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a b s t r a c t

The drinking water treatment plant plays a key role in providing the consumers with a safe water, in
compliance with the United Nations Sustainable Development Goal n. 6 (Clean water and sanitation).
The typical drinking water treatment plant includes: coagulation–flocculation, sedimentation, filtration
and disinfection. Turbidity removal is among the more common pollutants to remove; this goal is
mainly achieved by the coagulation–flocculation process. The present paper shows the results of the
application of a combined experimental-modeling approach for turbidity removal optimization in a
coagulation–flocculation unit of a full-scale drinking water treatment plant. The applied approach
consisted of a laboratory experimental activity aimed at determining the best coagulant type and
dosage. Among the different chemicals tested, Poly aluminum chloride (PAC) provided the highest
removal at the lowest dosage (90% at 3.5 mg/L PAC, 88% at 18.9 mg/L PACS and 77% at 30 mg/L
FeCl3). The addition of polyelectrolytes did not improve the removal at such a level to justify the
consequent increase of the costs. Based on the findings of this phase of the study, a data-driven model
was implemented using as input variables the historical data of influent and effluent turbidity and
influent flow rate. Combining regression models and statistical analysis, it was possible to build up
an algorithm for the case-study plant allowing to select the PAC dosage to apply as a function of the
influent turbidity, to ensure the constant compliance with the regulation limit on effluent turbidity.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The new European Drinking Water Directive (DWD), came
nto force in 2021, aims at further improving the quality of tap
ater for potable uses, with a better awareness of citizens in
rder to foster its use in place of the recourse to bottled water,
nless strictly needed [1]. These goals fully fit the principles
f the Circular Economy and Sustainability, because they allow
eduction of packaging as well as the environmental impact of
he bottled water industry. The DWD also updates the quality
equirements of drinking water based on the more recent find-
ngs obtained by ecotoxicological studies. Particularly, the limits
or some ‘‘old’’ parameters, like lead, became more stringent,
hereas a concern to ‘‘new’’ parameters, like contaminants of
merging concern (CECs), was introduced. The need to ensure
ccess of all to high quality and abundant drinking water, as high-
ighted by the United Nations Agenda and sustained by the new
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nc-nd/4.0/).
DWD, boosts the exploitation of different water sources and bears
the enhancement of the treatment processes. Surface waters,
such as rivers and lakes, can represent an available water source,
provided that a proper treatment is applied to make its quality
suitable for drinking water purposes. The required treatment
depends on the initial characteristics and can span from a simple
filtration and disinfection to a more complex layout including
different chemical–physical processes [2]. The drinking water
treatment plant for surface water is mostly designed to address
the following main contaminants: turbidity, microorganisms and
organic substance [3]. As a consequence, its typical layout consists
of: screening, coagulation–flocculation, sedimentation, filtration
and disinfection. In some circumstances, there is also the need to
remove metals, metalloids (e.g. arsenic) or biorefractory organic
compounds. Therefore, the plant includes additional and more
complex stages, like pre-oxidation and/or adsorption [4].

A challenge that must be frequently addressed by the treat-
ment plants for surface waters is represented by the wide fluctua-
tion of the influent quality, due to season changes or uncontrolled

pollutant discharges on the river.
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The turbidity is among the parameters of main concern be-
cause it reduces water limpidity and can be also the vehicle
of toxic substances and microorganisms. Turbidity is due to the
presence of colloidal particles, which are characterized by a very
low size (in the range 1 nm–1 µm): because of that, their re-
moval by free settling or filtration is hindered. Furthermore,
they also possess an electrical (mostly negative) charge on the
surface which determines a repellent force between similar par-
ticles. As a consequence, the colloidal particles often form a
stable suspension which cannot be destabilized by simple mix-
ing conditions, and, the particles cannot aggregate into larger
settleable/filtrable flocs [5–7]. Coagulation–flocculation is widely
present in the water treatment plants with the aim to reduce the
turbidity content. By adding positively charged coagulants under
rapid mixing and pH-controlled conditions, the neutralization of
the negative charges on the colloids is achieved and consequently
the electric destabilization of the suspension takes place [6,8].
After the addition of the coagulants under rapid mixing condi-
tions, the particles can bind with the chemicals and each other to
form larger particles (flocs); gentle mixing allows aggregation of
insoluble flocs and their progressive size increase (flocculation).
Finally, settling of flocs to the bottom of the unit leads to the
accumulation of a chemical sludge, whereas a clear supernatant,
being rid of turbidity, is formed above.

The main parameters affecting the efficiency of turbidity re-
moval in the coagulation–flocculation process are: coagulant type
and dosage, pH value, speed of the mixing device, hydraulic
retention time.

