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Abstract 

This paper investigates the performance of the forthcoming lunar navigation satellite systems for 

estimating not only the position of an onboard receiver in a lunar inertial reference frame, but also, and 

with a consistent accuracy, the relative position between two or more spacecraft in proximity. This could 

be the case of two spacecraft performing a rendezvous, of a lander released by an orbiter or the case of 

the permanent relative navigation service for a formation of satellites around the Moon. A cascade 

Kalman filter is implemented and the performance in terms of error statistics are shown for different 

mission profiles. 

1. Introduction

Satellite formations have proven to be instrumental in various space missions, enabling collaborative data acquisition, 

improved mission robustness, and enhanced scientific investigations. With the renewed interest in the exploration of 

the Moon [1] the deployment of satellite formations in lunar orbits [2] can be of great interest for comprehensive 

studies. However, precise navigation and coordination of satellites within these formations poses unique challenges 

due to the absence of lunar GNSS systems, the expected limited capabilities of these spacecraft, the insufficient 

possibilities of Earth-based tracking. 

The possibility to offer a navigation service similar to GPS or GALILEO navigation systems, even in a reduced scale 

and limited performance, has been recently carried on by many studies [3]. Both NASA and ESA, with the Lunanet 

[4] and Moonlight [5] mission concepts are making rapid progress in the development of dedicated GNSS systems for

the navigation of both lunar rovers and orbiters. The constellation dedicated to navigation could be selected among

well-known orbital design families, such as Walker orbits, Elliptical Lunar Frozen orbits (ELFO), Earth-Moon

Libration Points orbits [6]. The ELFO constellation offers high stability of the orbital parameters, suitable to cover

poles area and low station keeping budgets, and is therefore the baseline solution in the current studies [7].

Because of the reduced number of satellites of the constellation, the design of the formation is optimized for specific

mission and specific areas of interest, which usually are related to rovers and landers in the Moon South Pole region.

This paper investigates the possibility to extend the use of these navigation signals to the estimate of relative state of a

formation of two or more satellites in Moon orbit.

A “cascade of filters” approach is employed: the first filter stage focuses on estimating the position of each satellite of

the formation in the Moon inertial frame, leveraging pseudorange and pseudorange rates measurements and accounting

for the complex gravitational influences and perturbations encountered in the lunar environment. This first extended

Kalman filter can provide estimates that can be considered satisfactory for the individual satellite orbit determination

but could prove insufficient when directly used to compute the relative state, with large percentage errors with respect

to the formation baseline. A second filtering stage is therefore implemented, designed to estimate the relative position

between satellites within the formation. By incorporating inter-satellite dynamics, this filter leverages the inertial

position estimates of the first filtering stage to achieve a final relative state estimation which is less affected by the lack

of a sufficient number of navigation signals, which periodically happens (because of the reduced number of navigation

satellites).

To validate the performance of our proposed navigation system, extensive simulations and analysis are conducted. The

accuracy, convergence, and robustness of the cascade of filters approach is evaluated, considering different scenarios

and mission profiles. Even though the performance is deeply affected by the initial configuration of the navigation

constellation, by the formation baseline dimension, and by random errors affecting the original measurements (i.e. the
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pseudoranges), this paper contributes to offer a first qualitative evaluation of the possible additional use of a lunar 

GNSS system. 

The paper is organized as follows: Section 2 introduces the constellation devoted to navigation services; Section 3 

describes the performance of an Extended Kalman filter leveraging the available pseudoranges. Section 4 deals with 

the original contribution of the paper, i.e. the relative navigation filter, whose results are reported in Section 5. Final 

remarks can be found in Section 6. 

 

2. Elliptical Lunar Frozen Orbit (ELFO) constellation 

 
The orbital parameters of the satellites of the ELFO constellation for satellite navigation [8] are selected to provide 

high stability, significant coverage of poles areas (in particular the South pole) while requiring low station keeping 

budgets and minimizing orbit maintenance costs.  

