we notice

6In this and in the following experiments we leave one core free to execute
the OS and the background services.

that it starts from λ ≈ 7 reqs/s and for Image B λ ≈ 18 reqs/s.
This result could not be derived in theory, since logically,
suppose Image A and its average processing time of 180ms,
a node with a single core should have a maximum processing
rate µ ≈ 1/0.180 ≈ 5.55, with three cores this should be
multiplied by three but as we have seen it is only 7 req/s, this
is justified by the fact the cores are not independent, indeed, we
can observe in the Figure 7b how the execution time increases
when the arrival rate (λ) increases and this drastically reduces
the service rate (µ) of the node. For example, again for Image
A, when λ = 7 req/s then the average delay de ≈ 310ms,
increased about 72% with respect to the duration when λ = 1
req/s.

(a) Blocking probability (PB) (b) Average task execution time (de)

Fig. 7. Results of the face detection function from a single node with no
cooperation, two payload images have been tested: Image A and Image B.
Every point is the average of 500 requests and the confidence intervals have
been derived from t-Student (p-value = 0.01), the test has been repeated 10
times.

Concluding, we derived that the service rate is a function
of the arrival rate (µ(λ)), but since delineating a model of
the node is out of scope for this paper it is enough to derive
the maximum service rate starting from which a node rejects
requests, that we call µ̂: for the Image A we have µ̂A = 7
req/s and for the Image B, µ̂B = 18 req/s.

C. Performance metric

Let us introduce performance metrics that will allow us to
compare the different scheduling policies. In our experiments,
our purpose is obviously to maximize the reward, but an
approach that also distributes it with respect to one that makes
every node behave selfishly is preferable because it will be able
to offer the best service across all the geographic domain. For
this reason, the performance metrics that we will consider will
be:

• ι, that is the sum of the reward divided by the number
of tasks completed in a second, that, given the reward
definition in Section III-C, it is equal to the percentage
of tasks that are completed within the deadline, therefore,
the higher the value the higher is the goodness of the
scheduling policy since it is able to execute more tasks
within the deadline;

• Pf , the percentage of tasks that have been forwarded, that
is used to understand the level of cooperation among the
nodes, therefore, the higher the cooperation, the higher

11

the amount of data that is exchanged and this can have
an impact on the transmission time of the tasks.

Similarly to the metrics of the simulations, we represent
their behavior over the entire simulation time. This is needed to
grasp how the learning algorithm improves the performances
over time. However, for drawing conclusions more analyti-
cally, we even consider the last seconds of the tests, where the
RL algorithm settled the performances, and then compare not
only the mean of the metrics but also the variance because, as
we have seen in the simulations, the learning algorithm tends
to equalize the reward among the nodes. Therefore, a lower
variance of the mean ι among all the nodes will be expected,
this will be clearer in the next sections.

The set of actions used in all the tests is the one that per-
formed best in the simulations, namely A′ (Section III-B2) and
the Sarsa algorithm is compared with the Power-two-choices,
as in the simulations, but now with threshold T = 1, since we
now allow K = 3 tasks to be executed in parallel. However,
we shall remind that a study of power-of-two random choices
where nodes are assumed to be M/M/k/k queues (the most
similar to a real environment), or even better, a model that
mimics real nodes has not been studied yet and it is left as
future work, therefore the T = 1 decision is not fully justified,
however, given the previous studies [6] we expect to be the
best threshold to use for comparison.

D. Results

In this section, we will present the test results of the
proposed policy called, as in the simulations, “Sarsa”, which
run in the presented pseudo-real environment. Table IV shows
the complete list of all the experiments performed:

• experiment 1 has been used to test the learning infras-
tructure, it uses no deadlines, no queues and only one
payload;

• the series of experiments 2.x uses the deadlines, the
maximum length of the execution queue Ke is set to 2
and they last 3600s each. Their major characteristic is that
we tried to estimate the beneficial effect of the learning
algorithm with different deadlines since it is clear that the
wider the deadline the higher the probability of a task to
be completed within it and the higher the reward. We
tested seven different deadlines measured in percentage
of the total duration dt of the task with Image A and
Image B;

• experiment 3, instead, only uses one deadline but the
traffic, differently from the other nodes, is geographic and
derived from the study in Section V-B. However, since
the study was on 6 nodes we applied the 6 curves to
12 nodes by assigning to two nodes the same curve, for
example, the traffic curve of node #0 in the study has
been assigned to the Raspberry Pi node #0 and #6, the
curve of node #1 to nodes #1 and #7 and so on.

