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Abstract
We give a complete characterisation of the parity of b8(n), the number of 8-regular
partitions of n. Namely, we prove that b8(n) is odd precisely when 24n + 7 has the
form p4a+1m2 with p prime and p � m.
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1 Introduction

Partition functions are verynatural and elementary objects, beingdefined as the number
of ways we can decompose a non-negative integer as the sum of positive integers, pos-
sibly with some constraints. A partition of n is a nonincreasing sequence (λ1, . . . , λs)

of positive integers, possibly empty, such that λ1 + · · · + λs = n. A partition is called
�-regular if no λ j is divisible by �, and we denote the number of �-regular partitions
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of n by b�(n). The generating functions of many partition functions have connections
to the theory of modular forms, and in particular to the Dedekind eta-function η(z)
(see Sect. 2). For example, if p is prime the generating function of bp j (n) is congruent
modulo p to a power of η(z) (see Lemma 2.1).

In [10], Serre proved that if r is an even positive integer, then ηr (z) is lacu-
nary, i.e. the density of the nonzero Fourier coefficients is zero, if and only if
r ∈ {2, 4, 6, 8, 10, 14, 26}. All but one of the cases where Lemma 2.1 furnishes a
relation between the arithmetic of bp j (n) modulo p and an even lacunary power of
η(z) have appeared in the literature (see, for example, [1, 4, 7, 8]). The main result of
our paper addresses the remaining case.

Theorem 1.1 Let n be a positive integer and let b8(n) denote the number of 8-regular
partitions of n. Then b8(n) is odd if and only if

24n + 7 = p4a+1m2 (1)

for some prime p and integers m > 0, a ≥ 0 such that p � m.

Curiously, the factorisation (1) also appears in [2, Theorem 1.4 (1)], which charac-
terises the behaviour modulo 4 of certain overpartition functions (we are not aware of
a direct connection between these overpartitions and 8-regular partitions). The parity
of b8(n) was previously known only for n restricted to certain arithmetic progressions
(see [3, Theorem 3.19]).

The paper is organised as follows: in Sect. 2, we recall some well-known results
about modular forms and describe the main tool in our argument (Lemma 2.1). In
Sect. 3, we characterise the parity of b8(n).

2 Preliminaries

It is well known that

∞∏

n=1

(1 − qn)−1 =
∞∑

n=0

p(n)qn,

where p(n) is the number of partitions of n. We begin by establishing a connection
between �-regular partition functions and powers of the Dedekind eta-function

η(z) = q
1
24

∞∏

m=1

(1 − qm),

where q = e2π i z and Im(z) > 0.
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Lemma 2.1 Let p be a prime and let r and s be positive integers such that r = (p j−1)s
for some j ≥ 1. Then

( ∞∑

n=0

bp j (n)qn+ p j−1
24

)s

≡ η(z)r (mod p).

Proof We begin by noting that

∞∏

m=1

(
1 − q p jm

1 − qm

)
=

∞∑

n=0

bp j (n)qn .

Moreover, we have the congruence

(1 − qm)r = (1 − qm)r+s

(1 − qm)s
≡ (1 − q p jm)s

(1 − qm)s
(mod p).

Combining these yields

ηr (z) = q
r
24

∞∏

m=1

(1 − qm)r ≡
( ∞∑

n=0

bp j (n)qn+ r
24s

)s

(mod p)

and our result follows.

Note that when (r , s) = (14, 2), Lemma 2.1 yields

η14(z) ≡
( ∞∑

n=0

b8(n)qn+ 7
24

)2

≡
∞∑

n=0

b8(n)q2n+ 7
12 (mod 2). (2)

For r ∈ {2, 4, 6, 8, 10, 14, 26}, Serre [10] proved that ηr can be written as a linear
combination of modular forms with complex multiplication (CM) associated to Hecke
characters on Q(

√−1) or Q(
√−3) (for the definition of modular forms with CM and

their relations with Hecke characters, see [9, Sect. 3]). More precisely, ηr is a scalar
multiple of a CM form when r ∈ {2, 4, 6, 8}, and a linear combinations of two or four
forms when r ∈ {10, 14} or r = 26, respectively.

