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Abstract
Monocular depth estimation (MDE) has shown impressive performance recently, even in zero-shot or few-shot scenarios. In 
this paper, we consider the use of MDE on board low-altitude drone flights, which is required in a number of safety-critical 
and monitoring operations. In particular, we evaluate a state-of-the-art vision transformer (ViT) variant, pre-trained on a 
massive MDE dataset. We test it both in a zero-shot scenario and after fine-tuning on a dataset of flight records, and compare 
its performance to that of a classical fully convolutional network. In addition, we evaluate for the first time whether these 
models are susceptible to adversarial attacks, by optimizing a small adversarial patch that generalizes across scenarios. We 
investigate several variants of losses for this task, including weighted error losses in which we can customize the design of 
the patch to selectively decrease the performance of the model on a desired depth range. Overall, our results highlight that 
(a) ViTs can outperform convolutive models in this context after a proper fine-tuning, and (b) they appear to be more robust 
to adversarial attacks designed in the form of patches, which is a crucial property for this family of tasks.
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1 Introduction

Given an RGB monocular image, monocular depth estima-
tion (MDE) is the task of estimating the distance of each 
pixel of that image from the camera. We often refer to this 
distance as depth of the pixel and to the output of an MDE 
model as a depth map. The depth prediction task has tra-
ditionally been solved by leveraging deep convolutional 
neural networks (CNNs), both in a supervised [1–3] and 
self-supervised [4, 5] fashion. Popular datasets for this task 

are NYU-v2 [6] and KITTI [7], containing mainly indoor 
images, and Make3D [8] and Mid-Air [9], containing mainly 
outdoor images. Recently, large meta-datasets for self-super-
vised MDE learning have also been proposed by combining 
appropriately different datasets [10].

MDE finds application in a number of different use cases, 
ranging from autonomous vehicles and robotic systems to 
3D architectural modeling and terrestrial surveys. Further-
more, it turns out to be of key importance to the flight of 
unmanned aerial vehicles (UAVs) [11–13], which often 
can only rely on a single front camera as the main sensing 
device [11]. Such cameras are used not only for collision 
avoidance—as the primary task—but also for other outdoor 
tasks such as object detection, 3D reconstruction and digi-
tal terrain model (DTM) generation [12]. As such, efficient 
depth estimation and drone flight has become essential in 
several industrial applications, including visual navigation 
in industrial platforms [14], aerial surveillance and safety 
[15], and aerial object detection and crowd counting [4]. 
Unfortunately, due to cost and design constraints, it is often 
impractical to equip UAVs with devices modern enough, 
able to directly provide in-depth maps. Installed cameras 
cannot sense distances, which is crucial to a large number 
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of tasks, hence the need for estimating depth of objects from 
a single monocular camera.

Recent advances in the field of image processing [16] 
have paved the way to brand-new approaches to MDE, that 
make use of the vision transformer (ViT) architecture instead 
of plain CNNs to estimate the depth of a single pixel. Dif-
ferently from a CNN, a ViT model makes use of multi-head 
attention (MHA) layers as its core component. In particular, 
in a ViT layer the original image is decomposed into a series 
of non-overlapping patches, and each block of the model 
alternates between in-patch operations and between-patch 
operations via the MHA mechanism, with the benefit of pro-
viding global receptive fields at every layer of the network 
thanks to the cross-attention mechanism. Due to this and 
to their scalability to ever-larger datasets, ViT are quickly 
becoming the state-of-the-art in computer vision when pre-
trained on sufficiently diverse datasets [16], and they have 
been exploited successfully also for dense prediction tasks 
such as MDE.

A prominent example in this category is the dense predic-
tion transformer (DPT) [17], an architecture which yields 
substantial improvements on dense prediction tasks. Just 
like other transformer-based architectures, it delivers opti-
mal results especially when a large amount of training data is 
available, and can be fine-tuned on smaller datasets after an 
initial training. DPT is of particular interest for monocular 
depth estimation due to its strong pre-training stage executed 
on a dataset significantly larger than the previous state-of-
the-art [17], that allows to obtain high zero-shot perfor-
mance on smaller benchmarks. However, most of the results 
obtained up-to-now [17] refer to classical indoor datasets 
or outdoor datasets obtained by leveraging ground cameras 
(e.g., mounted on top of a moving car). In this paper, we 
evaluate instead whether ViT-based architectures for MDE 
can benefit also flight drone scenarios, by fine-tuning DPT 
on the Mid-Air dataset [9], a multi-purpose synthetic data-
set for low-altitude drone flights, achieving state-of-the-art 
performances after the fine-tuning.