Aluminum and iron salts are the chemicals commonly used
in the coagulation–flocculation process. However, these mineral
coagulants can be costly and negatively alter the quality of the
drinking water. Therefore, new and more environmentally sus-
tainable organic chemicals have been tested successfully to the
scope. For instance, in [9] a biodegradable natural coagulant was
obtained from acorn leaves, which are abundantly available in
many countries worldwide. Its use in drinking water treatment
allowed to achieve a reduction of turbidity in the range 72%–
85%, depending on its physical form. In a following study [10],
the use of the natural coagulant Aloe vera in both powder and
liquid forms reduced the water turbidity at natural pH by 28.23%
and 87.84%, respectively. Moreover, it was found that this bio-
coagulant did not influence the main physical characteristics of
the drinking water.

The amount of chemicals required to achieve colloid destabi-
lization depends on the initial turbidity content, which can be
subjected to frequent variations in the surface water with effects
on the efficiency of the process [11]. Other factors which can also
influence the dosage are: pH value, alkalinity content, concentra-
tions of other components which might interfere with colloidal
particles in the destabilization process. Depending on the turbid-
ity level and type of coagulant used, a different destabilization
process can prevail: therefore, the required dosage must be care-
fully determined and eventually adjusted when some changes in
the water quality or other parameters intervene. For instance,
if destabilization occurs through the adsorption-charge neutral-
ization mechanism, overdosing the system with absorbable ions
can cause a restabilization of the suspension, as a consequence of
a reversal of the charge on the colloid particles [12]. Such con-
sequences are of utmost relevance when dealing with drinking
water, since the effects of improper treatment can ultimately pro-
duce an unsafe water with a possible threat to human health [13].

Jar test is a procedure typically used to determine the co-
agulant dosage by simulating in laboratory the two-stages of
the coagulation–flocculation process of the treatment plant [14].
However, jar tests are time-consuming; furthermore, the com-

plexity of the coagulant chemical theory can limit the correct
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determination of the dosage. Usually in the full-scale water treat-
ment plants, the coagulant dosage selection often relies on the
operator’s experience, with the risk of wrong actions or improper
dosing and consequent increase of the treatment cost or a poor
quality of the treated water. A prediction model based on the
historical data from the plant operation can be a better tool
for optimizing coagulant dosage also under dynamic conditions.
Data-driven modeling techniques often combine with the inter-
disciplinary areas of the fields of statistics, multiple objective
analysis, evolutionary algorithms, etc. [15,16]. An example of the
application of this type of approach is presented in [17].

The objective of the present study was to optimize the
coagulation–flocculation process for turbidity removal in a drink-
ing water treatment plant which receives the surface water from
an artificial lake located in the central Italy. The unit is usually
able to produce a treated effluent with the quality required
in Italy for drinking purposes. However, the high costs of the
treatment and the risk of not complying consistently with the
limits because of the frequent variations of the influent quality
were of concern to the company managing the plant. Therefore,
it was highlighted the need to carry out a study to find out the
best coagulant type and its dosage, needed to ensure a constant
compliance with the regulation limits on drinking water.

A double approach was applied to the purpose: (1) an exper-
imental activity was carried out at the laboratory scale with the
aim to determine the best type of coagulant and evaluate the
need of a polyelectrolyte to improve the turbidity removal; (2) a
data-driven model was implemented based on the historical data
of operation of the unit to predicting the dosage of the coagulant
selected in (1) as a function of the raw water quality.

This double approach represents the key novel aspect of the
present study, since it provides an application of the data-driven
modeling technique to optimizing the coagulation–flocculation
process of a full-scale drinking water treatment plant. A further
novelty is represented by the combination of different tools to
build up the predictive model: the cluster analysis to define
the main classes of turbidity in the influent and three different
regression models. Finally, a chart was generated showing the
coagulant dosage to apply as a function of the raw water quality,
to achieve a constant effluent turbidity. Therefore, combining a
lab-scale activity with a mathematical approach, the study was
finally able to a generate a valid tool to apply in the real operation
of the plant.

2. Materials and methods

2.1. Drinking water treatment plant

The drinking water treatment plant (DWTP) is located in the
central Italy and collects the raw water from a reservoir formed
by stopping a surface water with a dam. After the intake struc-
ture, the water is subjected to fine screening and pre-aeration
and then pumped to the DWTP. The first treatment is made in a
water tower where poly-aluminum chloride (PAC) and sodium
hypochlorite are dosed together under mixing conditions. Af-
terwards, the treatment proceeds through two parallel lines,
each one having the same lay-out and consisting of the fol-
lowing main processes: coagulation–flocculation–sedimentation,
sand filtration, granular activated carbon (GAC) adsorption col-
umn, disinfection with sodium hypochlorite Then, the treated
water is released into the distribution network. The lay-out of
the DWTP is shown in Fig. 1.

