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Abstract
Bandit algorithms such as Thompson sampling (TS) have been put forth for decades 
as useful tools for conducting adaptively-randomised experiments. By skewing the 
allocation toward superior arms, they can substantially improve particular outcomes 
of interest for both participants and investigators. For example, they may use par-
ticipants’ ratings for continuously optimising their experience with a program. How-
ever, most of the bandit and TS variants are based on either binary or continuous 
outcome models, leading to suboptimal performances in rating scale data. Guided 
by behavioural experiments we conducted online, we address this problem by intro-
ducing Multinomial-TS for rating scales. After assessing its improved empirical 
performance in unique optimal arm scenarios, we explore potential considerations 
(including prior’s role) for calibrating uncertainty and balancing arm allocation in 
scenarios with no unique optimal arms.

Keywords Adaptive experiments · Thompson sampling · Multi-armed bandits ·  
Rating scales · Multinomial model · Dirichlet distribution · Incomplete learning

1 Introduction

Well-designed randomised experiments such as randomised controlled trials (RCTs) 
are considered the “gold standard” for evaluating and comparing interventions at 
the end of the study (Akobeng 2005; Rosenberger et al. 2019; Kim et al. 2021). The 
standard protocol for conducting an RCT is based on following a predefined design 
that does not allow modifications of the trial without approved amendments (Pall-
mann et al. 2018). For example, interventions are assigned with prespecified (typi-
cally equal) randomisation probabilities that cannot be changed during the course of 
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the study to direct participants to the most promising options. This approach ensures 
strong statistical guarantees in terms of bias and type-I error control, among other 
properties (see e.g., Villar et al. 2015; Williams et al. 2021; Robertson et al. 2023), 
but allows no flexibility for data-driven online alterations. Adaptively-randomised 
experiments have the potential to utilise accumulating information within the trial to 
modify its course (randomisation probabilities, sample size, etc.) in accordance with 
predetermined rules  (Pallmann et  al. 2018). To illustrate, response-adaptive ran-
domisation schemes may use participants’ responses to skew the allocation toward 
more efficient or informative interventions with the aim of assigning superior ones 
to as many participants as possible (Robertson et al. 2023). While collecting high-
quality data, these types of experiments can result in a more flexible, efficient, and 
ethical alternative compared to traditional randomised studies (Bothwell et al. 2018; 
Pallmann et al. 2018).

As a concrete example, consider a platform such as Netflix or Spotify: instead of 
just showing users their own TV show/music preferences (or display random con-
tent), the system’s goal is to continuously interact with users to learn and offer them 
special recommendations that may enhance their overall experience and engagement 
with the platform. Clearly, to be able to efficiently provide the most ideal content, 
the outcomes of interest (e.g., some measure of appreciation or engagement) must 
be promptly observed so as to adjust to users’ preferences on a continuous basis. It is 
thus becoming increasingly common to incorporate preference information that may 
provide insights on a longer-term outcome of interest such as engagement. Netflix 
has actually discovered significant business value in collecting users’ feedback to 
personalise their movie experience  (Amatriain and Basilico 2015). Similarly, uni-
versity instructors saw great value in using student ratings to give them better or 
preferred explanations of a concept to enhance their understanding (Williams et al. 
2018). In the healthcare setting, relying on feedback collected through mobile-health 
technologies is increasingly practised for healthcare delivery (Figueroa et al. 2022; 
Liu et al. 2023) and to increase medication adherence (Gandapur et al. 2016).

Starting from the pioneer work of Thompson (1933), multi-armed bandit (MAB) 
algorithms (Lattimore and Szepesvári 2020) have been argued for decades as useful 
tools to adaptively randomise experiments. This framework provides a succinct 
abstraction of the trade-off between exploration (learning enough information about 
the different options or arms) and exploitation (selecting the most promising arm(s) 
so far), inherent in many online sequential decision-making problems with incom-
plete knowledge. Specifically, in MAB problems, a learner or decision-maker must 
repeatedly select an arm from a given set of alternatives, say At ∈ A  , in an online 
manner for each round t = 1,… , T  , with T finite or infinite. After selecting an arm 
At , a numerical reward Yt(At) ∈ ℝ associated with that arm is observed, ideally 
before the next round. A typical goal in MAB problems is to learn how to efficiently 
use observations from previous rounds to improve decision making so as to maxim-
ise–under uncertainty on the best arm–the expected total reward �

�

∑T

t=1
Yt(At)

�

.
Several algorithms have been proposed for the MAB problem; for a survey, we 

refer to Lattimore and Szepesvári (2020). In this work, we focus on a highly inter-
pretable, computationally efficient, and asymptotically optimal (Agrawal and Goyal 
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2017) strategy originally introduced in the clinical trial arena: Thompson sam-
pling  (TS; Thompson 1933; Russo et  al. 2018). Due to its competitive empirical 
and theoretical properties (see e.g., Chapelle and Li 2011; Agrawal and Goyal 2017, 
for details), TS is nowadays receiving renewed attention in several domains, includ-
ing online recommendation  (Chapelle and Li 2011), economics/finance  (Charpen-
tier et al. 2023), education (Williams et al. 2018), and healthcare (Deliu et al. 2023; 
Figueroa et al. 2021).

There exists a wide array of TS variants (see e.g., Russo 2016; Kasy and Saut-
mann 2021; Li et al. 2022); however, with a few exceptions, most of them are based 
on binary or continuous outcomes, with a persistent shortage of appropriate solu-
tions for rating scale data. In such cases, typical practices consist in either dichoto-
mising the ordinal reward variable according to a (often arbitrary) cutoff and then 
using a binary model (Williams et al. 2018), or using a Normal model directly on 
the rating outcome (Deliu et al. 2021; Parapar and Radlinski 2021). Such practices 
have long been recognised as suboptimal in terms of both reward efficiency (Wil-
liamson and Villar 2020) and statistical inference (Altman and Royston 2006).

Motivating example This work is directly motivated by a series of exploratory 
studies aimed at evaluating the feasibility of MAB algorithms to develop intelligent 
adaptive systems that continuously improve user experiences through their ratings. 
Without loss of generality and only for illustrative purposes, here we report on a 
two-armed behavioural experiment (MTurk I) we conducted on Amazon Mechani-
cal Turk, an online platform widely used by academics as a quick and inexpensive 
means of collecting experimental data  (Mason and Suri 2012). Participants were 
recruited online, upon invitation to complete the survey with a compensation of 
USD $10 per user. Among other personal information (such as age and gender), par-
ticipants were asked to provide a rating defined on a 7-point Likert scale for two 
types of messages related to mood and mental health. In the MTurk I experiment, a 
traditional (balanced) randomised design was implemented with the aim of learning 
about arm effectiveness. Overall, T = 110 users have participated in the study, with 
T1 = 58 and T2 = 52 users receiving arm 1 (“Today is a new day to start fresh”) and 
arm 2 (“Let the past make you better, not bitter”), respectively. A summary of the 
ratings provided to each arm is reported in Fig. 1, which shows a small superiority 
of arm 1 (sample mean of �̂�1 = 5.81 vs �̂�2 = 5.08 ). Subsequent experiments have 
been conducted adaptively using TS, but, despite the rating outcome, they were all 
based on a conventional Normal model, therefore motivating this work.