In a further analysis, we assess for the first time whether 
such transformer-based models for dense prediction are 
susceptible to adversarial attacks, which are already known 
to affect CNNs. Several works [18–20] bring evidence that 
CNN-based models are vulnerable to adversarial examples 
attacks can alter significantly the output of the model. Adver-
sarial attacks can be obtained in two different ways: either 
as small perturbations added to each input image, in some 
cases not even visible to the human eye [18]; or in the form 
of more visible patches of various size and shape, that can 
be applied to several images at different locations, affecting 
the output of a model in a near-universal fashion [21]. An 
example of the latter case is found in [22], where the authors 
perform an attack against an image classifier, training and 
obtaining a small patch, which can then be placed anywhere 

within the field of view of the classifier, and causes the clas-
sifier to output a targeted class. An attack akin to this one, 
but targeting a convolutional model which performs MDE, is 
described in [23]. In general, a number of analogous attacks, 
coming in different flavors, are described in the literature. 
However, the impact of such patch-based attacks on trans-
formers has not yet been extensively researched and remains 
mainly unexplored.

1.1  Contributions of this work

We provide two major contributions in this paper. First, we 
validate that fine-tuning DPT models can provide state-of-
the-art performance in depth estimation from a drone flight, 
reaching or surpassing the accuracy of video models but 
starting from a single static frame. Second, we probe the 
hypothesis, rather widespread in the literature, that vision 
transformers are less vulnerable to adversarial attacks with 
respect to CNN-based models. To this end, we conduct a 
series of experiments, devising patch attacks against DPT 
and CNNs for depth estimation. Our results suggest that such 
attacks are still possible against DPT, yet less effective than 
against CNNs. We show that adversarial patches, trained in 
the same fashion against DPT and CNNs for MDE, yield 
higher error rates on the latter. Together, the combination 
of these two results point to the fact that ViT-based models 
such as the DPT are vastly superior to convolutional archi-
tectures, both in terms of accuracy and robustness, when 
considering UAVs and general flight scenarios.

1.2  Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we 
provide a brief overview of related works, concerning adver-
sarial attacks for dense targets, and neural architectures for 
MDE. Next, in Sect. 3, we describe the DPT architecture, 
the Mid-Air dataset, and the design of our patch adversarial 
attack. We provide extensive experimental results in Sect. 4, 
before concluding and highlighting possible future works 
in Sect. 5.

2  Related works

2.1  Adversarial attacks for structured targets

In this section we focus on adversarial attacks and defenses 
for structured computer vision targets, i.e., object detection, 
semantic segmentation, and depth estimation. For a broader 
overview of the field, we refer the reader to a number of 
comprehensive surveys, including [24–26].

Despite several works which first explored the possibility 
of fooling a classifier applied to spam detection [27–29], the 
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renewed interest for adversarial attacks dates back to [30], 
where Szegedy et al. showed that CNNs for classification 
could be attacked by applying perturbations to input images 
and thus fooled into a misclassification. Over the past years, 
since this weakness was discovered, a wide range of different 
attacks have been introduced in the literature, targeting deep 
networks designed not only for classification, but also for 
object detection [31–34], and semantic segmentation [35].

Adversarial attacks are usually performed by comput-
ing an additive perturbation to the input image, obtained 
by solving a problem of loss maximization [24]. The result-
ing perturbed images can fool deep learning models into 
performing wrong predictions, even with a high level of 
accuracy, and in some cases can even be ‘universal’ [36], 
meaning they are able to fool a network on any image and 
they can transfer to different architectures, irrespective of 
their composition or their weights.

Perturbations can come in many forms, from simple 
noise added to the sample, to a single pixel [37] or a patch 
[20–22]. Whereas the former two are dangerous in that the 
perturbed image can look very similar to the original one 
(and changes might be imperceptible to the human eye), 
patch-based attacks represent a more critical threat because 
a trained patch can be printed and applied to real world 
images, thus allowing physical attacks [18, 19].

Even though the robustness of ViTs and its variants 
against adversarial attacks is still far from being widely 
investigated, recent works [38] show that transformers are 
slightly less vulnerable to adversarial attacks when com-
pared to CNNs on classical classification benchmarks, 
although their robustness to universal attacks and attacks 
for dense prediction tasks is still unexplored. Our results 
seem to substantiate this hypothesis, bringing evidence that 
CNNs are actually more vulnerable to patch attacks when 
compared to ViTs for dense prediction.

2.2  Monocular depth estimation

In this section, we introduce and briefly discuss the MDE 
task. For a deeper analysis of the subject we refer the reader 
to more comprehensive surveys like [39–41].

MDE is the task of estimating the distance of every pixel 
of an image from a monocular camera. Recovering a depth 
map, i.e., the depth information for each pixel, looks to be 
a trivial task when done by humans or when leveraging 
stereo images, where we can infer depth from additional 
information, thanks to the perception from multiple angles 
or scale relative to known objects (for humans). In the case 
of monocular images, the task is far from trivial as we can 
only leverage the intensity of pixels, and has been tackled 
using deep learning methods which yielded more promising 
results than hand crafted ones [42]. In particular, MDE has 
traditionally been solved using CNNs and, more recently, 

architectures based on the ViT family [17]. These models 
have been trained in both supervised and self-supervised 
fashion. In particular, the DPT variant we consider [17] is 
pre-trained on MIX-6, a large dataset consisting of more 
than 1.5 million annotated images.