The DWTP is provided with a separate line for chemical sludge
processing, which consists of a storage tank followed by a static
thickener and a filter-press. The liquid centrate produced by the
sludge separation is recirculated to the inlet of the DWTP for its
treatment.
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Fig. 1. Layout of the drinking water treatment plant.
Fig. 2. A schematic view of the Accelerator (Veolia).
Coagulation, flocculation and sedimentation are all carried
ut in a single-basin unit, the so called ‘‘Accelator’’ (by Veolia)
Fig. 2). It consists of an upper cylindrical part and a lower
opper-shape part. The raw water enters through a pipe in the
entral part, where the coagulation takes place due to mixing
ith chemicals. Then, it moves to the flocculation section within
he reverse cone (bell-shape) section. This is connected to the set-
lement space through two openings on the bottom. The treated
ater is removed by means of small radial channels. The Ac-
elerator employs the principle of internal slurry recirculation
o accelerate chemical reactions and dense particle growth. The
ain advantages the system offers are: different mixing pro-
esses for flocculation, coagulation and sedimentation within one
ingle unit, with less footprint; no need for sludge collectors
or electro-pumps for returning sludge from the sedimentation
ection to the initial coagulating zone; possibility of simultaneous
oftening and clarification; relatively acceptable yield. Therefore,
ts implementation in the drinking water treatment plants is
ncreasing [18].

Sizes of the accelerator are listed in Table 1, whereas the
alues of its main operating parameters are reported in Table 2.
hey were all set-up by the supplier of the accelerator, based on
heir previous experiences and preliminary tests carried out to
ssess the optimal values for the present case-study.
The volumetric flowrate as well as the turbidity in the influent

o the DWTP are characterized by a wide fluctuation over time, as
hown by the Q values reported in Table 2. These variations are
ue to the torrential nature of the river barred by the dam; as a
onsequence, the turbidity values change with the season (from
–7 NTU during dry weather, up to even 1700 NTU in the winter
ime). During the extreme rain events, a high quantity of solids is

eleased to the lake. a
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Table 1
Sizes of the coagulation–flocculation–sedimentation unit.
Parameter Value Unit

Diameter, D 17 m
Horizontal surface, A 227 m2

Coagulation–Flocculation tank volume, VCF 200 m3

Sedimentation tank volume, VS 800 m3

Total volume, Vtot 1000 m3

During the period of jar tests, samples of influent showed
turbidity between 15 and 17 as average, with a peak to 24 and
a minimum of 1.7. About the other quality parameters of the
influent to the DWT, the range values were as follows (with
the average in the brackets): 7.6–8.1 (7.8) pH; 390–1238 (1036)
conductivity (µS/cm); 185–544 (331) total aluminum (mg/L);
1.3–209 (108) filtered aluminum (mg/L); 0.99–3.64 (1.9) TOC
(mg/L); 0.74–3 (1.4) filtered COD (mg/L); 0.5–14 (4.1) TSS (mg/L).

The treated water from the DWTP complies with the regula-
tion limits on drinking water (D. Lgs 18/2023, which received the
European directive 2020/2184) [19,20].

2.2. Lab-scale investigation

The laboratory activity was conducted through a series of jar
tests using 1 L volume glass beakers, to determine the best type
of coagulant, the optimal dosage under controlled conditions and
finally whether there was the need of adding also a coagulant aid.
Table 3 shows the list of chemicals used in the study, whereas
Tables 4 and 5 highlight the conditions and concentrations ap-
plied to each test. For PAC, all the dosages were expressed as
concentration of Al2O3, making the data reliable and comparable
side from the commercial chemical used.
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Table 2
Main operating parameters of the coagulation–flocculation–sedimentation unit.
Parameter Value Unit

Min Max Av

Influent volumetric flow rate, Q 113.5 227 197.5 m3/h
Surface loading rate, Cis 0.5 1.0 0.9 m3/(m2

×h)
Coagulation–Flocculation Hydraulic Retention Time, ΘH,CF 1.7 0.9 1.0 h
Sedimentation Hydraulic Retention Time, ΘH,S 7.0 3.5 4.0 h
Total Hydraulic Retention Time, ΘH,tot 8.7 4.4 5.0 h

Legend: Min = at the minimum influent volumetric flow rate; Max = at the maximum influent volumetric flow rate; Av = at the
average influent volumetric flow rate.
Table 3
Types and characteristics of the chemicals used in the study.
Chemical formula/
Commercial name

Chemical name and description Characteristics
(concentration, density)

