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1

Premise

Causality is a recurrent theme in economic literature. Evaluating the effect of
policies is often the motivational input to estimate causal effects, usually through
methods such as matching, difference in differences, regression discontinuity or in-
strumental variables. All the mentioned techniques belong to the Potential Outcomes
framework, one of the main approaches to deal with causality.

The other main causality approach is the Causal Graphs framework. Causal
graphs are commonly employed in biomedical sciences, particularly epidemiology, and
they contributed to developing a higher awareness of how causal inference is made
and how to assess the validity of the findings. Causal graphs had such a substantial
impact on some disciplines that the implementation of the relative methods is
sometimes referred to as a causal revolution. Nevertheless, causal graphical models
did not meet the same consensus in economics, where instead, the implementation
of the framework in empirical applications is still sporadic.

Could economics, and other social sciences where potential outcomes methods
are standard practice, also benefit from causal graphs? Are those disciplines missing
an opportunity by only resorting to potential outcomes? Are the two frameworks
conflicting, or can they benefit from a combined implementation? These kinds of
questions motivate the research carried out in this thesis.

The thesis consists of three chapters that contain three separate papers. The
first paper focuses on investigating if and how potential outcomes and causal graphs
are compatible on a theoretical level. The main concepts of the two frameworks are
outlined, and their similarities and complementarities highlighted. The second paper
takes a step forward, carrying out an empirical economic study in which causal graphs
and potential outcomes are employed together. Finally, the last paper proposes a
novel methodology that aims at increasing the reliability of causal estimates when
subject matter causal knowledge is not available or partial. The procedure is based
on causal graphs but is also consistent with potential outcome methods.
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Chapter 1

An integrated approach to
causality: The role of causal
graphs
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Abstract

Causal questions are central for most biomedical and social science studies. The
main frameworks that allow the analysis of causal relations are Potential Outcomes
and Causal Graphs. The approaches have often been compared, contrasting their
relative strengths. This paper evaluates the implications of merging the two method-
ologies in an integrated approach. In particular, we assess how the limits of one
can be compensated by the solutions provided by the other. The outlined approach
employs causal graphs to discover and formalize a causal model that is then used as
a guide to implementing potential outcomes identification strategies. The integrated
approach could be beneficial to both frameworks. The assumptions required by
potential outcome methods can be assessed directly from a causal graph even in
high dimensional contexts, thus making the obtained causal estimates more reliable.
On the other hand, causal graphs can benefit from the several ad hoc identification
strategies that have been developed in the potential outcomes literature.

1.1 Introduction

The study of cause and effect relations motivates most research in social, demographic
and health sciences. Investigating causality usually means assessing if and how a
certain intervention, often called treatment, affects an outcome of interest. The early
work of Neyman and Iwaszkiewicz (1935), Fisher (1949) and Cox (1958) in the field
of randomized experiments constituted a first step towards a rigorous analysis of
causality. Based on these studies Rubin (1974) formalizes one of the most relevant
approaches to causality: the Potential Outcomes (PO) framework. The framework
has then been enriched with many contributions that proposed new methods and
applications (Imbens and Rubin 2015; P. Rosenbaum 2018). PO have a strong
connection with economics since its early stages as its concepts are rooted in the
work of Tinbergen (1930) and Haavelmo (1943). PO methods are now widely applied
in statistics and economics and many econometric textbooks solely rely on this
approach (Angrist and Pischke 2008; Imbens and Rubin 2015).

The other main approach to deal with causality is the Causal Graph framework.
Note that causal graphs, also called causal bayesian networks or causal diagrams,
can be seen as part of a wider model called structural causal model (SCM) (Pearl
2000). In a SCM the causal graph is also associated to a set of equations that
describe causal relations between the nodes of the graph. Here we will however only
focus on the causal graph component, that is sufficient for answering causal queries
concerning the effect of interventions.
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Causal graphs have been introduced by Pearl (1995) and share some elements
with the previous work on path diagrams in Wright (1921b). The framework have
been subsequently developed and enriched with several contributions that extended
its applicability and strengthened its results (Pearl 2000; Tian and Pearl 2002;
Bareinboim and Pearl 2016; Huang and Valtorta 2012). Causal graphs are now
frequently used in epidemiology, computer science and some social sciences, though
they are still uncommon in economics.

The relative advantages of the two frameworks have been recently reviewed and
compared in Imbens (2020) and Hünermund and Bareinboim (2019). Both papers
show some specific causal problems where one approach is more appropriate than the
other and vice-versa, thus revealing that, at least in part, the two are complementary
and could benefit from each other. The idea of an integrated approach also starts to
appear in some causal inference textbooks, such as Morgan and Winship (2015) and
Cunningham (2021), however integrated applications are still very rare in practice.

In this paper, we assess how PO and Causal Graphs can be combined and the
implications of carrying out such an approach. The basic ideas of the frameworks will
be described focusing on when the limits of one way of proceeding are compensated by
the other. Particular attention will be put on causal discovery techniques, a resource
that is often overlooked when comparing PO and causal graphs. Throughout the
paper, we provide some basic examples in which the combination of the frameworks
can improve the results’ quality and reliability.

Section 1.2 will outline the PO framework, its main assumptions, results and
limits. Section 1.3 is instead devoted to Causal Graphs. The basic terminology is
presented and the principal features are described with the help of some examples.
Then we show how causal effect estimation can be performed from causal graphs
and how the process can be integrated with PO methods. Finally, in section 1.4
we introduce the concept of causal discovery; we explain how structural learning
algorithms work and why they can be valuable for causal effect estimation.

1.2 Potential Outcomes

The Potential Outcomes (PO) framework originates from the work of Splawa-Neyman,
Dabrowska, and Speed (1990) and Rubin (1974) on randomized controlled trials
(RCT). The name of the framework comes from its peculiar notation Yi(t) that
denotes the potential outcome for unit i when receiving the treatment level T = t.
In the case of a binary treatment T takes value 1 if unit i is treated and 0 otherwise.
Accordingly, Yi(1) represents the PO we would observe for unit i if it was treated
and Yi(0) the potential outcome if unit i was a control. The causal effect of T on
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Y can therefore be computed by comparing summary statistics of the potential
outcomes distribution. The resulting causal estimate is usually called the average
treatment effect (ATE) and can be expressed in different ways, such as

ATE = E[Yi(1)− Yi(0)] or ATE = E[Yi(1)]
E[Yi(0)] .

However, the ATE cannot be estimated directly from data since only one of the
potential outcomes is observed for each unit i. Units receive only one level of
treatment, creating a missing data problem. This is sometimes referred to as the
fundamental problem of causal inference (Holland 1986).

PO literature contributed to answering this problem in the context of randomized
experiments. In this setting, treatment is assigned randomly to the units of the
sample, thus rendering T independent of the potential outcomes

Ti |= (Yi(0), Yi(1)).

This scenario, together with the assumption that there is no interference between
units (SUTVA)(Imbens and Rubin 2015), ensure that an unbiased estimate of the
ATE can be obtained by computing the difference

Ȳt − Ȳc, with Ȳt = 1
Nt

∑
i:Ti=1

Yi and Ȳc = 1
Nc

∑
i:Ti=0

Yi.

The indexes i : Ti = t indicate to sum over the units that received a certain treatment
level, Nt and Nc denote respectively the number of treated and control units.

The PO framework also provides several solutions to deal with non-experimental
or observational data. What usually prevents observational data from being treated
as experimental data is the presence of confounders. Confounders are variables that
affect both the treatment and the outcome and can lead to biased causal estimates if
not adequately accounted for. The concern worsens when confounders are unobserved
since, in this situation, treatment effects could be impossible to identify.

PO methods that deal with observational data aim at emulating an experimental
context under specific assumptions. One of these assumptions, that tackles directly
the problem of confounders, is called unconfoundedness or ignorability and can be
defined as follows

Ti |= (Yi(0), Yi(1))|Xi

where Xi is a set of pre-treatment covariates. Unconfoundedness states that the
treatment Ti is independent of the potential outcomes, given a set of pre-treatment
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variables Xi. The condition allows estimating the ATE as

ATE = E[Yi(1)− Yi(0)] = E[E[Yi|Ti = 1, Xi]− E[Yi|Ti = 0, Xi]]. (1.1)

The formula in Equation 1.1 is also called adjusting for X and as long as uncon-
foundedness holds, it ensures an unbiased estimation of the ATE in the presence
of confounders. Adjustment can be performed through various methods, including
regression, matching and inverse probability weighting.

Another PO method to derive causal estimates from observational data is the
instrumental variable (IV) strategy (Angrist 1990). In this context, there is an
unobserved variable U , which violates the unconfoundedness assumption for the
effect of T on Y . Since U is unobserved, it is impossible to adjust for it in order
to obtain unbiased estimates. However, if the treatment T is affected by another
variable Z, it is still possible to estimate a causal effect, under an assumption called
exclusion restriction. The assumption can be expressed as

Yi(z, t) = Yi(z′, t) for all z, z′,

imposing that potential outcomes do not vary with Z. PO literature refers to
variables that satisfy the exclusion restriction as instrumental variables.

However, exclusion restriction and unconfoundedness cannot be tested, and they
are usually motivated by background theory concerning the causal relations between
variables. This implies that justifying them becomes difficult if a priori knowledge is
missing. Moreover, as the number of variables in the model increases, assessing the
two assumptions’ validity turns out to be a challenging task.

The PO framework includes many more identification strategies, such as difference-
in-differences, regression discontinuity and synthetic control. For a review of the
newest techniques, see Athey and Imbens (2017). These methods provide solutions
to very specific causal problems and usually impose additional functional-forms
restrictions on probability distributions, such as linearity, monotonicity or additivity.

1.3 Causal graphs

In this section, the Causal Graph framework will be described. First, we will
introduce the basic terminology of graphs and the main elements of causal graph
theory. Next, we will show how interventions are represented in the framework and
how causal effects can be estimated employing graphs.
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1.3.1 Terminology and basic concepts

A graph G = (V, E) is a collection of vertices or nodes V and edges E. The edges
can be directed or indirected. An edge that goes from a vertex Vi to another vertex
Vj is a directed edge. Conversely, an edge without such orientation is an undirected
edge. A graph that only contains directed edges is called a directed graph. When
two nodes are connected by an edge, they are called adjacent nodes. If each pair of
nodes belonging to V is connected by an edge, the graph is called a complete graph.
Conversely, if none of the pairs is adjacent, the graph is an empty graph. A sequence
of connected edges that starts from a node Vi and ends with node Vj , regardless
of the directions of the edges, is called a path. In a directed path all the edges are
oriented in the same direction along the path. A directed path, starting from Vj

and ending in Vi, with Vj = Vi is a cycle. A directed graph that contains no cycles
is also called a directed acyclic graph (DAG)(Pearl 2000). In the context of causal
graphs, DAGs are employed to represent causal structures. The vertices of the DAG
represent random variables, and its edges describe the causal relations between them.
We will refer to variables and vertices in a DAG interchangeably from now on.

Consider the graph G in Figure 1.1. All the edges in the graph are directed, and
they form no cycles; the graph is, therefore, a DAG. G describes the multivariate
causal relations between a set of four random variables X. The terminology of
kinship is often used to indicate relationships between nodes according to the graph’s
structure.
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3
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𝑋4  

 

Figure 1.1. A simple DAG (1)

Since the DAG contains a directed edge going from X1 to X2, X1 is called a
parent of X2 and the latter is a child of X1. The path p along the ordered sequence
of nodes (X1, X2, X3, X4) is a directed path since all the edges are oriented in the
same direction along the path. X1 is called an ancestor of each node belonging
to{X2, X3, X4} since it precedes them in p and the vertices in {X2, X3, X4} are
descendants of X1. Given that the edges are carriers of causal information, we can
also say that X1 is a direct cause of X2 and X4. The same is true for every ordered
pair of random variables (Xi, Xj) connected by a directed edge that goes from Xi
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to Xj in the DAG.
Every causal graph also consists of a joint probability distribution P (X) over

the variables described by the DAG. This distribution can be factorized according
to the structure of the DAG as

P (x1, . . . , xn) =
∏

i

P (xi|pai), (1.2)

where pai indicate the parent set of variable Xi. The factorization implies that given
a DAG G with node set X, for each variable Xi ∈ X, its parent set PAi selected
according to the structure of G, is sufficient for determining the probability of Xi. If
a probability function P admits the factorization of Equation 1.2 relative to a DAG
G, then G is said to satisfy the causal Markov condition and P is said to be Markov
relative to G.

1.3.2 Edge configurations and conditional independence

The edges of a DAG can assume specific configurations that provide additional
information regarding the independence relations among variables of the model.
Given the ordered triplet of nodes (Xi, Xj , Xk), if two directed edges goes from
Xi and Xk to Xj but Xi and Xk are not adjacent, then Xj is called a collider
or unshielded collider in the ordered triplet. Colliders are also referred to as non-
emitting nodes. Conversely, given a path p, vertices belonging to p with at least an
outgoing edge directed towards other adjacent nodes in p are called emitting nodes.
An example of a configuration that only contains emitting nodes is when a directed
edge goes from node Xj to node Xi, and another directed edge goes from Xj to a
third node Xk. This configuration is called chain. Note that the same node can have
different roles when considering different paths. Consider the graph in Figure 1.2, in
the path along the ordered triplet of nodes (X3, X4, X2), X4 is a collider, whereas
in the path formed by the ordered triplet (X3, X4, X5) the same node is an emitting
node.

A DAG encodes information concerning conditional independence among the
variables it represents through a criterion called d-separation. Consider a DAG G

with node set X, a pair of nodes {Xi, Xj} belonging to X with Xi ̸= Xj and a set
of nodes S ⊂ X not containing Xi and Xj . A path p between Xi and Xj is said to
be blocked by a set S in G, if either

1. p contains at least one emitting node that belongs to S

2. p contains at least a collider that does not belong to S and has no descendent
in S.
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Figure 1.2. A simple DAG (2)

Two nodes Xi and Xj are said to be d-separated given a set S if all the paths between
the nodes are blocked by S. When two nodes Xi and Xj are d-separated by a set
S, then Xi is independent of Xj conditional on S. Note that two nodes can also
be d-separated conditioning on an empty set if all the paths between them contain
at least a collider or its descendants. In this case, the variables represented by the
nodes are said to be marginally independent. Consider the vertices pair {X2, X3} in
the DAG of Figure 1.2 and the two paths connecting the nodes. The path along
the ordered triplet (X3, X1, X2) can be blocked by conditioning on the middle node
X1, since it is an emitting node. The second path, traced along the ordered triplet
(X3, X4, X2) is blocked by the collider X4, without performing any conditioning.
The pair {X3, X2} is thus d-separated by S = {X1} because conditioning on X1

blocks every path between the nodes of the pair. The set {X1, X5} instead, does not
d-separate X2 from X3 because conditioning on X5 opens the colliding path along
the nodes (X3, X4, X2).

1.3.3 Causal graph analysis at interventional level

Causal graphs allow estimating the effect of interventions, or in other words, the
effect of forcing a variable to take a certain value by an external action. Pearl
(2000) introduces the do-operator do(X = x), a notation to indicate that a variable
X is forced by intervention to take value x. In order to be coherent with the
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terminology defined in Section 1.2 for the PO framework, we will refer to the effect
of a treatment variable T on an outcome variable Y . The do-operator allows writing
P (Y |do(T = t)) to denote the distribution of Y given an intervention that sets
T = t. This is different form P (Y |T = t) that instead represents the observational
distribution of Y given T = t. The causal effect of T on Y can thus be obtained by
comparing the quantity P (Y |do(T = t)) for different values of t, similarly to what is
done in the PO framework where instead Y (t) was the quantity of interest. However,
when dealing with non-experimental data, causal effects cannot be estimated directly
from data since the interventional distribution of Y is not an observed quantity.