Our contribution and related work The contribution of this paper is three-
fold. First, we introduce Multinomial Thompson sampling (Multinomial-TS), a 
TS version specifically designed for rating scale data. The existence of a conju-
gate prior–namely the Dirichlet distribution (Kotz et al. 2000)–for this exponen-
tial family, allows an easy implementation of the proposed algorithm through its 
closed-form posteriors. Second, guided by the empirical behaviour of Multino-
mial-TS in particular skewed distributions, we also introduce Multinomial-TS with 
augmented support, a variation of Multinomial-TS that, based on a simple trick 
on priors’ support, improves the ability of the algorithm to balance arms alloca-
tion when an optimal arm does not exist. Further investigations on how to bet-
ter calibrate uncertainty in such a scenario are conducted by studying the role of 
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the prior distribution. As we discuss in Sects. 3 and 4, these considerations offer 
a potential solution for mitigating the so-called incomplete learning phenome-
non (see e.g., Kalvit and Zeevi 2021), which refers to the inefficiency that many 
MAB algorithms, including TS, may have when exploring the arms. Finally, we 
evaluate the possibility of redesigning the motivating MTurk I experiment using 
the different Multinomial-TS variants and discuss their benefits and drawbacks. 
This paper is an extended version of the short paper presented at the 51st Scien-
tific Meeting of the Italian Statistical Society on June, 2022 (Deliu 2022).

It should be noted that a few other works have studied TS under a multinomial 
model (Agrawal et al. 2022; Riou and Honda 2020; Zhang et al. 2021); however, 
they all differ from our work in several aspects, including the problem of interest. 
Specifically, Zhang et al. (2021) and Agrawal et al. (2022) both study a selection 
problem, where a decision system is faced with one choice among a set of K arms 
(online products and radio codebooks, respectively). Although these K arms may 
be considered analogous to the number of points of a Likert scale, we emphasise 
that in our (rating scale) problem each arm is itself defined on a scale, and the 
scale has an ordered nature. Riou and Honda (2020) cover a more general frame-
work that can also suit our problem, but their work assumes bounded rewards in 
[0, 1]. Furthermore, it is worth noting that all of these works are primarily inter-
ested in regret analysis, performed under the assumption that there exists a unique 
optimal arm. No evaluations or considerations are made in scenarios with equal 
optimal arms, which represents a common scenario in many realistic applications, 
from image classification to personalised medicine (see e.g., Berry et al. 1997, for 
examples).

Fig. 1  Arm ratings distribution in the two-armed MTurk I experiment, defined on a 7-point Likert scale. 
A small superiority of arm 1 vs arm 2 is shown: sample means �̂�1 = 5.81 vs �̂�2 = 5.08 , sample variances 
�̂�1 = 1.04 vs �̂�2 = 1.72 , for an overall sample size N = 110
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Structure of the work The paper is organised as follows: in Sect. 2, we introduce 
the general adaptive K-armed experimental setup along with the TS algorithm. The 
proposed Multinomial-TS strategy is detailed in Sect. 2.1 and its empirical perfor-
mance is evaluated in Sect. 3. Section 4 is devoted to examining two potential strate-
gies for calibrating the incomplete learning phenomenon and mitigating uncertainty 
within Multinomial-TS: one based on considerations about the skewness of the dis-
tribution (Sect.  4.1) and another one based on the information carried out by the 
prior distribution (Sect. 4.2). The potential of applying the proposed Multinomial-TS 
variants for the MTurk I experiment is discussed in Sect. 5. Finally, Sect. 6 presents 
concluding remarks and some research directions for future work.

2  Problem setting and methods

Experimental setup Consider a general K-armed experiment defined over a finite 
horizon T, in which N participants are accrued in a fully-sequential way, with an 
experimental size N = T . At accrual, each participant t = 1,… , T is assigned to one 
of the K available arms At ∈ {1,… ,K} and subsequently an outcome Yt(At) associ-
ated with the assigned arm At is observed before the next round t + 1 . We assume that 
Yt(At), t = 1,… , T , does not depend on individual characteristics but only on arms, 
although our results may be generalised to a more general contextual MAB set-
ting  (Lattimore and Szepesvári 2020). The arms are drawn according to a policy 
�t ≐ {�t,k, k = 1,… ,K} , where �t,k is the allocation probability of arm k in the round 
t. Given the history of selected arms and associated rewards, say 
Ht ≐ {A� , Y�(A�), � = 1,… , t} , the goal is to find an (optimal) allocation policy so 
as to maximise the expected cumulative reward over the horizon T. Resembling this 
experimental setup, the MAB paradigm is framed on the efficient use of observations 
from previous rounds for estimating arm reward distributions and choosing which 
arm to select in the future. The most common measure of performance in MABs is 
the ability to maximise, under uncertainty on the best arm, the expected total reward 
�

�

∑T

t=1
Yt(At)

�

 , e.g., cumulative ratings provided by users over time. Equivalently, 
the goal is to minimise the so called expected total regret (more simply, total regret), 
i.e., how much we expect to regret in not knowing/selecting the optimal arm, when 
one exists. Formally, considering a stationary setting in which the mean reward asso-
ciated with each arm does not change over different rounds, i.e., 
�[Yt(At)] = �[Y(At)] = �At

 , and the optimal arm 
A∗
t
= A∗ ≐ argmax k∈A�(Y(At = k)) = argmax k∈A�k,∀t , we have

with �∗ = �A∗ = maxk∈A �k . Basically, regret is defined as the difference between 
the maximum possible reward attainable and the reward resulting from the arms 
selected over the horizon T.

(1)Total Regret = �

(

T
∑

t=1

Yt(A
∗)

)

− �

(

T
∑

t=1

Yt(At)

)

= T�∗ −

T
∑

t=1

�At
,
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In such a setting, outcomes can be considered independent draws from a fixed 
but unknown distribution with the following conditional mean:

where {�k, k = 1,… ,K} are the unknown arm parameters.
The focus of this work is on rating scale outcomes. Without loss of general-

ity, we consider a J-point Likert scale with Yt ∈ Y ≐ {1, 2,… , J} for t = 1,… , T  , 
where higher values translate into better outcomes. Given the specific rat-
ing scale setting, we consider a data generation process that occurs according 
to a multinomial distribution such that �k =

∑J

j=1
jpj,k for k = 1,… ,K , where 

pj,k = ℙ(Y(At = k) = j), j = 1,… , J, k = 1,… ,K are the unknown parameters 
defining the multinomial family. This will be discussed in more detail in Sect. 2.1.

Thompson sampling Rooted in a Bayesian framework, TS defines arm alloca-
tions in terms of their posterior probability of being associated with the maxi-
mum expected reward at each round t = 1,… , T  . In a K-armed setting, denoted 
by �TS

t,k
 the TS probability of allocating arm k at round t, this is given by:

with �t the posterior distribution of arm means, and Ωk the parameter space of �k,∀k

.
With a few exceptions (e.g., the Normal model), the exact computation of the 

quantity in Eq. (2) is not feasible. Thus, the typical way to implement TS (Russo 
et  al. 2018) involves drawing at each round t a sample from the posterior dis-
tribution of the parameters of each of the unknown arms, and then selecting 
the arm associated with the highest posterior estimated mean reward, say 
�̃�tk = �(Ỹt ∣ At = k) , that is,

 To guarantee computationally efficient posterior sampling, given the repeated 
implementation of the strategy for each round t, a conjugate family is generally con-
sidered, with the most common distributional assumptions for the reward variable 
being the Bernoulli and the Normal model (Russo et al. 2018).

The TS algorithm is recognised as an asymptotically optimal strategy (Agrawal 
and Goyal 2017), meaning that it matches the asymptotic lower bound of the 
regret metric in Eq. (1) for adaptive allocation schemes. We refer to Lai and Rob-
bins (1985) for the expression of the lower bound, which is beyond the scope of 
this paper.