Al2(OH)5Cl, PAC Poly aluminum chloride 9.5% Al2O3 , 1.2 mg/L
FeCl3 Ferric chloride 41%, 1.48 mg/L
PACS Sulfate poly aluminum chloride 19% Al2O3 , 1.3 mg/L
NaOCl Sodium hypochlorite 14%, 1.2 mg/L
PLT 35 Cationic polyelectrolyte 40%, 1.1 mg/L
PLT 37 Cationic polyelectrolyte 40%, 1.1 mg/L
DFC 104 On-average branched out, low-medium molecular weight 50%, 1.1 mg/L
DFC 105 Highly branched out, high molecular weight 50%, 1.1 mg/L
DFC 106 Highly branched out, high molecular weight 50%, 1.1 mg/L
DFC 535 C Cationic flocculant, average molecular weight 50%, 1.1 mg/L
DFC 201 N Non-ionic flocculant, average molecular weight 50%, 1.1 mg/L
DFC 203 A Anionic flocculant, average molecular weight 50%, 1.1 mg/L
CP Carbon powder 40%
Table 4
Conditions of the tests on coagulant type and dosage selection.
Coagulant Dosage (mg/L)

Al2O3/NaOCl 0, 2, 3.5, 5, 6.5, 8/2
FeCl3/NaOCl 0, 3, 6, 9, 12, 15/2
FeCl3/NaOCl 0, 20, 26, 28, 44, 52/2
Al2O3/FeCl3/NaOCl 3.5/0, 5, 10, 15, 20, 30/2
PACS (1)/NaOCl 0, 1.89, 5.66, 9.43, 18.87, 28.3/2
PACS (2)/NaOCl 0, 0.24, 0.72, 1.2, 2.4, 3.6/2
CP/Al2O3/NaOCl 0, 5, 10, 20, 40/3.5/2

Table 5
Conditions of the tests on coagulant aid selection.
Coagulant aid Dosage (mg/L)

Al2O3/PLT 35 3.5/0, 0.5, 1, 2, 5, 10
Al2O3/PLT 37 3.5/0,0.5, 1, 2, 5, 10
Al2O3/DFC 104 3.5/0, 0.1, 0.2, 0.5, 1, 2
Al2O3/DFC 105 3.5/0, 0.1, 0.2, 0.5, 1, 2
Al2O3/DFC 106 3.5/0, 0.1, 0.2, 0.5, 1, 2
Al2O3/DFC 535 C 3.5/0, 0.1, 0.2, 0.5, 1, 2
Al2O3/DFC 201 N 3.5/0, 0.1, 0.2, 0.5, 1, 2
Al2O3/DFC 203 A 3.5/0, 0.1, 0.2, 0.5, 1, 2

The ranges of concentrations used in the experiments were
hosen based on the values usually applied at the full-scale to
ddress similar turbidity levels, as suggested by the operators of
he case-study plant. Ferric chloride and PAC were firstly tested at
similar dosage and separately. Then, ferric chloride concentra-

ion only was increased to evaluate if it was possible to boost the
ormation of more dense and heavy flocs with a better settling
apacity. Further tests were carried by mixing together PAC and
eCl3. Sodium hypochlorite was always added to the tests at 2
g/L dosage, as it is done in the real scale plant.
A series of tests was also carried out using carbon powder

CP), due to its capability of removing the natural organic mat-
er (NOM) which might be responsible of the toxic disinfection
y-product formation.
Since PAC provided the highest removal, then the second

hase was carried out using only this chemical at its optimal
4

dosage as determined in the first phase. This second series of
experiments aimed at determining if there was a coagulant aid
capable of further enhancing the turbidity removal obtained by
using PAC. To this purpose, several polyelectrolytes were tested,
such as cationic, anionic and non-ionic, differing for the degree of
branching and the molecular weight (as reported in Table 3).

Each test was conducted according to the following schedule:
(1) 4 min under rapid mixing at 60 rpm, (2) 35 min under gentle
mixing at 20 rpm, (3) sedimentation without mixing for 20 min.
These conditions were selected based on preliminary tests carried
out in the past on the same influent.

The experiments were carried out using the raw water enter-
ing the DWTP, and therefore with initial turbidity changing in the
range 2–24 NTU (average 6 NTU) to apply the real conditions.
The following parameters were measured on all the samples from
the tests: turbidity, pH, electrical conductivity, total and dissolved
aluminum, iron, total organic carbon (TOC), dissolved organic
carbon (DOC) and total suspended solids (TSS).

The efficiency of the process was evaluated based on the
turbidity removal rate by applying the following equation:

Removal [%] =
(NTUin − NTUout)

NTUin
× 100 (1)

where: NTUin, NTUout = turbidity in the influent and effluent of
the Accelerator, respectively [NTU] However, the effects on the
other measured parameters were also considered.