In the case of absence of ground truth data, self-super-
vised approaches have achieved state-of-the-art results by 
adopting different methods, like replacing the use of explicit 
depth data with easier-to-obtain binocular stereo footage [4], 
devising alternative loss functions [5], or building up image 
reconstruction networks or generative adversarial networks 
(GANs) [43].

3  Methods

In this section, we review the main components of our 
experimental evaluation: MDE and the DPT architecture 
in Sects. 3.1 and 3.2, the Mid-Air dataset in Sect. 3.3, and 
our proposed procedure for generating adversarial patches 
in Sect. 3.4.

3.1  Setup of the problem

In the case of supervised learning, the problem of predict-
ing a depth map from a single RGB image can be viewed as 
that of estimating a non-linear mapping Ψ ∶ X → Y , where 
X  is the domain of RGB images x ∈ ℝ

H×W×3 and Y is the 
set of depth maps. To this end, we are given a training set 
S = {(x, y)}N

i
 , where each sample is composed by an RGB 

image x and the corresponding depth map y. In our sce-
nario, the input image will be a frame captured by a camera 
mounted on top of a flying drone, like described later on in 
Sect. 3.3.

Such problem is solved by minimizing an objective loss 
function. Common criteria for this task are the absolute rela-
tive error (AbsRel) as in (1) and the root mean square error 
(RMSE) as in (2), where ŷ = f (x) is the MDE model, and the 
summation is done over all the indices i of pixels for which 
a ground-truth is available:

As stated in Sect. 2, the distance in the ground truth dataset 
depends on the type of measurement that was taken when 
building the dataset (e.g., metric vs. relative distance, dense 
vs. sparse depth maps). In our experimental evaluation, we 
mostly consider metric depth maps with no missing values.

(1)AbsRel(y, ŷ) =
1

N

∑

i

|yi − ŷi|
yi

,

(2)RMSE(y, ŷ) =

√
1

N

∑

i

|yi − ŷi|2.
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3.2  Dense prediction transformer

The DPT model [17] is an encoder–decoder model which can 
be pre-trained for the MDE task. Differently from standard 
convolutive models, it employs transformer blocks [16] both 
in the encoder and the decoder. Since transformer blocks do 
not modify the spatial resolution of the image, it also adds 
specialized components to reassemble the final depth maps at 
varying sizes, as described next. In this section, we summarize 
the major components using the same nomenclature as [17], 
and we refer to [17] for a fuller overview of each module. For 
simplicity, a schematic overview is also provided in Fig. 1. 
Because our aim is to evaluate the pre-trained DPT perfor-
mance on a UAV dataset, we do not modify the architecture 
of the model with respect to [17].

The first step of the DPT model is to encode the input image 
into a sequence of tokens, which have a similar meaning to 
character or words in natural language processing applications. 
To this end, the image is split into non-overlapping patches of 
size 16 × 16 , which are then collected in row-major order and 
vectorized. Denoting by xi the vector describing the i-th patch, 
each patch is linearly projected to the final embeddings as:

where g(⋅) can be either a trainable linear projection (stand-
ard DPT model) or a pre-trained ResNet-34 encoder (hybrid 
DPT model), pi is a trainable positional embedding, and 
‖ denotes concatenation. An additional trainable token 
haux , inspired to the class token of ViTs, is concatenated 
at the beginning of the patch tokens to provide an addi-
tional degree of freedom to the architecture. The final set of 
tokens h becomes the input to the encoder part of the DPT 
architecture.

The encoder itself is composed by a stack of transformer 
blocks, each of which is composed by several transformer lay-
ers (details on the hyper-parameter are provided later on in 
Sect. 4.1). A generic transformer layer is built as follows [16]:

(3)hi =
�
g(xi) ‖ pi

�
,

where LN denotes layer normalization, MHA multi-
head attention, and MLP a generic feed-forward network 
applied on each token independently, like the two residual 
connections.

The decoder of the DPT model is instead built from 4 
separate blocks (called Reassemble blocks), taking as input 
the output of three intermediate layers of the encoder and 
its final output (see Fig. 1). Each block outputs an image of 
resolution H

s
×

W

s
 , where s is 32 for the block acting on the 

encoder output, and then progressively decreases to 16, 8, 
and 4 (i.e., blocks closer to the original image are decoded 
to higher resolutions). These outputs are then progressively 
aggregated from the lowest-resolution one using so-called 
Fusion blocks, which apply two residual convolutional lay-
ers, followed by an upsampling by a factor of 2, so that the 
final output of the decoder has shape H

2
×

W

2
.

