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Investigating partial least squares
discriminant analysis and hierarchical
modelling of short wave infrared
hyperspectral imaging data to distinguish
production area and quality of rooibos
(Aspalathus linearis)
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Abstract
Short wave infrared hyperspectral imaging was tested for its ability to distinguish rooibos tea (Aspalathus linearis) based on
production area and quality grade, with the aim to replace time-consuming sensory analysis in the industry. The number of
latent variables and model parameters of the calibration model were optimised by cross-validation. Classification error rates
were used to evaluate the performance of the models in classifying rooibos based on production area and quality grade. The
production area of rooibos was distinguished by applying a partial least square-discriminant analysis model with second
derivative pre-processing, followed by mean centering and inclusion of nine LVs. The model could successfully distinguish
between the two production areas and had a classification accuracy of 100% for the prediction set. To distinguish between
different quality grades, a hierarchical model with second derivative pre-processing was developed. Grade A could be
distinguished successfully from grades B, C and D (class BCD) with 100% accuracy and grade D could be distinguished from
grades B and C (class BC) with 96% accuracy. However, the model was less accurate to distinguish between grade B and C
samples, with prediction accuracies of 82 and 66% for B and C, respectively. Application of near infrared hyperspectral imaging
therefore offers the potential to replace the use of sensory analysis in the rooibos tea industry to predict production area and
quality grade of this herbal tea.
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Introduction

Several studies have demonstrated the application of near
infrared (NIR) spectroscopy and NIR hyperspectral im-
aging (NIR-HSI) to classify Camellia sinensis teas based on
quality,1–4 extent of fermentation,5 storage period,6 and
geographical origin.7,8 The relationship between non-
volatile compounds such as polyphenols and specific
NIR spectral regions forms the basis of such classifications.
Near infrared spectroscopy represents a spectroscopic
technique, which measures absorbance or reflection of light
in the NIR region of the electromagnetic spectrum (800 –

2500 nm).9 This technique only provides a mean spectrum
for the sample being analysed, whilst hyperspectral imaging
combines NIR spectroscopy with digital imaging, which
enables the spatial and spectral data of a sample to be
collected.9

To date, the application of NIR-HSI to rooibos tea
(Aspalathus linearis) for quality assessment purposes has
not yet been investigated. Given that the quality of a product

is inherent to its relative market share and returns, it is in the
interest of the rooibos industry to ensure that rooibos tea
reaching the market is of consistent, good quality. Most of
the annual production of rooibos tea is subjected to a quality
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grading system that classifies each production batch either
as A, B, C or D grade, with grades A and D representing the
highest and poorest quality, respectively. The bulk of the
production is graded as B or C.10 Grades are determined by
the flavour and clarity of the infusion and the appearance of
the dry and wet leaves. The distinction between grades A
and B is based on the typical rooibos flavour and taste, with
the typical flavour being less intense in grade B rooibos.
Grade C rooibos has a similar flavour and taste profile to
grade B rooibos, except that some negative aroma attributes
could be present at low intensities. The flavour of grade D
rooibos is poor as it usually has an unacceptable high in-
tensity of negative aroma attributes.11

Another aspect of rooibos production that could tie into
quality is the production area, since it could provide impetus
to industry to promote a specific area-of-origin within the
context of the recently awarded ‘Protection Designation of
Origin (PDO)’ to rooibos from the European Union (EU).
Descriptive sensory analysis of infusions, prepared from
rooibos grown in the Western and Northern Cape Provinces
of South Africa, failed to differentiate between production
batches based on the production area,12 despite the pro-
duction area influencing the phenolic composition which is
responsible for taste and astringency.10,13 However, the
volatile compounds which are present at much lower
concentrations than the non-volatiles14,15 in the processed
plant material, have a greater impact on rooibos quality.11

Regardless of very low concentrations of volatiles in plant
products, examples which demonstrate the successful appli-
cation of NIR spectroscopy and data analytical tools to dif-
ferentiate between samples of the same product such as wines,
whiskey, barley malt and coffee can be found.16–20 These
studies suggest the potential application of these techniques
not only to distinguishing between rooibos from different
production areas, but also between different quality grades.