2.3. Analytical methods

All the experiments were conducted according to the Italian
Metodi Analitici per le Acque by APAT IRSA-CNR (Agenzia per
la Protezione dell’Ambiente e per i Servizi Tecnici, Istituto di
Ricerca sulle Acque, Consiglio Nazionale delle Ricerche) and to
Standard Methods for Water and Wastewater Examination [21,
22]. Particularly, the following procedures were applied for the
determinations of the different parameters: UNI (Ente Nazionale
Italiano di Unificazione) EN (Comité Européen de Normalisa-
tion) ISO (International Organization for Standardization) 7027-
1:2016/1 for turbidity; APAT CNR IRSA 2060 Man 29 2003/1 for
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Fig. 3. Flow-chart of the main steps of the experimental-modeling study.
d

H; UNI EN 27888:1995/1 for electrical conductivity; APHA SM
030 A + APHA SM 3125/1 for total and dissolved Al and Fe;
NI EN 1484:1999/1 for filtered dissolved organic carbon (DOC)
filtrated at 0.2 µm) and total organic carbon (TOC); APAT CNR
IRSA 2090 B Man 29 2003/1 for total suspended solids (TSS).

The results obtained were analyzed by means of Excel and R
software.

2.4. Data-driven modeling

The aim of this part of the study was to implement a math-
ematical model based on the historical data of operation of the
DWTP (a data-driven model) to optimizing the dosage of the co-
agulant selected in the experimental part of the study, i.e. PAC, as
a function of the influent turbidity. For instance, in the laboratory
tests, the best coagulant type was selected and the dosage was
optimized based on a narrow range of variation of the influent
turbidity. The proposed model would allow to consider a much
wider range of variation of the influent turbidity, as it occurs
in the real operation of the DWTP. Therefore, the model can
represent a tool for the automatic control of PAC addition in the
full-scale treatment.

The model was implemented following the approach pro-
posed by Wang et al. (2021) to optimizing coagulant dosage in
a wastewater treatment process for Cu removal [17].

The input data were collected from October 2020 till Novem-
ber 2021. These data regarded the following variables: turbidity
and volumetric flow rate in the influent to the accelerator, tur-
bidity in the effluent of the accelerator, coagulant dosage in the
accelerator. The pH value was not included in the data set, since
it is not subjected to adjustment being always within the range
required by the legislation in force for drinking water, i.e. 6.5–9.5.

The model was implemented throughout the following main
steps: (1) selection and collection of data for calibration and
validation; (2) assessment of influent turbidity operating classes
by means of the cluster analysis, applying the k-means algorithm
and the Elbow method to identify the optimal number of clusters,
thorough the R packages ‘‘Stats’’ and ‘‘Factorextra’’ [23,24]; (3)
application of different regression models (i.e. multivariate-linear,
logarithmic and 4th-order polynomial); (4) identification of the
best fitting model through the statistical indices (e.g. determi-
nation coefficient, R2, correlation coefficients); (5) building up a
chart with coagulant dosage values as a function of the influent
turbidity to obtain a prefixed turbidity in the effluent of the
Accelerator.

About point (3), three different relationships were tested ac-
cording to the independent variables selected for the definition
of the dose/dosage of the coagulant agent, as represented by the
following equations:

Dosage = f NTU ,NTU ,Q (2)
( in out )

5

Dosage = f (NTUin × Q ,NTUout) (3)

Dose = f (NTUin,NTUout) (4)

where:
Dosage = volumetric flowrate of coagulant [L/h];
Dose = concentration of coagulant [mg/L];
NTUin, NTUout = turbidity in the influent and effluent of the

Accelerator, respectively [NTU];
Q = influent volumetric flow rate [L/s]
The multivariate-linear model did not provide any good fitting.

Therefore, in the Results section only the data obtained by the
logarithmic and 4th-order polynomial models will be presented.

Fig. 3 shows the sequence of the different steps of the exper-
imental and modeling study.

3. Results

3.1. Lab-scale investigation

3.1.1. Coagulant selection
Fig. 4 shows the turbidity content in the effluent of the jar tests

versus the dosage of the different coagulants tested in the study.
The removal in a decreasing order for each coagulant dosed alone
was as follows, along with the applied dosage: 90% at 3.5 mg/L
Al2O3, 88% at 18.9 mg/L PACS and 77% at 30 mg/L FeCl3. These
values highlight that the highest removal was achieved by PAC
(expressed as Al2O3) which also required the lowest dosage. A
high removal was also obtained when PAC was dosed in combina-
tion with FeCl3, although the value was lower than that achieved
by PAC alone and required a higher dosage. Indeed, it is referred
that PAC is a partially hydrolyzed aluminum chloride incorporat-
ing a small amount of sulfate. The results obtained in previous
experiments with PAC alone as coagulant were equivalent to
using aluminum sulfate in conjunction with a polyelectrolyte [8].

Regarding the behavior of the other parameters, a similar
removal of TSS, TOC and DOC was observed using PAC and FeCl3,
whereas the effect on aluminum was different. Indeed, Al concen-
tration did not change after the addition of FeCl3, likely due to the
fact that Al is not present in this coagulant molecule and therefore
the two elements, Al and Fe, cannot combine with each other.
When PAC was dosed, the behavior of Al concentration changed
depending on the dosage: it increased at a low coagulant dosage,
whereas it decreased at a higher dosage. This different behavior
was likely due to fact that at a higher dosage, also aluminum was
dragged in the coagulation process and therefore removed from
the liquid phase.