The Reassemble block is instead composed of two oper-
ations: Read and Resample. Denote by t the input to the 
block, where ti is the ith token, and there are Np + 1 tokens, 
corresponding to the original Np patches and to the read-
out token. The Read operation is used to merge the readout 
token inside the other Np tokens, by a linear projection:

where t0 is the readout token, W is a trainable matrix, and 
GELU is the Gaussian Error Linear Unit activation function. 
The resulting Np tokens are then rearranged into a image-
like shape, which is propagated to a strided transposed con-
volution to achieve the final dimensionality (Resample). 
To obtain the final depth map estimation, a final head is 
appended to the output of the decoder, composed of a 3 × 3 
convolutional layer, a 1 × 1 convolutional layer to project to 
a single channel, and a final 2 × 2 upsampling operation. 

(4)z =MHA(LN(h)) + h,

(5)o =MLP(LN(z)) + z,

(6)ti = GELU
�
W
�
ti‖t0

��
,

Fig. 1  Schematic representation of a DPT model applied to the task of monocular depth estimation (adapted and modified from [17])
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Because the DPT is pre-trained on a mixture of datasets 
whose depth maps have different semantics, a customized 
scale-invariant loss [17] is adopted, where two scale and 
shift values are optimized separately for each dataset and are 
applied to the (unscaled) output of the DPT model, allowing 
it to generalize even to scenarios that were not considered 
in the training set.

3.3  Dataset

As mentioned in Sect. 1, the Mid-Air dataset is used for the 
fine-tuning of the model in order to evaluate its performance 
on in-flight operations. Mid-Air (Montefiore Institute Data-
set of Aerial Images and Records) [9] is a multi-purpose syn-
thetic dataset containing outdoor videos captured by manu-
ally flying a drone in a virtual environment. Because it is 
comprised of images captured in low-altitude drone flights, 
it is particularly suitable to our needs. Mid-Air contains syn-
chronized data of multiple sensors, for a total of more than 
420k video frames with resolution 1024 × 1024 simulated in 
various climate conditions (4 weather setups and 3 different 
seasons). In order to reduce memory usage the images were 
down-scaled to a resolution of 512 × 512 during fine-tuning. 
Two examples of images and corresponding ground truths 
taken from the dataset are shown in Fig. 2.

3.4  Adversarial patch attack for MDE

Apart from evaluating the performance of DPT on the Mid-
Air dataset (Sect. 3.3), we want to test its robustness to a 
particular type of adversarial attacks, namely, patch attacks. 
A patch [22] is a small region which is trained to fool a 
classifier or other model whenever it is applied on top of 
an image, before the image itself is sent to the model for 
prediction.

Our method for generating adversarial attacks is inspired 
to the one proposed in [23], where a patch is randomly ini-
tialized as a tensor of size R × R × C , where R × R is the 
patch resolution (R being smaller than the smallest size 
of the image to be attacked) and C = 3 is the number of 

channels (RGB). The patch is then reduced to a circle with 
radius R/2 by applying a circular mask to each channel of 
the patch. The number of trainable parameters in the patch 
is then equal to � ×

R2

4
× C . Finally, the patch is transformed 

before being applied to an image by superposition, and it is 
trained so that is provides the highest perturbation to any 
image on the training set, irrespective of the transformation. 
This is shown visually in Fig. 3.

More in detail, we train the patch by maximizing a pertur-
bation loss over a training set (which in our case is taken as a 
subset of the test data in order to avoid data leakage from the 
fine-tuning phase, see Sect. 4), in order to maximize discrep-
ancies between attacked images’ depths and original depths:

where f(x) is the MDE model, T  is a family of transforma-
tions over the original patch (see below), + is intended as 
the application of the transformed patch over the original 
image (which we do by elementwise summation during 
training), L is an error metric used to compute discrepan-
cies between predictions and ground truths, and the sum 

∑
i 

is over all images in the training set of the adversarial patch. 
In practice, during the training, before the application on 
each image (both in training and test), the following trans-
formations T  are applied to the patch to make the patch as 
robust as possible:

• Re-scaling with a random scale factor s2, s ∈ [0.45, 0.55] 
meaning that the actual resolution of the applied patch 
is  R/4;

• Rotation with random angle � ∈ [−20, 20] (degrees);
• Horizontal and ver tical translation from the 

center of the image, with random horizontal offset 
x ∈ [−0.3 ×W, 0.3 ×W] and random vertical offset 
y ∈ [−0.05 × H, 0.3 × H] , where W, H are the width and 
height of the attacked image and the values are negative 
for left and up offsets, and positive for right and down 
offsets;

(7)P = argmax
P

�T∈T

[
∑

i

L(f (xi + T(P)), yi)

]
,

Fig. 2  Examples of images and corresponding ground-truth depths from the dataset Mid-Air in two different climate settings
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• Perspective transformation with random independent 
translations of the four corners with a distortion factor 
d ∈ [−0.1, 0.1] for each coordinate of each of the four 
corners of the patch.