Backdoor criterion

One of the critical contributions of causal graphs is that their structure can serve as a
guide to express interventional distributions in terms of observational quantities, thus
making it possible to estimate causal effects. This is a crucial result since conditional
distributions such as P (Y |T = t), can be directly computed in a non-experimental
context through the joint probability distribution associated with the DAG.

A graphical condition called back-door criterion can be applied to a given causal
graph to test if a subset of its nodes S is sufficient for identifying P (Y |do(T = t))
from observational data. A set of variables S ⊆ X satisfies the back-door criterion
relative to a graph G with node set X, a treatment variable T ∈ X and an outcome
variable Y ∈ X if:

1. no node in S is a descendant of T ; and

2. S blocks all the paths between T and Y that contain a directed edge pointing
towards T .

If the back-door criterion is satisfied by a set S, then interventional quantities can
be expressed through observational ones as follows:

P (y|do(T = t)) =
∑

S
P (y|t, s)P (s) (1.3)

The formula used to compute the interventional probability distribution of the
outcome in Equation 1.3 is also known as adjusting for S. Summary statistics of the
interventional distributions can then be compared to compute the ATE.

Obtaining an adjustment set S through the back-door criterion also ensures
that S satisfies the unconfoundedness condition for estimating the effect of T on Y .
Therefore, performing a matching procedure (Imbens and Rubin 2015) by balancing
the variable set S, would ensure obtaining unbiased estimates of the ATE. This is
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an example of how Causal graphs can be used as guides for assessing and justifying
the assumptions some PO methods require.

Suppose we are interested in estimating P (y|do(T = t)) given a causal model
represented by the DAG G with node set {X, T, Y } in Figure 1.3 and a joint proba-
bility distribution P (X, T, Y ). The knowledge of the DAG allows the application of
the back-door criterion to select an adjustment set for causal effect estimation. The
procedure reveals that adjusting for the set {X3, X4} or {X4, X5} ensures unbiased
estimates of P (y|do(T = t)). Conversely, performing the adjustment procedure on a
set S = {X4} would produce biased estimates, since the set does not block all the
back-door paths between X and Y .
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 Figure 1.3. A DAG describing causal relations among a set of variables X a treatment T
and an outcome Y

Let us now consider the graph in Figure 1.4. The DAG shows the presence
of an unobserved or latent confounder U , which directly affects X1 and T . The
node U is denoted by a circle rather than a solid dot to indicate the variable is
not observed. Even in the presence of unobserved variables, we can resort to the
back-door criterion to assess if an adjustment set to estimate the effect of T on Y

exists. In this scenario, we are particularly interested in checking if some of the
sets that satisfy the back-door criterion are composed only by observed variables.
Applying the criterion to the DAG reveals that {X1} and {X2} would be both valid
adjustment sets and would thus ensure unconfoundedness.

Another example of a DAG with unobserved confounders is shown in Figure
1.5. The graph is very similar to the previous one, but now also X2 is not observed,
and the edge between X1 and X2 is oriented in the opposite direction. The node
X2 has thus have been replaced by U2 to indicate it is a latent variable. In this
situation, adjusting for {X1} would open the back-door path along the ordered tuple
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Figure 1.4. A DAG with unobserved confounders (1)

(T, U, X1, X2, Y ), thus producing a biased estimate of the effect of T on Y . In this
simple example, conditioning on the empty set provides instead unbiased estimates
of the causal effect, since the colliding path over the ordered triplet (U1, X1, U2) is
blocked as long as we do not condition on X1.

The bias introduced by conditioning on X1 is also called M − bias, and it
constitutes a solid motivating argument for employing causal graphs. Generally, the
PO literature suggests to condition on all the observed pre-treatment variables in
order to improve the quality of causal estimates (Imbens and Rubin 2015). However,
in this scenario and similar ones, conditioning on the observed variables leads instead
to worse causal estimates, and causal graphs provide a rule, namely the back-door
criterion, to avoid this sort of bias. For a review on how conditioning can affect
causal estimates, given different contexts represented by causal graphs, see Cinelli,
Forney, and Pearl (2020).
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Figure 1.5. A DAG with unobserved confounders (2)

Front-door criterion and do-calculus

The back-door criterion is not the only strategy that can be employed to estimate
causal effects from a causal graph. Pearl (1995) describes a specific graphical
configuration that allows causal effect identification, even when back-door adjustment
is not feasible. The condition is called front-door criterion and states that given a
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DAG G with node set X, a set S ⊂ X satisfies the front-door criterion for the effect
of T on Y , both belonging to X, if:

1. S intercepts all directed paths from T to Y

2. all the back-door paths from T to S are blocked

3. all the back-door paths from S to Y are blocked by T

If a set S that satisfies the front-door criterion for the effect of T on Y exists and
P (t, s) > 0, then the causal effect of T on Y can be computed with the formula

P (y|do(T = t)) =
∑

s

P (s|t)
∑
t′

P (y|t′, s)P (t′). (1.4)

Consider Figure 1.6 and assume we are interested in the effect of T on Y . We are
also aware of the presence of an unobserved confounder U denoted in the DAG with
a circle, instead of a solid dot. Variable U would satisfy the back-door criterion,
but since it is unobserved, we cannot adjust for it to estimate the effect of T on
Y . However, S satisfies the front-door criterion, and thus we can still identify the
causal effect by applying Equation 1.4.
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Figure 1.6. A DAG to illustrate the front-door criterion

Combined and iterative use of back-door and front-door criterion constitute the
building block to identify causal effects on complex DAGs. Pearl (2000) describes a
set of rules based on the two criteria, also called do-calculus, that allows expressing
interventional distributions in terms of observational distributions only, in an au-
tomated way. The procedure has been proved to be sound and complete, meaning
that an algorithmic iteration of the rules of do-calculus always return a solution for
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the identification of causal effects, if such solution exists (Pearl 1995; Tian and Pearl
2002; Huang and Valtorta 2012).

1.4 Causal discovery

Causal graphs are powerful models to describe the causal structure of a set of random
variables. Moreover, they constitute a guide for selecting an identification strategy
to estimate causal effects. However, the setting considered here always assumed a
complete knowledge of the causal diagram.

Suppose we want to investigate the causal effect of a treatment variable T on an
outcome variable Y from a dataset D(X, T, Y ) where X is a set of other covariates.
We also assume the existence of an unknown underlying causal model described by
a DAG G(V, E) and a joint probability distribution P (V ), from which D(X, T, Y )
has been sampled. In order to obtain an unbiased estimate of P (Y |do(T = t)) we
therefore study if it is possible to learn a causal graph from D(X, T, Y ). In order
to estimate the structure of the causal DAG, structural learning algorithms have
been developed. These algorithms take a dataset as an input and, under a set of
assumptions, recover a DAG and the associated joint probability distribution. This
process is known as causal discovery (Spirtes et al. 2000).

Structural learning algorithms can be divided in three families: constraint-
based algorithms, score-based algorithms and hybrid algorithms. Constraint-based
algorithms learn the graph’s structure via conditional independence statements
emerging from data. They usually start with a complete graph, and then if two
variables turn out to be marginally or conditionally independent, the edge connecting
them is deleted. This procedure is repeated iteratively until a stopping criterion
is satisfied. Score-based algorithms rely on a given score function that measures
how well a certain DAG describes a dataset. These algorithms usually begin by
computing the score of an initial graph. The diagram is then modified by introducing,
deleting or reversing edges, and its score is computed again for each modification.
The graph recording the best score at the end of the procedure is retained as the
algorithm’s output. Hybrid algorithms aim to exploit the advantages of score-based
and constraint-based algorithms by merging them in a single procedure. Generally,
they begin with a restrict phase where the parents of each node are selected through
tests of conditional independence, similarly to what happens in constraint-based
algorithms. The second phase is called maximize and consists in selecting a DAG in
the restricted DAG family outlined by phase one by optimizing a given score function.
Hybrid algorithms include the Max-Min Hill Climbing (Tsamardinos, Brown, and
Aliferis 2006) and H2PC (Gasse, Aussem, and Elghazel 2014).
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Once the graph is learnt, a joint probability distribution over the nodes of the
graph can be obtained through maximum likelihood estimation. This phase usually
involves computing maximum likelihood estimates subject to the independence
constraints encoded in the graph. Estimates can be retrieved in the case of discrete
variables or when dealing with continuous variables under the assumption of linearity
(Spirtes et al. 2000).

The section will continue with a description of the assumptions that structural
algorithms usually require. We will then explain how different algorithms work and
show the functioning of two representative procedures.

1.4.1 Common assumptions and background knowledge

The assumptions of causal discovery algorithms usually focus on the relation between
the causal graph and the distribution of the data employed to learn it. A usually
required assumption is faithfulness. A graph G faithfully represents a dataset D, if
all and only the conditional independence relations true in D are entailed by the
Markov condition applied to G (Spirtes et al. 2000).

Another key assumption for learning algorithms is causal sufficiency. The
assumption states that a given set of variables X is causally sufficient for a population
if and only if in the population every common cause of any two or more variables
belonging to X is in X or has the same value for all units in the population.

Implementing a constraint-based algorithm also requires making statistical de-
cisions concerning how to assess conditional independence. Several tests can be
employed to check if conditional independence holds, and violations of the assump-
tions required by the tests can generate unreliable independence statements. For a
review of the implications of choosing a given independence test and what happens
when the required assumptions do not hold, see Spirtes et al. (2000).

Structural learning algorithms are usually employed when information concerning
the causal graph is not available. However, in practice it is common to deal with sce-
narios where the knowledge of the causal graph is partial. This incomplete knowledge
can be introduced in structural learning procedures by imposing constraints on the
structure of the obtained network. For example, if is known that a variable Xi cannot
cause a second variable Xj , the directed edge that goes from Xi to Xj is forced to
be absent. Note that this constraint does not imply the presence or absence of a
directed edge going from Xj to Xi. Conversely, if background knowledge suggests
that Xi affects Xj , a directed edge from Xi to Xj can be imposed. A consequence of
including previous knowledge in the learning phase is that the graph is not entirely
obtained through the information contained in the data. The constraints on the
structure of the graph restrict the search space of the algorithms and often reduce
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both uncertainty and computational time.

1.4.2 Constraint-based algorithms

Constraint-based algorithms learn causal graphs from conditional independence
relations contained in the data. They can take different kind of data as an input,
including categorical and linear continuous variables: in the first case, the algorithm
performs conditional independence tests on cell counts; in the latter, covariance
matrices are used to test vanishing partial correlations. The obtained conditional
independence statements, if possible, are then translated into graphical form ac-
cording to the rules of d-separation. Constraint-based algorithm include the PC
algorithm(C. Glymour, Spirtes, and Scheines 1991), the IG algorithm (Verma and
Pearl 1990) and the most recent Grow-Shrink algorithm (Margaritis 2003). All the
algorithms share the idea of learning a graph from the independence structure of the
data but employ different heuristics. Constraint-based algorithms generally assume
causal sufficiency, namely observing all the common causes of two or more variables
in the model. This is a strong assumption, difficult to achieve in observational
contexts. Some constraint-based algorithms have been proposed to deal with models
where causal sufficiency does not hold. One of the most used is the fast causal
inference (FCI) algorithm Spirtes et al. 2000. The algorithm is a variation of the
PC algorithm and retrieves asymptotically correct causal structures in the presence
of latent common causes, provided the observed distribution and the graph satisfy
the faithfulness condition.

The PC-stable Algorithm

One of the most used algorithms in the constraint-based family is the PC Algorithm.
The procedure begins with a complete undirected graph, in which edges are progres-
sively deleted in order to generate a graph which is coherent with the conditional
independence relations between variables. Faithfulness and causal sufficiency are
assumed. A pseudocode of a recent variation of the algorithm, called PC-stable
(Colombo and Maathuis 2014) is displayed in Algorithm 1. In the original PC
algorithm the obtained graph could be affected by the ordering of the variables in
the dataset used to learn the graph. In the new version, instead, the ordering does
not affect the results, thus the name PC-stable. The procedure begins by learning a
graph containing only undirected edges from conditional independence statements
retrieved from the dataset. Then the orientation of the edges is estimated according
to a set of graphical rules. In the pseudocode we will denote directed and undirected
edges between to nodes Xi and Xj , respectively with the notation Xi → Xj and
Xi −Xj . Moreover we will use adj(Xi) to denote the set composed by the nodes
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adjacent to Xi and X\{Xi} to indicate the variable set X excluding variable Xi.

Algorithm 1: PC-stable
Input: A sample D = (X) from a set of random variables X = {X1, ..., XN} and a chosen

statistical test of conditional independence
Output: A family of Markov-equivalent DAGs

1 Form a complete undirected graph G with vertex set {X1, ..., XN};
2 Set l = −1;
3 repeat
4 l = l + 1;
5 forall vertices Xi in G do
6 Set a(Xi) = adj(G, Xi)
7 end
8 repeat
9 select a (new) adjacent pair of nodes (Xi, Xj), i ̸= j in G such that |a(Xi)\Xj | ≥ l;

10 repeat
11 Choose a (new) set S ⊆ a(Xi)\{Xj} of size l;
12 if the statistical test reveals that Xi is conditionally independent from Xj given S

then
13 delete the edge connecting the pair (Xi, Xj) from G;
14 set SXiXj

= S, denoting the set that separates Xi and Xj

15 end
16 until Xi and Xj are no longer adjacent in G or all possible subsets S of size l have been

considered;
17 until all pairs of adjacent nodes (Xi, Xj), i ̸= j in G such that |a(Xi)\{Xj}| ≥ l have been

considered;
18 until all pairs of adjacent nodes (Xi, Xj) in G satisfy |a(Xi)\{Xj}| ≤ l;
19 foreach triplet {Xi, Xk, Xj} such that Xi is adjacent to Xk, the latter is adjacent to Xj , but the

pair {Xi, Xj} is not adjacent to Xj , if Xk /∈ SXi,Xj
do

20 orient Xi −Xk −Xj with the colliding configuration Xi → Xk ← Xj .
21 end
22 Set more arc directions by repeated application the following rules:
23 if Xi is adjacent to Xj and there is a directed edge from Xi to Xj then
24 replace Xi - Xj with Xi → Xj

25 end
26 if there are two paths Xi −Xk → Xj and Xi −Xl → Xj and Xk is not adjacent to Xl and there

is a directed edge from Xi to Xj then
27 replace Xj - Xk with Xj → Xk

28 end
29 if Xi and Xk are not adjacent but Xi → Xj and Xj - Xk then
30 replace Xj −Xk with Xj → Xk

31 end

Given a dataset D = (X) describing a set of random variables X = {X1, ..., XN},
the PC-stable algorithm begins by forming a complete undirected graph G over X.
Then, step 5 stores the adjacency sets adj(G, Xi) for each node Xi according to the
current structure of G. Given an index l which start from 0 and increase at each
iteration, the procedure checks if a set S of size l, that d-separates two nodes Xi and
Xj exists. Note that S must be formed by nodes belonging to adj(G, Xi) obtained
in step 5 and that the size of adj(G, Xi)\Xj must be greater or equal than l. If the
procedure finds a set S of size l that makes Xi and Xj conditionally independent, the
edge between them is deleted from G and S is retained. The procedure is repeated
for every node pair (Xi, Xj) and for every possible size l S associated to it, until
an S that ensures d-separation is found or every size l S has been explored. The
algorithm then increases l by a unit and repeat the procedure from step 5, until
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every pair of adjacent nodes (Xi, Xj) in G satisfies |a(Xi)\{Xj}| ≤ l. In other
words, at each iteration, the structure of G is updated by removing edges between
conditional independent variables. Once the undirected graph is obtained, steps
19-31 orient the edges according to specific edge configurations. The rules dictated
by the algorithm ensure that cycles are not generated and avoid the creation of a new
colliding configuration that would modify the conditional independence relations.