�
(

Yt(At

)

∣ Ht−1) = �(Y ∣ At) =

K
∑

k=1

�k�(At = k),

(2)

�TS
t,k

= ℙ

(

𝔼
(

Yt(At = k)
) ≥ 𝔼

(

Yt(At = k�)
)

,∀k� ∣ Ht−1

)

= ℙ

(

�k ≥ �k� ,∀k
� ∣ Ht−1

)

= �Ω1×⋯×ΩK

𝕀[�k ≥ �k� ,∀k
�]

K
∏

k=1

�t(�k ∣ Ht−1)d�1 ×⋯ × d�K ,

(3)ãt ≐ argmaxk=1,…,K�(Ỹt ∣ At = k) = argmaxk=1,…,K �̃�tk.
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2.1  Proposal: multinomial Thompson sampling

The multinomial distribution is the extension of the binomial distribution for cate-
gorical outcomes with more than two response categories (Agresti 2019). Consider 
a fixed number of J mutually exclusive categories of an outcome Yt, t = 1,… , T  , 
among which, one and only one category is observed at each round t, i.e., 
∑J

j=1
�(Yt = j) = 1 , with 

∑T

t=1

∑J

j=1
�(Yt = j) = T  . Similarly to the binomial, the mul-

tinomial distribution models the probability of counts 
Xj =

∑T

t=1
�(Yt = j),∀j ∈ {1,… , J} , over T trials. Denoted by Multinom(T;p) , with 

T > 0 the number of trials and p = (p1,… , pJ) =
(

ℙ(Y = 1),… ,ℙ(Y = J)
)

 the 
unknown model parameters belonging to the standard simplex 
P

J = {p ∈ [0, 1]J ∶
∑J

i=1
pj = 1} , its probability mass function is given by

where xj = {0,… , T} , for all j = 1,… , J , and 
∑J

j=1
xj = T  . The expected num-

ber of times category j is observed over T trials is �(Xj) = Tpj , with variance 
� (Xj) = Tpj(1 − pj) and covariance ℂov(Xj,Xi) = −Tpjpj , for i ≠ j . Theorem  1 
bridges these properties of the multinomial family to the distribution of interest.

Theorem 1 Assuming a fixed number J of mutually exclusive ordinal and real val-
ued categories, and denoting with Yt, t = 1,… , T  , the category variable, this can be 
expressed as

with

The proof of Theorem 1 is based on noticing that in each single trial (consider, for 
simplicity, T = 1 ), Xj = {0, 1} , for all j = 1,… , J , with 

∑J

j=1
Xj = 1 . The expectation 

in Eq. (5) as well as the variance in Eq. (6) follow straightforwardly from operator 
properties and known results on the multinomial distribution (Agresti 2019).

We emphasise the key role of this result in light of the algorithm under study. 
Multinomial-TS is indeed implemented by using the result in Eq.  (5) to directly 
compute the posterior mean outcome, as required by the definition in Eq.  (2). 

(4)f (x1,… , xJ;T;p1,… , pJ) =

�

T!
∏J

j=1
xj!

�

J
�

j=1

p
xj

j
,

Yt =

J
∑

j=1

jXj, X ∼ Multinom(1;p), t = 1,… , T ,

(5)�t = �[Yt] =

J
∑

j=1

jpj,

(6)� (Yt) =

J
∑

j=1

j2pj(1 − pj) −
∑

i≠j
ijpipj.
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Posterior updates are based on the Dirichlet connection to multinomial-distribu-
tion counts. In fact, Eq.  (4) can also be expressed using the gamma function Γ , 
directly showing its similarity to the Dirichlet distribution, its conjugate prior. 
Given a parameter vector � = (�1,… , �J) , with 𝛼j > 0,∀j = 1,… , J , the Dirichlet 
distribution, denoted by Dir(�) , models our knowledge on the unknown param-
eters (p1,… , pJ) of the multinomial as:

where again p belongs to the standard J − 1 simplex �J = {p ∈ [0, 1]J :
∑J

i=1 pj = 1}.
We then iteratively update our beliefs about unknown parameters � based on 

the observed outcome Yt at each round t. Specifically, for t = 1,… , T  , the pos-
terior distribution of arms is defined by the vector � with elements �j ← �j + cj , 
∀j = 1,… , J , where cj = �(yt = j) indicates whether the category j was observed 
at time t. The update is made independently for each arm and changes occur only 
for the selected one. The pseudocode of Multinomial-TS is given in Algorithm 1.

3  Simulation studies

For our empirical evaluation, we start with a set of simulation studies based on 
the setup introduced in Sect.  2, with T = 1000 , J = 7 , and K = 2 . We consider 
four scenarios defined by the following data-generation processes.

(7)f (p1,… , pJ;�1,… , �J) =

�

Γ(
∑J

j=1
�j)

∏J

j=1
Γ(�j)

�

J
�

j=1

p
�j−1

j
,

Algorithm 1  Multinomial-TS 
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Scenario 1: Existence of a unique optimal arm ( H1 ∶ 𝜇1 > 𝜇2 ). In line with the 
MTurk I example in Fig. 1 ( �1 = 5.8 ; �2 = 5.08 ), we generate Yt, t = 1,… , T  as 

Scenario 2: Identical arms ( H0 ∶ p1 = p2)—symmetric distribution. Follow-
ing the normal approximation of the binomial distribution, we define pk so as to 
resemble a (symmetric) Normal distribution with parameters �k = 4 (to get sym-
metry over the 7 categories) and �2

k
= 1.7 (aligned with the MTurk I study), for 

k = 1, 2 . Specifically, we generate Yt, t = 1,… , T  as 

Scenario 3: Identical arms ( H0 ∶ p1 = p2)—right-skewed distribution. To obtain 
right-skewed data we consider �1 = �2 = 3 and generate Yt, t = 1,… , T  as 

Scenario 4: Identical arms ( H0 ∶ p1 = p2)—left-skewed distribution. To obtain 
left-skewed data we consider �1 = �2 = 5 and generate Yt, t = 1,… , T  as 

To disentangle the individual role of mean, variance, and skewness, we relax the null 
cases of identical arms H0 ∶ p1 = p2 . Specifically, an extended number of scenarios 
with different probability mass functions p1 ≠ p2 , but identical means �1 = �2 are 
sampled from the polytope of discrete distributions with mean m ∈ {1, 2,… , 7} . 
These results are reported in Appendix B.

We evaluate the proposed Multinomial-TS using a uniform prior over simplexes 
for each of the two arms, i.e., Dir(�k = 1) for k = 1, 2 . Its performance is then com-
pared with alternative modelling options that are part of the current common prac-
tice (see Sect. 1). More specifically, we consider:

• Normal-TS, assuming weakly-informative and identical priors 
N(�k = 4, �2

k
= 100), k = 1, 2 , in all scenarios. Posterior arm means are updated 

following the conjugacy of the Normal reward model, with unknown means and 
known variances. The variances are set according to the formulation reported in 
Eq. (6) for each scenario.

• Binary-TS with a cutoff yc = 6 , meaning that a success occurs when Yt ≥ 6 . Uni-
form and identical Beta(�k = 1, �k = 1), k = 1, 2 , priors are assumed in all sce-
narios. Posterior arm means are updated following the conjugacy of the Beta-
Bernoulli model, with the outcome variable following a Bernoulli distribution.

Yt ∣ (At = k) = [1,… , 7] × Xk, Xk ∼ Multinom(1;pk),

pk =

{

(0.00, 0.02, 0.02, 0.05, 0.21, 0.45, 0.24) k = 1,

(0.08, 0.06, 0.02, 0.06, 0.33, 0.27, 0.19) k = 2.

Yt ∣ (At = k) = [1,… , 7] × Xk, Xk ∼ Multinom(1;pk),

pk = (0.02, 0.09, 0.23, 0.31, 0.23, 0.09, 0.02) k = 1, 2.