In every experiment and for every node, the traffic is
distributed according to a Poisson distribution (except for the
geographic traffic in which the inter-arrival time is determin-
istic but changes according to the load curve), moreover, the
ϵ-greedy policy for action selection starts with ϵ = 0.9 and

has a decay of 0.9995 that is applied whenever a new task
arrives.

Deadlines (ms)

Traffic Payload γ TA TB K Ke Duration (s)

1 Fixed Heterogenous Single - ∞ ∞ 3 0 3600
2.1 Fixed Heterogenous Multi 0.00 188.25 74.95 3 2 3600
2.2 Fixed Heterogenous Multi 0.05 197.66 78.70 3 2 3600
2.3 Fixed Heterogenous Multi 0.10 207.08 82.45 3 2 3600
2.4 Fixed Heterogenous Multi 0.15 216.49 86.19 3 2 3600
2.5 Fixed Heterogenous Multi 0.20 225.90 89.94 3 2 3600
2.6 Fixed Heterogenous Multi 0.25 235.31 93.69 3 2 3600
2.7 Fixed Heterogenous Multi 0.30 244.73 97.44 3 2 3600
3 Geographic Multi 0.05 197.66 78.70 3 2 8000

TABLE IV
SUMMARY OF ALL THE EXPERIMENTS PERFORMED IN THE CLUSTER OF
RASPBERRY PI WITH SPECIFICATION (FROM THE LEFT) OF THE TRAFFIC

TYPE, THE NUMBER OF PAYLOADS, THE DEADLINES, THE MAXIMUM
PARALLEL TASKS K , THE MAXIMUM LENGTH OF THE EXECUTION QUEUE

Ke AND THE DURATION.

1) Experiment 1 - No deadline: In this experiment, we used
fixed and heterogeneous traffic, in particular, the traffic λi

from i = 0 to i = 11 is 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11
and 12. The image payload used is only Image A, and the
learning parameters are α = β = 0.01 with a window size
Z = 20. In Figure 8 we can observe the behavior of the
percentage of tasks that are forward from the perspective of
every node, we skipped the chart of the reward because in
this first experiment, we do not perform any comparison, we
only evaluate the behavior of the learning algorithm. As in
the simulations, we can appreciate an initial phase in which
the rate is very high, that for the ϵ-greedy approach, the policy
progressively stabilizes even not following a gradual approach,
this is because forwarding to particular nodes (especially the
ones that are more loaded) drastically reduces the reward,
and when this happens the policy changes drastically up to
a stabilized situation. Moreover, we can notice how the Pf is
not depending on the load, but we remind that in this case,
deadlines are infinite, and therefore, the learner only tries to
execute more tasks as possible without rejecting them.

2) Experiment 2 - Fixed load: In this experiment, we
introduce, as in the simulations, the concept of deadlines. We
use the two presented payloads (Table III) Image A and Image
B, assigning two different deadlines. We calculate the deadline
on the average dt as shown in Figure III. The deadline TX

where X is the (Image) A or B is given by equation

TX = dtX + γdtX (10)

For example, for Image A and choosing γ = 0.05, TA =
188.25+ 0.05 · 188.25 = 197.66ms. We suppose that the task
arrives in percentage 50/50, and the fixed traffic λi from i = 0
to i = 11 is: 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 12.5, 13, 13.5,
14. The maximum load of 14 reqs/s derives from the study
in Section VI-B, since µ̂A = 7 reqs/s and µ̂B = 18 reqs/s,
given the 50/50 distribution of the payloads, the maximum
µ̂A|B = 0.5 · 7 + 0.5 · 18 = 12.5 reqs/s. Now, from this value
with tried to go slightly over it, reaching 14.0 to understand
how the algorithm behaves in a slight overload condition.

Regarding the deadlines, we start from γ = 0, which maps
to a deadline equal to the average duration of a task, to γ =

12

Fig. 8. Experiment 1: Pf , behavior of the percentage of forwarded tasks
during the experiment, the average is performed every 15 seconds. In this
experiment, deadlines are not considered and only a single payload is used,
Image A.

