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Introduction: Chemokines are small, secreted peptides involved in the

mediation of the immune cell recruitment. Chemokines have been implicated

in several diseases including autoimmune diseases, viral infections and also

played a critical role in the genesis and development of several malignant

tumors. CXCL12 is a homeostatic CXC chemokine involved in the process of

proliferation, and tumor spread. Pancreatic ductal adenocarcinoma (PDAC) is

one of themost aggressive tumors, that is still lacking effective therapies and with

a dramatically poor prognosis.

Method: We conducted a scientific literature search on Pubmed and Google

Scholar including retrospective, prospective studies and reviews focused on the

current research elucidating the emerging role of CXCL12 and its receptors

CXCR4 – CXCR7 in the pathogenesis of pancreatic cancer.

Results: Considering the mechanism of immunomodulation of the CXCL12-

CXCR4-CXCR7 axis, as well as the potential interaction with the

microenvironment in the PDAC, several combined therapeutic approaches have

been studied and developed, to overcome the “cold” immunological setting of

PDAC, like combining CXCL12 axis inhibitors with anti PD-1/PDL1 drugs.

Conclusion: Understanding the role of this chemokine’s axis in disease initiation

and progression may provide the basis for developing new potential biomarkers

as well as therapeutic targets for related pancreatic cancers.

KEYWORDS

pancreatic ductal adenocarcinoma (PDAC), CXCL12, CXCR4, CXCR7, chemokines,
biomarkers, tumor micreoenvironment (TME)
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

aggressive tumors and the seventh leading cause of cancer-related death

worldwide (1). The incidence of PDAC is increasing by 0.5% to 1.0%

per year (2) and the 5-years survival rate is 9% (3). Approximately 80%

of patients present with advanced disease or distant metastasis at

diagnosis, with a very poor prognosis (4). The lack of effective

therapeutic opportunities, in part due to the inter- and intratumor

heterogeneity, contributes to making PDAC still a deadly malignancy.

Multiple signaling pathways involved in pancreatic cancer

tumorigenesis - Ras-ERK pathway (5), multiple genes/proteins, such

as NOP14 (6), DCLK1 (7), interleukin-22/interleukin-22 receptor (8),

FoxQ1 (9), CHIP (10) and microRNAs (11) - were recently found to

play an important role in migration and invasion of pancreatic cancer

cells. Besides this complex set of pathways, it has recently been

highlighted the effect of chemokines in malignant behaviors of

cancer cells (12). Chemokines are chemoattracting proteins that

binds to and activate their corresponding receptors. There are four

families of chemokines, CXC, CC, CX3C, and C. Among them, CXC

ligand 12 (CXCL12) of the CXC chemokines family, was previously

shown to have important impact on the proliferation and invasion of

many types of cancer cells, through its specific receptors CXCR4 (12)

CXCR7 (13). In addition, CXCR7 is involved in a broad range of cancer

progression processes, such as growth, migration, chemotaxis, adhesion

and spreading (14). Specifically, in pancreatic cancer CXCL12-CXCR7

axis promotes migration and invasion of pancreatic cancer cells,

through mTOR and Rho/ROCK pathway (15). Tough, it has been

hypothesized a prognostic role and a potential therapeutic target for

this pathway. In this review, we summarize the current evidences about

CXCL12 - CXCR4 - CXCR7 mechanisms of action, especially in

PDAC, with the aim to identify new potential biomarkers and

therapeutic targets for this aggressive malignancy.
2 Methods

A comprehensive literature search in the electronic database of

PubMed, and Google Scholar was conducted in January 2023. The

literature search was performed using keywords. Retrospective and

prospective studies published from January 2020 to December 2022

including the following key words: “CXCL12”, “CXCR4”, “CXCR7”,

“axis”, “pancreatic cancer”, “CXCL12 axis in pancreatic cancer”,

“CXCL12 and carcinogenesis”, “CXCL12 inhibition”, “CXCL12 and

tumor microenvironment” were included in the analysis.
3 Critical analysis

3.1 Mechanism of action of chemokines:
The role in the generation and
development of malignant tumors,
including PDAC

Chemokines are small, secreted peptides involved in the

mediation of immune cell recruitment. They are considered key
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regulators of development, differentiation and anatomic location of

leukocytes and can control cell movement during inflammation and

homeostasis (16, 17). Based on the great amount of pathway in

which they are involved, chemokines play a critical role in several

diseases which comprise autoimmune diseases, viral infections as

well as many cancer types (18–24).

Chemokines are divided in four subtypes depending on the

position and number of cysteine residues in the N-terminus: C, CC,

CXC and CX3C chemokines (25). There are two families of

chemokines receptors: conventional (cCKR) and atypical

chemokine receptors (ACKR). They exert their functions binding

to seven- transmembrane- spanning G protein-coupled cell-surface

receptors (26). Ligand-receptor binding induces a conformational

change in the receptor which led to intracellular signal transduction

and activation of downstream signaling pathways (26–28) (29). In

pancreatic cancer, CXCL12 chemokine, released by activated

cancer‐associated fibroblasts (CAFs) binds to its two receptors

CXCR4 and ACKR3 on the cells surface, activating phospholipase

C, MAPK, and PI3K-Akt-mTOR, as well as JAK/STAT pathways,

promoting tumor growth and invasion (see Figure 1) (31–34).