Yt ∣ (At = k) = [1,… , 7] × Xk, Xk ∼ Multinom(1;pk),

pk = (0.2, 0.3, 0.15, 0.15, 0.1, 0.05, 0.05) k = 1, 2.

Yt ∣ (At = k) = [1,… , 7] × Xk, Xk ∼ Multinom(1;pk),

pk = (0.05, 0.05, 0.1, 0.15, 0.15, 0.3, 0.2) k = 1, 2.
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• Binary-TS with a cutoff yc = 7 , such that only the highest category j = 7 is con-
sidered a success. Uniform and identical Beta(�k = 1, �k = 1), k = 1, 2 , priors 
are assumed in all scenarios. Posterior arm means are updated following the con-
jugacy of the Beta-Bernoulli model, with the outcome variable following a Ber-
noulli distribution.

• An Oracle that is assumed to know the underlying truth, which always assigns 
the arm with the highest mean reward  (Besbes et  al. 2014) when this exists. 
Under identical arm scenarios, the Oracle allocates arms with equal probability.

Regret and Optimal Arm Allocation—Scenario 1 ( H1 ∶ 𝜇1 > 𝜇2 ) We evaluate 
standard bandit performances under a setting in which an optimal arm, defined as 
the one yielding the maximum outcome, exists and it is unique. Note that in a setting 
with equal arm distributions, thus equal arm means, regret becomes meaningless by 
definition as T�∗ −

∑T

t=1
�At

= 0 when �k = �∗ , for all k. Empirical results for this 
setting are shown in Fig. 2, highlighting the increased performance of the proposed 
Multinomial-TS over both Normal-TS and Binary-TS.

Notably, Binary-TS results to be highly sensitive to changes in the cutoff value 
yc , with greater values remarkably impacting regret and best-arm allocation. As a 
result, when the extreme category j = 7 is chosen as the cutoff value, Binary-TS 
focusses on discriminating between upper extreme values vs all other values (that 
is, Yt = 7 vs Yt < 7 ). The outcomes Yt < 7 are treated equally, although they contain 
important information on arms distributions.

Arms Allocation—Scenario 2 ( H0 ∶ p1 = p2 ; symmetric distribution) While 
in an identical arm setting with p1 = p2 regret is not of interest, it is instead 

Fig. 2  Regret and proportion of optimal arm allocation in the proposed Multinomial-TS vs Normal-
TS and Binary-TS. Values are obtained by averaging across 104 independent TS trajectories
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helpful to understand how an algorithm balances the allocation of one arm over 
the other one when no one should be exclusively preferred. Results in Fig. 3 show 
that, differently from the Oracle that in such a case would assign arms with equal 
probability (by definition), TS would continuously search for an optimal arm, 
with the aim, and often the result, of assigning it more often only by chance. This 
intrinsic characteristic is reflected in all modelling strategies and is exacerbated 
in the Normal case (see Fig. 3; top-right plot).

In fact, in the Normal case, the empirical allocation of arms does not only not 
concentrate (does not converge to a unique value), but its distribution closely 
resembles a uniform distribution in the probability interval [0, 1]. This behaviour 
results in heavily unbalanced allocations in favour of one of the two arms–eventu-
ally fixing on selecting only a single arm–even when no underlying differences 
between arms exist. We emphasise that this is a well-studied phenomenon in 
MAB problems, referred to as incomplete learning  (see e.g., Keskin and Zeevi 
2018) and occurring when parameter estimates fail to converge to the true value. 
The main reason is the insufficient exploration of the arms, although recent work 
has pointed to some consequences of the sequential nature of data collection (see 

Fig. 3  Empirical allocation ( T1∕T  , with T1 being the number of times arm 1 is allocated) under the iden-
tical arm case (Scenario 2). Values are obtained by averaging across 104 independent TS trajectories
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e.g., Villar et  al. 2015; Shin et  al. 2019; Deshpande et  al. 2018). As a result, 
when using standard statistical estimators, such as the sample mean, in adaptively 
collected data, unbiasness, consistency, and asymptotic normality are no longer 
guaranteed (Hadad et al. 2021), with negative impacts on hypothesis testing, that 
is, inflated type-I error and low power (Deliu et al. 2021).

Arms Allocation—Scenario 3 and Scenario 4 ( H0 ∶ p1 = p2 ; skewed distri-
bution) The skewness of the distribution and its direction can play a relevant role 
in the algorithm’s behaviour and its resulting performances. This is particularly 
true for Multinomial-TS, which shows a significant sensitivity to the shape of the 
distribution in terms of its ability to balance arms allocation under a null ( H0 ) 
scenario. Specifically, it can be observed that, in the case of positive skewness 
(Scenario 3; Fig. 4), the arm allocation seems to concentrate, although with high 
variability, around the ideal T1∕T = 1∕2 value, with T1 being the number of times 
the arm 1 is allocated. We recall that this is the result that we would observe 
under the Oracle in a two-arm setting. However, for negatively skewed distribu-
tions (Scenario 4; Fig. 4), an opposite trend occurs, highlighting the incomplete 
learning phenomenon more intensely.

In fact, when looking at the empirical probabilities of extreme arm allocations 
in Scenario 4, these have values ℙ

(

T1

T
> 0.95

)

= 8.7% and ℙ
(

T1

T
< 0.05

)

= 8.9% , 
which are substantial compared to the values < 0.5% characterising Scenario 3 
(see Table 1).

Additional results reported in Appendix  B support these findings and allow 
for a better understanding of the individual role of the standard deviation vs the 
skewness of the distribution. Specifically, the higher the variability of one arm 
compared to the other, the lower its empirical probability of being assigned an 
extreme number of times (this can be inferred from Table  2). Analogously, the 

Fig. 4  Empirical allocation ( T1∕T  , with T1 being the number of times arm 1 is allocated) under the iden-
tical arm case but with a non-symmetric distribution (Scenario 3: right-skewed distribution; Scenario 4: 
left-skewed distribution). Values are obtained by averaging across 104 independent TS trajectories
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higher the left skewness, the higher the chances of observing a large amount of 
extreme allocations.

Normal-TS and Binary-TS show similar patterns in these scenarios; however, 
the overall leaning is detrimental rather than ameliorable, particularly for Binary-
TS (we refer to Figs. 16 and 17 in Appendix C).

Motivated by this distinctive nature of Multinomial-TS, in Sect.  4.1 we discuss 
a simple trick that may be useful in enhancing the safety of online-data collection 
when using this algorithm.

4  Mitigating the incomplete learning problem via prior 
considerations

As discussed in Sect.  3, the incomplete learning phenomenon characterising TS 
reveals that, in a context with unknown parameters, full knowledge of the param-
eter values may be precluded in the long run, with only one parameter (i.e., the 
one of the “optimal” arm) being consistently estimated. Although this behaviour 
may be considered acceptable when one optimal arm truly exists, it is detrimental 
and misleading in opposite cases, that is, when all arms are identical. Therefore, a 
good strategy should consider certain adjustments so that some active experimenta-
tion (Antos et al. 2008) is used to generate additional information about the under-
sampled parameters. We now explore two directions to address this challenge and 
better calibrate the uncertainty with the proposed Multinomial-TS.