We end this section by recalling properties of the Fourier coefficients of a Hecke
eigenform. Let N and k be positive integers. We denote by Sk(N , χ) the C-vector
space of cusp forms of weight k that are invariant under the action of Γ1(N ) and
on which Γ0(N ) acts via the Dirichlet character χ modulo N (for more details see
for instance [5, Sect. 4.3, p. 119]). Let f ∈ Sk(N , χ) be a normalised eigenform with
q-expansion

f (z) =
∞∑

n=1

a(n)qn .
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The Fourier coefficients a(n) are multiplicative, i.e.

a(nm) = a(n)a(m) (3)

when gcd(n,m) = 1, and we have the recursion

a(p j ) = a(p)a(p j−1) − χ(p)pk−1a(p j−2)

for p prime and j ≥ 2 (see for instance [5, Proposition 5.8.5]). It follows that for all
j ≥ 2, we have

a(p j ) =
� j/2�∑

r=0

(−1)r
(
j − r

r

)
χ(p)r p(k−1)r a(p) j−2r . (4)

3 Parity of the 8-regular partition function

In this section, we prove Theorem 1.1. Let χ be the Dirichlet character given by

χ(n) =
{

(−1)(n−1)/2 if gcd(n, 6) = 1,

0 otherwise.

Let ϕK ,c± ∈ S7(144, χ) be the normalised eigenforms associated to the Hecke char-
acters c± on K = Q(

√−3) of conductor f = 4
√−3OK and defined as follows. Let a

be an ideal in OK = Z
[
1+√−3

2

]
coprime to f and let α = x + y

√−3 (x, y ∈ Z) be

the unique generator of a with x ≡ 1 (mod 3) ≡ 1 (mod 4)). Letting

c±(a) = (−1)(x∓y−1)/2α6,

we have

ϕK ,c±(z) =
∑

a

c±(a)qNorm(a) =
∞∑

n=1

a±(n)qn, (5)

where in the first sum a runs over the nonzero ideals of OK coprime to f (the Galois
orbit {ϕK ,c+ , ϕK ,c−} is listed with label 144.7.g.d on [6]). By [10, Sect. 2.6], we have

η14(12z)= q7 − 14q19 + 77q31 − · · · = 1

720
√−3

(ϕK ,c+(z) − ϕK ,c−(z)). (6)

Next, by (2), we have

η14(12z) ≡
∞∑

n=0

b8(n)q24n+7 (mod 2).
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It follows that

b8(n) ≡ a+(24n + 7) − a−(24n + 7)

720
√−3

(mod 2). (7)

Lemma 3.1 Let p be a prime such that p ≡ 5 or 11 (mod 12). Then

{
a+(p j ) = a−(p j ) ≡ 1 (mod 2) if j is even,

a+(p j ) = a−(p j ) = 0 if j is odd.

Proof Since p ≡ 2 (mod 3), p is inert in OK . This implies that OK has no ideal of
norm p j if j is odd, while if j is even, there is a unique ideal p j/2OK of norm p j .
Our result follows.

Lemma 3.2 Let p be a prime such that p ≡ 1 (mod 12). Then

a+(p j ) = a−(p j ) ≡

⎧
⎪⎨

⎪⎩

(−1) j/2 (mod 4) if j is even,

2 (mod 4) if j ≡ 1 (mod 4),

0 (mod 4) if j ≡ 3 (mod 4).

Proof Write p = z2 + 3w2 with z, w ∈ Z and z ≡ 1 (mod 3). Since z2 + 3w2 ≡ 1
(mod 4), we have that z is odd and w is even. This implies that z + w ≡ z − w

(mod 4), and hence (−1)(z+w−1)/2 = (−1)(z−w−1)/2. It follows from this and (4) that
a+(p j ) = a−(p j ) for all j ≥ 1. Next, since (z ± w

√−3) are the ideals ofOK above
p, by (5), we have

a±(p) = (−1)(z+w−1)/2(2z6 − 90z4w2 + 270z2w4 − 54w6) ≡ 2 (mod 4).