Opposite to ref. [9] where a constellation of 5 satellites was considered, four ELFO satellites in three different orbital 

planes are considered (as in [6] and [7]) in this work. This is a minimum for satellite navigation, thus the performance 

obtained with this minimum configuration could only improve if larger constellations should be considered. The 

selected parameters are described in Table 1, the resulting orbits (propagated in a Moon Inertial frame1) are reported 

in Figure 1. 

 

Table 1 Initial ELFO constellation parameters. 

 SAT 1 SAT 2 SAT 3 SAT 4 

a (km) 9750.7 9750.7 9750.7 9750.7 

ecc 0.69 0.69 0.69 0.69 

Incl (deg) 55.7 55.7 55.7 55.7 

Arg.Perilune (deg) 90 90 90 90 

RAAN (deg) 0 -120 120 120 

f0 (deg) 0 61.7 45.5 180 

 

 
Figure 1: 3D (left figure), equatorial projection (XY, middle figure) and XZ projection (right figure) of the ELFO 

constellation in the Moon Inertial reference frame. 

 

A simplified model is adopted for assessing the visibility of an ELFO satellite from a receiver, only relying on 

geometrical considerations. A navigation signal is considered received if: 

i. the vector from the ELFO satellite to the receiver is not blocked by the Moon (plus a 50km mask altitude); 

ii. the vector from the ELFO satellite to the receiver is inside a 15-degrees semi-aperture cone representing the 

transmitting antenna pattern. 

 
1 The Moon Inertial frame, centered in the Moon, is defined as an inertial system referenced to the Moon equator (at 

the J2000 epoch) with x-axis pointing along the line formed by the intersection of the Moon equator and Earth’s mean 

equator at J2000. The z-axis points along the Moon's spin axis direction at the J2000epoch. The y-axis completes the 

right-handed set. 
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As an example, referring to Figure 2, the orbiter has visibility of ELFO satellites C and D (the unit vectors from ELFO 

satellites to the orbiter fall inside the antenna main lobe), while it does not have visibility of satellites A (relative 

position vector outside the main lobe) and B (relative vector would be inside the lobe, but the Moon body is between 

the orbiter and the satellite). 

 
Figure 2: Geometric visibility conditions 

 

3. Moon inertial state estimation 
 

As explained in [8], ranging code and navigation messages should be broadcasted by the satellites and then exploited 

by the user to compute its own position, inverting the navigation equations. In this way, the user receiver could exploit 

all the already tested and robust GNSS receiver approaches to compute its own position. 

As well-known, at least four satellites would be necessary to algebraically compute the receiver position (and 

associated clock delay). In a lunar system made of just four satellites, the time availability of all satellites is quite 

limited and calls for an estimation of the state to extend the navigation also when availability is much lower. At the 

scope, a filter can be developed, which is however not the main interest of the study; it will be briefly explained, while 

its performance and limitations, together with its possible improvements are left to parallel publications [10][10]. 

As explained shortly after, the measurement equations are nonlinear, and therefore an Extended Kalman Filter (EKF) 

will be implemented. For each tracked satellite, the usual steps of EKF are performed [11], i.e.: 
 

1) Initialization 

2) Propagation 

3) Kalman gain computation 

4) Update 
 

The state to be estimated includes the receiver kinematic state (position and velocity in the Moon inertial frame) and 

the receiver clock error, defined as a clock bias, c0  and a clock drift c1. 

 

𝑋 = [𝑋𝑟 𝑌𝑟 𝑍𝑟 𝑋̇𝑟 𝑌̇𝑟 𝑍̇𝑟 𝑐0 𝑐1] (1)  

 

Here and in the following hat symbol stands for estimated quantities, while tilde symbol stands for predicted quantities. 

In the propagation phase both the state and the associated error covariance matrix P are propagated over a time step 

T=tk-tk-1, starting from a previous estimate, 1
ˆ

kX −  and 1
ˆ
kP −  respectively. 