Some chemokines, specifically the CXC chemokines group, are

involved in cancer growth promoting angiogenesis. The presence or

lack of the ELR(Glu-Leu-Arg) motif allows CXC chemokines to be

classified as angiogenic or angiostatic. More specifically,

angiogenesis is stimulated by ELR-positive chemokines (CXCL1,

CXCL6, and CXCL8) while it is inhibited by ELR-negative

chemokines (CXCL4, CXCL10 an endogenous tumor

angiogenesis inhibitor (35) and CXCL14) (36). CXCL12 (SDF-1)

is an ELR-negative chemokine but, despite being ELR negative it

represents one of the most powerful angiogenesis-promoting

chemokines (37).
FIGURE 1

CXCL12-CXCR4-CXCR7 axis in pancreatic cancer cell. After CXCL12
and chemokine (C-X-C motif) receptor 7 (CXCR7) are activated, b-
arrestin 2 causes extracellular regulatory protein kinases 1/2 (ERK ½)
to become phosphorylated, which promotes the growth of
pancreatic cancer cells. By activating the mammalian target of
rapamycin (mTOR) signaling pathways, CXCR 7 interacts to stromal
cell-derived factor-1 to increase the migration and invasion of
pancreatic cancer cells (30). CXCR7, Chemokine (C-X-C motif)
receptor 7; SDF-1, Stromal cell-derived factor-1; ERK1/2,
Extracellular regulated protein kinases 1/2; mTOR, Mammalian target
of rapamycin; Rho/ROCK, Rho/Rho associated coiled-coil forming
protein kinase.
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Focusing on the role of the CXCL12 axis, in vivo and in vitro

studies revealed a relationship between microvessel density and the

degree of CXCL12/CXCR4 expression in cancer cells. There are

several ways through which CXCL12/CXCR4 axis could control

tumor angiogenesis: increasing vascular endothelial growth factor

(VEGF) expression in tumor tissue via the PI3K/Akt signaling

pathway (38); increasing several angiogenesis-related genes in

cancer cells (39) and directing endothelial progenitor cells toward

the site of neovascularization (40, 41). Indeed, a study showed that

human intestinal microvasculature co-expresses CXCR4 and

CXCL12 and that CXCL12 promotes chemotaxis, proliferation of

endothelial cells and angiogenesis (42). Moreover, CXCL12

positively affects VEGF expression by endothelial cells;

consequently, increased VEGF levels up-regulate CXCR4

levels (43).

CXCL12 axis can influence tumor cell biology by direct effects,

promoting cancer cell growth, metastasis, and angiogenesis, but also

indirectly, recruiting CXCR4/CXCR7-positive cancer cells to

CXCL12- expressing organs (44). An experimental study showed

that CXCL12 was only weakly expressed in quiescent tissues, but

when VEGF expression was experimentally increased, using the

conditional genetic switch, the expression of CXCL12 in

perivascular fibroblasts and smooth muscle cells grown

dramatically. VEGF-dependent mechanisms also led to the

induction of CXCL12 in ischemic, inflammatory, and neoplastic

tissues (45).

Besides angiogenesis, CXCL12 and its receptor CXCR4 are

involved in promoting tumor invasion and metastases in several

neoplasm (46–48) including PDAC (15). Some evidence suggested a

possible role of CXCL12/CXCR7 on the epithelial-to-mesenchymal

transition, a critical step that initiates metastasis in colorectal (49),

esophageal (50) and ovarian cancers (51). The relation between

metastasizing and angiogenesis was demonstrated by the inhibition

of phosphoglycerate kinase (PGK) expression, an angiostatic kinase,

by the great expression of CXCL12/CXCR4 on metastasis (52).

Moreover, some studies showed that in animal models of breast,

renal cell, and non-small cell lung cancer, immunoneutralization of

CXCL12 or CXCR4 attenuated tumor metastases, but had no effect

on the extent of angiogenesis or tumor size of the primary tumor

(53, 54), suggesting that the CXCL12–CXCR4 biological axis

promotes metastases independently from angiogenesis (55).

In addition, chemokines are key components of immune system

response against cancer cells (56, 57). On the one hand, oncogenic

driver mutations and continuous immunological pressure frequently

control the expression of chemokines and their receptors,

dynamically modulating the tumor immune environment, on the

other, the complex and dynamic network of cytokines, chemokines,

and growth factors in the tumor microenvironment (TME) promotes

intracellular and intercellular communication that modulates tumor/

stroma interactions, including immune responses. The TME consists

of resident non-cancerous cells like stromal fibroblasts, endothelial

cells, and immune cells, proteolytic enzymes, growth factors,

inflammatory cytokines, and the extracellular matrix (ECM) (58).