The output of the PC-stable algorithm is a completed partially DAG(CPDAG), a
DAG where some of the edges are undirected. This kind of graph is used to represent
a family of independence-equivalent DAGs. Regardless of how the undirected
edges of the graph are oriented, the colliding configurations remain the same, thus
ensuring that the all the DAGs associated to a CPDAG encode the same conditional
independencies. The output of the PC-stable algorithm is therefore coherent with
the objective of translating the conditional independences contained in the data
into graphical form. Moreover, it has been proven that if the assumptions hold, the
results provided by the algorithm are sound and complete (Colombo and Maathuis
2014).

1.4.3 Score-based algorithms

Score-based algorithms aim at recovering the graph structure from data by optimizing
a score function. The score function evaluates the goodness of fit of the graph with
respect to the learning data. Common choices for the score function are the likelihood
function or the Bayesian Information Criterion (BIC), for a comprehensive review of
the available score functions see Koller and Friedman (2009) . Generally, this kind of
algorithm explores several graph structures and assigns a score to each of them; at
the end of the procedure, the graph with the maximal score is retained. Score-based
algorithms usually assume faithfulness as well as causal sufficiency. Algorithms
belonging to this family include the greedy search, the simulated annealing and
genetic algorithms (Russell and Norvig 2009).

Greedy Search algorithm

One of the most used score-based algorithms is the greedy search and its steps
are shown in the pseudocode of Algorithm 2. The procedure iteratively modifies
the edges of an initial DAG, computes the score of each graph and retains the
best-scoring structure. When the score does not increase with an iteration, the
obtained graph is provided as the algorithm’s output.
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Algorithm 2: Greedy Search
Input: A sample D = (X) from a set of random variables X = {X1, ..., XN} a score function

F(G, D)
Output: A DAG

1 Form an empty graph G with vertex set {X1, ..., XN};
2 Calculate the score of G given D, SG = F(G, D) ;
3 Set Smax = SG ;
4 Set Gmax = G ;
5 repeat
6 foreach possible edge addition, removal or inversion in Gmax that produces a modified DAG

G⋆ do
7 compute SG⋆ = F(G⋆, D);
8 if SG⋆ > Smax and SG⋆ > SG then
9 set G = G⋆ and SG = SG⋆

10 end
11 end
12 if SG > Smax then
13 set Smax = SG and Gmax = G

14 end
15 until Smax of current iteration is smaller then Smax of previous iteration;

Given a dataset D = (X) and a score function F(G, D), the algorithm first two
steps consist in computing the score of an initial, usually empty, graph G with vertex
set X. Next, the score of the graph is set as the maximal score Smax and the initial
graph G is set as the best-scoring DAG Gmax. In step 6, the best-scoring DAG is
modified by deleting, adding or inverting an edge, thus generating a new DAG G⋆.
The score of G⋆ is computed, and if it is greater than the best score of the iteration
SG and greater than the absolute best score Smax then G⋆ becomes the new best
score of the iteration SG. All the possible modifications to Gmax are explored this
way, and if the best-obtained score of the iteration is greater than the best absolute
score, then the latter is set to the current SG and Gmax is set equal to the current
G. The procedure is then repeated from step 6 for the new Gmax. The algorithm
stops when applying all the possible modifications to the DAG Gmax, obtained in
the previous iteration, does not generate an increased Smax. In this case, Gmax

constitutes the output of the algorithm.

1.4.4 Causal discovery and potential outcomes

We have already shown how PO methods can benefit from specifying a causal graph
to outline causal relations between variables. If the causal knowledge is available,
drawing a causal graph can help assess unconfoundedness in a high dimensional
context, using a graphical condition called the back-door criterion.

Causal discovery methods constitute an additional resource if we are interested
in estimating causal effects with PO methods, but the knowledge of the causal
graph is partial or absent. Suppose we want to estimate the effect of treatment
T on an outcome Y given a dataset D(X, T, Y ), where X are additional random
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variables, that could directly or indirectly affect T and Y . In addition, let us
assume that the available subject matter knowledge concerning the variable causal
structure is very limited and thus does not allow drawing a causal graph. In order
to estimate causal effects with a PO method such as matching, we have first to
assess if unconfoundedness holds. However, since the causal graph over {X, T, Y } is
unknown, we cannot directly select an adjustment set S that satisfies the back-door
criterion.

Causal discovery provides a solution to this scenario. If we cannot exclude the
absence of unobserved common causes, we can learn the graph from D(X, T, Y )
employing an algorithm that only requires the faithfulness assumption, such as
the FCI algorithm. The algorithm’s output can be then used to assess which PO
identification strategy is adequate to estimate the causal effect of T on Y . If instead,
it is reasonable to assume both causal sufficiency and faithfulness, we can opt for an
algorithm such as the greedy search or PC-stable. In both cases, we know that if the
assumptions hold, the obtained causal structures are asymptotically correct, and a
sufficient adjustment set can be selected by applying the back-door criterion. The
adjustment set can then be used to derive the interventional distribution through
the adjustment formula, or directly estimate the ATE with a method of choice, such
as regression, matching or inverse probability weighting.

Alternatively, learning the graph from data could reveal or confirm if a specific
PO identification strategy is feasible. Assume that applying a structural learning
algorithm on a given dataset generates the DAG in Figure 1.7.
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Figure 1.7. Instrumental variable DAG

If we are interested in the effect of T on Y , we cannot directly estimate causal
effects because of the presence of the unobserved confounder U , and no observed
adjustment set that satisfies the back-door criterion. However, the graph config-
uration reveals that variable Z satisfies the exclusion restriction assumption of
instrumental variables described in Section 1.2. This means that we can employ an
IV strategy to achieve causal effect identification. Also in this case, the assumptions
required by PO methods are made transparent by causal graph implementation. In
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this particular example, those assumptions are also strengthened by the structural
learning procedure that allows exclusion restrictions to be derived directly from the
data.

1.5 Discussion

Estimating causal effects is a central subject for biomedical and social sciences. How-
ever, investigating causal claims is an ambitious objective, especially when dealing
with observational data. The most affirmed causality frameworks are Potential
Outcomes and Causal Graphs.

The two approaches are often contrasted to evaluate which one is most effective.
PO methods offer efficient ad hoc solutions to specific causal problems. However, their
assumptions are difficult to assess, especially as the number of variables increases. On
the other hand, causal graphs allow the formalization of complex causal problems in
a generalized way. Nevertheless, their high generality can sometimes be perceived as
a distance from real empirical problems and incapacity of including context-specific
restrictions in the model.

This paper described how the two frameworks could be implemented together in
an integrated approach. Causal graphs can be used as a guide to evaluating which
PO method can be implemented and if its assumptions hold. The graph can be
outlined directly if the causal structure is entirely known or learned from data if the
causal knowledge is partial or absent. This versatility guarantees coverage of most
empirical problems. The results of PO methods are thus strengthened by causal
graphs, since assumptions such as unconfoundedness and exclusion restrictions can
be directly assessed from the structure of the DAG. At the same time causal graphs
can benefit from all the context-specific identification strategies provided by the
literature of potential outcomes. Combining the two methodologies thus results in an
effective synergic approach that enhances both frameworks’ peculiar characteristics.
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Chapter 2

Evaluating the effect of
home-based working on firms’
expected revenues during the
pandemic
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Abstract

Covid-19 generated an unprecedented shock on the Italian economy, which severely
affected firm performance. This work focuses on estimating the causal effect of
implementing home-based working (HBW) after the pandemic outbreak on firms’
expected revenues. The analysis uses a unique firm-level dataset, which captures a
rich set of features before and after the spread of the virus. Causal effect estimation
is performed implementing an integrated approach that merges Causal Graphs and
Potential Outcomes frameworks. At first, the dataset is used to learn a causal
diagram that encodes theory-based assumptions and information contained in the
data. An adjustment set is then selected by applying the back-door criterion on the
obtained graph. Lastly, causal estimates are computed with full matching, using
the chosen adjustment set to ensure unconfoundedness. The results confirm the
presence of a positive effect of the implementation of HBW on expected revenues.
The treatment seems to be particularly effective in providing revenue stability and
mitigating of losses. The results are consistent with the fact that HBW equips firms
with greater flexibility and helps contain productivity decreases in Covid times.

2.1 Introduction

The outbreak of Covid-19 in March 2020 had unprecedented consequences on the
Italian economy. As the virus spread, consumer spending dropped, and lockdown
policies forced many firms to temporarily cease their activity, thus generating both
a demand and a supply shock. As soon as the economic consequences of the covid
outbreak became clear, firms tried to do everything possible to minimize losses.

This work focuses on the implementation of home-based working (HBW), one
of the key firms’ countermeasures to the pandemic. In particular, given the firms’
characteristics, the analysis evaluates the effect of HBW on expected revenues by
comparing firms who implemented home working with those who did not.

The implications of switching to HBW have been thoroughly studied over the
past years and its related literature has spiked in covid times. The benefits of home
working on employees performance have been studied in Bloom et al. (2015). The
research points out that when staying at home, employees adopted longer working
shifts and showed increased productivity. On the other hand, evidence from workers
who switched to home working in covid times suggests that being far from the
workplace for a prolonged period can negatively affect mental health (Felstead and
Reuschke 2020). Among the possible effects of working from home, there are also
income inequalities, as stated in Bonacini, Gallo, and Scicchitano (2021). The
authors warn about the risks of amplifying pre-existing inequalities by favouring
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male, older, high-educated and high-paid employees.

Bartik et al. (2020) use firm-level surveys to investigate the spread of home-based
working during the pandemic. The authors find out that industries with more
educated workers are associated with a higher rate of remote working and perceive
a lower productivity loss associated with this kind of work. In addition, about 40%
of interviewed firms declare that at least 40% of their workers that switched to
homeworking will continue doing so even after the crisis, and this represents a strong
indicator of the persistence of the phenomenon. These results are also confirmed in
Bick, Blandin, and Mertens (2021) and Barrero, Bloom, and Davis (2021).

This work contributes to the fast-growing literature of home-based working by
evaluating the effect of implementing home working in covid times on future expected
firm revenues. A rigorous causal evaluation of this kind seems to be missing in
the literature and could provide a quantifiable measure of the impact of enabling
employees to work from home.

A picture of the condition of firms just before and after the outbreak is needed
to perform the analysis. A private firm-level dataset has been employed to answer
this need. The dataset originates from two different surveys over the same group of
firms: one was conducted just before the covid outbreak and one a few weeks after.
Both surveys have been provided by MET Monitoraggio Economia e Territorio, a
private research centre that regularly conducts one of the most comprehensive private
surveys on Italian manufacturing and production companies. The pre-covid survey
covers many firms’ characteristics, including financial and strategic components. The
second survey has been conducted to capture the immediate effect of the shock on
firms’ organizations and the change in their future expectations. Having such a rich
dataset is an added value compared to similar studies and is crucial to obtaining
a comprehensive representation of the problem and making causal estimates more
credible.

One of the possible frameworks to investigate causal claims when dealing with
observational data are Causal Graphs (Pearl 1995). In this approach, the causal
model comprises a joint probability distribution and a graph, which entails the
relations between variables in the form of nodes and edges. An alternative and
widely used approach in economics is the Potential Outcomes framework (Rubin
2005). The methods belonging to this approach aim at checking if the main features
of randomized experiments still hold or can be emulated in some particular cases
of observational studies (Imbens 2020). The main concern for both frameworks is
confounding: the situation where at least one variable has a direct causal effect on
both the treatment and the outcome. This kind of configuration can generate biased
estimates unless adequately accounted for.
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This work integrates the two approaches: causal graphs are used to cope with
uncertainty in the causal structure, and then causal effects are estimated through
potential outcomes methods. In the first step, a structural learning algorithm
estimates a causal graph from data. The obtained model provides a clear picture
of the interactions between variables and allows a straightforward identification of
confounders. The generalized back-door criterion (Perković et al. 2015) is then used
to select a sufficient set of variables for confounding adjustment, according to the
graph’s structure. Lastly, the causal effect is estimated using full matching on the
chosen adjustment set.

The analysis results suggest that home working affected performance during
the pandemic, generating a substantial increase in the expected revenues of firms
that implemented it relatively to those who did not. The proposed integrated
methodology reconstructs a credible causal graph and provides a rigorous framework
for unbiased causal effect estimation. In addition, the validity of causal estimates
is strengthened by the unique dataset that captures a rich set of firm dimensions,
including implemented strategies, workforce characteristics and financial structure,
thus ensuring a comprehensive representation of the problem.

The paper is organized as follows. In Section 2.2, we will describe the dataset
that has been used for the analysis, what are its sources and why it has been chosen.
In section 2.3 both causal graphs and full matching are explained in detail, their
assumptions are outlined, and the strengths of opting for a combined approach
are highlighted. The obtained causal graph, the selected adjustment set, matching
results and the estimated causal effect are presented in Section 2.4. Finally, results
and future work are discussed in Section 2.5.

2.2 Data

2.2.1 Data source

The analysis uses a unique firm-level dataset provided by MET, a research centre
based in Rome, which conducts one of the most comprehensive surveys on the Italian
manufacturing and production service sectors. The dataset originates from merging
two different MET surveys over the same panel of firms. The same data source
has already been employed to study the economic effects of the Covid-19 shock in
E. Brancati and R. Brancati (2020) and Balduzzi et al. (2020).

The first survey is the 2019 wave of the MET survey on the italian industrial
system. The questionnaire covers a vast group of firm features such as structure,
performance and strategies. Almost 24000 firms were interviewed according to their
size, sector, and area to obtain a representative sample of the Italian manufacturing
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and production services population. The administration began at the end of 2019
and was completed in late January 2020, right before the spread of the pandemic in
Italy.

Reaction to Covid-19 was then measured with another questionnaire between
March 24 and April 7, 2020, administered to the 24000 respondents of the 2019 MET
survey. The Italian government imposed restrictive measures for firms on March 8,
thus leaving time for the second survey respondents to adapt to such change. The
time window for completing the survey has been restricted to two weeks to avoid as
much as possible that variations in the regulations or the spread of the disease would
generate heterogeneous answers. The Covid-19 survey is divided in three parts:

1. A section that replicates questions from the MET 2019 survey concerning
expected sales and future R&D plans. This first block allows a direct compari-
son between the answers of the two surveys to investigate the effects of the
pandemic.

2. A section that complements the first one, asking directly how Covid-19 will
affect firms’ future operations and performance. This part is intended to study
additional consequences of the pandemic which were impossible to study from
a comparison with the MET 2019 survey.

3. A section with questions related to the beahviour and needs of firms during the
pandemic. This last part provides information regarding how firms perceive
Covid-19-related risks, the reaction strategies they implemented and the public
policies they demand to aptly face the pandemic.

The exceptional timing thus produces two snapshots of the same group of firms,
just before and after the spread of the pandemic. The answers to both surveys have
been merged to obtain a final dataset of 7800 respondents.

2.2.2 Description of the dataset

Fifteen variables have been selected out of the set of data. No weighting scheme has
been used on the dataset, and therefore the results of the analysis are tied to the
population represented by the interviewed sample. An overview of the composition
of the sample can be found in Table 2.1, which contains descriptive statistics of all
the selected variables.