A set of losses L(⋅, ⋅) has been tested during hyper-parameter 
tuning in order to maximize the overall error induced by 
applying the attacks to the validation set. Using the same 
notation as Sect. 3.1, denote by ŷ = f (x) the output of the 
MDE model, and assume all summations below are made 
over all pixels for which a depth ground truth is available 
(the total number of such pixels is denoted by P, i.e., for 
dense depth maps like in Mid-Air we will have P = HW  ). 
Apart from the AbsRel (Eq. (1)) and the RMSE (Eq. (2)), 
we also consider:

• A mean absolute error (MAE) loss, where the �2 norm is 
replaced with its absolute value: 

• The Scale Invariant Error (SIE, [1]) loss: 

 where di = log yi − log ŷi is the per-pixel difference 
between predicted and ground-truth log-depth maps, and 
� is a hyper-parameter.

In addition, we note during the fine-tuning phase (see 
Sect. 4.1) that high-accuracy of the model is obtained 
by learning to predict accurately short-term distances (< 

(8)L(y, ŷ) =
1

P

∑

i

|yi − ŷi|

(9)L(y, ŷ) =
1

P

∑

i

d2
i
−

𝜆

P2

(
∑

i

di

)2

,

Fig. 3  Schematic description of 
our patch attack for MDE

apply patch P

transform
patch P

patchification

Dense Prediction
Transformer

Original 
depth map

Original
image

Altered
depth map
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200 m) which are prevalent in the dataset. Based on this 
observation, we also test a variant of the AbsRel loss func-
tion, where each pixel is weighted based on its ground 
truth depth, which we call distance-weighted error (DWE):

The per-pixel weights are computed as a function of the 
ground truth depth using a truncated Normal density func-
tion of the depth, W(a) = N(a;�, �) , and the parameters 
of the truncated Normal � and � are computed w.r.t. the 
extreme values of the interval in which the attack is focused 
as � =

1

2
(max(I) +min(I)) and � = (max(I) −min(I))∕2 . In 

particular, we set min(I) = 0 and max(I) = 300 based on the 
above reasoning.

The loss that produced the overall best attacking perfor-
mances was the AbsRel, and while DWE showed some abil-
ity in focusing the attack on a depth interval of interest and 
excluding depths outside of the interval (by properly tuning 
the weighting parameters), the error induced by these local-
ized attacks was smaller than the one induced by a global 
attack on the whole depth map with the AbsRel. Further 
experiments may bring better results in depth-localized 
attacks, and we leave these for future work.

After training, the trained patch is evaluated by randomly 
applying it on top of the remaining part of the test set, and 
computing its average effect on the predictions. Note that, 
even if the patch is highly localized, due to the effect it has 
on the non-linear processing of the neural networks, its per-
turbation is expected to have a global receptive field.

4  Experiments

4.1  Fine‑tuning over Mid‑Air

For our experiments we use the pre-trained DPT hybrid 
model [17], and we fine-tune it on the training part of the 
Mid-Air dataset. As baseline, we compare the results of the 
attacks on DPT with the results obtained attacking a state-
of-the-art Fully Convolutional Residual Network (FCRN) 
model having a ResNet50 encoder pre-trained on ImageNet 
[47] and trained on the same train-set used for fine-tuning 
DPT. The pre-trained DPT model was trained by its authors 
with the procedure described in [17] using the MIX-6 Data-
set designed by the same authors. In particular, the hybrid 
variant of DPT includes a ResNet50 encoder pre-trained on 
ImageNet [47]. The pre-trained weights of the DPT model 
and the implementation of the model architecture are avail-
able online at https:// github. com/ isl- org/ DPT.

The FCRN model was built from pre-trained ResNet50 
blocks forming the encoder part of the architecture and with 

(10)L(y, ŷ) =
1

P

�

i

W(ŷi)‖yi − ŷi‖.

a final decoding part bringing back the intermediate feature 
maps to the original input size, consisting of unpooling and 
convolutional (trainable) layers initialized randomly and a 
final bilinear upsampling to align the output shape to the 
input shape. For our experiments, the model was trained 
on a subset consisting of 50,000 images coming from the 
Mid-Air Dataset for 6 epochs using the scale-invariant loss 
(9), with different learning rates for the encoder and decoder 
parts of the network. For the ResNet50 encoder (pre-trained 
on ImageNet), the learning rate was set to 10−3 , i.e., 1/10 of 
the learning rate set to 10−2 for the de-convolution block.