In TME paracrine and autocrine signaling by chemokines, generate

complex communications between tumor cells and the TME cells

(59). Chemokines facilitate interaction between cancer cells and the
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endothelial cells. Additionally, chemokines boost neutrophil

infiltration and activate tumor-associated macrophages (TAM)

(60). CXCL12 in the TME could be secreted by cancer-associated

fibroblasts (CAF), stimulating tumor growth directly, acting through

CXCR4 and promoting invasiveness (61).

Differences in quantity, composition, functional status, location,

and type of immune cells of TME, have an impact on the prognosis

and therapeutic response, assuming pro-tumor or anti-tumor

characteristics. The TME and the immune profile of cancers have

a different behavior, not only across tumor types but also among

patients with the same tumor type and in different tumor sites

within the same patient (62–64). In colon cancer, chemokines in

TME have direct pro-tumor effects: CCL2 targeting vascular

endothelial cells via the Janus kinase 2 (JAK2)–STAT5 and p38

mitogen-activated protein kinase pathways, CCL3 and CCL5 can

promote tumor invasion and metastasis (64). In non-small cell lung

cancer, CXCR4+ tumor cells may have stem-like properties,

showing a high metastatic potential and radiation resistance (65).

In pancreatic cancer the CC-chemokine ligand 20 (CCL20) and its

receptor CC-chemokine receptor 6 (CCR6) mediate the cancer

migration and metastasizing. CCL20 is the strongest target gene

in TNF-related apoptosis-inducing ligand (TRAIL) resistance

through the NF-kB subunit RelA. Both autocrine CCL20 and

paracrine immune cell recruitment help pancreatic cancer cells

develop TRAIL resistance (66). Immune cells known as TAM that

exhibit M2-type macrophage markers have been found to accelerate

tumor growth and inhibit cytotoxic T-cell defenses. Additionally,

IL4-stimulated M2-type macrophages highly express CCL20 and

support pancreatic cancer cell invasion and the epithelial-

mesenchymal transition (EMT). Another study found that the

CCL20-CCR6 axis enhanced liver metastasis and pancreatic

cancer growth in a mouse model (67).

Finally, The CXCL12-CXCR4-CXCR7 axis promotes tumor-

related inflammation and metastasis, by regulating the trafficking of

immune and tumor cells (68–70), while recent research has

highlighted an immunosuppressive role of the CXCL12/CXCR4

axis through the recruitment of specific populations of

immunosuppressive cells within the TME (71)

In pancreatic cancer, a high expression of CXCL12 and CXCR4

is correlated with a worse prognosis (72, 73).
3.2 CXCL12 role in carcinogenesis and
progression: Preclinical studies and
observational evidence in solid tumors,
including PDAC

As described above, CXCL12 and its receptors activate key

survival pathways, playing a central role in several processes

involved in cancer development and growth, including PDAC

(74). In solid and hematologic malignancies, the CXCL12-

CXCR4-CXCR7 axis was related to resistance to therapies.

Moreover, high CXCL12 expression correlates with worst survival

in patients with esophagogastric, pancreatic or lung cancer (72).

Indeed, CXCL12 can promote local invasion of cancer cells, while
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loss of CXCL12 promotes tumor cell migration to organs expressing

high levels of CXCL12 such as the liver, bone marrow and lung (72).

In mycosis fungoides (MF) the CXCL12/CXCR4 axis is one of

the mechanisms by which CAFs promote tumor cell migration and

drug resistance. A study demonstrated that CXCL12 was

significantly upregulated in fibroblasts of MF patients when

compared to control, enhancing MF resistance to chemotherapy

(75). Similarly, CXCL12 and its receptors CXCR4 and CXCR7 are

also involved in prognosis and progression of different solid tumors

(76). In breast cancer CXCR7-deficient mouse, higher local

recurrences were reported after resection, suggesting that CXCR7

may have tumor-suppressor functions involved into the metastatic

cascade (77).

With regards to PDAC carcinogenesis, increased CXCL12 levels

were directly associated with increasing PanIN grade (78).

CXCL12- CXCR4 axis plays an important role in the progression

and organ specific metastatic spread (79), enhances cancer growth

and restrict immune surveillance across the tumor through local

autocrine and paracrine mechanisms (80).

Furthermore, in PDAC, CXCL12 induces shape changes in

pancreatic cancer cells which make them resemble to migrating

cells and increase cell migration in vitro (81) [e.g. increased

expression of MMP-2, MMP-9 and uPA (82)]. To support tumor

growth and expansion, CXCL12 axis can attract CXCR4-positive

inflammatory, vascular, and stromal cells into the tumor mass,

favoring a cross talking process with TME (83). The crosstalk

between CXCL12/CXCR4 signaling and EMT and loss of cell

adhesion which promotes cell cycle progression (82) was

highlighted also in other type of cancers, like human sacral

chondrosarcoma (84).