The treatment variable originates from the post-covid questionnaire and is a
binary variable defining if a firm has implemented home-based working for a portion
of their employees right after the lockdown policies introduction. The idea behind
this treatment is that it primarily represents an indicator of the preparedness of
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a firm to switch to HBW. It is assumed that having at least a portion of the
employees working from home has been convenient for most firms in covid times.
Therefore the firms which declared that they did not resort to HBW at all after the
outbreak are assumed to be those who were not able to face the transition. The
treatment thus describes the capability of a firm to implement HBW. The feasibility
of this strategic change could depend on several factors, such as employee education,
manager education and the degree of digital literacy in the firm. A rich set of
variables will be included in the model to investigate these interactions.

The outcome variable describes post-covid expectations towards future variation
in revenues with respect to past revenues. The variable derives from the post-covid
survey and can take four different modalities, which identify increase, stability,
decrease or strong decrease in expected revenues. Covid-19 and related lockdown
policies strongly affected expectations regarding future revenues. The magnitude of
this phenomenon can be appreciated by comparing the outcome variable with the
same variable measured just before the outbreak. Pre and post-covid survey present
several similarities in their structure, which allow a direct variable comparison and
thus provide an idea of the effect of the pandemic. The change in the distribution of
expected revenues is represented in Figure 2.1.
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Figure 2.1. Distribution of ∆ expected revenues before and after the covid outbreak

Firms are hugely affected by the shock, which dramatically impacts expectations.
Before March 2020, most of the interviewed firms (58%) imagined a stable revenue
flow in the following two years; almost a quarter (24%) expected an increase and the
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remaining portion (18%) was preparing to withstand a decrease. After the spread
of the virus, the distribution changed radically, and more than three-quarters of
respondents (77%) declared to believe they would have registered a decrease in
revenues in the next two years. This radical shift towards negative expectations
provides a provisory yet powerful picture of the magnitude of the shock.

The other variables included in the model can be divided into groups based on
their type. These groups will also serve as a guide to build the causal diagram in
Section 2.4.1. Variable names will be denoted with the italic font.

– The first group of covariates defines the firm’s structure and is constituted by
firm size (n. of employees), geographical area, economic sector and manager
education. These typifying characteristics are usually correlated with each
other and could highly affect firm behaviour and performance.

– The second ensemble is more heterogeneous and is formed by other character-
istics measured before the spread of the virus, such as implemented strategies,
past performance and financial constraints. This group includes information
regarding past research and development activity (R&D), innovation, export,
employees and revenues variation, credit rationing and level of digitalization.
Variables belonging to this group are derived from survey questions that inves-
tigate firm behaviour in the previous three years. For example R&D activity
and innovation is a binary variable which takes value 1 if one of the two
strategies has been adopted by the firm in that time interval and 0 otherwise.
Employees and revenues variation are also computed with respect to the same
reference period. The level of digitalization is captured by the variable Digital
literacy which takes value 1 if the firm trained its employees to improve their
IT skills, adopted high-tech equipment or made other investments in ICT and
0 otherwise.

– The third group consists of a single variable describing the pre-covid expecta-
tions concerning future revenues variation. Including it in the model allows us
to account for previous expectations when estimating treatment effects.

– The fourth and last group contains two variables that are not affected by the
treatment but refer to a time window that follows the pre-covid survey. The
first one is confirmed covid infections, a variable that describes the number
of confirmed covid infections at the province level and acts as a proxy of the
geographical heterogeneity of the spread of the virus. More precisely, the
variable represents the number of confirmed infections released by the Italian
Department of Civil Protection in the province of the firm, the day before
answering the questionnaire. This inclusion tries to capture both the physical
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and the psychological effects of the virus. The number of detected infections
was announced on the media daily and it was the most followed indicator of
the propagation of the virus. The other variable is essential business sector.
Lockdown policies implemented by the government at the beginning of March
forced many firms to cease their activity. In particular, depending on their
business sector, the regulation allowed only firms belonging to ”essentials”
business areas to stay open, whereas the rest were forced to close. Moreover,
some of the essential firms decided to shut down even if allowed to remain
open. The variable essential business sector was added to the dataset in order
to take into account the effects of these measures. The economic sector has
been used to distinguish essential from non-essential firms and integrated with
the answers of the post-covid survey to account for firms that voluntarily shut
down even if belonging to essential sectors.

2.3 Methodological background

In this section, the main methodological elements used for causal effect estimation
are described. We begin by explaining the basic concepts of causal graph theory
and how a causal diagram can be learned from data. Next, we proceed with how
the graph can be used to obtain a sufficient adjustment set for unbiased causal
effect estimation. Finally, the potential outcome framework is introduced, and full
matching is explained in detail.

2.3.1 Causal graphs

Causal graphs are models providing a clear representation of causal problems and a
set of tools to derive causal estimates. The theoretical framework is described in
Pearl (1995) and shares elements of similarity with path diagrams found in the work
of Wright (1921a).

Graph terminology

A graph G = (X, E) is a collection of nodes X and edges E. When an edge goes out
from a node into another is called a directed edge, if there is no such orientation the
edge is undirected. A graph that contains only directed edges is a directed graph.
Given a graph G with ensemble of nodes X and two nodes Xi and Xj belonging to
X, any sequence of edges which connects Xi and Xj , regardless of their direction,
is called a path. If every edge of the path is directed and has the same orientation
along the path, then it is called a directed path. A directed path which begins and
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Table 2.1. Descriptive summary of the variables included in the model

Variable Level description Proportion
Home-based working 0 Not implemented 0.64

1 Implemented 0.36
Post-covid ∆expected revenues 1 Increase (>+5%) 0.03

2 Stable (between -5% and +5%) 0.20
3 Decrease (between -15% and -5%) 0.32
4 Strong decrease (<-15%) 0.45

Size (n. of employees) 1 1-9 0.51
2 10-49 0.33
3 50-249 0.13
4 >250 0.03

Geographical area 1 North-West 0.25
2 North-East 0.27
3 Center 0.24
4 South and islands 0.24

Business sector 1 Food and beverage 0.07
2 Textile 0.06
3 Wood industry 0.05
4 Paper industry 0.05
5 Plastic industry 0.06
6 Metal industry 0.09
7 transport equipment 0.02
8 Machinery ed equipment 0.11
9 Electrical and optical equipment 0.05
10 Production and distribution of utilities, mineral extraction 0.07
11 Services for the manifacturing industry 0.37

Manager education 0 <20% of managers achieved a degree 0.67
1 >20% of managers achieved a degree 0.33

Innovation, R&D 0 No 0.40
1 Yes 0.60

Credit rationing 0 No 0.92
1 Yes 0.08

Export 0 No 0.70
1 Yes 0.30

Delta number of employees 1 Decrease 0.22
2 Stable 0.45
3 Increase 0.32

Digital literacy 0 No 0.57
1 Yes 0.43

Past delta revenues 1 Increase (>+5%) 0.34
2 Stable (between -5% and +5%) 0.46
3 Decrease (between -15% and -5%) 0.14
4 Strong decrease (<-15%) 0.06

Pre-covid delta expcted revenues 1 Increase (>+5%) 0.24
2 Stable (between -5% and +5%) 0.58
3 Decrease (between -15% and -5%) 0.13
4 Strong decrease (<-15%) 0.05

Confirmed covid infections 0 Low 0.25
1 Medium 0.25
2 High 0.25
3 Very high 0.25

Essential business sector 0 No 0.26
1 Yes 0.74
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ends with the same node is a cycle. If a directed graph does not contain cycles then
it is a directed acyclic graph (DAG). In the context of this work, the nodes of the
DAG represent random variables and edges describe the causal relations between
them. To introduce some further terminology, consider the simple graph in Figure
2.2(a). The model describes a treatment variable T which is the only cause of an
outcome variable Y . The causal relation is represented through the directed edge
that links the two nodes denoting the variables. When two nodes are connected by
an edge they are called adjacent. Since the directed edge goes from T to Y , then
T is a parent node of Y and Y is a child of T . If we assume that T affects Y only
through a third variable X which acts as a mediator, the model could be instead
described by the graph in Figure 2.2(b). This particular configuration where every
node has at most one parent and one child, is called a chain. The edges of the
chain also constitute a directed path which connects T and Y . For a given DAG G,
the structure of the graph allows factorizing the joint probability distribution of its
nodes (X1, ..., Xn) as follows

P (X1, ..., Xn) =
∏

i

P (Xi|pai) (2.1)

where pai is the set of the parents of Xi according to the graph. In the case of the
graph in Figure 2.2(b) we would have P (T, X, Y ) = P (T )P (X|T )P (Y |X).

Let us consider a slightly more complex model in Figure 2.2(c). A variable Z

causes T , the treatment directly causes Y , and a fourth variable X causes both T

and Y . Assuming that we are interested in the effect of T on Y and that we observe
Z but not X, the DAG constitutes a graphical representation of the instrumental
variable (IV) context. The configuration between X,T ,Y , is called confounding and,
unless accounted for, produces a bias in the estimates of the causal effect of T on Y .
When instead two non-adjacent nodes point to a third node, the latter is called a
collider on the path formed by the triplet of nodes. In the IV graph, the treatment
variable T is a collider on the path (Z → T ← X), where arrows denote directed
edges.

Conditional independence statements are encoded in a DAG through the rules
of d− separation. Two nodes are d-separated, and thus independent, if every path
between them is blocked. Consider a DAG G with nodes X, a pair of nodes Xi and
Xj belonging to X and a set of nodes S ⊂ X. A path p which connects Xi to Xj is
blocked, conditioning on S, if

1. p contains a chain of nodes n1 → n2 → n3 or a configuration of the kind
n1 → n2 ← n3, such that the node n2 is in S, or

2. p contains a collider n1 ← n2 → n3 such that the node n2 is not in S and that
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no descendant of n2 is in S.

This also implies that when all the paths between Xi and Xj contain colliders and
S = ∅, Xi and Xj are d-separated. In this case Xi and Xj are independent without
conditioning on S and are thus said to be marginally independent. On the other
hand, if two nodes are d-separated only by conditioning on a non-empty set S, they
are said to be conditionally independent.

T Y

(a)

T X Y

(b)

Z T

X

Y

(c)

Figure 2.2. Simple DAGs

Theory of intervention

A DAG and the joint probability distribution associated to its nodes is also known
as a Bayesian Network (BN). BNs can be provided with an inference engine that
allows to investigate how the model reacts if some evidence is introduced, through a
method called what-if analysis. This procedure performs an update of the probability
distribution given that we observe one or more variables to assume a specific state
(Kjaerulff and Madsen 2008). However, to answer causal queries, we are interested
in studying how the model would react to an intervention on one or more variables.
The difference between observing and forcing a variable to take a particular state
is a substantial one and requires some further discussion. Pearl (2009a) introduces
the notation do(Xi = xi) to denote that a variable Xi is set to the value xi through
an intervention. The quantity P (Xj |do(Xi = xi)) represents then the distribution
of Xj given that Xi is forced to take value xi, while P (Xj |Xi = xi) describes the
distribution of Xj given that we observe Xi take value xi. Interventional quantities
can be used to estimate causal effects, that can be expressed as comparison of
interventional distribution summary statistics. A common way to represent causal
effects is the average treatment effect (ATE) (Imbens and Rubin 2015). If we consider
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the effect of a binary variable Xi on a variable Xj , the ATE can be computed as

ATE = E[Xj |do(Xi = 1)]−E[Xj |do(Xi = 0)] or ATE = E[Xj |do(Xi = 1)]
E[Xj |do(Xi = 0)]

However, in observational studies, the interventional distribution P (Xj |do(Xi =
xi)) is not directly measured. In order to express this distribution through observa-
tional quantities, Pearl (1995) introduces the back-door criterion. In particular, given
a graph G with ensemble of nodes X, a treatment T and an outcome Y belonging
to X, if a set S ⊂ X satisfies the following assumptions

1. No s ∈ S is a descendant of T

2. S blocks every path between T and Y that contains an edge pointing to T

then interventional distributions can be expressed in observational terms:

P (Y |do(T = t)) =

=
∑

S
P (Y |S = s; do(T = t))P (S = s; do(T = t))

=
∑

S
P (Y |S = s; T = t)P (S = s)

(2.2)

A set S that satisfies the assumptions is called a sufficient adjustment set
(Greenland, Pearl, and Robins 1999). The paths between T and Y with an edge
pointing to T , as mentioned in Assumption 2, are called back-door paths. These
paths are carriers of spurious associations between outcome, and treatment and
their individuation is crucial in order to obtain unbiased causal estimates. The
bias introduced by back-door paths is also referred to as confounding bias and is
one of the main concerns when drawing causal conclusions from observational data.
However, as shown in (2.2), given a known causal graph, an adjustment set obtained
through the back-door criterion allows the calculation of unbiased interventional
distributions. The selected set can be used for adjustment through various methods,
including matching, weighting, regression adjustment or doubly robust methods
(Abadie and Cattaneo 2018).

Graph learning

We have until now described the main features of causal graphs and how they can
be used to answer causal queries. However, the proposed methods strongly rely
on the structure of the graph, which is often partially or entirely unknown when
dealing with real problems. In this case, the causal graph can be recovered from a
dataset containing the variables of interest. Extracting conditional independence
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statements from the data and encoding them into a DAG, usually requires the
following conditions (Pearl 2000):

Faithfulness condition. All the independence assumptions that can be read-off
from the graph by d-separation rules are exactly the same as those in the population
that generated the DAG. This assumption, also known as stability, ensures that
independence statements encoded in the graph are consistent with the factorization
in 2.1.

Causal sufficiency. There are no unobserved variables that would invalidate the
factorization in 2.1.

If the conditions hold, causal structural learning can be carried out using one of
the algorithms that have been developed to perform this task. For a comprehensive
review, see Stuart Russell and Norvig (2002). Given a dataset D containing n obser-
vations, the algorithms output a graph G following one of three possible approaches:
constraint-based, score-based and hybrid. Constraint-based algorithms retrieve the
structure of the graph by performing a sequence of conditional independence tests.
Those tests produce a set of conditional independence statements, which are then
encoded in a DAG G following the rules of d-separation. Score-based algorithms
instead select the DAG which maximizes a score reflecting its goodness of fit. Hybrid
algorithms are combinations of the two approaches: they use conditional indepen-
dence tests in a first step to restrict the space of possible graph structures and in a
second phase, select the DAG which maximizes a given network score.

2.3.2 Potential outcomes

Potential outcomes (Splawa-Neyman, Dabrowska, and Speed 1990; Rubin 2005) are
an alternative framework to deal with causality. This approach is widely used in
economics and allows estimating causal effects from experiments and some specific
observational contexts. The framework’s name originates from the idea that even
if we cannot observe simultaneously the outcome on the same unit receiving and
not receiving the treatment, we can still define those potential quantities and build
methods that allow their estimation.

Let us consider an outcome variable Y and a treatment T . We denote T = 0
and T = 1, respectively, the treated and the not treated condition. Then we can
define Yi(T = 1) the potential outcome we would have observed if unit i had received
the treatment and as Yi(T = 0) the potential outcome we would have observed if
the same unit had not received the treatment. The methods that belong to the
framework usually require the following assumptions:
Stable unit treatment value assumption (SUTVA). Applying the treatment to one
unit does not affect the outcome of other units.
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Unconfoundedness. The treatment assignment mechanism is conditionally indepen-
dent of the potential outcomes given the covariates.

The most used methods developed in this framework include matching, instru-
mental variables, synthetic control and regression discontinuity designs.

Full matching

Here full matching (P. R. Rosenbaum 1991; Hansen 2004; Stuart and Green 2008)
to estimate the treatment effect will be used. This technique groups all the units
into a series of matched subclasses, containing at least one treated and one control
unit. Similar units are gathered in the same subclass and its size depends on the
number of comparable units: the more the available similar units, the larger the
generated subclass and vice-versa. The similarity between units i and j is described
by discrepancy measure δij , which is usually calculated as a difference of distance
measures, such as a propensity score. Small values of δij indicate similar units, and
thus as δij increases the probability of i and j being matched decreases. If a pair
{i, j} has δij =∞ the two units cannot be paired.