PACS produced a negligible removal of TSS, TOC and DOC; the
behavior of Al was similar to that observed with PAC.

The addition of carbon powder (CP) along with Al2O3 pro-
uced a decrease of turbidity although by a lower value than
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Fig. 4. Turbidity removal efficiency versus coagulant dosage. PAC + CP (1):
TUin = 23.5 NTU; PAC + CP (2): NTUin = 11 NTU.

hat achieved by using PAC alone. Furthermore, above 5 mg/L CP
osage, the turbidity started growing and a gray color forming in
he water. This behavior was particularly evident when the initial
urbidity was higher (test n. 1). A different effect was observed on
OC and DOC: they both decreased after CP addition.

.1.2. Coagulant aid evaluation
The following series of experiments was performed with the

im to evaluate the effects of coagulant aids on turbidity removal.
ased on the previous experiments, PAC at 3.5 mg/L was chosen
s coagulant and dosage. Different polyelectrolytes and different
oncentration were tested.
Fig. 5 shows the turbidity removal efficiency versus polyelec-

rolytes dosage. The addition of PLT 35 and PLT 37 determined an
ncrease of the removal rate proportional to the dosage.

A different effect was determined by DFC polyelectrolytes.
ndeed, a minimum turbidity was observed corresponding to the
inimum dosage; afterwards, a continuous rise of the turbidity
as registered as the dosage increased. Therefore, DFCs was
nable to produce the same high level of removal as PLT 37.
The highest removal observed with the different polyelec-

rolytes and the corresponding dosages were in the following
rder: 23% at 0.1 mg/L DFC 535 C, 25% at 0.4 mg/L DFC 105
nd 59% at 1.0 mg/L PLT 37. These values show that, among the
ifferent polyelectrolytes tested, PLT 37 can be considered the
est coagulant aid for the present case. The better performance
as likely due to its higher branching level which boosted the

loc formation.
Although the improvement of the turbidity removal provided

y PLT 37 addition, the high dosage needed to achieve this goal
revented the choice to add it routinely at the full-scale because it
ould increase too significantly the cost of the process. Therefore,

t was decided to recommend the operators of the plant to use
AC only, without any coagulant aid.

.2. Data-driven modeling

.2.1. Selection and collection of data
The first step of the model implementation was the selection

f the input data to use for calibration and validation. The dataset
rom the monitoring activity of the Accelerator unit from October
020 to June 2021 was used for calibration. It included 5822
bservations of the following 4 variables:

- influent flowrate to the plant in the range 30 ÷ 138 L/s, with
an average value of 114 L/d;

- influent turbidity to the plant in the range 4 ÷ 1800 NTU,
with an average value of 43 NTU;
6

Fig. 5. Turbidity removal efficiency versus coagulant aid dosage. PAC = 3.5 mg
Al2O3/L.

Table 6
Classification in clusters with corresponding centroids and data
number.
Cluster NTUin NTUout N◦ of data

1 14 2.81 4892
2 176 4.24 366
3 498 4.25 115
4 1039 4.85 48

- effluent turbidity from the accelerator in the range 2 ÷ 18
NTU, with an average value of 3 NTU;

- PAC dosage in the range 1–51 L/h, with an average value of
10.75 L/h.

The validation dataset consisted of the monitoring data from July
2021 to November 2021 and included 143 observations of the
following 4 variables:

- influent flowrate to the plant in the range 68 ÷ 130 L/s, with
an average value of 109 L/d;

- influent turbidity to the plant in the range 3 ÷ 145 NTU,
with an average value of 11 NTU;

- effluent turbidity from the accelerator in the range 1.8 ÷ 4.4
NTU, with an average value of 3 NTU;

- PAC dosage in the range 3.3–26 L/h, with an average value
of 6.5 L/h.

3.2.2. Assessment of influent turbidity operating classes
The second step aimed at selecting the process variables which

resulted to more influence the dosage. To this aim, the influent
turbidity values were divided into classes by means of the cluster
analysis. The k-means algorithm and the Elbow method allowed
to define the optimal number of clusters. For instance, the ex-
plained variance of an increasing number of clusters (i.e. squared
sum of the distances from the centroid and the values) was
plotted as a function of the number of clusters (see Fig. 6) and
the optimal number was selected in correspondence of the curve
bends (the Elbow of the curve).

For the calibration dataset, the optimal number of clusters
resulted to be equal to 4. The following table shows the clus-
ters and corresponding centroids for each one, as resulting from
the application of the k-means algorithm with R software. The
graphical representation in the plane [NTUin, NTUout] is depicted
in Fig. 7.
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Fig. 6. Elbow method curve: explained variance vs number of clusters.
Fig. 7. Experimental points of each centroid.
To better represent the real operation, the 4 clusters were
urther divided into operating subclasses, by applying again the k-
eans algorithm with R software. The results obtained are shown

n Table 7.