In PDAC tissues and pancreatic cancer cell lines SATB-1 - a

nuclear matrix attachment region-binding protein which controls

the transcription and expression of all gene - is overexpressed, and

CXCL12, which is released by CAFs, increases SATB-1 expression

(85, 86).

CXCR4 and CXCR7 are often co-expressed in PDAC specimens

and cell lines, with discordant results. In early pancreatic cancer cell

lines, CXCR7 knockdown, but not CXCR4 knockdown, does arrest

CXCL12- mediated proliferative changes. Opposite results were

obtained for the metastatic pancreatic cancer cell line. These results

indicate that both CXCR4 and CXCR7 can mediate CXCL12-driven

proliferation. CXCR4 and CXCR7 signaling is b-arrestin-2-

dependent and controls CXCL12 signals to the MAPK

pathway (87).

In advanced colorectal cancer, CXCR7 expression is associated

with lymph node metastasis and progression, being employed as

prediction marker for lymph node involvement (88). Generally,

tumors that exploit CXCL12/CXCR4 axis tend to grow and

metastasize in tissues like the liver, lung, adrenal glands, and bone

marrow, whereas tumors that exploit CXCL12/CXCR7 axis are

more often responsible for lymphatic metastases due to CXCR7

expression in endothelial cells, T and B lymphocytes, and dendritic

cells (13, 89). The interplay among CXCL12/CXCR4/CXCR7 axis

and metastases is reinforced by a preclinical study that evidenced

how the systemic treatment with CXCR7 antagonists reduces tumor
Frontiers in Oncology 04
expansion in lungs of experimental mice inoculated with HT-29 or

C26 cancer cells (90).

In small cell lung cancer (SCLC), CXCL12 induces the

overexpression of CXCR4 through some integrins (2, 4, 5, and ß1

integrins), which results in a significant affinity of cancer cells for

extracellular matrix and confers chemoresistance to tumors.

CXCR4 inhibitors may lessen this chemoresistance effect (91).

The CXCL12-CXCR4/CXCR7 axis is a highly conserved

mechanism for organogenesis and tissue healing in gastrointestinal

malignancies (gastric, pancreatic, and colorectal cancer). A complete

knockout is incompatible with life. Cancer cells may be able to take

advantage of this chemokine pathway due to genetic abnormalities.

Increased CXCR4 expression on tumor cells not only enable them to

spread to CXCL12 gradients that are phisiologically present in the

body, but CXCR4 binding on tumor cells also promotes resistance to

therapies by reducing pro-apoptotic signaling. Additionally, by

interfering with proper immune cell migration, changes in the

ability of TME stromal cells to produce CXCL12 may hinder

effective cell-mediated tumor killing, resulting in enhanced tumor

growth, showing how CXCL12-CXCR4/CXCR7 axis could be

considered as a mechanism of immune resistance in

gastrointestinal malignancies (92).

Considering CXCL12–CXCR4/CXCR7 axis involvement in

survival, tumor growth, angiogenesis, metastasis, TME, and drug

resistance, it has been investigated as promising target for

therapeutic interventions (93, 94).
3.3 -The axis CXCL12-CXCR4-CXCR7
in PDAC: Could it be considered
as new potential biomarkers
and therapeutic targets?

CXCL12-CXCR4-CXCR7 axis has been associated to cancer

progression in several tumor types (53, 95, 96). Thus, it seems

interesting to investigate their possible role in PDAC environment.

The TME induces changes in cellular components (97) by secreting

exosomes and soluble factors such as VEGF, CXCL1, and CXCL8-

(98, 99) to promote colonization (100, 101). As previously

described, in PDAC, TME may have a tumor-promoting or

tumor-suppressive action based on the expression of specific

factors such as CAFs, stellate cells, different immune cells and

cytokines (102). Hence, the TME, with its complexity of signal

pathways (103), acts as a key determinant by which PDAC acquires

therapeutic resistance to currently available treatment and it could

represent a target for new therapeutic strategies based on context-

dependent stromal alterations (104, 105). CXCL12/CXCR4 axis is

one of the most prominent chemokine moderators of the TME (68).

The examination of formalin-fixed paraffin embedded (FFPE)

specimens obtained from patients who had undergone resection

for pancreatic adenocarcinoma, showed both high frequency of

CXCR4/CXCR7 co-expression in human pancreatic cancer tissues

compared to normal tissues and the increase in staining intensity

over tumor stage (87), confirming a decisive role in the pathogenesis

of PDAC.
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In literature has been reported the effect of upregulation of

SATB-1 – a nuclear matrix attachment region-binding protein

called AT-rich sequence-binding protein 1- by CXCL12, CAFs of

pancreatic cancer stroma via the CXCL12/CXCR4 axis. CXCL12/

CXCR4/SATB-1 axis accounts for the malignant progression, but

also gemcitabine resistance of pancreatic cancer cells, suggesting a

potential target of chemosensitivity in therapeutic management of

PDAC patients (86). In addition, CXCL12 overexpression

correlated with the lymph node metastasis, whereas SATB-1

overexpression correlated with differentiation, T stage, TNM

stage, and lymph node metastasis. Furthermore, higher CXCL12

or SATB-1 staining intensity correlated with poorer prognosis in

PDAC patients suggesting also a possible prognostic role in these

tumors (86).