0.3. Our “Sarsa” approach is compared with the Power-of-two
random choices with T = 1, as widely presented in Section V.

In every experiment performed, our Sarsa approach per-
forms better of power-of-two random choices “Pwr2”, but
for space issues, we only report the reward (ι) behavior
of experiment 2.5 (Figure 9), in which the effect is more
evident. What we can observe is a very similar behavior to
the simulations, in particular to the Figure 5, indeed in the
less loaded nodes, as Node #0 and Node #1 the performances
are almost equal to the Pwr2 approach, while, increasing the
load, Sarsa performs well, especially in the Node #11 where
the average improvement, across all the nodes, is of ≈ 20%
(performing the average only on the latest 200s of the test).
This is expected because, for the least loaded nodes is easier to
meet the deadline, since their traffic is lower, on the contrary,
the nodes that are heavily loaded struggle to meet the deadline,
unless an intelligent policy comes into play. The intelligent
policy will forward the tasks to the nodes that are less loaded
(and this is inferred by the learning algorithm), instead of
forwarding them blindly at random, as the Pwr2 algorithm
does.

To have a clearer picture of the results of the proposed
algorithm across all the nodes, we analyzed the mean and the
variance of the reward (ι) and of the forwarding probability Pf

when the deadlines vary. Figure 10 shows the comparison of
the average reward ι and the forwarding probability Pf in all
the tested deadlines. As expected, the reward increases when
the deadline increases, our Sarsa approach performs better
but inevitably when the deadline increases the difference with
the Pwr2 approach reduces, but not progressively. Indeed, the
deadline in which Sarsa perform better is for γ = 0.05, with

Fig. 9. Experiment 2.2: behavior of ι during the entire test duration with
deadline set at 5% of the total task duration dt. Values are averaged every 15
seconds.

an improvement of 55% over Pwr2, while when γ = 0.3 the
improvement is 11%. In general, we pass from an in-deadline
ι rate of 28% when γ = 0 to a rate of 85% when γ = 0.3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
γ

0.0

0.2

0.4

0.6

0.8
ι (Sarsa)
ι (Pwr2)
Pf (Sarsa)

Pf (Pwr2)

Fig. 10. Experiments 2.x: Comparison of average reward ι and forwarding
probability Pf across all the 12 Raspberry Pi nodes in the last 200s of a
3600s test.

Figure 11 shows the comparison of variance regarding the
reward ι and the forwarding probability Pf . What we can
observe is that when the deadline increases, the variance of the

13

reward ι reduces, and this is a clear confirmation of what has
been found in the simulations, namely that the Sarsa approach
tries to equalize the reward in every node, and this effect is
more evident when the deadline is higher. In particular, when
the deadline is 0% of the total duration of the task, the variance
of the reward is 0.010, while when the γ = 0.3, the variance is
0.0009. Conversely, this does not hold for the Pwr2 approach,
in which the variance is higher when the deadline is γ = 0.15
(that is 0.0105). This confirms that the Pwr2 approach makes
the nodes behave selfishly with respect to the Sarsa, which
tries to reach the best reward rate for every node in such a
way no one gains more than another.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
γ

0.000

0.005

0.010

0.015

0.020

0.025

0.030
ι (Sarsa)
ι (Pwr2)
Pf (Sarsa)

Pf (Pwr2)

Fig. 11. Experiments 2.x: Comparison of variance of average reward ι and
forwarding probability Pf across all the 12 Raspberry Pi nodes in the last
200s of a 3600s test.

3) Experiment 3 - Geographical: The final experiment
uses a traffic distribution that is derived from the study in
Section V-B. As already anticipated, the traffic of the 6 nodes
is applied to 12 nodes in such a way nodes 0-5 and nodes 6-11
map to nodes 0-5 of Figure 2. However, since the traffic curve
describes only which is the ρ, namely the load of a single node
over time, we scaled the traffic to the range of lambdas from
0.0 to 20.0, therefore when in the curve ρ = 0.9 then the actual
load to the node is 0.9 · 20 = 18. As described in the fixed
load experiment (Section VI-D2) in which the maximum load
was set to 14, here we increase it to 20 for understanding how
the algorithms behave even in during an overload condition.