Let us consider a set of treated units T , a set of control units C and a discrepancy
measure δij ∈ [0,∞] computed for each pair i ∈ T and j ∈ C. A full matching S
maps the elements of T ∪C into {0, ..., S}, where S is a postive integer that indicates
the number of subclasses and M = S−1[s], with (1 ≤ s ≤ S), are the matched sets.
Matched sets M are thus defined as the ensemble of units i and j assigned to a
certain sunbclass s. The matching procedure is performed by minimizing the net
discrepancy ∑

i∈T ,S(i)>0

∑
j∈c,S(i)=S(j)

δij , (2.3)

subject to
(i) min(#(M ∩ T ), #(M ∩ C)) = 1 and
(ii) ∀i ∈M ∩ T and j ∈M ∩ C, δij <∞,
where #(M ∩ T ) and #(M ∩ C) indicate respectively the number of treated and
control units in M . The quantity in (2.3) represents the sum of discrepancies within
each matched set M , summed over every matched set. Minimizing this sum reflects
the idea of generating subclasses that gather similar units. The first constraint forces
each matched set M to have at least one control and one trated unit whereas the
second constraint imposes that unit pairs for which δij =∞ cannot be placed in the
same set.

Full matching has been chosen because it allows the estimation of the ATE,
and thus the results of the matching procedure are coherent with the interventional
do-notation defined in the context of causal graphs. Other matching procedures, in
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fact, only allow estimation of treatment effect on target subpopulation, such as the
average treatment effect on the treated (ATT) or the average treatment effect on the
controls (ATC). The do-notation instead focuses on comparing the average outcome
resulting from applying the treatment to all the units and the average outcome we
would observe if all the units were controls.

2.4 Analysis and results

The first stage of the analysis will consist in estimating a causal graph on the dataset
to study the interactions between the considered variables. In a second step, given
the structure of the obtained graph, a sufficient adjustment set will be selected via
the back-door criterion. Lastly, the selected set will be used to implement a full
matching procedure and estimate causal effects.

2.4.1 Learning the causal graph

Learning a causal graph from a dataset implies choosing a structural learning
algorithm that will encode the structure of conditional independence of the data
into a DAG.

A score-based algorithm called Tabu Search (Stuart Russell and Norvig 2002)
has been implemented. The Tabu Search requires both faithfulness and causal
sufficiency assumptions. As mentioned in Section 2.2, the graph will be learned
on the dataset without employing sample weights. This choice originates from
the fact that integrating weights in structural learning algorithms implies many
methodological obstacles that are yet to be completely overcome. Solutions to use
a weighting scheme in the learning procedure are still limited and currently being
explored in the related literature. For some recent advances on the topic see Marella
and Vicard (2022).

This part of the analysis has been carried out employing the Bnlearn package
(Scutari 2010) in R Statistical Software (R. Core Team 2013). The procedure begins
with computing the BIC score of an initial graph G, which is usually empty. The
graph is then modified by adding, deleting or reversing its edges and a score is
computed again for each of this variations. Note that this step is performed under
the constraint that each modification cannot generate cycles. At the end of this phase
Tabu Search retains the best scoring structure and use it as the new initial graph G.
After performing each iteration the algorithm keeps track of the already-explored
structures in a tabu list, so as not to compute the score of a given DAG twice. The
procedure is repeated until a new iteration does not generate an increase in the
best obtained score. When this happens the algorithm stops and the best scoring
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graph of the last iteration is selected as the algorithm output. Tabu Search has been
selected because it is faster and more accurate than most algorithms for both small
and large sample sizes (Scutari, Graafland, and Gutiérrez 2019).

Most structural learning algorithms, including Tabu Search, allow the inclusion of
prior knowledge in the learning procedure by introducing constraints on the graph’s
structure. A known causal relationship between variables or the absence of it is
encoded in the graph by imposing or forbidding a directed edge between two nodes.
Tabu Search thus behaves as a supervised learning procedure where the graph is not
only the result of the information emerging from the data but also of subject matter
knowledge introduced in the form of constraints.

Prior knowledge of the subject matter has been synthesized in Table 2.2. The
variables have been divided into four logical groups according to their type, as
described in Section 2.2. The first group is Precovid demographics and contains
primary firms’ features such as their size, the geographical area where they operate
and their business sector. The second group contains additional firms’ traits that
characterized them before the outbreak. The variation in their revenues and number
of employees relative to the last three years, their past strategical activities and
exposure to credit rationing are, among others, included in this category. The third
group contains the variable which describes the firms’ future expectations concerning
revenues, measured prior to the pandemic. Post-covid features, such as the number
of confirmed covid infections in their province and if they have been targeted by
lockdown measures or not, belong to the fourth and last group.

The idea behind this logical categorization is that we assume that variables
belonging to a specific group cannot affect the preceding groups described in Table
2.2. For example, a variable of the last group cannot cause variables of the other
three groups, the third group cannot affect the first two and so forth. The four
categories are then translated into constraints in the graph structure and used in
the structural learning procedure.

Table 2.2. Logical variable groups

Precovid demographics ↚ Other precovid features ↚ Precovid expectations ↚ Postcovid features
Size (n. of employees) Innovation, R&D Pre-covid delta expcted revenues Confirmed covid infections
Geographical area Credit rationing Essential business sector
Business sector Export
Manager education Delta number of employees

Digital litteracy
Past delta revenues

In addition to the mentioned constraints, some additional assumptions have
been included in the model. Firstly, the treatment and the outcome variable are
not allowed to cause any of the pre-treatment variables. This constraint originates
from the fact that pre-treatment variable cannot be affected by the treatment or
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the outcome since they are measured before the treatment is applied. It is also
assumed that geographical area cannot be affected by the other variables in the first
group. Note that while it is assumed that variables of a group cannot cause variables
of previous groups, according to the ordering contained in Table 2.2, variables
belonging to the same group can affect each other. Lastly, we assumed that the
variable Essential business sector could only be affected by the firms’ business sector
by definition.

The graph learnt by the algorithm is shown in Figure 2.3. Dashed arrows denote
edges that have been forced to be present, based on assumptions regarding the
existence of causal relations between variables. This set of assumptions based on
prior knowledge, complements the forbidden arcs assumptions deriving from the
logical categories in Table 2.2.

Figure 2.3. Causal graph learnt with the Tabu Search algorithm
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The causal graph unveils the complex network of causal relations between the
variables. The graph is dense, and the emerging structure highlights how all the
different considered dimensions contribute to shaping the outcome variable Post-
covid delta expected revenues. Note that apart from the dashed edges, the causal
connections in the graph have not been imposed and emerge from the data under
the assumptions we specified previously.

Structural variables nodes such as business sector, size and geographical area are
the roots of the causal structure, consistently with the logical categorization imposed
in the learning phase. This group shows causal connections among its elements and
towards variables belonging to other groups. In particular, the graph reveals numer-
ous directed edges between basic firm characteristics, strategies and performance,
as one would expect according to economic intuition. For example, geographical
area affects business sector, which in turn influences size (n. of employees). Certain
regions are, in fact, more favourable to a specific type of economic activity, and the
latter influences firm’s size.

Geographical area and confirmed covid infections are related by construction
since infections are measured at the province level. An arc between the two nodes
has thus been imposed. The same is valid for business sector and essential business
sector. Business sector also affects manager education and export, indicating how
different economic activities require and are thus characterized by different levels of
internationalization and education at the managerial level. The last variable affected
by business sector is confirmed covid infections. For example, this relation could
confirm that in certain territories, where a specific type of economic field is prevalent,
characteristics related to that particular activity could have affected the spread of
the disease.

The number of confirmed covid infections at the province level seems to not
affect other variables in the model. This could be because, at the beginning of the
pandemic, the perception of the covid related risk was shaped by covid infection
numbers at the national level. Media outlets reported governmental declarations
that focused on the evolution of the infection in the whole country. This kind
of communication probably shifted the attention from infections at a local scale
to infections at a national scale. Secondly the variable represents the number of
detected covid infections and therefore constitutes a biased proxy of the real amount
of infected individuals. The detected number of infections in fact under-measures the
real infections and could potentially provide an untrue picture of the geographical
heterogeneity in the spread of the virus.

The firm size is the structural feature that causes the largest number of variables
in the model. The affected nodes include implemented strategies, revenues variation,
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employment variation, credit rationing and the implementation of home-based work-
ing. Manager education affects the implementation of several strategic choices such
as creating innovative products or services, investments in research and development,
export, digital literacy, and the implementation of HBW. In general, all the nodes
that describe implemented strategies show dense connections among them, indicating
that adopting or not adopting one of them also affects decisions concerning the
implementation of the others.

Digital literacy of the firm, which depends on implemented strategies and struc-
tural features, is assumed to affect HBW. Giving employees the chance to work
remotely requires proper training and infrastructure. An edge between essential
business sector and treatment has also been imposed. This constraint follows the
idea that the implementation of HBW must be affected by lock-down policies. Firms
that were forced to shut down temporarily had a higher urgency to enable their
employees to continue working from their homes. Past performance, captured by
past ∆ revenues and ∆ number of employees, is directly caused by size of the firm
and implementation of innovations and R&D. The revenues variation is also affected
by digital literacy. The two performance variables have been assumed to be linked,
and thus, an edge between them has been imposed. Note that even if only a few
variables affect performance indicators directly, indirect connections show that many
more dimensions take part in shaping their value. Almost at the end of the causal
chain, we find pre-covid expected revenue variation node, directly caused by the
vertices representing past revenues, variation in the number of employees, innovation
and R&D. As expected, past performance is a strong driver of the beliefs concerning
future performance. The outcome variable, Post-covid delta expected revenues, is
caused by the treatment by assumption. Moreover, it has been assumed that the
outcome is affected by the variable essential business sector, which denotes if a firm
was targeted or not by lock-down policies. This imposed relation translates the idea
that being forced to close temporarily has negative consequences on future revenues
most of the time. Lastly, the graph shows that expectations after the spread of the
virus are affected by pre-covid expectations. This relation highlights that even if the
pandemic had a strong negative impact across all businesses, the reaction to this
shock depends on the firm conditions before the covid outbreak.

2.4.2 Adjustment set selection and estimation of the ATE

The obtained causal graph is used to select a sufficient adjustment set of covariates
to estimate the effect of implementing home-based working on expected revenues.
The R Statistical Software (R. Core Team 2013) package Dagitty (Textor et al.
2016) has been employed. Given the graph in Figure 2.3, the minimal set which
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satisfies the back-door criterion for the effect of T on Y is

Sadj = {Essential business sector; Pre-covid delta expected revenues}

The two variables block all the confounding paths between treatment and outcome
and thus allow the estimation of unbiased treatment effects.

Full matching is employed for causal effect estimation. The methodology has
been implemented in R Statistical Software (R. Core Team 2013), using the package
MatchIt (Stuart, King, et al. 2011). The first phase of the procedure involves assessing
the balance of covariates after matching. The results of the procedure are shown in
Figure 2.4. Covariate balance improves considerably after matching. Once propensity
score is estimated and balance is achieved, the average causal effect of T on Y is
calculated by regressing the outcome on the treatment and the adjustment set in a
weighted regression model, also referred to as the outcome model. The fitted model
is then used to predict the distribution of the outcome if all units were controls and
if all units were treated. This kind of procedure, also called g-computation (Snowden,
Rose, and Mortimer 2011), is required when we include additional covariates in
the outcome model and we are interested in estimating a marginal effect. The
obtained distribution of the outcome under treatment administration Y1 and control
administration Y0 are then averaged and used to compute the causal risk ratio

ATE = E[Y1]
E[Y0] . (2.4)

Note that denoting the interventional distribution of Y with Yx is typical of the
potential outcome framework (Imbens and Rubin 2015) and is equivalent to Pearl’s
do-notation P (Y |do(X = x)). Standard errors are computed through block bootstrap
(Abadie and Spiess 2020).

The estimated ATE in Table 2.3 shows that implementing HBW from the
beginning of the pandemic helps mitigate the harmful effects of Covid-19. In
particular, treated firms have a higher probability of expecting stable or increasing
future revenues and a lower probability of a strong decrease. For every point estimate,
confidence intervals (C.I.) have been estimated with bootstrap at a 95% confidence
level. The different width of confidence intervals is primarily due to an uneven
frequency distribution in the outcome variable levels. The estimated causal risk
ratio for increasing and stable expected revenues, with 95% C.I. between parenthesis,
is respectively 1.8 (0.96, 3.13) and 2.2 (1.67, 3.03). The probability of a decrease
between -15% and 5% in expected revenues is almost the same for treated and
controls, with an ATE of 0.97 (0.61, 1.43). In contrast, the ratio equals 0.73 (0.56,
1.07) for an expected decrease lower than -15%.
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Figure 2.4. Balance of selected covariates

Table 2.3. ATE estimates of HBW implementation on post-covid ∆ expected revenues

Post-covid delta expected revenues Point Estimate 95% C.I.
Increase (>+5%) 1.80 (0.96, 3.13)
Stable (between -5% and +5%) 2.11 (1.67, 3.03)
Decrease (between -15% and -5%) 0.97 (0.61, 1.43)
Strong decrease (<-15%) 0.73 (0.56, 1.07)

2.5 Discussion

The poposed combined methodology allows the construction of a causal graph, the
selection of a sufficient set of variables for adjustment, and the ATE estimation.
Causal relations emerging from the graph are coherent with economic intuition
and reveal new insights concerning variables interactions. The graph leads to
selecting an adjustment set composed of business sector and pre-covid ∆ expected
revenues. According to the graph’s structure, the two variables block all the spurious
paths between treatment and outcome, thus ensuring unbiased ATE estimation.
The resulting causal effect, estimated with full matching, shows a positive impact
of HBW on expected future revenues. Receiving the treatment, ceteris paribus,
corresponds to having a higher probability of stable or increasing expected revenues.

The first contribution of this work to the literature is the proposed methodology.
Causal graphs are yet to be the most used approach in economic causal inference
literature, but we believe they constitute an irreplaceable resource. Learning a
causal graph from data is a process that translates causal information into a more
transparent medium. The graph constitutes itself a set of assumptions concerning
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the causal relationships between variables on which causal estimates are based.
Encoding information into a causal diagram thus improves the analysis’s clarity
and understandability of how results are derived. In addition, the graph learning
step allows the introduction of prior knowledge into the model, imposing theory or
evidence-based relations between variables. Estimation of ATE using the adjustment
set selected from the graph via back-door criterion can be then performed with
a method of choice, such as simple regression or matching, depending on the
assumptions being made. Regardless of the chosen method, using the graph-selected
adjustment set ensures unbiased ATE estimation if the implied assumptions are
satisfied.

The second contribution of this work resides in the results of the analysis.
The treatment causes a change in the distribution of the outcome that partly
counterbalances the impact of the Covid-19 shock. In other words, the outcome
variation generated by the treatment always goes in the opposite direction of the
observed change induced by the pandemic outbreak. This finding is coherent with
HBW literature and, in particular, with its impact on flexibility and productivity.
However, this mitigating effect was yet to be quantified in a comprehensive causal
framework.