The implication of chemokines in PDAC tumorigenesis,

prognosis, and resistance to therapy and the increasingly urgent

need to understand the signaling mechanisms, supported the

development of molecularly targeted pancreatic cancer therapies.

Recently, several preclinical and ongoing clinical studies have

been analyzing the therapeutic option of CXCL12-CXCR4/CXCR7

axis. Moreover, different molecules have been developed in several

areas of medicine as antagonists of the CXCR4 receptor (106, 107).

In vitro studies showed that, resistance to gemcitabine mediated by

CXCR4 chemokine receptor (108) and polo-like kinase 1 (PLK1)

(109, 110) can be overcome combining a polymeric cholesterol-

modified CXCR4 (PAMD-CHOL) antagonist to a PLK1

knockdown by siRNA. The biodistribution of the nanoparticles in

orthotopic pancreatic cancer models revealed strong accumulation

in primary and metastatic tumors. In a therapeutic study in vivo, the

triple combination of gemcitabine with PAMD-CHOL/siPLK1

showed superior anticancer activity when compared with single

and dual combination controls (111). An interesting retrospective

analysis of the INT-11 trial demonstrated that tipifarnib, a farnesyl

transferase inhibitor that inhibits CXCL12 expression in pancreatic

fibroblasts, could sensitize PDAC to gemcitabine in a subset of

PDAC patients (112).

In orthotopic pancreatic tumor–bearing mice treated with

gemcitabine combined to a CXCR4 antagonist (AMD3100) or

hedgehog inhibitor (GDC-0449) showed significant suppression

of tumor growth. Those target agents act on a pathway signaling

which promote pancreatic tumor desmoplasia by inducing

proliferation and differentiation of pancreatic stellate cells into

myofibroblasts (113).

The involvement of CXCR4 in radiation resistance was

previously demonstrated in several tumors (114–116). Kato and

colleagues confirmed the correlation between the high intensity

immunostaining of CXCR4 in pancreatic cancer cells and survival

or stage of cancer. Moreover, they found that CXCR4 expression

and invasion were enhanced in radiation-resistant pancreatic

cancer cell lines compared to normal cancer cell lines. The

CXCR4 antagonist AMD070 suppressed the cancer cell

invasion enhanced by CXCL12 treatment, and when used in

combination with irradiation, AMD070 suppressed the

colonization of radiation-resistant pancreatic cancer cells (117).

Alternatively, CXCR4-CXCL12 axis can be inhibited by directly

preventing CXCL12 binding to CXCR4 or CXCR7. Olaptesed
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pegol (NOX-A12) is a novel non-immunogenic synthetic

oligonucleotide that inhibits the chemoattractant stromal cell-

derived factor-1 (SDF-1 or CXCL12) (118, 119). Currently, there

is a Phase 1/2 clinical trial looking at Olaptesed in combination

therapy with Pembrolizumab in metastatic pancreatic and

colorectal cancers (NCT03168139). The preclinical studies

focused on the therapeutic role of CXCL12-CXCR4/CXCR7

axis are summarized in Table 1.
3.4 Immunoresistance phenotype of PDAC:
The role of immunotherapy

The TME of PDAC is highly immunosuppressive and is

characterized by an extensive and dense fibrous stroma that can

account for up to 80% of the total tumor volume (120) and is

responsible for an abundant desmoplastic reaction, creating a

physical barrier that makes the drug perfusion difficult (121). The

crosstalk between pancreatic cancer-associated stroma, cancer cells

and soluble proteins such as cytokines and growth factors (122)

could represent a target of therapeutic strategies modulating tumor-

promoting and tumor-suppressive signals (104, 105). The immune

resistance of PDAC cannot be explained only by the presence of

desmoplastic peritumoral reaction, but also by further mechanisms

such as the minimal antitumor T cells infiltration (123) and the

synergism with other regulatory immune cells to evade immune

surveillance (124), tumor cell-intrinsic pathways involving the

KRAS oncogene (125) and its downstream effector PIK3CA (126),

the tumor suppressor gene p53 (127) and NF-kB that contributes to

tumor growth by increasing the expression of CXCL12, which

prevents cytotoxic T cells from infiltrating the tumor and killing

cancer cells (128, 129).

The production of immunosuppressive chemokines and

cytokines represents one important mechanism of immune evasion

in PDAC and the CXCL12-CXCR4/CXCR7 chemokine axis, as

described above, has a prominent role in modulating the trafficking

of immune cell populations in the microenvironment (92).

Although all these evidences highlights how the TME may

represent an area of interest in pancreatic cancer immuno-

therapeutic exploration, the efficacy of immunotherapy in PDAC

appeared poorly encouraging survival benefit (130–132) despite the

observation of PD1 expression in such patients (130, 133, 134).