 

𝑋̃𝑘 = 𝑋̂𝑘−1 + ∫ 𝑓(𝑋, 𝑡)𝑑𝑡
𝑡𝑘

𝑡𝑘−1

 

𝑃̃𝑘 = 𝛷𝑘𝑃̂𝑘−1𝛷𝑘 + 𝑄𝑘 

(2)  
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The equations used for the propagation of the satellite state are provided by the orbital dynamics of a body around the 

Moon: 

𝑋̇ = 𝑓(𝑋, 𝑡) (3)  

 

where  f(X,t) includes the first 20 harmonics of the Moon gravitational potential, the gravitational attraction of the Earth 

and the solar radiation pressure [11]. The more accurate is the dynamics, the lower is the so-called process error, or 

kQ ; at the same time, the larger is the computation time. In fact, together with the state, also the associated covariance 

matrix P must be propagated; a transition matrix 𝛷𝑘 = 𝑒𝐹𝑘⋅𝛥𝑡 is required, where the linearized state matrix 

( ),k k

k

k

f X t
F

X


=


 must be numerically computed at each time step, further increasing the computation cost. 

The measurements are the usual quantities of GNSS: pseudorange 
s

rp and pseudorange rates 𝑝̇𝑟
𝑠, which are a nonlinear 

function of the state [ 𝑝𝑟
𝑠 𝑝̇𝑟

𝑠 ] = ℎ(𝑋) : 

 
s s s

r r rp r t = + +  

𝑝̇𝑟
𝑠 = ‖𝑟̇𝑟

𝑠‖ + 𝑐1 + 𝜀𝑟̇
𝑠 

(4)  

 

where 
s

rr  is the difference between the satellite 𝑟𝑠 and the receiver 𝑟𝑟  position vectors; 𝑟̇𝑟
𝑠 is the difference between the 

satellite 𝑟̇𝑠 and the receiver  𝑟̇𝑟 velocity vectors; t  is the clock error modelled with a linear model: 
0 1t c c t = + , where 

0c  is the clock bias and 
1c  is the clock error drift. Finally, 𝜀𝑟

𝑠 and 𝜀𝑟̇
𝑠 are the pseudorange and pseudorange rate noises, 

modelled as random gaussian noise with standard deviation equal to 15m and 0.15m/s, respectively. 

 

The measurement equation (4) can be used to compute the predicted measurements ℎ(𝑋̃) = [𝑝𝑟
𝑠 𝑝̇𝑟

𝑠]. A linearization 

of the measurement equation is needed for the computation of the Kalman gain. The dimensions of the measurement 

matrix Hk is 2Nsat x 8, where Nsat is the number of ELFO satellites visible at time tk (ranging from 1 to a maximum of 

4). If no navigation satellite is in visibility, it means that no measurement is available, so the update phase is not run 

and the estimate coincides with the propagated state. In all other cases, each 2x8 block of Hk reads as: 

 

𝐻𝑘
𝑖 = [

𝑎𝑥
𝑠 𝑎𝑦

𝑠 𝑎𝑧
𝑠 0 0 0 1 0

𝑎̇𝑥
𝑠 𝑎̇𝑦

𝑠 𝑎̇𝑧
𝑠 𝑎𝑥

𝑠 𝑎𝑦
𝑠 𝑎𝑧

𝑠 0 1
] 

(5)  

 

where , ,

s

x y za  are the direction cosines of the vector from the satellite s to the receiver, and 𝑎̇𝑥
𝑠 = −

𝑋̇𝑠−𝑋̇

‖𝑟𝑟
𝑠‖

+
𝑋𝑠−𝑋

‖𝑟𝑟
𝑠‖2 𝑟̇𝑟

𝑠 (and 

similarly for components along Y and Z). This matrix Hk is used to compute the Kalman gain: 

 

𝐾𝑘 = 𝑃̃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃̃𝑘𝐻𝑘

𝑇 + 𝑅𝐾) (6)  

 

which is then introduced in the update equations, for computing the estimate: 

 

𝑋̂𝑘 = 𝑋̃𝑘 + 𝐾𝑘 (𝑧 − ℎ(𝑋̃)) 

𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃̃𝑘 

(7)  

 

The performance of the navigation system of the single satellite deeply affects the relative navigation system that is 

the main focus of this research. Therefore, two scenarios are analyzed in the following: the first case when a quite 

rough initialization is provided, and a second one when stationary estimate behavior is reached. In both cases the 

reference orbit of the receiver is a circular orbit, with semimajor axis a = 2125 km, i.e. almost 400 km altitude above 

the lunar surface (mean radius of the Moon 1737.4 km), and inclination i = 85 deg. 