The fine-tuning procedure of DPT used for our experi-
ments follows the indications provided by the authors, i.e., 
we use the validation set for finding the optimal scale and 
shift parameters for the scale-invariant loss on the Mid-Air 
dataset in order to align the predictions to the average scale 
and shift of the dataset ground-truth depths. The tuned 
scale-invariant loss was then used for fine-tuning DPT for 
10 epochs with a learning rate lr = 10−7 over the same train-
set used for training the FCRN model. The procedure to 
compute an estimate of the correct scale and shift parameters 
is proposed by the authors of DPT [17], and consists in find-
ing the values of scale and shift that minimize the AbsRel 
over the training set, and then using these values both in 
training and testing to align the outputs to the ground-truths 
by applying the optimal parameters to the predicted depths 
as d∗ = s ∗ d + r , denoting with s,   r the scale and shift, 
and with d, d∗ the unaligned and aligned output depths, 
respectively.

This alignment is necessary in order to make use of the 
unscaled spatial information coming from the pre-training of 
DPT, otherwise the unscaled depth-maps produced by DPT 
without the alignment could be so far from the ground-truth 
depths that the training would be basically starting from 
scratch, given the possibly high values of the losses.

The 50,000 training images were selected in order to 
reflect the variability introduced by the different simulated 
seasons, so that most of the different climate and lighting 
variations of the environment could be seen during train-
ing, with the exception of the summer season which was not 
simulated by the authors of Mid-Air.

We show the results of this experimental section in 
Table 1, and we plot the AbsRel over the test set as a func-
tion of the pixel’s distance in Fig. 4.

In order to more easily read the table, we give a quick 
description of the metrics reported in it.

The Logarithmic RMSE, reported as RMSE10 , is defined 
as

RMSE10(y, ŷ) =

√
1

P

∑

i

[
log10(yi) − log10(ŷi)

]2

https://github.com/isl-org/DPT
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and unlike the RMSE, it is less influenced by the higher 
values of the absolute difference found in the distant parts of 
the image given the use of the log-depths as arguments. The 
threshold accuracies, reported in the table as �p, p ∈ 1, 2, 3 , 
are defined as the ratios of pixels for which the ratio between 
predicted and true depth and its inverse are both smaller 
than the thresholds �p = 1.25p, p ∈ {1, 2, 3} . These ratios 
are expressed by the formula:

and higher values for these ratios indicate more accurate 
models.

For each experiment, we evaluate three different vari-
ants by clamping the maximum predicted distance to a 
given threshold (respectively, of 80 m, 500 m, and 1 km). 
We note that for all scenarios, the zero-shot DPT has good 
performances which, however, are not on-par with a stand-
ard FCRN architecture. However, after fine-tuning, the DPT 
model obtains state-of-the-art results in all scenarios. For 
example, for the case where the maximum distance is 500 m, 
we obtain a 51% relative improvement in RMSE over the 
zero-shot version, and a 13% improvement over the FCRN 
model. Other metrics have a similar behavior, e.g., we obtain 
a 61% improvement in AbsRel over the zero-shot DPT, and a 
29% relative improvement in AbsRel over the FCRN.

It is interesting to observe from Fig. 4 that the poor results 
of the zero-shot DPT variant stems from a high AbsRel over 

𝛿p(y, ŷ) =
1

P

∑

i

max

(
yi

ŷi
,
ŷi

yi

)
≤ 𝛿p, p ∈ {1, 2, 3}

short (< 300 m) distances, which are quite common in the 
Mid-Air dataset, and which are impacted significantly by the 
fine-tuning procedure.

In Table 2, we provide an additional benchmark com-
parison of the architecture with recent state-of-the-art 
models for MDE, including models that make use of aux-
iliary data for the training. In the case of M4Depth [46], in 
particular, the training is performed leveraging a captured 
input sequence together with the motion information about 
the sequence itself. DPT is remarkably competitive with 

Table 1  Results of the fine-
tuning procedure on the Mid-
Air dataset

Best results for each distance threshold are in bold

Method Distance RMSE AbsRel RMSE
10

�
1

�
2

�
3

FCRN [44] 80 m 8.31 0.16 0.06 0.83 0.94 0.67
500 m 53.07 0.29 0.08 0.81 �.�� �.��

1000 m 104.8 0.39 0.08 0.81 0.92 0.96
DPT (zero-shot) 80 m 13.20 0.33 0.13 0.53 0.73 0.87

500 m 95.26 0.49 0.18 0.47 0.67 0.80
1000 m 204.74 0.62 0.20 0.47 0.66 0.79

DPT (fine-tuned) 80 m 7.48 0.14 0.05 0.88 0.96 0.98
500 m 46.10 0.19 0.07 0.86 0.85 0.97
1000 m 98.43 0.21 0.07 0.85 0.94 0.96

Table 2  Additional performance 
comparisons with other state-
of-the-art models, considering 
a maximum distance of 80 m 
from the camera