4.1  Multinomial‑TS with augmented prior support

As illustrated in Fig.  4 and Fig.  3, the more the reward distribution is positively 
skewed, the more Multinomial-TS is able to balance arm allocation under the null. 
This is depicted in: i) an allocation distribution with a peak at 1∕K = 1∕2 and; ii) 
a very low probability of allocating arms with a proportion T1∕T  equal to or close 

Table 1  Empirical probabilities (in percentage) of observing an arm allocation within a given range. Val-
ues are referred to Multinomial-TS and are obtained by averaging across 104 independent TS trials

Scenario 2 ( H0 ; sym-
metric) (%)

Scenario 3 ( H0 ; right-
skewed) (%)

Scenario 4 ( H0 ; 
left-skewed) (%)

ℙ

(

T1

T
< 0.05

)

1.1 0.2 8.9

ℙ

(

T1

T
< 0.1

)

5.2 2.3 15.4

ℙ

(

T1

T
∈ [0.45, 0.55]

)

11.6 14.6 8.0

ℙ

(

T1

T
∈ [0.4, 0.6]

)

23.6 28.6 15.8

ℙ

(

T1

T
> 0.9

)

5.3 2.5 15.3

ℙ

(

T1

T
> 0.95

)

1.2 0.3 8.7
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to the extremes 0 or 1. This is shown both in Fig. 4 (left plot) and Table 1, where 
ℙ(T1∕T < 0.05) = 0.02 (in Scenario 3).

On the other side, when the reward distribution is negatively skewed (Scenario 
4), arms allocation follow a U-shaped distribution (see Fig.  4-right plot), with 
peaks on the extremes, highlighting a relevant incomplete learning problem. In 
fact, in Scenario 4, we have that ℙ(T1∕T < 0.05) = 0.08 , which is greater that the 
0.05 probability occurring for a uniformly-distributed case. Such behaviour sug-
gests a high instability and sensitivity of the algorithm to relatively high values of 
the outcome variable with respect to its support.

Motivated by this particular behaviour of Multinomial-TS, we introduce a sim-
ple algorithm modification that alters the skewness of the prior and, in turn, the 
posterior distribution. Note that within TS, the underlying skewness of the reward 
distribution is reflected in the arm posterior distributions. For example, a Dir(�) 
with a parameter vector with identical elements (e.g., � = 1 ) indicates uniform-
ity, thus symmetry, over the support. We recall that the support of a Dirichlet 
{p1,… , pJ} , with pj ∈ [0, 1] for each j and 

∑J

j=1
pj = 1 , is the standard (J − 1)-sim-

plex specifying both the number of categories J and the set of their probability 
distributions. To induce some skewness in the distribution, it therefore suffices 
to increase the number of categories J, say from J to J + s , with s a nonnegative 
integer and �i ≠ �j , for i = J + 1,… , J + s , j = 1,… , J . We term s the support-
augmentation hyperparameter.

In the particular case of TS, where posteriors are iteratively updated as 
�j ← �j + cj , with cj = �(Yt = j) , the idea is to specify an augmented sup-
port of order (J − 1) + s for the Dir(�) prior. Given that Yt ∈ {1,… , J} for each 
t = 1,… , T  , it is guaranteed by its possible realisations that the Dirichlet posteri-
ors will be iteratively skewed to the right. In fact, ignoring for now the arm index, 
we have that:

as ℙ(Yt > J) = 0,∀t , thus cj = 0,∀j ∈ [J + 1, J + s].
We emphasise that, although such augmentation trick requires a change in 

the support of the prior distribution, involving thus a change in theoretical sup-
port of the reward model, the latter remains practically unaltered by virtue of 
ℙ(Yt > J) = 0,∀t . Also note that Multinomial-TS is a special case of this modified 
version-which we name Multinomial-TS with augmented support-when s = 0 . 
The pseudocode of the latter is provided in Algorithm 2.

The plausibility of our solution is supported by an existing theoretical result 
(see Theorem 2) for Binary-TS, which nonetheless represents a particular case of 
Multinomial-TS, when J = 2 and Yt ∈ {0, 1} , for all t.

Theorem 2 (Kalvit and Zeevi (2021)) In a two-armed model where both arms yield 
rewards distributed as Bernoulli(p), the following holds under TS as n → ∞ : 

�j + cj ≥ �j, j = 1,… , J,

�j + cj = �j, j = J + 1,… , J + s,
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 (I) If p = 0 , then T1
T
→

1

2
;

 (II) If p = 1 , then T1
T
→ Unif [0, 1].

We conjecture that a similar result to Theorem 2–Case (I) applies to Multinomial-
TS when the parameters are in the form �� = (1, 0… , 0),∀k . Notice that since our 
aim is to balance allocation under the null scenarios, the asymptotic limit in Case 
(I) represents our main interest. Specifically, in a K-armed setting with identical 
arms yielding rewards that follow a Multinom(p) distribution, with p = (1, 0… , 0) , 
we expect that, under Multinomial-TS, the allocation proportions will be such that 
Tk∕T → 1∕K as n → ∞ , for k = 1,… ,K . We support our conjecture with empirical 
evaluations for K = 2, 3, 4 , where Tk∕T  is expected to converge to 1/2, 1/3 and 1/4, 
respectively. We refer to Fig. 5 and point to additional simulation studies explored in 
Appendix B (in particular, Fig. 15 and Table 7).

In light of this result, the augmentation trick detailed in this section is explored 
in Fig. 6, where we show the distribution of arm allocations of the modified Multi-
nomial-TS for different values of the augmentation size s, including s = 0 . Empiri-
cal results are based on Scenario 4, representing the worst-case scenario in terms 
of arm allocation under the null. As expected, the higher the hyperparameter s, the 
higher the overall balance in the allocation of the two arms. For s = 20 , we already 
achieve more than satisfactory results, with ℙ(T1∕T ∈ [0.45, 0.55]) = 78% and 
ℙ(T1∕T < 0.1) = ℙ(T1∕T > 0.9) = 0% , highlighting the value of the augmented-
support solution to the incomplete learning phenomenon.

The computation cost in terms of running time of both Multinomial-TS and 
Multinomial-TS with augmented support is detailed in Appendix  D. As depicted 
in Fig. 19 and Table 8, when compared to a standard Multinomial-TS ( s = 0 ), the 
increasing (median) time complexity of Multinomial-TS with augmented support is 
negligible up to s = 5 (25.04 vs 26.79 milliseconds) and it is more than doubled for 

Fig. 5  Empirical allocation ( T1∕T  , with T1 being the number of times arm 1 is allocated) under 
H0 ∶ �� = ⋯ = �� , with �� = (1, 0… , 0) and k = 2, 3, 4 . Values refer to Multinomial-TS and are 
obtained by averaging across 104 independent TS trajectories
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s = 100 (25.04 vs 69.85 milliseconds). A similar trend is shown when J increases; 
notice that this is expected as J and s play the same role: they define the number 
of scale categories. Finally, the time complexity also increases with the number of 
arms K: in line with existing literature on TS (see e.g., Min et al. 2019), the run time 
is linear of order O(K) ; see also Fig. 20 in Appendix D.

4.2  Multinomial‑TS with more informative priors

Useful insights into the general sensitivity of the algorithm to the choice of priors 
has been evaluated in previous literature  (see e.g., Liu and Li 2016; Russo et  al. 
2018). Russo et al. (2018), for example, points out that ignoring any useful knowl-
edge from past experience may increase the time it takes for TS to identify the most 
effective arms. Therefore, a careful choice of the prior can improve learning per-
formance under H1 , or arm allocations under H0 . While the effects of the prior dis-
tribution should wash out as T → ∞ , they may be decisive at the beginning of the 
experiment, where TS reacts very sensitively to small variations in arm outcomes, 

Fig. 6  Empirical allocation ( T1∕T  , with T1 being the number of times arm 1 is allocated) under Scenario 
4: identical arm means with a left-skewed distribution. Values refer to Multinomial-TS with augmented 
support (see Algorithm 2) and are obtained by averaging across 104 independent TS trajectories



455

1 3

Multinomial Thompson sampling for rating scales and prior…

even if these are simply dictated by noise. Thus, selecting a prior that still maintains 
a certain uniformity on the plausible response categories but is less variable may be 
helpful for the problem at hand. This is well illustrated in Fig. 7, where an increase 
in the value �j , for j = 1,… , J , leads to a decreased variability in the empirical allo-
cation of the arms, with values concentrated mainly around 1∕K = 1∕2 . Note that, 
under uncertainty on the best arm, priors are chosen to be identical for both arms.