3.1 Case 1: Cold start 

In this first simulation, the performance in terms of positioning error of the estimate is analyzed starting from the 

following initial condition, including a relevant error: 

 

0 0X̂ X randn E= +   (8)  
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where randn indicates a gaussian random distribution of variance equal to one, while E0 is the initial error in the state 

(assumed equal to 10 km on each axis for position, 10 m/s on each axis for velocity, 1km for clock bias and 0.1 m/s 

for clock error drift). 

The time needed for achieving convergence mainly depends on the initial true anomaly of the ELFO satellites, allowing 

(or not) a full availability of the constellation in a short time. The first simulation is purposely run with a particularly 

unlucky initial configuration of the ELFO, which allows full visibility of the constellation only for a short period at the 

end of the simulation (see Figure 3). Therefore, the position error is of the order of tens of kilometers for long time, 

showing, as expected, that the implemented EKF cannot converge if no satellites or only one satellite are in visibility. 

The estimate error quickly improves when more satellites are in visibility, ending with a very good accuracy after 

initialization is over (see the paragraph 3.2 for the performance at stationary). As reported in Figure 4, the convergence 

would have been much quicker if the initial ELFO had been soon allowed for a full visibility.  

 

 
Figure 3: Norm of the error following a cold start of the inertial navigation filter in the unlucky case                                      

(see the low initial number of visible satellites). 

 

 
Figure 4: Norm of the error following a cold start of the inertial navigation filter in a lucky case                                                 

(see the large initial number of visible satellites). 

3.2 Case 2: Performance at stationary 

Let us now suppose that the initialization has been already performed, so the simulation has a very low initial error 

(actually equal to zero, for simplicity), and runs for 12 hours, so that it is possible to analyze the performance over a 

longer time. It is possible to see from Figure 5 that the periodic (in particular in the passages over the South Pole) full 

visibility of the ELFO satellites allows for a very low position error (order of few meters). On the other side, during 

the time intervals when only one or even zero satellites are in visibility - in the latter case only the Kalman filter is 

limited to the propagation, as no measurements are available for the update phase - there is an increase in the error, 

attaining a peak value of 300 m. The mean value of the error (computed in terms of position error norm) is 19 m. 
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The periodic increase and decrease in the estimate error can be also evaluated from the value of the associated 

covariance matrix. In Figure 6 the error of one of the components of the estimated position vector is plotted together 

with the corresponding element of the covariance matrix: it is possible to see that periodically the covariance matrix 

converges and then increases again because of the reduced number of measurements. 

 

 
Figure 5 : Norm of the error of the inertial navigation filter at stationary. 

 
Figure 6 : Error of one estimate component in the inertial frame,                                                                                         

together with the associated covariance matrix element. 

4. Relative motion 

4.1 Relative motion scenarios 

The case of relative state estimation is now analyzed more in detail. The problem can be of interest in the case of  

missions including a rendezvous in the cislunar space, in the case of separation of a lander from an orbiter, or in the 

case of a continuous operation of a fleet of two or more spacecraft, for example devoted to remote sensing. Three 

relative orbital configurations are considered as representative of the different possible missions: 

 

• Scenario A: the orbits of the two satellites of the formation have the same semiaxis and a different eccentricity, 

(the so-called cartwheel configuration). This results in an elliptical relative motion (plotted in a Local Vertical Local 

Horizontal (LVLH) frame, with x-axis aligned with orbital radius, z aligned with angular velocity, and y completing 

the right-handed reference frame), as in  

• Figure 7a; 
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• Scenario B: the two satellites (e.g., a lander and an orbiter) are initially on the same circular orbit, but at t=0s 

an impulsive tangential V is applied for the separation of the lander, which is from now on an orbit with different 

semiaxis. As a result, a drift in the along-track direction is the main component of the relative motion (see  

• Figure 7b); 

 

• Scenario C: the two satellites are in the same circular lunar orbit, with a large phase angle difference. The 

resulting relative trajectory is a limited motion (ideally constant if no perturbations were included, see  

• Figure 7c) 

 

  
(a)                                            (b)               (c) 

 

Figure 7: Cartwheel formation (subplot a), drifting formation at separation (subplot b) and train                      

formation (subplot c) trajectories projected in the local vertical plane of the frame centered at the chaser. 