Method Data RMSE AbsRel RMSE
10

�
1

�
2

�
3

FCRN [44] Image 8.31 0.16 0.06 0.83 0.94 0.67
Monodepth2 [5] Image 12.351 0.394 0.462 0.610 0.751 0.833
ManyDepth [45] Image sequence 10.919 0.203 0.327 0.723 0.876 0.933
M4Depth-d6 [46] Image sequence and motion 7.043 0.105 0.186 0.919 0.953 0.969
DPT (zero-shot) Image 13.20 0.33 0.13 0.53 0.73 0.87
DPT (fine-tuned) Image 7.48 0.14 0.05 0.88 0.96 0.98

Fig. 4  Results of the fine-tuning procedure, aggregated with respect 
to the true distance of each pixel
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this architecture as well, which is the current state-of-the-
art on the MidAir dataset, while being able to predict the 
depth map starting from a single frame. The fine-tuned 
version is also significantly better than alternative state-of-
the-art models including Monodepth2 [5] and ManyDepth 
[45].

The excellent scores attained by DPT come at the cost 
of a higher computational complexity, as shown in Table 3, 
where we provide a comparison in terms of Multiply-and-
Accumulate (MAC) operations and millions of parameters. 
Nevertheless, DPT is still able to predict accurate depth 
maps in extraordinary short times (few tens of milliseconds), 
even without resorting to last generation hardware, due to a 
high degree of parallelism through its wide and rather shal-
low structure [17].

4.2  Adversarial attacks to transformers for MDE

Different losses and parameter configurations were evalu-
ated through a random-search hyper-parameter tuning 
before finding the optimal loss and configuration used in 
our experiments. The best results on the validation set used 
for the tuning were obtained by training with the AbsRel 
as training loss using the Adam optimization algorithm for 
50 epochs with a learning rate of 500. The trainable patch 
was initialized randomly as a parameters tensor of shape 
256 × 256 × 3 , and a circular mask is applied to all channels 
in order to obtain an approximately circular RGB patch of 
diameter 256 pixels. We show an example of trained patch 
for the fine-tuned DPT model in Fig. 5a, an example of trans-
formed patch in Fig. 5b, and an example of application on 
the test set in Fig. 6.

In Tables 4 and 5, we report the average performances of 
DPT and the FCRN models on the test set (obtained after 
removing the 400 images used to train the adversarial patch), 
both with and without using the patch itself. By comparing 
these results with the performances on the unattacked test set 
we observe that in average the error induced by the adver-
sarial patch is unsatisfactory for DPT, especially comparing 
these results with the ones obtained on the model FCRN 
by training a new patch against this model with the same 
configuration used against DPT.

The best configuration yielded results that, although vis-
ible, can’t be interpreted as successful attacks, since the pre-
dictions on most input images remain quite accurate (except 
for the portion of the images covered by the patch) after the 
application of the adversarial patch. The inputs for which the 
patch is actually causing some visible error are the ones for 
which accurate estimation is already harder, such as inputs 
in which fog or snow covers most of the scene. This can 
be seen in Fig. 7, while in Fig. 8 an example of a failed 
attack can be seen for a more common Mid-Air setting, 
where the highest errors are the ones regarding the portion 
of the image covered by the patch itself. By comparisons, the 
attacks on the FCRN model (Figs. 9 and 10) are significantly 
more powerful, as can also be seen by the relative errors in 
Table 4.

Table 3  Complexity of benchmark models, in terms of MAC opera-
tions and millions of parameters. In this table we exclude sequence-
based models

Model WxH Million Params MACs

FCRN 345 × 460 62.5 90
Monodepth2 640 × 192 14 8
DPT hybrid 384 × 384 123 110
DPT large 384 × 384 343 280

(a) Trained patch (b) Transformed patch

Fig. 5  a Trained patch for DPT; b the same trained patch after a ran-
dom transformation from T  is applied on top of it

Fig. 6  Example of a patch trained attacking DPT on Mid-Air images, 
transformed and applied on an image of the test-set
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4.3  Transfer experiments

An interesting research question is to determine if the patch 
trained for attacking one model can be used to successfully 
attack a different model. This would configure as a black-
box adversarial patch attack, where the architecture of the 
attacked model is not known and possibly very different 
from the one for which the patches are trained. In our set-
ting, the two model architectures are indeed very different 

(transformer/CNN), although they both share a pre-trained 
ResNet50 encoder, so if the attack is influencing the predic-
tions at the embedding extraction stage we might expect 
to see some influence on the predictions because of these 
shared embedding blocks.