Indeed, the PDAC was historically defined as a non-immunogenic

tumor that displays a paucity of antigens to be recognized as foreign

by the host immune system, the presence of peripheral T cells

specific for an abundant PDAC antigen, mesothelin, and the lack of

these T cells in the tumor microenvironment are consistent with the

existence of local immunosuppression (135). On the one hand the

limited T-cell infiltration has been hypothesized to be one crucial

reason for the failure of checkpoint inhibitor therapy (136–138), on

the other, the inhibition of the CXCL12/CXCR4 axis appeared as a

promising TME modulatory strategy to improve ICIs outcomes

(136, 139).

Considering the mechanism of immunomodulation of the

CXCL12-CXCR4-CXCR7 axis, and of the potential interaction

with the microenvironment in the PDAC, several combined
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TABLE 1 Preclinical studies about therapeutic option of CXCL12-CXCR4/CXCR7 axis in PDAC.

Experimental Treat-
ment

Type
of

study
(vivo/
vitro)

Disease
Involved
in the
trial

Mechanism of action Biological effect mediated by experi-
mental treatment

Evaluation of CXCR4 mRNA
(PaCA cells) and CXCL12
mRNA (fibroblasts) by RT-
PCR
Expression of CXCR4 protein
(PaCa cells) by ELISA (108)

Vitro Pancreatic
Cancer

– GEM resistance:
CXCR4 in GEM-R PaCa cells was significantly

enhanced by GEM but not in normal GEM-sensitive
(GEM-S) PaCa cells. In RT-PCR and ELISA assays,

the production and secretion of CXCL12 from
fibroblasts was significantly enhanced by co-

culturing with GEM-R PaCa cells treated with GEM

AMD11070 and KRH3955
(108)

Vivo
(mice)

Pancreatic
Cancer

Effects of CXCR4 antagonists (using Matrigel
invasion assays and animal studies) on the

invasiveness and tumorigenicity of GEM-R PaCa
cells stimulated by CXCL12

In Matrigel invasion studies, fibroblast-derived
CXCL12 increased the invasiveness of GEM-R PaCa

cells treated with GEM, while AMD11070 and
KRH3955 significantly decreased it.

GEM enhanced the tumorigenicity of GEM-R PaCa
cells in vivo, whereas the addition of CXCR4

antagonists dramatically reduced it.

Exposure of fine-needle
aspiration material of PDAC
to control vehicle or
gemcitabine (109)

Vitro Pancreatic
cancer

6 h exposed fine-needle aspiration material of
PDAC to control vehicle or GEM (1 mumol/L)
and compared the gene expression of the treated

and untreated samples using a reverse
transcription-PCR-based, customized low-density
array with 45 target genes of therapeutic interest.

Plk1 gene, which showed >50% downregulation in
sensitive cases vs resistant.

(109) Vivo Pancreatic
cancer

– In GEM-R pancreatic cancer xenografts showed
synergistic activity decreasing cell proliferation and

tumor regressions

Injection of nanoparticles
with cholesterol modified
PAMD and siPLK1 plus
gemcitabine treatment in
vitro in both murine and
human pancreatic cancer cell
lines (111)

Vitro Pancreatic
cancer

Combining CXCR4 inhibition by a polymeric
CXCR4 antagonist PAMD-CHOL with PLK1
knockdown by siRNA, enhance the therapeutic
effect of gemcitabine in orthotopic model of

metastatic pancreatic cancer

Biodistribution of the nanoparticles in orthotopic
pancreatic cancer models revealed strong

accumulation in primary and metastatic tumors.
The cholesterol-containing nanoparticles showed not

only increased tumor accumulation than the
cholesterol-lacking control but also deeper

penetration to the tumor

(111) Vivo Pancreatic
cancer

– Triple combination of PAMD-CHOL/siPLK1 and
gemcitabine showed superior anticancer activity
when compared with single and dual combination

controls

CXCR4 antagonist
(AMD3100) or hedgehog
inhibitor (GDC-0449) (113)

Vitro Pancreatic
cancer

The monocultures and co-cultures treated with
gemcitabine in the presence or absence of

AMD3100 and/or GDC-0449 and measured the
viability of PC cells

PaCa cells co-cultured with pancreatic stellate cells
(PSCs) are significantly more resistant to
gemcitabine toxicity than those grown in

monoculture.
The co-culture–induced chemoresistance is

abrogated by inhibition of the CXCR4 and hedgehog
pathways

(113) Vivo
(mice)

Pancreatic
cancer

CXCR4 antagonist (AMD3100) or hedgehog
inhibitor (GDC-0449

Treatment of orthotopic pancreatic tumor–bearing
mice with gemcitabine alone or in combination with
AMD3100 plus GDC-0449 displays reduced tumor

growth.
The triple combination treatment is the most

effective (Immunohistochemical analysis of Ki67 and
cleaved caspase-3 confirm these findings from in

vivo imaging and tumor measurements)