 

4.2 Relative state from inertial state estimate 

It is supposed that a communication link is available between the spacecraft of the formation, so that the information 

of the estimated position in the moon inertial frame, as computed in Section 3, can be shared. 

Therefore, as soon as the inertial position of the two satellites is available, the relative state (in the LVLH frame) can 

be algebraically computed as follows. 

Given the position 
1 2,X X  of the two satellites of the formation, and the orbital parameters 

1oe  of the satellite identified 

with number 1, the relative position can be computed as: 

 

( )( )1 2 1T oe X X = −
r

 (9)  

 

Let us consider the case of Scenario A. The estimation procedure in Section 3 is run at each time step for the two 

satellites independently. The resulting estimates, 1 2
ˆ ˆ,X X , are computed, together with the (estimated) orbital 

parameters 
1ôe . In the frame of a numerical simulation, it is possible to directly compute the (estimated) relative 

distance, and compare the results with the true relative distance. 

Following Figure 8 shows the norm of the error on the relative position obtained in this direct algebraic way. It is 

possible to see that, as for the single satellite case, also the relative state suffers from large periodical peaks of errors.  

The mean error resulting from the simulation reported as an example is 24 m, while the maximum error is as large as 

200 m. Such an order of magnitude of the errors can be considered acceptable for the estimate of the orbital parameters 

while independently tracking each satellite, but is likely to be inadequate for performing formation flying navigation 

and control operations. In fact, these values corresponds to errors up to 1% of the formation baseline in the present 

case. With the aim of limiting this problem, a second filter, purposely developed for estimating the relative state can 

be developed and applied considering the so called cascading approach. 
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Figure 8 Relative distance error norm as computed using the two inertial navigation filters 

 

4.3 Relative Navigation architecture 

A Kalman filter is implemented also for the relative dynamics estimation. The fundamental steps are formally the same 

as in the previous paragraph, but of course with different dynamics model and measurement equations. 

There are several ways to model the relative motions of two spacecraft; relative coordinates in the LVLH frame are 

certainly one of the most intuitive and they allow for an immediate comprehension of the motion. However, dynamics 

models based on cartesian coordinates suffer from linearization ([12],[13]) or they become hard to model when 

perturbations are included; additionally, the coordinates are by nature varying with orbital period. When relative orbital 

parameters are used, instead, their behavior is nearly constant and perturbations are much easier to be included [14]; 

they do not suffer from linearization, but they provide information that do not immediately allow for the interpretation 

of the motion. 

Therefore, the set of differential orbital parameters described in [15] is used as relative state to be estimated, defined 

as: 

 

( ) ( ) ( )

( )

, , , , , , , , ,

with

/

cos

cos
, ,

sin

sin

d c c c c c x y x y

c

c

c c

c

f a i f a i a e e i i

a a

u i

e
f a i

e

i

i

        






= − =

 
 

+  
 

=  
 
 
 
  

 (10)  

 

while for visualization purposes they are transformed in relative coordinates. For simplicity, all the differential 

perturbations (third body attraction, higher harmonics of the moon gravitational potential, solar radiation pressure) are 

for the moment neglected, therefore the resulting dynamics simply reads as: 

 

𝛿̇𝛼 = [0 √
𝜇

𝑎2
3 − √

𝜇

𝑎1
3 0 0 0 0] 

(11)  

 

Being  the Moon gravitational parameter. The dynamics model is only slightly nonlinear, and for short distances 

(qualitatively below 100km), also the linearized version can be used: 
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𝛿̇𝛼 = [0 −
3

2
√

𝜇

𝑎1
3 𝛿𝛼 0 0 0 0] 

(12)  

 

The input of the filter cannot be properly defined as measurements’ set, since it is actaully a mathematical manipulation 

of the estimates of the navigation system of the two satellites: 

 

( ) ( )1 2 1 2
ˆ ˆˆ ˆ, ,rel inputz g oe oe k X X= = =  (13)  

 

In other words, a cascade filter architecture is realized, as shown in Figure 9. 