Future research could focus on measuring the effect of HBW on different perfor-
mance indicators and after different periods of time. Moreover, additional analyses
will be carried out in order to check if the findings hold for a wider population of
firms. Assessing causal effects on overall performance was beyond the scope of the
analysis, but the obtained results contribute to having a better understanding of the
implications of working from home in Covid times. Reconstructing the complete
picture is needed to guide future policies and assess the urgency of providing the
firms with the necessary resources for HBW implementation.
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Chapter 3

Bootstrap-aggregated
adjustment set selection
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Abstract

Causal effects can be estimated from observational data within the Causal Graph
framework. When the true causal graph is unknown, data are used to learn the
graph through structural learning algorithms. The obtained model is then employed
to select a sufficient set of covariates for adjustment, according to the back-door
criterion. Graph learning is a crucial step of the process since misspecification in
the graphical model can lead to incorrect adjustment set selection and thus generate
biased estimates. We propose a procedure that resorts to bootstrap-aggregating to
select the adjustment set. First, an ensemble of graphs is learnt on bootstrapped
replicates of the original dataset, and then a multiset of adjustment sets is obtained
by applying the back-door criterion to each graph of the ensemble. Finally, the
element with the highest multiplicity in the multiset is selected as the resulting
adjustment set. The simulations on graph structures of low complexity reveal that,
at small sample sizes, the novel procedure is less accurate than the benchmark
methods. However, as the graph complexity increases, the relative performance
of the proposed method improves. When applied to complex graphical structures,
bootstrap-aggregated adjustment shows the highest accuracy among the tested
methods for both small and large sample sizes.

3.1 Introduction

Causal inference investigates causal relations between variables. Questions like
"what happens to A if I intervene on B?" are causal and must be answered through
models that follow the rules of causality. The gold standard of causal inference is
experimental data since it allows a direct comparison between treated and control
units. Thus an estimate of the causal effect of the treatment can be obtained without
further calculation. Unfortunately, conducting randomized experiments is usually
too expensive or impossible. This is often the case in epidemiology or economics,
where data is primarily observational. The need of dealing with observational data
has led to many methods capable of estimating causal effects even when experimental
data is not available.

One of the possible frameworks to investigate causal claims, when dealing with
observational data, are Causal Graphs (Pearl 1995), also called Causal Diagrams
or Causal Bayesian Networks. In this approach, the causal model is composed of
a graph, which entails the relations between variables in the form of nodes and
edges and a joint probability distribution. Causal diagrams can handle models with
many variables, they represent variable interactions clearly through a graph, and,
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if identifiable, estimate the treatment’s causal effect on an outcome variable. In
order to compute the causal estimate starting from a known causal diagram, one
can resort to the rules of do-calculus, as explained in Pearl, M. Glymour, and Jewell
(2016).

An alternative and widely used approach is the Potential Outcomes framework
(Splawa-Neyman, Dabrowska, and Speed 1990; Rubin 2005). The methods belonging
to this approach are useful to compute causal effects from experimental data and,
under specific circumstances from observational studies, resorting to particular
identification strategies such as matching, instrumental variables, synthetic control
methods and regression discontinuity designs. The reasoning behind these techniques
aims at checking if the main features of randomized experiments still hold or can be
emulated in some special cases of observational studies (Imbens 2020).

When the treatment assignment mechanism is unknown, the main concern for
both approaches is confounding: the situation where there is at least one variable
that has a direct causal effect on both the treatment and the outcome. This kind
of configuration can generate biased estimates unless adequately accounted for.
However, if the causal relations between variables are known a priori, it is possible
to select a sufficient set of covariates for confounding adjustment, if such a set exists.
In the Causal Graphs framework, sufficient adjustment sets can be derived from
the structure of the graph, following the back-door criterion (Pearl 1995). Once the
set is selected, adjustment can be performed through various methods, including
matching, weighting, regression adjustment or doubly robust methods (Abadie and
Cattaneo 2018).

Unfortunately, the true graph is often unknown in real settings or just partially
known and must be estimated from data. Several algorithms have been developed to
solve the task, and a review of their performance can be found in Scutari, Graafland,
and Gutiérrez (2019) and Constantinou (2020). Once the graph is estimated, it
is usually taken as a good approximation of the true graph and then a sufficient
adjustment set is selected to estimate a chosen treatment effect. The technique,
however, depends on the estimated graph, and if the structure of the graph is
misspecified, the selected adjustment set could be not sufficient for confounding
adjustment.

This work proposes a procedure to select the adjustment set from multiple
graphs, employing bootstrap. In particular, the method consists in generating
several bootstrap replicates of the original dataset, then on each of them learn a
graph and select an adjustment set via back-door criterion. Finally, the obtained
sets are put together to form a multiset, and the set with the highest multiplicity is
chosen for adjustment. Generating multiple versions of a predictor by bootstrapping
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and then building an aggregated predictor is also called bootstrap-aggregating or
bagging (Breiman 1996). Bagging has been applied to classification and regression
trees, subset selection in linear regression (Breiman 1996), non-parametric regression
(Borra and Di Ciaccio 2002), clustering (Dudoit and Fridlyand 2003) and neural
networks (Ha, Cho, and MacLachlan 2005). However, to the author’s knowledge,
this approach has never been used to select adjustment sets from causal graphs.

The proposed procedure is tested on three graphs of increasing complexity and
then compared to other adjustment set selection techniques. All the procedures show
high accuracy levels when tested on the simplest graph. Bootstrap-aggregating the
adjustment set makes no exemption, even if its accuracy is lower than the benchmark
methods at low sample sizes. As complexity increases, the overall accuracy of the
procedures decreases, but the relative performance of bagging improves. In the
simulations on the medium complexity graph, the novel procedure achieves the same
level of accuracy as the other graphs, whereas on the most complex graph, bagging
has the highest accuracy among the chosen methods, at both small and large sample
sizes.

The paper is organized as follows. Section 3.2 introduces some basic causal graph
terminology and notation, which is necessary for explaining how the procedure works.
The proposed method is described in detail in Section 3.3, while Section 3.4 contains
simulations and results. Findings and room for future work are discussed in Section
3.5.

3.2 Background and notation

3.2.1 Causal graphs

A graph G = (V, E) is a collection of nodes or vertices V and edges E. A causal
graph is a graph where nodes represent random variables and edges describe the
causal relations between these nodes. If two nodes Xi and Xj are connected by an
edge the nodes are adjacent. A path between two nodes Xi and Xj is a sequence
of nodes beginning with Xi and ending with Xj where all the nodes are connected
to the next. Edges can be directed or undirected. An edge is directed if it goes out
from one node into another and undirected without such orientation. A graph where
all the edges are directed is a directed graph. If a directed edge goes from Xi to Xj

then Xi is a parent node of Xj , and Xj is a child of Xi. We will denote parents
of node Xj with the notation paXj . A directed path between two nodes is a path
where no node has two edges on the path directed into it, or two edges directed
out of it. Given a directed path, the first node is an ancestor of every node of the
path, and every node of the path is a descendant of the first node. A directed path
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that begins and ends with the same node is a cycle. A directed graph containing no
cycles is called a directed acyclic graph (DAG). When two nodes Xi and Xj point to
a third node Xk and Xi and Xj are not connected by an edge, Xk is a collider in
the ordered triplet of nodes (Xi, Xk, Xj). The ordered triplet with a collider as the
middle node is also called unshielded triplet.

A DAG encodes statements of conditional independence through the notion of
d-separation (Pearl 2000, Definition 1.2.3, page 16). Consider a DAG G with nodes
X, two nodes Xi and Xj belonging to X with Xi ̸= Xj and a set of nodes S ⊂ X not
containing Xi and Xj . Then Xi and Xj are d-separated given S in G, if there is no
path p connecting Xi and Xj such that (i) every collider on p has a descendent in S
and (ii) no other node on p belongs to S. If two nodes are d-separed by a set S then
they are conditional independent given S. If two vertices are instead d-separated
without conditioning on a set, they are said to be marginally independent.

Given a causal graph G with ensemble of nodes X, every X ∈ X is independent
of all its non-descendants, conditional on its parents paX . This implies that the
joint probability distribution of the nodes P (X) can be factorized as follows

P (X) =
∏

X∈X
P (X|paX) (3.1)

If a distribution allows the factorization in 3.1, according to the structure of the
graph, the graph is said to satisfy the Causal Markov condition with respect to the
distribution.

Note also that each node is always conditionally independent of every other node
of the network given a set consisting of its parents, its children and the parents of
its children. This set is also called the Markov blanket of a node (Pearl 2009b) and
its average size constitutes a measure of complexity of the conditional independence
structure of the graph.

3.2.2 Graph learning

If the underlying dependence model of a problem is unknown, the graph can be
estimated from a dataset containing the variables of interest (Koller and Friedman
2009). Most of the procedures that learn graphs from data require the following
assumptions (Spirtes et al. 2000):

Faithfulness. A probability distribution P is faithful to a causal graph G only if
the set of conditional independences of P is exactly the same as those described by
G. In the context of graph learning, this implies having an exact correspondence
between the conditional independence relations of the distribution of the data from
which the graph is learnt and those encoded in G through d-separation rules. The
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assumption also ensures that the distribution describes no extraneous independences
with respect to those entailed by the causal Markov condition applied to G.

Causal sufficiency. There is no unobserved variable in the model that would
cause the causal Markov condition to be violated.

When the required conditions are satisfied, a causal graph can be retrieved from
data, through a structural learning algorithm. The task of recovering a graph G from
a dataset D containing N observations through a learning algorithm can follow one
of three possible approaches: constraint-based, score-based and hybrid. Constraint-
based algorithms perform a sequence of conditional independence tests. The resulting
conditional independence structure is then translated into graphical form through
d-separation rules and encoded in a DAG G. Score-based algorithms instead assign
to each candidate DAG a score reflecting its goodness of fit and select the network
which maximizes it. Hybrid algorithms combine the two approaches using conditional
independence tests to restrict the space of possible networks structures and then
select the DAG that maximizes a given network score within the restricted space.

3.2.3 Calculus of intervention

This work focuses on the estimation of the effect of an intervention from observational
data. The transition from an observational context to an interventional one requires
some further discussion. Pearl (2009a) introduces the notation do(Xi = xi) to
indicate that the variable Xi is set to the value xi by intervention. In this way we
can denote as P (Xj |do(Xi = xi)) the distribution of Xj given that Xi is forced to
take value xi. If we assume that Xi is a discrete random variable which can take
value 0 or 1, the average causal effect (ACE) of an intervention on Xi can then be
denoted as follows (Imbens 2004)

ACE = E(Xj |do(Xi = 1))− E(Xj |do(Xi = 0)).

In an observational context the quantity P (Xj |do(Xi = xi)) is not measured but it
can be derived if the following assumptions are satisfied (Pearl 2000). Given a graph
G, a treatment variable T , an outcome variable Y and a set of covariates S ⊆ X,
where X denotes the ensemble of the nodes of G,

Assumption 1. Every s ∈ S is a nondescendant of T

Assumption 2. All back-door paths from T to Y are blocked by S,

A set S which satisfies Assumption 1 and 2 is called a sufficient adjustment set
(Greenland, Pearl, and Robins 1999).

Back-door paths, mentioned in Assumption 2, are defined as paths between T

and Y that contain an arrow into T . Consider the DAG in Figure 3.1. The graph
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shows the presence of a back-door path p between the pair (T, Y ), traced along the
ordered tuple {T, X1, X2, Y }. These are spurious paths, and if they are not blocked
by controlling for a sufficient adjustment, causal effect estimation could produce
biased results.
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 Figure 3.1. A DAG with a back-door path

Assumption 1 and 2 together form the back-door criterion. Checking if a set
satisfies the criterion can be tested by systematic graphical procedures that are
applicable on graphs of any size and complexity (Pearl 2000). A generalized version
of the back-door criterion also exists and it permits to check if a set is sufficient
for adjustment on several classes of graphical models (Perković et al. 2015). Note
that the definition of S allows the set to be non-unique. Several adjustment sets
could in fact satisfy Assumptions 1 and 2, thus being all sufficient for causal effect
estimation.

If a sufficient adjustment set exists, then interventional distribution can be
expressed in observational terms:

P (Xj |do(Xi = xi))

=
∑

S
P (Xj |S = s; do(Xi = xi))P (S = s; do(Xi = xi))

=
∑

S
P (Xj |S = s; Xi = xi)P (S = s)

The absence of the do-notation in the last line implies that causal effects can be
estimated from observational data when the assumptions hold. This is a central
result for causal estimation through graphical models, and it will be a fundamental
building block of the proposed procedure.

3.3 Bootstrap-aggregated adjustment set

Consider a dataset D = (X; T ; Y ) of size n sampled from an unknown graph G

containing a set of covariates X, an outcome Y and a treatment T . Since we are
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interested in computing the effect of T on Y , we need to select an appropriate
sufficient adjustment set to remove confounding bias. A straightforward way to
proceed would be estimating a graph Ĝ through a structural learning algorithm L
on D and then selecting a sufficient adjustment set according to the generalized
back-door criterion. This procedure, however, relies entirely on the precision of L to
retrieve the correct network structure from D. In particular, if some of the local
relations between T and Y are misspecified in Ĝ, the adjustment set resulting from
applying the back-door criterion on Ĝ could not be sufficient for G and thus produce
biased causal estimates.

We propose a novel method that investigates how adjustment set selection would
vary if we modify D through bootstrap (Tibshirani and Efron 1993) and then selects
a single adjustment set according to its stability.

3.3.1 Description of the method

Bootstrap is a resampling technique that creates replicates of the original dataset by
sampling from it with replacement. The procedure is repeated M times to produce
M bootstrap replicates of the same size as the original dataset. This work builds on
a particular implementation of bootstrap called bootstrap-aggregating or bagging
(Breiman 1996). Bagging is a machine learning method that generates multiple
versions of a predictor through bootstrap and uses these to get an aggregated
predictor. A plurality vote is performed if the predicted element is a class. Here, the
logic of bagging is applied to graph structural learning and adjustment set selection.
Bootstrap samples are used to fit M different models and derive a multiset Θ of
adjustment sets. Then the element of the multiset with the greatest multiplicity θ⋆

is selected. Note that given an estimated graph Ĝ, more than one set of variables
can satisfy the generalized back-door criterion, and therefore the elements of the
multiset can be greater than the number of bootstrap replicates. The pseudocode of
the procedure is contained in Algorithm 3.

In the first step, a sample D of size n is used to produce M bootstrap replicates
of the same size. The bootstrap procedure creates new datasets by sampling
with replacement from the original sample until reaching the target sample size n.
Therefore, all the units contained in the obtained replicates B1, ..., BM appear in D.

In step 2, the multiset Θ is initialized as an empty set, which will be populated in
the following iterations. A graph Ĝi is learnt with an algorithm L on each generated
bootstrap sample Bi, given the constraint that the treatment T is a parent of the
outcome Y . This assumption encodes in the graph the a priori knowledge that T

directly causes Y . Note that L is defined as a generic learning algorithm because
the method supports the implementation of any learning procedure that generates a
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Algorithm 3: Bootstrap-aggregated adjustment set
Input: A sample D = (X, T, Y ) from an unknown graphical model G, a

number of bootstrap samples M , a structural learning algorithm L,
an adjustment set selection procedure A.

Output: A bootstrapped adjustment set θ⋆

1 Generate M bootstrap samples B1, ..., BM from D;
2 Θ = ∅;
3 for i = 1 to M do
4 Ĝi =L(Bi|T ∈ paY );
5 add A(Ĝi, T, Y ) to Θ;
6 end
7 θ⋆ = max

θj∈Θ
{v(θj)}

DAG.

Then an adjustment set selection method A for estimating the effect of T on Y

is applied to each graph Ĝi. The selected sets are then added to Θ until steps 4
and 5 have been iterated over all the bootstrap resamples. Also, the adjustment set
selection criterion A is not specified because the procedure allows the implementation
of different methods. Since given a graph, a treatment and an outcome variable,
more than one adjustment set can satisfy the back-door criterion, several studies
have been carried out to assess how to select one set or another. One of the most
common method targets sets with the minimal cardinality among all admissible sets,
while others focus on selecting the set with the smallest asymptotic variance (Witte
et al. 2020).