.2.3. Application of the regression models
In the third step, the selected regression models were applied

o each of Eqs. (2), (3) and (4) of Section 2.4. Each regression
odel was fitted with the whole dataset and also with the dif-

erent classes as above determined. Correspondingly, a single
quation was obtained in the former case, whereas 4 different
quations were determined in the latter one.

.2.4. Identification of the best fitting model
The regression coefficients were used to identify the best

itting model. Table 8a and 8b list the values of the determination
oefficient, R2, for each case, the whole dataset and the different
clusters, respectively, in the calibration and validation phases.
7

Table 7
Sub-classification of clusters and operating classes
of turbidity.
Cluster Operating classes of turbidity

1
a 0 13
b 14 31
c 32 58
d 59 94

2
e 95 140
f 141 190
g 191 250
h 251 330

3 i 331 510
l 510 752

4 m 753 1140
n 1141 1800
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Table 8
Determination coefficients of the regression models. (In bold and underlined, the highest values of R2 .)
(a) Whole dataset

R2 R2

Eq. (1) Eq. (2) Eq. (3) Eq. (1) Eq. (2) Eq. (3)

Logarithmic Calibration 0.93 0.93 0.91 4th-order polynomial Calibration 0.88 0.89 0.88
Validation 0.84 0.84 0.84 Validation 0.9 0.9 0.91

(b) Cluster dataset

Cluster R2 R2

Eq. (1) Eq. (2) Eq. (3) Eq. (1) Eq. (2) Eq. (3)

1

Logarithmic

Calibration 0.85 0.84 0.81

4th-order polynomial

Calibration 0.86 0.87 0.82
Validation 0.75 0.74 0.76 Validation 0.81 0.82 0.84

2 Calibration 0.37 0.38 0.36 Calibration 0.37 0.4 0.37
3 Calibration 0.53 0.49 0.31 Calibration 0.55 0.54 0.35
4 Calibration 0.32 0.16 0.09 Calibration 0.46 0.36 0.3
Table 9
Correlation between dosage and other
variables.
Correlation Value

Dosage — Flowrate −0.27
Dosage — NTUin 0.74
Dosage — NTUout 0.47

It can be noted that, only for cluster 1, both calibration and
alidation were possible, since the range of values of the valida-
ion dataset overlapped the range of cluster 1 of the calibration
ataset.
Comparing the results, it is highlighted that the determination

oefficients were mostly higher for the 4th-polynomial regression
odel than for the other models. However, the R2 values did
ot differ very much for the different equations. Therefore, it
as decided to consider also the correlation between the con-
rolled variable, i.e. the coagulant dosage, and the independent
ariables, i.e. the influent and effluent turbidity and the influent
lowrate. The coefficients so obtained, based on the historical data
f operation of the Accelerator unit, are listed in Table 9. These
oefficients show a low correlation between the flowrate and the
osage; therefore, the flowrate does not seem to influence the
equired dosage.

The results obtained so far indicate that for the present case-
tudy, Eq. (4) of Section 2.4, which correlates the dosage with
he turbidity in the influent and effluent, and the 4th-polynomial
egression model provide the best fitting of the real data.

The following equation was finally obtained by the application
f the 4th-polynomial regression model to the whole dataset,
ith the coefficient values determined by means of R software:

ose = 1.278 + 5.902 × 10−2
× NTUin − 1.31 × 10−4

× NTU2
in

+ 1, 18 × 10−7
× NTU3

in − 3.476 × 10−11
× NTU4

in

+ 7.045 × 10−2
× NTUout (5)

igs. 8a and 8b show the results of the calibration and validation
hase with the whole dataset, respectively. It can be noted that
he model provided a pretty good fitting of the real data up to
000 NTU influent turbidity. Above this value, the agreement
oodness decayed, likely due to the reduced availability of tur-
idity data. Indeed, such a high turbidity in the influent is pretty
are, since related to short term extreme rain events which occur
t a low frequency. This is clearly highlighted by the number of
vailable data for each cluster, as reported in Table 6. It is also
oteworthy that when turbidity rises, the content of suspended
olids (with a larger size than colloidal particles) increases signif-

cantly and this might interfere in the analytical quantification of

8

turbidity by means of the nephelometric method (as that used in
the present study).

The model was also applied to each cluster. Figs. 8c and 8b
show the results of the calibration and validation phase for cluster
1 only, respectively.

From cluster 1 to 4, it was not possible to carry out the model
validation due to the limited number of real data.