The role of the CXCL12/
CXCR4 axis in radiation
resistance in PaCa (117)

Vitro Pancreatic
cancer

Involving of CXCL12/CXCR4 axis in the radiation
resistance of PaCa

The expression of CXCR4 was higher in radiation-
resistant PaCa cell lines than in normal PaCa cell

lines. The invasion ability of radiation-resistant PaCa
cell lines was greater than normal cell lines and was

enhanced by CXCL12 treatment

AMD070 (117) Vitro Pancreatic
cancer

The effects of a CXCR4 antagonist on radiation
resistant PaCa cell lines

Suppression by the CXCR4 antagonist AMD070 of
the enhanced invasion ability of PaCa cells

(Continued)
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therapeutic approaches have been studied and developed, to

overcome the “cold” immunological setting of PDAC.

Recently, a dose escalation trial was conducted with the objective

to assess the impact on the tumor microenvironment of selective

CXCR4 antagonist named AMD3100 - also known as plerixafor - in

advanced PDAC, ovarian and colorectal cancer, to identify the proof

of mechanism, by demonstrating alterations in T-cell tumor

distribution, ideally associated with loss of tumor cells, measured

by immunostaining, and changes in FDG uptake (NCT03277209).

The depletion of tumor stroma or targeting CXCL12 from CAF

exhibited a synergistic effect with immune checkpoint inhibitors in

PDAC generating genetically engineered mouse models, suggesting

that the conditioning of the PDAC stroma could be a prerequisite for

attaining therapeutic responses to immunotherapies (136, 140). An

interesting preclinical study showed how in a murine pancreatic cancer

model, despite the presence of antitumor T cells, immunotherapeutic

antibodies (anti-PDL1) are ineffective, but removing the CAF

expressing fibroblast activation protein (FAP) from tumors or

inhibiting the interaction of its chemokine, CXCL12, with CXCR4,

permitted immune control of tumor growth and uncovered the efficacy

of these immunotherapeutic antibodies. FAP+ CAFs are the only

tumoral source of CXCL12 and administering AMD3100 also

revealed the antitumor effects of an immunotherapeutic antibody

and greatly diminished cancer cells (136).

Inhibiting CXCR4 by continuous infusion of AMD3100 in an

experimental microsatellite stable (MSS) PDAC and colorectal cancer

human cells, induced an integrated immune response with

intratumoral T and NK cells accumulation and activation and B

cell response, that was detected by transcriptional analysis of paired

biopsies of metastases from patients (141). Combination therapy

showed efficacy through intravenous injection of traps - plasmid

DNA encoding for CXCL12 and PD-L1 - in mice bearing orthotopic

pancreatic cancer. Expression of traps was mainly seen in the tumor.

Moreover, combination trap therapy shrunk both tumor and

metastases, and significantly prolonged the host survival. The

authors also found a modification of the immunosuppressive TME

as CXCL12 trap allowed T-cell penetration into the tumor, and PD-

L1 trap allowed the infiltrated T-cells to kill the tumor cells (139).

In clinical practice most studies addressing the CXCL12-

CXCR4 axis have tackled hematological malignancies (142, 143),

while in solid tumors the trials are less numerous (Table 2).

The attractive immunomodulating role of CXCR4 was

investigated in phase I in which the primary objective was to
Frontiers in Oncology 07
assess the maximum dose tolerated and safety of an antagonist of

CXCR4 LY2510924 administered subcutaneous daily in

combination with durvalumab in patients with advanced solid

tumors (8 PDAC, 1 colorectal). No dose limiting toxicities were

reported and about activity four patients reported stable disease and

one patient partial response (144).

In pretreated PDAC patients, monotherapy with BL-8040 - an

inhibitor of CXCR4 activity - followed by repeated cycles of

pembrolizumab every 3 weeks and BL-8040 three times weekly,

showed a DCR of 34.5%, although only one patient reported a

partial response. After this priming phase and based on the results

of this initial cohort, the expansion cohort of triple combination

therapy of BL-8040, pembrolizumab and irinotecan-based

chemotherapy, showed surprisingly, an ORR, DCR and median

duration of response of 32%, 77% and 7.8 months respectively,

suggesting a possible expansion of the chemotherapy’s benefit by

combined CXCR4 and PD-1 blockade (145).

In the phase I/II Keynote-559 patients affected by microsatellite

stable (MSS) metastatic colorectal and pancreatic cancers were

treated with a fixed dose of olaptesed pegol (also known as NOX-

A12) as a monotherapy for 2 weeks, followed by a combined

therapy with 200 mg pembrolizumab one time every 3 weeks until

disease progression or limiting toxicity. Olaptesed pegol is an

oligonucleotide that binds to SDF-1 thereby preventing the

binding of SDF-1 to its receptors CXCR4 and CXCR7 and

blocking the subsequent receptor activation, with consequent

prevention of angiogenesis, proliferation, invasion and metastasis.