The last step of the algorithm defines the bagged adjustment set θ⋆ as the set
which maximizes v(θj) among all sets θj ∈ Θ, where v(·) denotes the multiplicity of
a given element of a multiset. The bagged adjustment set θ⋆ is thus the set, among
all θ ∈ Θ, which satisfies the back-door criterion in the highest number of learnt
graphs. Note that adjustments sets are selected according to the structure of the
graph and in particular according to the confounding paths between Y and T . If a
graph is large enough, changing some parts of it could leave the local configuration
that define confounding paths between a given T and Y intact, thus not affecting the
selected adjustment set. It follows that different graphs, learnt on different bootstrap
replicates, could however generate the same adjustment set, because they share
the same local configurations around treatment and outcome. Moreover note that
even if two graphs show different confounding paths for a given pair (T, Y ), there
could however exist one or more adjustment sets that are sufficient for confounding
adjustment in both graphs.
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3.4 Simulation

In this section, we assess the performance of the proposed method by comparing it
to three alternative approaches. The different techniques will be tested on graphs of
increasing complexity, and the accuracy of the obtained results will be compared.
The simulation has been carried out employing the Bnlearn (Scutari 2010) and the
Dagitty (Textor et al. 2016) packages in R Statistical Software (R. Core Team 2013).

We will first describe how the accuracy measure is computed and how the
simulation will be carried out. We will then provide details concerning the alternative
benchmark procedures, and finally, the obtained results will be presented.

3.4.1 Simulation details

Given a known graph G(X, T, Y ), where T ∈ paY , we sample K datasets D1, ..., DK

of size n from it. Then we apply the proposed method on each sample D to obtain
K adjustment sets θ⋆

i for the estimation of the causal effect of T on Y . Finally, we
check if θ⋆

i is a sufficient adjustment set for calculating the effect of T on Y in the
true graph G. The results are summarized by the quantity

R =
∑K

i=1 IG(θ⋆
i )

K
, (3.2)

where IG(θ⋆
i ) is an indicator function which takes value 1 if θ⋆

i is a sufficient adjust-
ment set for (T, Y ) in G and 0 otherwise. The formula of Equation 3.2 represents a
measure of the precision of the proposed method since it computes the proportion
of samples for which the obtained results are correct. Note that once the samples
D1, ..., DK are obtained from G, the true graph is considered unknown for the
whole simulation procedure, as if the sampled data were the only available source
of information. At the end of the simulations, G is employed again to build the
accuracy measure R and evaluate the obtained results.

R is calculated for each pair (T, Y ), such that T ∈ paY according to the structure
of G. The total number of pairs (T, Y ) is equal to

∑
v∈V

#pav where V is the ensemble

of vertices of graph G and #pav is the number of parents of vertex v ∈ V. Once
R has been calculated for every possible (T, Y ) pair, an average of the results is
computed to obtain a summary of the accuracy measure for the whole graph. If
we denote M =

∑
v∈V

#pav, we can write the average of the accuracy measures for a

given graph as
R =

∑
m∈M Rm

M
. (3.3)

Equation 3.3 thus gives an account of the performance of an adjustment set selection
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procedure over the ensemble of nodes of a causal graph. In particular, it describes
how well the technique succeeded in recovering a sufficient adjustment set from
the data for every possible pair of treatment and outcome according to the graph
structure.

The simulations are performed on three discrete networks of increasing size and
complexity that have been frequently used in the literature: Asia (Lauritzen and
Spiegelhalter 1988), Alarm (Beinlich et al. 1989) and Insurance (Binder et al. 1997).
We set the number of samples K = 10, and the number of bootstrap replicates
M = 200. Simulation with different values for the two parameters have been tested
and these values have been chosen because they represent the best compromise
between performance and computational time. The same number of replicates will
be used in the bootstrap-aggregated procedure and in the benchmark methods that
implement bootstrap. Different sample sizes are used in the simulations, according
to the complexity of the network. The main characteristics of the chosen graphs,
such as the number of nodes, edges, total parameters and average Markov blanket
size, are described in Table 3.1.

Table 3.1. Characteristics of the graph employed for the simulation

Nodes Edges Parameters Average Markov blanket size
Asia 8 8 18 2.50

Alarm 37 46 509 3.51
Insurance 27 52 984 5.19

The structural learning algorithm L used to learn the graphs Ĝ is the Tabu Search
algorithm (Glover 1986; Russell and Norvig 2009) with a BIC score. Tabu Search
belongs to the family of score-based algorithms, and it has been chosen because
it is more accurate and faster than most other learning algorithms, for both small
and large sample sizes (Scutari, Graafland, and Gutiérrez 2019). The procedure’s
first step consists of computing the score of an initial, usually empty, graph. In the
second step the score is computed again for every possible arc addition, deletion or
reversal in the initial graph, which would still generate a DAG. The best scoring
structure is retained together with its score and then the second step is repeated as
long as the obtained best score increases. While computing the score of the possible
configurations, the algorithm keeps track of previously-explored structures in a tabu
list to avoid considering the same structure twice in different iterations. When an
iteration fails to provide an increased score, the algorithm stops and the obtained
DAG is selected as the output of the algorithm.

The chosen adjustment set selection procedure A is the minimal adjustment set.
The method selects the globally minimal adjustment sets between all adjustment
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sets which satisfy the generalized back-door criterion. An adjustment set is globally
minimal if it has the smallest cardinality between all possible adjustment sets. If
more then one set share the same cardinality, which is also the smallest cardinality,
then they all constitute a minimal adjustment set.

3.4.2 Benchmark methods

Bootstrap-aggregated adjustment performance is compared with three alternative
methods. These methods focus on recovering a graph structure from data and
then use the learnt diagram to select an adjustment set. The selected benchmark
procedures have been identified by the literature as the most reliable in recovering
the structure of the true graph from a dataset (Broom, Do, and Subramanian 2012).

Single algorithm graph

The first benchmark method is the most straightforward to apply and is often found
in the literature. The procedure consists in learning a graph Ĝi from each sample Di

with a learning algorithm L, thus obtaining K graphs Ĝ1, ..., ĜK . Then a sufficient
adjustment set θ⋆

i for the effect of T on Y in each Ĝi is formed by selecting paT . Note
that the treatment parents always constitute a valid set for causal effect adjustment.
This method is less computationally intensive than bagging, but it relies entirely
on the precision of L to recover the structure of the true graph G from the original
samples D1, ..., DK .

Average graph

The second benchmark procedure involves bootstrapping to obtain an average graph
and then selecting an adjustment set according to its structure. In the first step we
sample M bootstrap replicates Bi1, ..., BiM from each sample Di and then a graph
Ĝi,j is learnt on each bootstrap replicate Bij with learning algorithm L. In the
following step, the obtained graphs Ĝi,j are used to build a measure of confidence on
all the arcs which appear in the graphs, based on how many times they appear. All
the edges that show a confidence level higher than a certain threshold are included in
a graph Ĝavg

i called the average graph. The procedure to build Ĝavg
i is explained in

detail in Friedman, Goldszmidt, and Wyner (2013) and Imoto et al. (2002). Finally,
given T and Y , an adjustment set θ⋆

i is composed by paT , according to the structure
of Ĝavg

i .
The difference between this method and the bootstrap-aggregated adjustment

set is that the former does not integrate graph learning and adjustment set selection
as the latter does. In the novel procedure we propose here, adjustment set selection
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is repeated on each bootstrap replicate, and then all the sets are combined, whereas,
in the average graph method, bootstrap only concerns graph learning.

Best score graph

The third and last benchmark method also involves bootstrapping, but instead of
generating an average graph, it selects the diagram with the best score among the
bootstrap replicates. Initially M bootstrap replicates Bi1, ..., BiM are sampled from
each sample Di. Then we fit a graph Ĝi,j through L on each replicate Bij and
select the graph Ĝbs

i with the best score among all the bootstrap replicates for each
sample Di. Then an adjustment set is selected by setting θ⋆

i = paT , according to
Ĝbs

i . The idea behind this method is that the graph with the highest score is the
one that better describes the causal information contained in the data and could
thus generate more reliable adjustment sets.

3.4.3 Results

The smallest graph employed for testing the procedure is the Asia network. The
graph was first introduced by Lauritzen and Spiegelhalter (1988) and has now become
a standard for testing structural learning algorithms. The diagram, represented in
Figure 3.2 describes the interactions between lung diseases, symptoms and visits to
Asia. However, recovering the model’s structure is challenging for most algorithms,
despite the apparent graph simplicity.
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Figure 3.2. The Asia graph

The results are summarized in Figure 3.3. The x-axis represents sample size
n, while the y-axis describes the average accuracy measure R. All the procedures
show good levels of accuracy, even at small sample sizes. At n = 150 the bootstrap-
aggregated adjustment set records the lowest R (0.8), whereas the average graph
procedure achieves the best performance (0.96). However, as sample size increases
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the performance of bagging improves and at n = 1400 all the methods achieve R = 1,
which corresponds to recovering a sufficient adjustment set for all the extracted
samples and possible pairs of T and Y .
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Figure 3.3. Results of the simulations on Asia network

The second graph on which the methods are tested is the Alarm network. This
graphical model is one of the most studied in the structural learning literature and
was first introduced in Beinlich et al. (1989). The network, represented in Figure
3.4, describes an intensive care patient monitoring system and consists of 37 discrete
nodes, with two, three or four states.

The results for different sample sizes are shown in Figure 3.5. At the lowest
sample size, n = 200, the procedure which has the highest accuracy is the average
graph (0.81), followed by the bagged adjustment set (0.79) and the simple graph
(0.78), whereas the best score graph is the least accurate (0.77). As n increases,
computed R increases for all the procedures and becomes substantially stable for
n > 1400. Even if all the methods show similar performances, bagging has the
steepest accuracy increase and the overall best R as n grows larger.

The last and most complex test graph is the Insurance network. The model
describes the risk evaluation mechanism of a car and was first found in Binder et al.
(1997). The graphical model, shown in Figure 3.6, has 27 nodes, 52 edges and 984
parameters.

Selecting a sufficient adjustment set through the proposed procedures is way
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Figure 3.4. The Alarm graph

harder on a graph of this size, as the results in Figure 3.7 reveal. For n=200, the
smallest sample size, R ranges between 0.12 and 0.23 and the bagged adjustment set
has the highest accuracy R = 0.23. As n increases, the performance of the different
procedures improve and bagging the adjustment set remains the most performing
method. Among the three chosen graphs, the Insurance network is the one on
which the novel procedure performs best, indicating a better accuracy as complexity
increases relatively to the benchmark procedures.

Computational times are similar for all the procedures employing bootstrap
resampling, whereas the single algorithm graph procedure is faster since it selects the
adjustment set according to a single graph. However, among the bootstrap-based
procedures, bootstrap-aggregating is slightly slower than the other ones. In general,
computational times increase as the complexity of the true graph increases and,
relatively to bootstrap-based procedures, as the number of bootstrap replicates
grows larger.
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Figure 3.5. Results of the simulations on the Alarm network

3.5 Discussion

This work proposed a novel procedure to select an adjustment set for causal effect
estimation when the true causal graph is unknown. Firstly bootstrap is used to
generate replicates of the original dataset, and then a graph is learnt on each of
them. Next, adjustment sets are selected from the obtained graphs according to the
back-door criterion and put together, thus forming a multiset. Finally, the set with
the greatest multiplicity in the multiset is selected as the procedure’s output. This
way of using bootstrap is also called bootstrap-aggregating or bagging, and to our
knowledge it has never been used before to select an adjustment set directly.

The technique is tested on different networks, and its results are compared to those
obtained with three alternative methods. All the chosen procedures show similar
levels of accuracy, which generally decrease as the complexity of the considered
structure increases. On the simplest graph, at small sample sizes, the bagged
adjustment has a lower accuracy than other benchmark methods. However, as
the sample size increases, the performance of all the methods, including bagging,
improves and seem to be asymptotically equivalent. When considering more complex
graphs, the relative performance of the novel procedure stands out. In particular,
the results on the most complex diagram show that even if all the methods achieve
low accuracy levels, bagging produces the most accurate results at both low and
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Figure 3.6. The Insurance graph

high sample sizes.
When dealing with the estimation of causal effects from observational data and

an unknown causal graph, the literature’s most common approach consists of learning
a causal graph and selecting an adjustment set according to its structure. Much
progress has been made in learning algorithms to obtain the structure that encodes
the information contained in the data in the best way.

This work contributes to the literature by proposing a procedure that directly
aims at selecting a sufficient adjustment set with the use of bootstrap. Bootstrapping
has already been used in the graph learning phase to measure confidence toward
the presence of an edge between two nodes. However, this implementation is still
oriented on recovering the most reliable graph structure and then selecting the
adjustment set in a different step. Instead, the proposed procedure uses bootstrap
to obtain a multiset of adjustment sets from multiple estimated graphs. This way
of proceeding detaches the adjustment set selection from a single learnt graph’s
structure, thus aiming to achieve higher accuracy.

The effectiveness of the proposed method has been assessed on three discrete
graphs of increasing complexity, comparing its results to three benchmark procedures.
The findings remain tied to the tested causal graphs and the assumptions made
in the simulations. The code of the novel procedure, developed in R Statistical
Software, is currently not publicly available. However, future developments of this
work could include the creation of an R package to select bootstrap-aggregated
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adjustment sets in a fully automated way.
Further analysis is necessary to assess how the procedure behaves with different

graphs and assumptions. Nothing prevents the application of the procedure to
Gaussian Causal Graphs, and its performance in this context has yet to be evaluated.
Moreover, additional analyses are required to study the relationship between the
number of bootstrap replicates, performance, and computational time of the novel
technique. Even if increasing the number of bootstrap replicates over a certain
threshold seems to lengthen computational times considerably with minor accuracy
gains, the increase in accuracy could still be relevant, especially when applying the
procedure to complex graph structures. Lastly, future research could focus on how
the method’s accuracy varies with different learning algorithms and adjustment
selection criteria. In particular, bootstrap-aggregation for the adjustment set could
be implemented with learning algorithms that generate completed partially directed
acyclic graphs (CPDAGs) and other classes of graphical models.





69

Bibliography

[1] Alberto Abadie and Matias D. Cattaneo. “Econometric Methods for Program
Evaluation”. In: Annual Review of Economics 10.1 (Aug. 2018), pp. 465–503.
issn: 1941-1383. doi: 10.1146/annurev-economics-080217-053402.

[2] Alberto Abadie and Jann Spiess. “Robust Post-Matching Inference”. In: Jour-
nal of the American Statistical Association 0.0 (Oct. 2020), pp. 1–13. issn:
0162-1459. doi: 10.1080/01621459.2020.1840383.

[3] Joshua D. Angrist. “Lifetime Earnings and the Vietnam Era Draft Lottery:
Evidence from Social Security Administrative Records”. In: The American
Economic Review (1990), pp. 313–336.

[4] Joshua D. Angrist and Jörn-Steffen Pischke. Mostly Harmless Econometrics.
Princeton university press, 2008.

[5] Susan Athey and Guido W. Imbens. “The State of Applied Econometrics:
Causality and Policy Evaluation”. In: Journal of Economic Perspectives 31.2
(May 2017), pp. 3–32. issn: 0895-3309. doi: 10.1257/jep.31.2.3.

[6] Pierluigi Balduzzi et al. The Economic Effects of COVID-19 and Credit Con-
straints: Evidence from Italian Firms’ Expectations and Plans. SSRN Scholarly
Paper ID 3682943. Rochester, NY: Social Science Research Network, Aug.
2020.