The traffic curve is repeated 3 times within a test of 8000s
duration. What we can observe is that Sarsa performs better
of the Pwr2 choices in almost the entire duration of the test,
except for the initial training phase of the algorithm. However,
the most evident improvement can be recognized at the #8,
#9, #10 and #11, in particular in the moments in which the
traffic is higher, which are between 2000s and 3000s, 4800s
and 5800s, and from 7000s to end. In that specific moments,
the nodes which match the same traffic load, that are nodes
#3, #4 and #5 perform well with Pwr2, they match Sarsa
but in the others, Pwr2 is not able to maintain the same
level of reward, this behavior is determined by the hardware
differences between the nodes. In the real world is quite
impossible to have two nodes that have exactly the same
performance characteristics, in our experiments, in particular,

nodes from #6 to #11 are equipped with 8GB of RAM instead
of 4GB. Even if this can be counter-intuitive, the nodes with
8GB of RAM are slightly less performing when they saturate
with respect to the nodes with 4GB of RAM. This has been
shown by repeating the test and changing the node’s IPs by
leaving unaltered the traffic trace, however, the charts have
been omitted for space. This final result inadvertently shows
that our learning approach is able to derive the best policy
even if the nodes are heterogeneous, which is an unavoidable
characteristic of real devices.

Fig. 12. Experiment 3: behavior of ι during the entire test duration with
deadline set at 5% of the total task duration dt. Traffic to every node is the
one described in 2. Values are averaged every 10 seconds.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of extending the
power-of-two random choices distributed scheduling scheme
with Reinforcement Learning in order to be able to efficiently
schedule real-time and deadline-constrained tasks. Starting
with simulation, we demonstrated that our approach is able
to outperform the power-of-two random choices when it is
made able to directly forward tasks to specific nodes, and
this holds even if the traffic traces are extracted from a real-
world dataset. Moreover, the approach that makes each node
act as an independent learner and does not have any kind
of load information about the others is able to maximize the
overall performance of the system by making each node not

14

behave in a selfish manner. Then, in the second part of the
work, we introduced an improved version of the P2PFaaS
framework, which implements the proposed RL algorithm, and
we showed that the same results characteristics obtained in the
simulations are maintained in a (pseudo) real deployment with
12 Raspberry Pis. The real implementation of the approach
made us realize which are the critical points that must be
addressed in order to make the algorithm work even in a real
deployment. However, further improvements to the approach
can be studied by, for example, taking into account the energy
aspect of the nodes, the complexity of the state can be
increased by introducing more state parameters like the CPU
time, which has a great impact on the duration of the tasks, and
finally, what could be further investigated is a second learning
process regarding the tasks that are forwarded. Indeed, these
tasks are, in this work, always accepted by the remote nodes,
but these nodes may want to reject them to improve their
reward.

Gabriele Proietti Mattia is currently a PostDoc
researcher (RTD-A) at the Department of Computer,
Control and Management Engineering “Antonio Ru-
berti” of the Sapienza University of Rome where
he received the BSc, MSc and PhD degrees in
Engineering in Computer Science in 2017, 2019 and
2023, respectively. His research interests include Fog
and Edge computing, distributed scheduling, load
balancing, and Reinforcement Learning.

Roberto Beraldi received the laurea Degree from
the “University of Calabria” in 1991, a master degree
from CEFRIEL (Politecnico di Milano) in 1992 and
a PhD in computer science in 1996. From 1996 he
worked at Italian’s National Institute of Statistics
(ISTAT), and since 2002, works at the Department
of Computer, Control and Management Engineering
”Antonio Ruberti” of Sapienza University of Rome,
Italy, where he is currently an Associate Professor.
His research interests include mobile networking,
Fog/Edge computing, and distributed systems. He

regularly serves as TPC member of international conferences and journals
in these fields.

REFERENCES

[1] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, “fog computing conceptual model,” NIST, Tech. Rep.,
2018.

[2] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, “Cellular-
connected wireless virtual reality: Requirements, challenges, and solu-
tions,” IEEE Communications Magazine, vol. 58, no. 5, pp. 105–111,
2020.

[3] J. Barthélemy, N. Verstaevel, H. I. Forehead, and P. Perez, “Edge-
computing video analytics for real-time traffic monitoring in a smart
city,” Sensors (Basel, Switzerland), vol. 19, 2019.

[4] S. V. Broucke and N. Deligiannis, “Visualization of real-time hetero-
geneous smart city data using virtual reality,” 2019 IEEE International
Smart Cities Conference (ISC2), pp. 685–690, 2019.

[5] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” Combinatorial
Optimization, vol. 9, pp. 255–304, 2001.

[6] R. Beraldi and G. Proietti Mattia, “Power of random choices made
efficient for fog computing,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2020.