The results reported in Table 6 show that FCRN suffers 
more in terms of AbsRel error with the patch trained for 
DPT, while DPT suffers more in terms of all the other met-
rics, but predictions for both models are actually almost 

Table 4  Results of the attacks 
on the fine-tuned DPT model 
and the FCRN model trained 
on Mid-Air on a test set of 400 
images coming from Mid-Air

Method Distance RMSE AbsRel RMSE
10

�
1

�
2

�
3

FCRN 80 m 8.83 0.18 0.13 0.78 0.91 0.96
500 m 55.36 0.33 0.19 0.76 0.89 0.95

1000 m 109.04 0.44 0.22 0.76 0.89 0.94
FCRN (attacked) 80 m 15.62 0.54 0.23 0.66 0.79 0.86

500 m 96.54 1.41 0.34 0.63 0.77 0.84
1000 m 182.37 2.08 0.38 0.63 0.76 0.83

DPT (unattacked) 80 m 7.92 0.15 0.11 0.83 0.95 0.98
500 m 48.98 0.21 0.15 0.81 0.93 0.96

1000 m 106.10 0.23 0.18 0.80 0.93 0.96
DPT (attacked) 80 m 8.78 0.16 0.13 0.79 0.93 0.96

500 m 52.03 0.23 0.18 0.76 0.91 0.95
1000 m 112.89 0.25 0.20 0.75 0.90 0.94

Table 5  Percentage variations 
of the metrics after the attacks 
for the two models

Method Distance RMSE AbsRel RMSE
10

�
1

�
2

�
3

FCRN 80 m 76.95% 196.34% 70.85% −15.66% −12.31% −9.48%

500 m 74.37% 329.00% 75.08% −16.88% −13.60% −10.94%

1000 m 67.25% 372.71% 73.79% −17.08% −13.72% −11.05%

DPT 80 m 10.92% 9.07% 24.02% −5.24% −2.23% −1.34%

500 m 5.82% 7.07% 15.60% −5.92% −2.64% −1.55%

1000 m 5.31% 5.96% 13.40% −5.70% −2.86% −1.74%

Fig. 7  Example of successful 
attack on DPT with a hard input
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unmodified when the patch trained on a different model 
is applied.

Examples in Figs. 11 and 12 show that the effect on 
hard inputs is the same already observed for the attacks 
on DPT with its own trained patch, possibly indicating 

that on these inputs the effect that the patch induces on the 
encoder part of both architectures could be the most influ-
ential on predictions for these kinds of inputs, although 
this claim is beyond the scope of this experiment and 
requires further investigation to be verified or refuted.

Fig. 8  Example of failed attack 
on DPT with a normal input

Fig. 9  Example of attack on 
FCRN with a normal input

Fig. 10  Example of attack on 
FCRN with a hard input
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5  Conclusions and future works

In this paper, we evaluated for the first time the perfor-
mance of a ViT model on a MDE task performed from a 
flying drone. We show that the model is capable of good 
performances even in a zero-shot context, while it achieves 
state-of-the-art results after a brief fine-tuning phase. Next, 
we evaluated its robustness to an adversarial attack (in the 
form of a pre-trained patch), showing it possesses a strong 
degree of robustness against this kind of attacks, while 
competitive fully convolutional models can be fooled with 
a high degree of precision. Overall, our results highlight 
the strong potential of this class of models for performing 
MDE in scenarios involving low-altitude flying drones, 

where robustness is also important. Future work will study 
the performance of the model on a real setup, with the col-
lection of a large dataset of low-altitude flight scenarios, 
and an analysis of the robustness of DPT against physical 
versions of our patch attack and more general corruptions 
and attacks, as well as a study of the transferability of 
the attacks to a wider range of scenarios, datasets, and 
architectures.

Author contributions S.S., S.M., and L.M. elaborated the original idea 
and the experimental setup. A.D. and S.E. provided the main imple-
mentation and tested the algorithms. L.M. and S.M. provided some 
test benchmarks and contributed to the evaluation of the results. S.S., 
S.M., A.D., L.M., S.E., and M.S. participated in writing and reviewing 
the manuscript. All authors read and approved the final manuscript.

Table 6  Percentage variations 
of the metrics after attacking 
each model with the patch 
trained for attacking the other

Method Distance RMSE AbsRel RMSE
10

�
1

�
2

�
3

FCRN 80 m 6.31% 8.13% 4.42% −2.25% −1.12% −0.48%

500 m 4.77% 8.14% 4.41% −2.50% −1.35% −0.67%

1000 m 4.42% 8.02% 4.28% −2.54% −1.37% −0.69%

DPT 80 m 7.38% 2.58% 16.95% −3.74% −1.36% −0.90%

500 m 4.92% 2.08% 11.06% −4.25% −1.65% −1.06%

1000 m 4.56% 1.55% 9.70% −4.08% −1.83% −1.21%

Fig. 11  Example of transfer attack on DPT with regular (left) and hard (right) input, using a patch trained to attack FCRN

Fig. 12  Example of transfer attack on FCRN with regular (left) and hard (right) input, using a patch trained to attack DPT
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