[7] Elias Bareinboim and Judea Pearl. “Causal Inference and the Data-Fusion
Problem”. In: Proceedings of the National Academy of Sciences 113.27 (2016),
pp. 7345–7352.

[8] Jose Maria Barrero, Nicholas Bloom, and Steven J. Davis. Why Working
from Home Will Stick. Working Paper 28731. National Bureau of Economic
Research, Apr. 2021. doi: 10.3386/w28731.

[9] Alexander W. Bartik et al. What Jobs Are Being Done at Home During the
Covid-19 Crisis? Evidence from Firm-Level Surveys. Working Paper 27422.
National Bureau of Economic Research, June 2020. doi: 10.3386/w27422.

https://doi.org/10.1146/annurev-economics-080217-053402
https://doi.org/10.1080/01621459.2020.1840383
https://doi.org/10.1257/jep.31.2.3
https://doi.org/10.3386/w28731
https://doi.org/10.3386/w27422


70 Bibliography

[10] Ingo A. Beinlich et al. “The ALARM Monitoring System: A Case Study with
Two Probabilistic Inference Techniques for Belief Networks”. In: AIME 89.
Springer, 1989, pp. 247–256.

[11] Alexander Bick, Adam Blandin, and Karel Mertens. “Work from Home Before
and After the COVID-19 Outbreak”. In: Federal Reserve Bank of Dallas,
Working Papers 2020.2017 (Feb. 2021). doi: 10.24149/wp2017r2.

[12] John Binder et al. “Adaptive Probabilistic Networks with Hidden Variables”.
In: Machine Learning 29.2 (1997), pp. 213–244.

[13] Nicholas Bloom et al. “Does Working from Home Work? Evidence from a
Chinese Experiment *”. In: The Quarterly Journal of Economics 130.1 (Feb.
2015), pp. 165–218. issn: 0033-5533. doi: 10.1093/qje/qju032.

[14] Luca Bonacini, Giovanni Gallo, and Sergio Scicchitano. “Working from Home
and Income Inequality: Risks of a ‘New Normal’ with COVID-19”. In: Journal
of Population Economics 34.1 (Jan. 2021), pp. 303–360. issn: 1432-1475. doi:
10.1007/s00148-020-00800-7.

[15] Simone Borra and Agostino Di Ciaccio. “Improving Nonparametric Regression
Methods by Bagging and Boosting”. In: Computational Statistics & Data
Analysis. Nonlinear Methods and Data Mining 38.4 (Feb. 2002), pp. 407–420.
issn: 0167-9473. doi: 10.1016/S0167-9473(01)00068-8.

[16] Emanuele Brancati and Raffaele Brancati. Heterogeneous Shocks in the COVID-
19 Pandemic: Panel Evidence from Italian Firms. SSRN Scholarly Paper ID
3597650. Rochester, NY: Social Science Research Network, May 2020. doi:
10.2139/ssrn.3597650.

[17] Leo Breiman. “Bagging Predictors”. In: Machine learning 24.2 (1996), pp. 123–
140.

[18] Bradley M Broom, Kim-Anh Do, and Devika Subramanian. “Model Averaging
Strategies for Structure Learning in Bayesian Networks with Limited Data”.
In: BMC Bioinformatics 13.S13 (Aug. 2012), S10. issn: 1471-2105. doi: 10.

1186/1471-2105-13-S13-S10.

[19] Carlos Cinelli, Andrew Forney, and Judea Pearl. “A Crash Course in Good
and Bad Controls”. In: SSRN Electronic Journal (2020). issn: 1556-5068. doi:
10.2139/ssrn.3689437.

[20] Diego Colombo and Marloes H. Maathuis. “Order-Independent Constraint-
Based Causal Structure Learning.” In: J. Mach. Learn. Res. 15.1 (2014),
pp. 3741–3782.

https://doi.org/10.24149/wp2017r2
https://doi.org/10.1093/qje/qju032
https://doi.org/10.1007/s00148-020-00800-7
https://doi.org/10.1016/S0167-9473(01)00068-8
https://doi.org/10.2139/ssrn.3597650
https://doi.org/10.1186/1471-2105-13-S13-S10
https://doi.org/10.1186/1471-2105-13-S13-S10
https://doi.org/10.2139/ssrn.3689437


Bibliography 71

[21] Anthony C. Constantinou. “Evaluating Structure Learning Algorithms with
a Balanced Scoring Function”. In: arXiv:1905.12666 [cs, stat] (Sept. 2020).
arXiv: 1905.12666 [cs, stat].

[22] David Roxbee Cox. “Planning of Experiments.” In: (1958).

[23] Scott Cunningham. Causal Inference: The Mixtape. Yale University Press, Jan.
2021. isbn: 978-0-300-25588-1.

[24] Sandrine Dudoit and Jane Fridlyand. “Bagging to Improve the Accuracy of a
Clustering Procedure”. In: Bioinformatics 19.9 (2003), pp. 1090–1099.

[25] Alan Felstead and Darja Reuschke. Homeworking in the UK: Before and during
the 2020 Lockdown. https://wiserd.ac.uk/publications/homeworking-uk-and-
during-2020-lockdown. Monograph. Aug. 2020.

[26] Ronald A. Fisher. “The Design of Experiments”. In: (1949).

[27] Nir Friedman, Moises Goldszmidt, and Abraham Wyner. “Data Analysis with
Bayesian Networks: A Bootstrap Approach”. In: arXiv preprint arXiv:1301.6695
(2013). arXiv: 1301.6695.

[28] Maxime Gasse, Alex Aussem, and Haytham Elghazel. “A Hybrid Algorithm
for Bayesian Network Structure Learning with Application to Multi-Label
Learning”. In: Expert Systems with Applications 41.15 (2014), pp. 6755–6772.

[29] Fred Glover. “Future Paths for Integer Programming and Links to Artificial
Intelligence”. In: Computers & operations research 13.5 (1986), pp. 533–549.

[30] Clark Glymour, Peter Spirtes, and Richard Scheines. “Causal Inference”. In:
Erkenntnis 35.1-3 (1991), pp. 151–189.

[31] Sander Greenland, Judea Pearl, and James M. Robins. “Causal Diagrams for
Epidemiologic Research”. In: Epidemiology (1999), pp. 37–48.

[32] Kyoungnam Ha, Sungzoon Cho, and Douglas MacLachlan. “Response Models
Based on Bagging Neural Networks”. In: Journal of Interactive Marketing 19.1
(2005), pp. 17–30.

[33] Trygve Haavelmo. “The Statistical Implications of a System of Simultaneous
Equations”. In: Econometrica, Journal of the Econometric Society (1943),
pp. 1–12.

[34] Ben B. Hansen. “Full Matching in an Observational Study of Coaching for
the SAT”. In: Journal of the American Statistical Association 99.467 (2004),
pp. 609–618.

[35] Paul W. Holland. “Statistics and Causal Inference”. In: Journal of the American
statistical Association 81.396 (1986), pp. 945–960.

https://arxiv.org/abs/1905.12666
https://arxiv.org/abs/1301.6695


72 Bibliography

[36] Yimin Huang and Marco Valtorta. “Pearl’s Calculus of Intervention Is Com-
plete”. In: arXiv preprint arXiv:1206.6831 (2012). arXiv: 1206.6831.

[37] Paul Hünermund and Elias Bareinboim. “Causal Inference and Data Fusion
in Econometrics”. In: arXiv preprint arXiv:1912.09104 (2019). arXiv: 1912.

09104.

[38] Guido W. Imbens. “Nonparametric Estimation of Average Treatment Effects
under Exogeneity: A Review”. In: Review of Economics and statistics 86.1
(2004), pp. 4–29.

[39] Guido W. Imbens. “Potential Outcome and Directed Acyclic Graph Approaches
to Causality: Relevance for Empirical Practice in Economics”. In: Journal of
Economic Literature 58.4 (2020), pp. 1129–1179.

[40] Guido W. Imbens and Donald B. Rubin. Causal Inference in Statistics, Social,
and Biomedical Sciences. Cambridge University Press, 2015.

[41] Seiya Imoto et al. “Bootstrap Analysis of Gene Networks Based on Bayesian
Networks and Nonparametric Regression”. In: Genome Informatics 13 (2002),
pp. 369–370.

[42] Uffe B. Kjaerulff and Anders L. Madsen. “Bayesian Networks and Influence
Diagrams”. In: Springer Science+ Business Media 200 (2008), p. 114.

[43] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

[44] Steffen L. Lauritzen and David J. Spiegelhalter. “Local Computations with
Probabilities on Graphical Structures and Their Application to Expert Sys-
tems”. In: Journal of the Royal Statistical Society: Series B (Methodological)
50.2 (1988), pp. 157–194.

[45] Daniela Marella and Paola Vicard. “Bayesian Network Structural Learning
from Complex Survey Data: A Resampling Based Approach”. In: Statistical
Methods & Applications (Jan. 2022). issn: 1613-981X. doi: 10.1007/s10260-

021-00618-x.

[46] Dimitris Margaritis. Learning Bayesian Network Model Structure from Data.
Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science,
2003.

[47] Stephen L. Morgan and Christopher Winship. Counterfactuals and Causal
Inference. Cambridge University Press, 2015.

[48] Jerzy Neyman and Karolina Iwaszkiewicz. “Statistical Problems in Agricultural
Experimentation”. In: Supplement to the Journal of the Royal Statistical Society
2.2 (1935), pp. 107–180.

https://arxiv.org/abs/1206.6831
https://arxiv.org/abs/1912.09104
https://arxiv.org/abs/1912.09104
https://doi.org/10.1007/s10260-021-00618-x
https://doi.org/10.1007/s10260-021-00618-x


Bibliography 73

[49] Judea Pearl. “Causal Diagrams for Empirical Research”. In: Biometrika 82.4
(Dec. 1995), pp. 669–688.

[50] Judea Pearl. “Causal Inference in Statistics: An Overview”. In: Statistics
Surveys 3.none (Jan. 2009). issn: 1935-7516. doi: 10.1214/09-SS057.

[51] Judea Pearl. Models, Reasoning and Inference. Vol. 19. 2000.

[52] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Rev. 2. ed., transferred to digital printing. The Morgan Kauf-
mann Series in Representation and Reasoning. San Francisco, Calif: Morgan
Kaufmann, 2009. isbn: 978-1-55860-479-7.

[53] Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in
Statistics: A Primer. Chichester, West Sussex, United Kingdom: Wiley, 2016.
isbn: 978-1-119-18684-7 978-1-119-18685-4.

[54] Emilija Perković et al. “A Complete Generalized Adjustment Criterion”. In:
Uncertainty in Artificial Intelligence (2015).

[55] R. Core Team. “R: A Language and Environment for Statistical Computing”.
In: (2013).

[56] Paul Rosenbaum. Observation and Experiment. Harvard University Press,
2018.

[57] Paul R. Rosenbaum. “A Characterization of Optimal Designs for Observational
Studies”. In: Journal of the Royal Statistical Society: Series B (Methodological)
53.3 (1991), pp. 597–610.

[58] Donald B. Rubin. “Causal Inference Using Potential Outcomes: Design, Mod-
eling, Decisions”. In: Journal of the American Statistical Association 100.469
(2005), pp. 322–331.

[59] Donald B. Rubin. “Estimating Causal Effects of Treatments in Randomized and
Nonrandomized Studies.” In: Journal of educational Psychology 66.5 (1974),
p. 688.

[60] S Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall. Jan. 2009.

[61] Stuart Russell and Peter Norvig. “Artificial Intelligence: A Modern Approach”.
In: (2002).

[62] Marco Scutari. “Learning Bayesian Networks with the Bnlearn R Package”.
In: Journal of Statistical Software 35 (July 2010), pp. 1–22. issn: 1548-7660.
doi: 10.18637/jss.v035.i03.

https://doi.org/10.1214/09-SS057
https://doi.org/10.18637/jss.v035.i03


74 Bibliography

[63] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez.
“Who Learns Better Bayesian Network Structures: Accuracy and Speed of
Structure Learning Algorithms”. In: arXiv:1805.11908 [stat] (July 2019). arXiv:
1805.11908 [stat].

[64] Jonathan M. Snowden, Sherri Rose, and Kathleen M. Mortimer. “Implementa-
tion of G-computation on a Simulated Data Set: Demonstration of a Causal
Inference Technique”. In: American journal of epidemiology 173.7 (2011),
pp. 731–738.

[65] Peter Spirtes et al. Causation, Prediction, and Search. MIT press, 2000.

[66] Jerzy Splawa-Neyman, D. M. Dabrowska, and T. P. Speed. “On the Application
of Probability Theory to Agricultural Experiments. Essay on Principles. Section
9.” In: Statistical Science 5.4 (1990), pp. 465–472.

[67] Elizabeth A. Stuart and Kerry M. Green. “Using Full Matching to Estimate
Causal Effects in Nonexperimental Studies: Examining the Relationship be-
tween Adolescent Marijuana Use and Adult Outcomes.” In: Developmental
psychology 44.2 (2008), p. 395.

[68] Elizabeth A. Stuart, Gary King, et al. “MatchIt: Nonparametric Preprocessing
for Parametric Causal Inference”. In: Journal of statistical software (2011).

[69] Johannes Textor et al. “Robust Causal Inference Using Directed Acyclic
Graphs: The R Package ‘Dagitty’”. In: International journal of epidemiology
45.6 (2016), pp. 1887–1894.

[70] Jin Tian and Judea Pearl. “A General Identification Condition for Causal
Effects”. In: Aaai/Iaai. 2002, pp. 567–573.

[71] Robert J. Tibshirani and Bradley Efron. “An Introduction to the Bootstrap”.
In: Monographs on statistics and applied probability 57 (1993), pp. 1–436.

[72] Jan Tinbergen. “Determination and Interpretation of Supply Curves: An
Example”. In: Zeitschrift fur Nationalokonomie 1.5 (1930), pp. 669–679.

[73] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. “The
Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm”. In:
Machine learning 65.1 (2006), pp. 31–78.

[74] Thomas Verma and Judea Pearl. “Causal Networks: Semantics and Expres-
siveness”. In: Machine Intelligence and Pattern Recognition. Vol. 9. Elsevier,
1990, pp. 69–76.

[75] Janine Witte et al. “On Efficient Adjustment in Causal Graphs”. In: Journal
of Machine Learning Research 21 (2020), p. 246.

https://arxiv.org/abs/1805.11908


Bibliography 75

[76] Sewall Wright. “Correlation and Causation”. In: (1921), pp. 557–585.

[77] Sewall Wright. “Systems of Mating. I. The Biometric Relations between Parent
and Offspring”. In: Genetics 6.2 (1921), p. 111.


	An integrated approach to causality: The role of causal graphs
	Introduction
	Potential Outcomes
	Causal graphs
	Terminology and basic concepts
	Edge configurations and conditional independence
	Causal graph analysis at interventional level

	Causal discovery
	Common assumptions and background knowledge
	Constraint-based algorithms
	Score-based algorithms
	Causal discovery and potential outcomes

	Discussion

	Evaluating the effect of home-based working on firms' expected revenues during the pandemic
	Introduction
	Data
	Data source
	Description of the dataset

	Methodological background
	Causal graphs
	Potential outcomes

	Analysis and results
	Learning the causal graph
	Adjustment set selection and estimation of the ATE

	Discussion

	Bootstrap-aggregated adjustment set selection
	Introduction
	Background and notation
	Causal graphs
	Graph learning
	Calculus of intervention

	Bootstrap-aggregated adjustment set
	Description of the method

	Simulation
	Simulation details
	Benchmark methods
	Results

	Discussion

	Bibliography