[7] M. E. Aydin and E. Öztemel, “Dynamic job-shop scheduling using
reinforcement learning agents,” Robotics and Autonomous Systems,
vol. 33, no. 2-3, pp. 169–178, 2000.

[8] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource
allocation and task scheduling in fog computing and internet of
everything environments: A taxonomy, review, and future directions,”
ACM Comput. Surv., vol. 54, no. 11s, sep 2022. [Online]. Available:
https://doi.org/10.1145/3513002

[9] S. Azizi, M. Shojafar, J. Abawajy, and R. Buyya, “Deadline-
aware and energy-efficient iot task scheduling in fog computing
systems: A semi-greedy approach,” Journal of Network and Computer
Applications, vol. 201, p. 103333, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1084804522000029

[10] H. O. Hassan, S. Azizi, and M. Shojafar, “Priority, network and
energy-aware placement of iot-based application services in fog-cloud
environments,” IET Communications, vol. 14, no. 13, pp. 2117–2129,
2020. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/
doi/abs/10.1049/iet-com.2020.0007

[11] M.-T. Zhou, T.-F. Ren, Z.-M. Dai, and X.-Y. Feng, “Task scheduling
and resource balancing of fog computing in smart factory,” Mobile
Networks and Applications, Jun 2022. [Online]. Available: https:
//doi.org/10.1007/s11036-022-01992-w

[12] M. Abdel-Basset, D. El-Shahat, M. Elhoseny, and H. H. Song,
“Energy-aware metaheuristic algorithm for industrial-internet-of-things
task scheduling problems in fog computing applications,” IEEE Internet
of Things Journal, vol. 8, pp. 12 638–12 649, 2021.

[13] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4702–4711, 2018.

[14] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile edge computing
using deep reinforcement learning,” IEEE Transactions on Cognitive
Communications and Networking, pp. 1–1, 2021.

[15] M. K. Pandit, R. N. Mir, and M. A. Chishti, “Adaptive task scheduling
in iot using reinforcement learning,” International Journal of Intelligent
Computing and Cybernetics, 2020.

[16] S. Nath and J. Wu, “Deep reinforcement learning for dynamic compu-
tation offloading and resource allocation in cache-assisted mobile edge
computing systems,” Intelligent and Converged Networks, vol. 1, no. 2,
pp. 181–198, 2020.

[17] L. Mai, N.-N. Dao, and M. Park, “Real-time task assignment approach
leveraging reinforcement learning with evolution strategies for long-
term latency minimization in computing,” Sensors, vol. 18, no. 9, 2018.
[Online]. Available: https://www.mdpi.com/1424-8220/18/9/2830

[18] S. Bian, X. Huang, Z. Shao, and Y. Yang, “Neural task scheduling
with reinforcement learning for fog computing systems,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[19] J. Zhang, H. Guo, and J. Liu, “A reinforcement learning based task
offloading scheme for vehicular edge computing network,” in Artificial
Intelligence for Communications and Networks, S. Han, L. Ye, and
W. Meng, Eds. Cham: Springer International Publishing, 2019, pp.
438–449.

[20] H. Li, K. Ota, and M. Dong, “Deep reinforcement scheduling for
mobile crowdsensing in fog computing,” ACM Transactions on Internet
Technology (TOIT), vol. 19, no. 2, pp. 1–18, 2019.

https://doi.org/10.1145/3513002
https://www.sciencedirect.com/science/article/pii/S1084804522000029
https://www.sciencedirect.com/science/article/pii/S1084804522000029
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-com.2020.0007
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-com.2020.0007
https://doi.org/10.1007/s11036-022-01992-w
https://doi.org/10.1007/s11036-022-01992-w
https://www.mdpi.com/1424-8220/18/9/2830

15

[21] Q. Yang and P. Li, “Deep reinforcement learning based energy schedul-
ing for edge computing,” in 2020 IEEE International Conference on
Smart Cloud (SmartCloud), 2020, pp. 175–180.

[22] S. Park and Y. Yoo, “Real-time scheduling using reinforcement learning
technique for the connected vehicles,” in 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), 2018, pp. 1–5.

[23] T. Sen and H. Shen, “Machine learning based timeliness-guaranteed
and energy-efficient task assignment in edge computing systems,” in
2019 IEEE 3rd International Conference on Fog and Edge Computing
(ICFEC), 2019, pp. 1–10.