Fig. 7  Empirical allocation ( T1∕T  , with T1 being the number of times arm 1 is allocated) under Scenario 
2: identical arm means with symmetric distribution. Values refer to Multinomial-TS (see Algorithm 1) 
with different prior choices, and are obtained by averaging across 104 independent TS trajectories

Fig. 8  Trade-off between between optimal arm allocation under H1 (Scenario 1; y-axis) and arms balanc-
ing under H0 (Scenario 2; x-axis). Comparisons are quantified with the empirical probability of observ-
ing an empirical allocation in a given range. Values refer to Multinomial-TS (see Algorithm 1) with dif-
ferent prior choices, and are obtained by averaging across 104 independent TS trajectories
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Clearly, the higher the value of the hyperparameters �j , the greater the extent of 
prior information carried over by the algorithm and the slower its ability to adapt to 
each new observation. Therefore, while beneficial in null scenarios, a natural conse-
quence is a potential reduction in the overall reward efficiency under an alternative 
scenario, due to the higher weight assigned to the prior. To understand the overall 
benefit of using a more informative prior, we thus quantify the trade-off between 
optimal arm allocation under H1 and arms balancing under H0 . Fig. 8 compares the 
empirical probability of observing an allocation proportion close to 1/2 when the 
arms are identical ( H0 ; Scenario 2) and of the optimal arm in a setting where an 
optimal arm exists ( H1 ; Scenario 1). Note the analogy between the curve in Fig. 8 
and a ROC curve: here, the x- and y-axes may be interpreted in a similar fashion to 
sensitivity (true negative rate) and specificity (true positive rate), respectively. The 
ideal results are those lying in the right corner: both sensitivity and specificity close 
to 1.

As we can notice, the effect of the prior values is substantial under H0 , where the 
increasing values of �j are increasingly translated into a higher probability of having 
a more balanced allocation. However, under H1 the effect is less relevant: up to a 
value of � = 250 , the algorithm is still efficiently (with probability higher than 0.9) 
allocating the optimal arm in more than 90% of the times. Such a different behav-
iour of TS between H0 and H1 allows us to determine an optimal value of � that 
would achieve desirable guarantees in both scenarios. For example, with � = 250 , 
we achieve good regret performances, while also ensuring 80% confidence that a 
sufficiently balanced allocation in [0.4, 0.6] will be achieved under H0.

5  Redesigning the MTurk I experiment

In this section, we discuss the potential of redesigning the motivating MTurk I exper-
iment detailed in Sect. 1 (see Fig. 1) with an adaptive design guided by the proposed 
Multinomial-TS versions. We use a nonparametric simulation-based approach fol-
lowing a resampling strategy (bootstrapping; Efron and Tibshirani 1993) from the 
real data collected in the MTurk I experiment. More specifically, consider the set of 
T = 110 participants data split into two urns: Urn 1, with the T1 = 58 data points 
associated with arm 1 and Urn 2, with the T2 = 52 data points associated with arm 
2. Anytime arm 1 is selected by Multinomial-TS, a data point (rating) from Urn 1 is 
sampled with replacement and vice versa. The resampling approach is replicated a 
number of 10, 000 independent times, each based on a horizon of T = 110 as in the 
original MTurk I experiment.

A comparison between the actual arm allocations observed in the MTurk I exper-
iment and the expected allocation in a redesigned experiment with Multinomial-
TS and Multinomial-TS with augmented support is presented in Fig.  9. We focus 
on the proportion of allocation of the optimal arm (arm 1: “Today is a new day to 
start fresh”) over the horizon T. Compared to the balanced allocation of the original 
design, both Multinomial-TS variants show an increased allocation of arm 1, with 
86% and 83% participants assigned to it at the end of the experiment. However, if we 
evaluate the uncertainty of the two Multinomial-TS variants (assessed in terms of the 



457

1 3

Multinomial Thompson sampling for rating scales and prior…

[0.1, 0.9] percentile confidence intervals), we can notice a higher uncertainty in the 
standard version compared to the augmented-support one. This is particularly true at 
the beginning of the experiment (for T < 60 ), where the possibility of allocating the 
inferior arm 1 can be substantial. For example, at T = 30 , in 10% of the cases, the 
optimal arm 1 is allocated only 30% and 45% of the times with Multinomial-TS and 
Multinomial-TS with augmented support, respectively. For T > 60 , the benefits of 
the proposed strategies, particularly Multinomial-TS with augmented support, which 
shows reduced uncertainty, are relevant compared to the original study. Notice that, 
in light of the computational complexity assessments made in Appendix D, Multi-
nomial-TS with augmented support comes at a negligible running time cost: for an 
horizon T = 110 , we observe a median time (in milliseconds) of 9.91 ( s = 3 ) vs 9.70 
( s = 0 ) for a single run (see Table 8), translating into a median time (in minutes) of 
1.65 ( s = 3 ) vs 1.62 ( s = 0 ) for 10, 000 runs.

For reproducibility of the results, the R codes and data are made available at the 
following repository: https:// github. com/ nina- DL/ Multi nomia lTS.

6  Conclusion and future work

In this work, motivated by the MTurk I field experiment, we extended the appli-
cability of TS to rating scale data, introducing Multinomial-TS. We demonstrated 
that, in scenarios with a unique optimal arm, it can outperform the widely used 
TS variants with a Normal or a Bernoulli model, which results in being highly 
sensitive to the dichotomisation threshold. In scenarios with identical arm means, 
Multinomial-TS can offer a more balanced solution in terms of arm allocation, 
but its performance depends on the shape of the underlying reward distribution, 
more specifically on  its skewness. Motivated by this, we introduced an alterna-
tive variant on Multinomial-TS, called Multinomial-TS with augmented support, 

Fig. 9  Comparison between the actual allocation of optimal arm 1 ( T1∕T  ) observed within the MTurk 
I experiment and the expected allocation, with their uncertainty ([0.1, 0.9] percentile confidence inter-
vals; dotted lines), attainable with Multinomial-TS and Multinomial-TS with augmented support ( s = 3 ). 
Results are obtained by averaging across 104 TS trajectories

https://github.com/nina-DL/MultinomialTS
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which artificially injects skewness into the prior distribution, and thus the poste-
rior, through a support extension. Additionally, the role of an increased informa-
tive content provided by the Dirichlet prior to calibrating the arms uncertainty 
is discussed. Both approaches demonstrated substantial benefits in an identical 
arm means scenario, highlighting a potential solution for the incomplete learn-
ing problem in this setting. The impact of the prior informative content is further 
evaluated to quantify the trade-offs under an optimal arm scenario, demonstrat-
ing satisfactory results. By illustrating the sensitivity of the algorithm to different 
prior choices, this work also fills an important knowledge gap, often neglected 
within the bandit literature.