Based on the results so far obtained, it can be concluded that
the model best represents the real data for turbidity values in
the range 0–94 NTU, corresponding to cluster 1. The extension
of the model to the whole dataset allows to consider a wider
range of possible turbidities in the influent, up to 1000 NTU;
however, under the circumstances of such high values, the raw
water should not be sent to the plant, because of the possible
failure of the treatment units.

3.2.5. Building up a chart for coagulant dosing
The results so obtained were used to build-up a chart showing

the recommended PAC dosage as a function of the influent turbid-
ity with the aim to maintain the effluent turbidity at the prefixed
value of 3 NTU (Table 10). The coagulant dosage is expressed
in terms of volumetric flowrate (L/h). Particularly, starting from
the dose calculated by means of Eq. (5) in terms of coagulant
concentration (mg/L), the corresponding dosage flowrate (L/h)
could be determined based on the density and concentration of
the PAC actually used in the full-scale plant (i.e. 1.2 mg/L and 9.5%
Al2O3, respectively).

The target of 3 NTU in the effluent from the treatment was
established based on the experience of the operators of the full-
scale plant. Indeed, it was observed that at higher levels of tur-
bidity in the effluent, the following sand filtration unit gets eas-
ily clogged because of the high content of solids; by the other
hand, effluent turbidity values below 3 NTU lead to unnecessary
coagulant overdosing with high costs of the treatment.

The values of coagulant dosage, influent turbidity and effluent
turbidity listed in the chart can be considered as the optimal
conditions of operation of the Accelerator unit.

As highlighted previously, the high levels of turbidity cannot
be considered of interest to practical applications of the data
of the chart. Coagulant dosage [L/h] as a function of influent
turbidity and flow rate.

4. Conclusions

The combined experimental-modeling approach allowed to
optimize the turbidity removal in the coagulation–flocculation
process of a full-scale drinking water treatment plant

Firstly, the experimental activity using the raw water of the
plant showed PAC to be the preferable coagulant, with an
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Fig. 8. Application of Eq. (5): (a) calibration with the whole dataset; (b) validation with the whole dataset; (c) calibration with cluster 1 dataset; (d) validation with
cluster 1 dataset.
Table 10
Coagulant dosage [L/h] as a function of influent turbidity [NTU] and flow rate (Q, [L/s]).
Turbidity [NTU] Q [L/s]

Min Max Centroid 70 75 80 85 90 95 100 105 110 115 120 125 130
0 13 7.24 3.93 4.22 4.50 4.78 5.06 5.34 5.62 5.90 6.18 6.46 6.75 7.03 7.31
14 31 19.93 6.39 6.84 7.30 7.75 8.21 8.67 9.12 9.58 10.03 10.49 10.95 11.40 11.86
32 58 43.36 9.02 9.66 10.31 10.95 11.59 12.24 12.88 13.53 14.17 14.81 15.46 16.10 16.75
59 94 73.74 11.76 12.60 13.45 14.29 15.13 15.97 16.81 17.65 18.49 19.33 20.17 21.01 21.85
95 140 116.48 14.93 15.99 17.06 18.12 19.19 20.26 21.32 22.39 23.45 24.52 25.59 26.65 27.72
141 190 166.38 17.80 19.07 20.34 21.61 22.88 24.15 25.42 26.69 27.97 29.24 30.51 31.78 33.05
191 250 217.25 19.98 21.40 22.83 24.26 25.68 27.11 28.54 29.96 31.39 32.82 34.24 35.67 37.10
251 330 289.59 22.04 23.61 25.19 26.76 28.34 29.91 31.49 33.06 34.64 36.21 37.78 39.36 40.93
331 510 415.82 23.66 25.35 27.04 28.73 30.42 32.11 33.80 35.49 37.18 38.87 40.56 42.25 43.94
511 752 613.27 24.10 25.82 27.54 29.26 30.98 32.71 34.43 36.15 37.87 39.59 41.31 43.03 44.76
753 1140 891.83 26.34 28.22 30.10 31.98 33.86 35.74 37.62 39.50 41.38 43.27 45.15 47.03 48.91
1141 1800 1434.77 37.41 40.08 42.75 45.42 48.09 50.77 53.44 56.11 58.78 61.45 64.13 66.80 69.47
optimum dosage equal to 3.5 mg Al2O3/L under the laboratory
onditions. The addition of polyelectrolytes resulted not to be
orthy.
A data-driven model was then implemented to predict the

ptimal PAC dosage under the conditions of variable influent
urbidity typical of the real plant. The input to the model were
he historical data of operation of the plant. The model was
ptimized by means of the regression and statistical analyses.
fter implementation, it was used to build-up a chart indicating
he dosage of PAC to apply as a function of influent turbidity for
prefixed turbidity.
The approach herewith proposed allows to constantly comply

ith the required drinking water quality, despite the variations
f the influent characteristics. It can be recommended for the
ptimization of the coagulation–flocculation unit of other plants
nd also of different types of chemical–physical processes.
9
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