Combining this with (4), we find

a±(p j ) ≡
� j/2�∑

r=0

(−1)r
(
j − r

r

)
2 j−2r (mod 4)

from which our lemma follows.

Lemma 3.3 Let p be a prime such that p ≡ 7 (mod 12). If j is even, then

a+(p j ) = a−(p j ) ≡
{
9 (mod 16) if p ≡ 19 (mod 24) and j ≡ 2 (mod 4),

1 (mod 16) otherwise.

If j is odd, then

a+(p j ) = −a−(p j ) = t
√−3
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with

t ≡
{
8 (mod 16) if p ≡ 7 (mod 24) and j ≡ 1 (mod 4),

0 (mod 16) otherwise.

Proof Write p = z2 + 3w2 with z even, w odd and z ≡ 1 (mod 3). Replacing w

with −w if necessary, we may ensure that z + w ≡ 1 (mod 4) and hence z − w ≡ 3
(mod 4). Then by (5), we have

a+(p) = −(z + w
√−3)6 + (z − w

√−3)6 = −a−(p)

which implies

a+(p)√−3
= −12z5w + 120z3w3 − 108zw5 ≡ −108zw5 ≡ 4z (mod 16).

If j is odd, by (4), we obtain a+(p j ) = −a−(p j ) and

a+(p j )√−3
= 1√−3

j−1
2∑

r=0

(
j − r

r

)
p6r a+(p) j−2r ≡ 2z( j + 1)p3( j−1) (mod 16).

If j is even, by (4), we have a+(p j ) = a−(p j ) and

a+(p j ) =
j/2∑

r=0

(
j − r

r

)
p6r a+(p) j−2r ≡ p3 j (mod 16).

The result follows by noting that z ≡ 0 (mod 4) if and only if p ≡ 19 (mod 24).

Proof of Theorem 1.1 Write 24n + 7 = ∏
p pαp . Then, by (3), we have

a±(24n + 7) =
∏

p

a±(pαp ). (8)

By Lemmas 3.1, 3.2, 3.3, we find that a+(p j ) = a−(p j ) if p 
≡ 7 (mod 12) or if
p ≡ 7 (mod 12) and j is even, while a+(p j ) = −a−(p j ) if p ≡ 7 (mod 12) and j
is odd. Therefore, we can write

a+(24n + 7) − a−(24n + 7) = (1 − (−1)γ )
∏

p

a+(pαp ), (9)

where

γ =
∑

p≡7(12)
αp odd

1.
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If γ is even, it follows from (7) that b8(n) is even. Assume from now onwards that
γ is odd. By Lemma 3.3, for each prime p ≡ 7 (mod 12) with αp odd, we have
a+(pαp ) = t

√−3 with 8 | t . It follows that if γ ≥ 3, then

a+(24n + 7) − a−(24n + 7)√−3
≡ 0 (mod 1024) (10)

and b8(n) is even by (7).
Finally, assume γ = 1 and denote by p′ the prime divisor of 24n + 7 with p′ ≡ 7

(mod 12) and αp′ odd. Then 1 − (−1)γ = 2 and by Lemma 3.3, we deduce that
a+(24n+7)−a−(24n+7)√−3

≡ 0 (mod 32) if p′ ≡ 19 (mod 24) or if p′ ≡ 7 (mod 24) and

αp′ ≡ 3 (mod 4). If p′ ≡ 7 (mod 24) and αp′ ≡ 1 (mod 4), then by Lemma 3.3,
we have

a+(24n + 7) − a−(24n + 7)√−3
≡ 16

∏

p 
=p′
a+(pαp ) (mod 32). (11)

We observe that, by Lemmas 3.1, 3.2, 3.3, the product in (11) is even if and only if
there is a prime p 
= p′ with αp odd. This concludes the proof of the theorem by (7).
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