 

 
Figure 9 : Cascade filter architecture implemented for relative state estimation 

 

While the covariance matrix associated to the noise on the original measurements is clearly related to the noise of the 

pseudoranges and pseudorange rates, the covariance matrix of the input of the relative dynamics filter, zrel, is not 

straightforward to define. In fact, it depends on the error on the estimates of the first two filters in a highly nonlinear 

way. In order to compute at each timestep the value of the covariance matrix associated to the error of input , indicated 

as 
relR , an unscented transformation is applied ([16], [176]). Let us define: 

  

1 2
ˆ ˆ ˆ

inertialX X X =
 

 (14)  

 

the estimate of the inertial positions of the two satellites belonging to the formation, and 

 

1

2

0

0
inertial

P
P

P

 
=  

 
 

(15)  

 

the associated error covariance matrix. The first step consists in computing 2n sigma points (with n = 12) 

 

( )

( )

( )

( )

ˆ ˆ ,     with 1,...,

ˆ ˆ ,     with 1,...,

T
i

inertial inertial inertial
i

T
n i

inertial inertial inertial
i

X X nP i n

X X nP i n+

= + =

= − =

 

(16)  
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where 
inertialnP  is the matrix square root of nPinertial (computed with a Cholesky decomposition) and ( )inertial

i
nP  is 

the i-th row of 
inertialnP . The nonlinear transformation of the 2n sigma points is defined as:  

 

( )( ) ( )ˆi i

input inertialk X =  (17)  

 

The mean 
input  of the transformed sigma points can be evaluated and the associated error covariance matrix of the 

input to the relative orbital elements filter finally computed as: 

 

( )( )
2

( ) ( )

1

1

2

n
T

i i

rel input input input input

i

R
n

   
=

= − −  
(18)  

 

 

Figure 10 reports as an example the error of the first component of the input vector ,1input , together with the first 

component of the associated error covariance matrix. 

 
 

Figure 10 : Error on the first element of the state vector (differential normalized semimajor axis),                           

together with the associated covariance matrix element, computed as unscented transform                                                       

of the covariance matrices of the inertial state estimates. 

5. Results 

The three scenarios of Section 4.1 are considered for analyzing the performance of the navigation cascade filter.  

Figure 11 reports the error in the state components of the estimate (red) and of the input (blue). As already stated, while 

it could seem clear at a glance that the final estimate vector is much smoother and with less pronounced peaks, a clear 

assessment in terms of relative position error is missing. For that, the input and the estimated relative orbital elements 

can be transformed in relative cartesian coordinates in the LVLH frame.  

Figure 12 shows the position error norm of the input and of the estimate. The mean value of the estimate error is 17 m 

(with respect to 24 m of the input) and a maximum value of 84m (with respect to 190 m of the input). Therefore, it is 

possible to affirm that in the analyzed case the improvement is remarkably evident in the reduction of the maximum 

errors, which are reduced by approximately 55%, while a reduction of 30% is achieved on the mean value. 
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Figure 11: Error of the input and estimated elements of the relative state. 

 

 
 

Figure 12 : Norm of the error of the input and estimated relative position 

As already stated in Section 3, these results also depend on the specific initial configuration of the ELFO satellites, but 

the long duration of the simulation (12 hours) should reduce such a significant effect. The relative navigation 

performance is however affected also by the random noise of the pseudoranges, and thus it suffers from a large variation 

from simulation to simulation, in particular on the maximum values, as it is possible to see from  

Figure 13, which is relevant to a 50 runs Monte Carlo simulation. The mean value for all these simulations is plotted 

in  

Figure 14, with a median value of 17m and a maximum value of 42m.  
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Figure 13 : Norm of the error of the estimated relative position in 50 simulations run with different random errors 

affecting the pseudoranges. 