Further work is required to understand how the proposed versions would 
behave in a contextual MAB setting, especially when different user charac-
teristics are associated with different preferences. To this end, a future line of 
research may integrate tools from the literature on regression for categorical and 
ordinal data (Agresti 2019; Hedeker 2008; Tutz 2011) into MABs and adaptive 
experiments. Among the existing frameworks, it is worth mentioning the vast 
literature on mixture models that account for the uncertainty of the respond-
ents. These include the CUB (combination of uniform and shifted binomial) 
class  (see Piccolo and Simone 2019, and the related discussion and rejoinder, 
for a state-of-the-art survey), and other mixture model configurations that also 
factor in different response attitudes  (see e.g., Colombi et al. 2019). Questions 
about whether the assumption of stationarity is plausible in these contexts and to 
what extent it influences the decision-making within the experiment represent an 
additional challenge. Along this line, a flexible approach for incorporating time 
dependencies is given by hidden Markov models, recently explored in longitudi-
nal rating data with dynamic response styles (Colombi et al. 2023).

Algorithm 2  Multinomial-TS with Augmented Support
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Appendix A Pseudocode Algorithm 2

Appendix B Supportive Simulation Studies

This Appendix expands the scenarios evaluated in Sect.  3 to account for a wider 
number of possible settings that may occur in real practice. In particular, we relax 
the null scenarios of identical arms distribution (either symmetric, left- or right-
skewed cases) to account for cases where arms share the same mean but may have a 
different shape and a different variability, thus a different discrete distribution over 
the support categories j = 1,… , J . This represents, in fact, the typical null hypothe-
sis in many statistical and MAB problems (see e.g., Deliu et al. 2021). These cases 
are of the form: H0 ∶ �1 = �2 = m , for m ∈ {1, 2,… , J} and J = 7 , but p1 ≠ p2 . In 
all cases, different degrees of variability and skewness are considered. All different 
scenarios are illustrated in Figs. 10, 11, 12, 13 and 14 and the results, in terms of 
arm allocation, are reported in Tables 2, 3, 4, 5, 6 and 7. The values obtained are in 
line with the results depicted in Table 1. In particular, the role of standard deviation 
� and sample skewness g1  (Agresti 2019) is now more evident. For a given mean 
�1 = �2 = m ∈ {2, 3, 4, 5, 6} , when g1 = 0 , the higher the variability of one arm 
compared to the other, the lower its empirical probability of being assigned an 
extreme number of times (see, e.g., the last two rows of S1–S6 in Table 2). In terms 
of skewness, the higher the left skewness, the higher the chances of observing a 
large amount of extreme allocation (compare Table 2 to Tables 3 and 4). On the con-
trary, an increased right skewness (see Tables  5 and 6), translates into a reduced 
chance of extreme allocation, and therefore an increased balance in arm allocation. 
For example, considering the case � = 1 , we find that ℙ

(

T1

T
∈ [0.4, 0.6]

)

 goes from 
22.9% (scenario S6, with g1 = 0 and H0 ∶ �1 = �2 = 4 ; Table 2) to 29.5% (scenario 
R6, with g1 = 0.35 and H0 ∶ �1 = �2 = 3 ; Table 5) and 36.1% (scenario RR4, with 
g1 = 1.15 and H0 ∶ �1 = �2 = 2 ; Table 6). In cases with left skewness, this probabil-
ity decreases to 15.2% (scenario L6, with g1 = −0.38 and H0 ∶ �1 = �2 = 5 ; 
Table  3) and ultimately to 5.3% (scenario LL4, with g1 = −1.16 and 
H0 ∶ �1 = �2 = 6 ; Table 4).

Finally, when analysing the extreme cases, that is, H0 ∶ �1 = �2 = 1 and 
H0 ∶ �1 = �2 = 7 , which represent the most skewed scenarios in our experimen-
tal setup defined on J = 7 categories, we can notice an empirical convergence 
aligned with the previous results, also supporting the conjecture we made in 
Sect. 4.1 (Fig. 15).
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Table 2  Empirical probabilities (%) of observing an arm allocation within a given range in scenarios 
S1-S8 ( H0 ∶ �1 = �2 = 4 ). Values are averaged across 104 independent Multinomial-TS trials

S1 S2 S3 S4 S5 S6 S7 S8

� 2.8 2.5 2.0 1.7 1.4 1.0 1.5 2.0
g1 0.0 0.0 0.0 0.0 0.0 0.0 0.37 − 0.24

ℙ

(

T1

T
< 0.05

)

0.8% 0.8% 1.0% 0.7% 1.1% 0.8% 0.9% 0.8%

ℙ

(

T1

T
< 0.1

)

3.4% 4.1% 4.9% 4.1% 6.4% 4.4% 4.8% 3.8%

ℙ

(

T1

T
∈ [0.45, 0.55]

)

11.5% 11.6% 11.4% 11.5% 11.5% 11.5% 11.4% 11.8%

ℙ

(

T1

T
∈ [0.4, 0.6]

)

22.4% 22.9% 22.9% 22.7% 22.5% 22.9% 23.0% 23.1%

ℙ

(

T1

T
> 0.9

)

10.1% 9.3% 7.7% 8.2% 5.1% 4.7% 7.0% 7.8%

ℙ

(

T1

T
> 0.95

)

3.9% 3.5% 2.9% 2.5% 1.3% 0.7% 1.9% 2.6%

Table 3  Empirical probabilities (in percentage) of observing an arm allocation within a given range in 
scenarios L1–L6 ( H0 ∶ �1 = �2 = 5 ). Values are averaged across 104 independent Multinomial-TS trials

L1 L2 L3 L4 L5 L6

� 2.8 2.5 2.0 1.7 1.4 1.0
g1 − 0.75 − 0.70 − 0.67 − 0.59 − 0.50 − 0.38

ℙ

(

T1

T
< 0.05

)

5.7% 8.2% 8.7% 8.5% 9.5% 9.8%

ℙ

(

T1

T
< 0.1

)

10.3% 14.9% 14.8% 14.3% 16.5% 17.0%

ℙ

(

T1

T
∈ [0.45, 0.55]

)

8.4% 8.1% 7.6% 8.1% 7.8% 7.8%

ℙ

(

T1

T
∈ [0.4, 0.6]

)

16.9% 16.1% 15.7% 16.1% 15.4% 15.2%

ℙ

(

T1

T
> 0.9

)

18.1% 14.4% 15.9% 16.3% 14.1% 14.4%

ℙ

(

T1

T
> 0.95

)

10.5% 8.7% 9.6% 9.2% 8.3% 7.7%

Table 4  Empirical probabilities (in percentage) of observing an arm allocation within a given range in 
scenarios LL1–LL6 (mean = 6). Values are averaged across 104 independent Multinomial-TS trials

LL1 LL2 LL3 LL4 LL5 LL6

� 2.2 1.8 1.3 1.0 0.9 0.8
g1 − 1.87 − 1.78 − 1.52 − 1.16 − 0.99 − 0.81

ℙ

(

T1

T
< 0.05

)

27.2% 28.0% 33.4 % 31.5 % 32.5 % 33.8%

ℙ

(

T1

T
< 0.1

)

32.7% 32.9 % 39.4 % 37.2 % 38.5 % 40.0%

ℙ

(

T1

T
∈ [0.45, 0.55]

)

4.3 % 4.1 % 3.1 % 2.7 % 2.6 % 2.4%

ℙ

(

T1

T
∈ [0.4, 0.6]

)

8.5 % 8.1 % 6.5 % 5.3 % 5.7 % 5.1 %

ℙ

(

T1

T
> 0.9

)

28.0 % 29.8 % 29.1 % 32.6 % 31.6 % 31.0 %

ℙ

(

T1

T
> 0.95

)

23.3 % 25.2 % 25.3 % 28.7 % 27.9 % 27.6%
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Table 5  Empirical probabilities (in percentage) of observing an arm allocation within a given range in 
scenarios R1–R6 ( H0 ∶ �1 = �2 = 3 ). Values are averaged across 104 independent Multinomial-TS trials