[24] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[25] A. I. Orhean, F. Pop, and I. Raicu, “New scheduling approach using
reinforcement learning for heterogeneous distributed systems,” Journal
of Parallel and Distributed Computing, vol. 117, pp. 292–302, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731517301521

[26] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, pp. 1529–1541,
2021.

[27] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5g ultradense
network,” IEEE Internet of Things Journal, vol. 8, pp. 2238–2251, 2021.

[28] Y. He, Y. Wang, C. Qiu, Q. Lin, J. Li, and Z. Ming, “Blockchain-
based edge computing resource allocation in iot: A deep reinforcement
learning approach,” IEEE Internet of Things Journal, vol. 8, pp. 2226–
2237, 2021.

[29] Z. Safavifar, S. Ghanadbashi, and F. Golpayegani, “Adaptive workload
orchestration in pure edge computing: A reinforcement-learning model,”
in 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI), 2021, pp. 856–860.

[30] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “Resource
provisioning in fog computing through deep reinforcement learning,”
in 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2021, pp. 431–437.

[31] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep
reinforcement learning for scalable fog and service placement,” IEEE
Transactions on Services Computing, pp. 1–1, 2021.

[32] X. Zhou, Z. Liu, M. Guo, J. Zhao, and J. Wang, “Sacc: A size
adaptive content caching algorithm in fog/edge computing using deep
reinforcement learning,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2021.

[33] D. Lan, A. Taherkordi, F. Eliassen, Z. Chen, and L. Liu, “Deep
reinforcement learning for intelligent migration of fog services in smart
cities,” in Algorithms and Architectures for Parallel Processing, M. Qiu,
Ed. Cham: Springer International Publishing, 2020, pp. 230–244.

[34] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, pp. 242–253, 2021.

[35] A. AlOrbani and M. Bauer, “Load balancing and resource allocation in
smart cities using reinforcement learning,” in 2021 IEEE International
Smart Cities Conference (ISC2), 2021, pp. 1–7.

[36] O. Houidi, D. Zeghlache, V. Perrier, P. T. Anh Quang, N. Huin,
J. Leguay, and P. Medagliani, “Constrained deep reinforcement learn-
ing for smart load balancing,” in 2022 IEEE 19th Annual Consumer
Communications Networking Conference (CCNC), 2022, pp. 207–215.

[37] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A load
balancing and optimization strategy (lbos) using reinforcement learning
in fog computing environment,” Journal of Ambient Intelligence and
Humanized Computing, vol. 11, no. 11, pp. 4951–4966, Nov 2020.
[Online]. Available: https://doi.org/10.1007/s12652-020-01768-8

[38] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, pp. 939–951, 2021.

[39] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Intelligent resource
allocation in dynamic fog computing environments,” in 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet), 2019, pp.
1–7.

[40] X. Chen, S. Leng, K. Zhang, and K. Xiong, “A machine-learning
based time constrained resource allocation scheme for vehicular fog
computing,” China Communications, vol. 16, no. 11, pp. 29–41, 2019.

[41] G. Proietti Mattia and R. Beraldi, “On real-time scheduling in fog
computing: A reinforcement learning algorithm with application to smart
cities,” in 2022 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom
Workshops), 2022, pp. 187–193.

[42] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[43] G. Proietti Mattia and R. Beraldi, “P2pfaas: A framework for
faas peer-to-peer scheduling and load balancing in fog and edge
computing,” SoftwareX, vol. 21, p. 101290, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352711022002084

https://www.sciencedirect.com/science/article/pii/S0743731517301521
https://www.sciencedirect.com/science/article/pii/S0743731517301521
https://doi.org/10.1007/s12652-020-01768-8
https://www.sciencedirect.com/science/article/pii/S2352711022002084

	Introduction
	Related Work
	Heuristics and model-based approaches
	Reinforcement Learning based studies

	System Model and Problem Definition
	Environment
	Agent
	Observed states
	Actions

	Reward
	Delay model
	Geographic Traffic

	Online scheduling decisions with RL
	Complexity and Convergence Analysis

	Simulation Results
	Heterogeneous Loads
	Geographic Scenario

	Experimental Setting
	Practical Setting
	Single Node behavior
	Performance metric
	Results
	Experiment 1 - No deadline
	Experiment 2 - Fixed load
	Experiment 3 - Geographical

	Conclusions and Future Work
	Biographies
	Gabriele Proietti Mattia
	Roberto Beraldi

	References