Furthermore NOX-A12 facilitating the influx of immune effector

cells into solid tumors, may allow an effective response to immune

checkpoint inhibitors. The treatment with NOX-A12 and

pembrolizumab was well tolerated and demonstrated to be able to

stabilize the disease in heavily pretreated MSS patients for

prolonged periods, for almost a quarter of the patient’s overall

survival close to 12 months could be reached (146).
4 Future perspective and conclusions

Considering the critical and non-systematic nature of this

review, and the heterogeneity of the included studies, which not

allow conclusive evidence, our work highlights the crucial role that

plays CXCL12-CXCR4-CXCR7 axis in carcinogenesis, disease

progression and drug resistance of pancreatic cancer. Moreover,
TABLE 1 Continued

Experimental Treat-
ment

Type
of

study
(vivo/
vitro)

Disease
Involved
in the
trial

Mechanism of action Biological effect mediated by experi-
mental treatment

Olaptesed pegol (NOX-A12)
(118)

Vivo
(phase
II)

Pancreatic
and

colorectal
cancers

NOX-A12 inhibits the chemoattractant stromal
cell-derived factor-1 (SDF-1 or CXCL12)

–

RT-PCR, reverse transcriptase-polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; PaCa, Pancreatic Cancer; GEM, Gemcitabine; GEM-R, Gemcitabine resistant; GEM-S,
Gemcitabine sensible; PDAC, Pancreatic Ductal Adenocarcinoma; PAMD-CHOL, CXCR4-inhibiting polymer; PSCs, pancreatic stellate cells; siPLK1, siRNA-mediated polo-like kinase 1.
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compared to previous published reviews (80, 147), ours work

focused on the immunomodulatory activity of this chemokine’s

axis, speculating on the possibility of exploiting them for

therapeutic purposes.

This axis represents, as reported in a recent meta-analysis a

potential predictive factor of worse prognosis of PDAC,

esophagogastric and lung cancers (72). Consequently, a deeper

understanding of the pancreatic cancer biology, including new

insight into the tumor metabolism and TME, could lead to the

development of promising and innovative therapeutic strategies.

According to this evidence, several preclinical and clinical

studies are ongoing to analyze therapeutic opportunities targeting

the CXCL12-CXCR4/CXCR7 axis in the complex field of pancreatic

TME. Currently it has been widely supposed that targeting a single

molecule or single pathway was unlikely to yield more pancreatic

cancer therapies, therefore future approaches about combination

and/or multi-modal strategies that target multiple features of the

TME simultaneously might be more successful than the single agent

therapy. Furthermore, while the possibility to overcome resistance

to radiotherapy and chemotherapy treatment has been already

investigated - although mainly in preclinical studies - the

immunomodulating role of CXCL12-CXCR4/CXCR7 antagonists

could represent a future challenge in the therapeutic landscape

of PDAC.

In conclusion, the present review suggests how modulating

TME with a combination of chemotherapy, PD-1/PD-L1 and

CXCL12-CXCR4-CXCR7 axis antagonists could represent one of
Frontiers in Oncology 08
the future therapeutic options to improve the immune responses in

immune refractory cancers, including PDAC.
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TABLE 2 Recruiting and completed trials of CXCL12-CXCR4-CXCR77 inhibitors plus immunotherapy in PDAC.

Trial Name Disease
Involved in the

trial

Number
patients
enrolled

Experimental
Treatment/
Control

Line of
Therapy

Phase Primary EP mOS
(mo)

mPFS
(mo)

NCT03277209 Advanced
pancreatic, high
grade serous
ovarian or
colorectal

adenocarcinoma

2 AMD3100
(Plerixafor)

– I Causality of AEs and SAEs and grading
according to NCI CTCAE v.4.03

– –

NCT02737072
(144)

PDAC (8 patients),
colorectal (1
patient)

9 LY2510924 +
Durvalumab

– Ia/Ib Number of Participants Who
Experienced DLTs, MTD of LY2510924

– –

COMBAT
(145)

Metastatic PDAC 37 BL-8040
(motixafortide) +
Pembrolizumab

and
chemotherapy

≥ 2 IIa ORR 3.3 –

KEYNOTE-
559/OPERA
(146)

MSS Colorectal
Cancer (11

patients) or MSS
pancreatic cancer

(9 patients)

20 Olaptesed (NOX-
A12) +/-

Pembrolizumab

≥ 2 I/II Evaluation of changes within the tumor
microenvironment induced by CXCL12
inhibition with NOX-A12 by comparing

pre- and post-treatment biopsy
specimens.

Safety and tolerability of NOX-A12 plus
pembrolizumab.

3.97 1.87

NCT04177810 Pancreatic cancer Recruiting AMD3100
(Plerixafor) +
Cemiplimab

>1 2 Objective Response rate, G3 or above
toxicities
fronti
mOS, median overall survival; mPFS, median progression free survival; mo, months; EP, endpoint; AEs, adverse events; SAEs, severe adverse events; DLTs, dose-limiting toxicities; MTD,
maximum tolerated dose; ORR, objective response rate.
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