R1 R2 R3 R4 R5 R6

� 2.8 2.5 2.0 1.7 1.4 1.0
g1 0.75 0.73 0.66 0.60 0.47 0.35

ℙ

(

T1

T
< 0.05

)

0.2% 0.3% 0.2% 0.1% 0.2% 0.3%

ℙ

(

T1

T
< 0.1

)

1.7% 2.1 % 1.4% 1.1% 2.0% 3.1%

ℙ

(

T1

T
∈ [0.45, 0.55]

)

14.0% 13.4% 13.5% 12.2% 14.7% 15.3%

ℙ

(

T1

T
∈ [0.4, 0.6]

)

26.9% 26.9% 26.7% 25.0% 29.0% 29.5%

ℙ

(

T1

T
> 0.9

)

6.2% 5.0% 5.1% 4.6% 2.2% 0.5%

ℙ

(

T1

T
> 0.95

)

1.4 % 1.0 % 0.8 % 0.5 % 0.2% 0.0%

Table 6  Empirical probabilities (in percentage) of observing an arm allocation within a given range in 
scenarios RR1–RR6 ( H0 ∶ �1 = �2 = 2 ). Values are averaged across 104 independent Multinomial-TS tri-
als

RR1 RR2 RR3 RR4 RR5 RR6

� 2.2 1.8 1.3 1.0 0.9 0.8
g1 1.79 1.76 1.47 1.15 1.00 0.80

ℙ

(

T1

T
< 0.05

)

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

ℙ

(

T1

T
< 0.1

)

0.9 % 0.8 % 0.5 % 0.6 % 1.0 % 0.7 %

ℙ

(

T1

T
∈ [0.45, 0.55]

)

15.4 % 16.6 % 17.2 % 18.6 % 18.5 % 18.7 %

ℙ

(

T1

T
∈ [0.4, 0.6]

)

30.4 % 32.9 % 34.1% 36.1 % 35.2 % 36.3%

ℙ

(

T1

T
> 0.9

)

0.9 % 0.6 % 0.2 % 0.1 % 0.0 % 0.0 %

ℙ

(

T1

T
> 0.95

)

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Table 7  Empirical probabilities 
(in percentage) of observing 
an arm allocation within a 
given range in scenarios LE 
( H0 ∶ �1 = �2 = 1 ) and RE 
( H0 ∶ �1 = �2 = 7 ). Values are 
averaged across 104 independent 
Multinomial-TS trials

LE (%) RE (%)

ℙ

(

T1

T
< 0.05

)

49.1 0.0

ℙ

(

T1

T
< 0.1

)

49.9 0.0

ℙ

(

T1

T
∈ [0.45, 0.55]

)

0.0 100

ℙ

(

T1

T
∈ [0.4, 0.6]

)

0.1 100 

ℙ

(

T1

T
> 0.9

)

49.3 0.0

ℙ

(

T1

T
> 0.95

)

48.3 0.0
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S8: p1 vs. p2 = (0.1667, 0.1333, 0.1000, 0.1000, 0.2000, 0.2333, 0.0667)

Fig. 10  Scenarios S1-S8 with H0 ∶ �1 = �2 = 4 (equal arm means but different distribution)
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Fig. 11  Scenarios L1-L6 with H0 ∶ �1 = �2 = 5 (equal arm means but different distribution)
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Fig. 12  Scenarios LL1-LL6 with H0 ∶ �1 = �2 = 6 (equal arm means but different distribution)
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Fig. 13  Scenarios R1-R6 with H0 ∶ �1 = �2 = 3 (equal arm means but different distribution)
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Fig. 14  Scenarios RR1-RR6 with H0 ∶ �1 = �2 = 2 (equal arm means but different distribution)
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Fig. 15  Empirical allocation of arm 1 ( T1∕T  ) under scenarios LE ( H0 ∶ �1 = �2 = 7 ) and RE 
( H0 ∶ �1 = �2 = 1 ). Values are averaged across 104 independent Multinomial-TS trials
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Fig. 16  Empirical allocation ( T1∕T  ) under the identical arm case with a right skewed distribution (Sce-
nario 3). Values are obtained by averaging across 104 independent TS trajectories
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Fig. 17  Empirical allocation ( T1∕T  ) under the identical arm case with a left skewed distribution (Sce-
nario 4). Values are obtained by averaging across 104 independent TS trajectories
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Appendix C Supportive Plots

The following two plots support the statements in Sect. 3 comparing Multinomial-
TS with Binary-TS and Normal-TS in Scenario 3 and Scenario 4 (skewed distribu-
tions) (see Figs. 16, 17).  

Table 8  (b) Summary of running times (based on 100 replicas) wrt the hyperparameter s and the horizon 
T. The setting is the same as in Fig. 19

Support aug-
mentation

Min First quartile Mean Median Third quartile Max

T = 1000

s = 0 22.73 24.00 28.25 25.04 27.71 49.69
s = 1 23.30 24.53 29.03 25.14 27.65 71.59
s = 3 23.79 25.28 32.65 26.38 34.53 209.76
s = 5 23.93 25.42 30.43 26.79 29.79 76.59
s = 10 27.38 29.10 36.31 30.17 34.86 267.92
s = 20 30.09 32.08 41.36 33.78 42.93 340.70
s = 50 39.39 41.90 53.13 44.61 59.08 235.47
s = 100 54.15 59.16 72.10 69.85 80.41 208.43
T = 110

s = 0 8.12 9.27 10.24 9.70 10.50 22.83
s = 3 8.73 9.41 10.98 9.91 10.92 24.44

J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10

20
30

40
50

60
70

80

Number of categories J

T
im

e 
[m

ill
is

ec
on

ds
]

Fig. 18  (a) Boxplots of running times (based on 100 replicas) wrt the number of categories J. We focus 
on a two-armed setting under Scenario H0 ∶ p1 = p2 = (1, 0,… , 0

⏟⏟⏟
J−1

) and let J vary in the set {3, 4,… , 10}
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Appendix D Computation Times

Here, we report the computation cost in terms of the running times (unit: milli-
seconds) of Multinomial-TS. Details vary according to: 

(a) The number of categories J – see Fig. 18;
(b) The support augmentation hyperparameter s – see Fig. 19 and Table 8;
(c) The number of arms K – see Fig. 20.

The results in (a) and (c) refer to Multinomial-TS and times are reported for a 
single run over an horizon T = 1000 . The results in (b) relate to Multinomial-TS 
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Fig. 19  (b) Boxplots of running times (based on 100 replicas) wrt the hyperparameter s. We focus on a 
two-armed setting with J = 7 categories under a Scenario H0 ∶ p1 = p2 = (1, 0, 0, 0, 0, 0, 0, 0,… , 0

⏟⏟⏟
s

) and 

let s vary in the set {0, 1, 3, 5, 10, 20, 50, 100}
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Fig. 20  (c) Boxplots of running times (based on 100 replicas) wrt the number of arms K. We focus on a 
setting with J = 7 categories under Scenario H0 ∶ p

k
= (1, 0, 0, 0, 0, 0, 0) , for k = 1, 2,… ,K , and let K 

vary in the set {2, 3, 4, 5, 6, 7, 8, 9, 10}
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with augmented support and times are computed for both T = 1000 as above and 
T = 110 (reflecting the MTurk I example in Sect. 1).

All analyses were performed on a Darwin (macOS) Kernel Version 22.5.0; 
root:xnu-8796.121.3-7/RELEASE_X86_64. We used the microbenchmark() 
package in R version 4.2.0 (2022-04-22).
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