 
 

Figure 14 Mean error recorded during a 50 runs Monte Carlo simulation 

 

Also, the specific orbit of the receivers affects the visibility of the ELFO satellites and thus the performance of the 

relative navigation consequently depends on the orbital configuration. An extensive study of a vast number of orbital 

sets is outside the scope of the present paper. The attention is focused on the parameter that is more likely to affect the 

performance, i.e., the inclination of the orbit. In fact, the ELFO constellation is designed to maximize the coverage of 

the South Pole region; polar orbits periodically benefit from the maximum visibility, but at the same time the suffer 

from maximum outage. As a result (see  

Figure 15) it seems that the performance of polar orbits is slightly worse (in terms of mean errors), but it stays inside 

the range of random variability seen for a single case in  

Figure 14. So, we can conclude that orbital inclination does not appear to significantly change the relative navigation 

filter. 
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Figure 15 Effect of different inclinations of the formation orbit 

 
Very similar results are obtained for the Scenario B, i.e., the separation of a lander from an orbiter, with increasing 

relative distance. The error norm of the estimate and of the input are shown in  

Figure 16. The mean value is 27m for the estimate (with respect to 32m of the input: -15%) and the maximum value is 

275 m (with respect to 521 m of the input. -47%). 

 
 

Figure 16 : Norm of the error of the input and estimated relative position: drifting formation case. 

 

The performance in the case of Scenario C, relevant to a train formation with a large 300 km separation, is instead 

different and calls for some explanation. The true trajectory, the trajectory estimated after first navigation filter stage 

and the final relative estimate are plotted in  

Figure 17. In this case the maximum error is still improved (146m for the estimate vs 282m for the input), but the mean 

error of the error is worst: 41m for the estimate versus 26m for the input. This happens because for large distances 

between the satellites, the differential perturbations – correctly evaluated in the orbital propagation by the ”true” 

dynamics, are much more important, but they are neglected in the present implementation of the filter. 
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Figure 17 : True trajectory of the train formation, together with input trajectory and estimate trajectory 

The simulation has been repeated for difference initial along-track distances. It is possible to see ( 

Figure 18) that the maximum error of the estimate is always far smaller than the maximum error of the input. 

Concerning the mean error, instead, the estimates are more accurate than the input only for distances of the order of 

150km or less. For larger distances, more detailed dynamic models for the prediction, including differential 

perturbations, should be implemented to improve the accuracy. 

 

 
 

Figure 18 : Mean and maximum errors for train formations with different initial distances 

6. Conclusions 

A GNSS system that provides navigation services for lunar rovers and orbiters is currently being investigated by major 

space agencies, with particular focus on regions of greatest scientific interest, i.e., the south pole of the Moon. In this 

research work, the possibility of further exploiting this service as a navigation system for the formations of satellites -

or for combined spacecraft operations - in the cislunar space has been analysed. 
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A cascade filter architecture is implemented to estimate the state of the satellite in the lunar inertial reference frame in 

the first step and then the relative state in an orbital frame in the second one. The main focus is on the performance in 

terms of relative position as a function of different orbital parameters and formation trajectories. 

The results show that the dual-stage filter is able to significantly reduce, in particular, the maximum errors in relative 

state estimation caused by a periodical outage of navigation satellites. One factor playing a crucial role in obtaining 

this promising performance is the careful modelling of the error covariance matrix of the input to the second filter, 

which has been realized by applying an unscented transformation to the inertial positions estimates. 

Integration with other navigation sensors, such as inter-satellite links and visual navigation, could further improve the 

presented performance, which is appealing even under the current simplified hypotheses about hardware and sensor 

noise, and even when taking into account the limited number of the cases studied. Indeed, more extensive investigations 

are needed to consolidate and extend the results to a wider variety of scenarios, including the case of rovers moving 

on the lunar surface. 
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