The advantages of the application of NIR spectroscopy
include that it offers a low cost, fast, real-time, non-
destructive method, requiring little to no sample prepara-
tion, which can be used for the analysis of various prop-
erties of food and agricultural products.21 It does not make
use of any chemicals and is therefore safe for the envi-
ronment.21 The application of multivariate data analysis

allows several models to be developed by using the same
sample spectra to predict various properties of the sample.
Whereas traditional desktop NIR spectrometers collects the
average spectral information of a few points, hyperspectral
imaging combines the advantages of NIR spectroscopy
with the ability to collect the spectral data in an image to
create a 3-dimensional dataset called a hypercube.21 This is
especially advantageous for analysis of heterogeneous
samples22 such as rooibos tea (Figure 1) since a spectrum is
collected at each pixel in the image.21 When combined with
chemical analysis, this technique can also be used to study
the spatial distribution of chemicals in a sample.9

The aim of the study was therefore to investigate the
potential of NIR-HSI, combined with suitable multivariate
data analytical tools, to produce classification models which
can differentiate between two production areas (Western
and Northern Cape). For the development of a classification
model which can discriminate between rooibos production
batches of different quality grades (A, B, C and D), samples
from the Western Cape production area was used.

Materials and methods

Plant material

The sample set consisted of ‘fermented’, unpasteurised
batches of rooibos, which were collected over the 2011, 2012
and 2013 harvest seasons for the Northern Cape (NC)
production area and from 2011 – 2019 for the Western Cape
(WC) production area. Samples were provided by two
secondary processors, located in the respective areas.
Grading of the samples were done by the expert panel of each
processor. Details of the samples are summarised in Table 1.

NIR-HSI

A summary of the procedures followed to capture the
hyperspectral images and process the data, was sum-
marized in Figure 2. Images were acquired, using a
pushbroom HySpex short wave infrared (SWIR) camera
(Norsk Elektro Optikk, Norway) equipped with Breeze
software version 2018.17.0 (Prediktera AB, Umeå,
Sweden). The light source was two halogen lamps

Figure 1. Two typical samples of fermented rooibos tea produced by different suppliers have a different appearance (colour) and leaf to
stem ratio, which contribute to its heterogenous nature. The application of NIR-HSI, which collects spectra of all pixels in the image,
allows more of the variation in the chemical and physical properties of the samples to be captured.
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producing irradiation in the 400 – 2500 nm spectral
range. They were positioned 30 cm above the translations
stage. Spectra were captured from 950 – 2500 nm, using a
30 cm lens (field of view: 95 mm, spatial resolution
247 µm). Samples were imaged one at a time by placing
the samples on a conveyer belt. The movement speed was
set to 0.25 cm/s with image acquisition at a frame rate of
100 Hz and an exposure time of 3.0 ms. The spectral
intervals were 5.45 nm and each line in the image con-
sisted of 384 pixels x 288 wavebands.

For image acquisition, each sample was transferred to a
plastic container (4 cm diameter; 1 cm depth) and the
surface levelled. The samples were imaged in a random
order. A dark (0%) reference was collected by closing the
lens aperture and a 50% grey reflectance target (Sphere
Optics, Germany) was imaged to calibrate the data and to
correct for variation in sample illumination. Raw images

were corrected using the white and dark reference and
converted to pseudo-absorbance using EvinceTM (version
2.7.0, Prediktera AB, Umeå, Sweden) software. As indi-
cated in Figure 2, the next step was to process the images
to remove the background pixels and only the pixels from
a smaller region of interest (50 × 50 pixels equivalent to
11 × 11 mm) at the center of the sample image was selected
to exclude shadows at the edges of the sample.

Data analysis

Average spectra extraction and sample division. Prior to the
development of the classification models, the average
spectral data for each sample for the spectral range, 950 –

2500 nm, were calculated, using EvinceTM. The data were
exported and processed using MATLAB (The Mathworks,
Natick, MA; version 2015b).

Table 1. Number of samples for each production area and quality grade of rooibos tea.

Production area Year

Quality grade

No of samplesA B C D

Northern Cape (NC) 2011 5 6 4 0 15
2012 3 25 8 0 36
2013 0 25 9 0 34

Total number of samples 8 56 21 0 85
Western Cape (WC) 2011 6 5 6 0 17

2012 18 20 20 0 58
2013 10 15 16 0 41
2016 3 44 77 5 129
2017 3 42 43 5 93
2018 3 1 14 14 30
2019 2 40 148 53 243

No of samples 45 167 324 75 611

Figure 2. Outline of the procedure followed to capture hyperspectral images using a short wave infrared camera and methodology to
develop models to predict the production area and quality grade of rooibos tea.
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Pre-processing and model development. Samples were di-
vided into a test and training set prior to model develop-
ment. The test and training set for prediction of production
area was selected so that samples from the final year of
collection (2013 for NC and 2019 for WC) represented the
external test set. Samples from the other production years
comprised the training set. Only WC samples were used for
the development of the prediction model for quality grade.
In this case, the samples from 2019 were used to generate
the test set, whilst samples from the 2011 – 2018 production
years were used to generate the training set. At first, only
samples from the training set were used to carry out a model
selection stage. This involved optimising the spectral pre-
processing method and number of latent variables (LVs).
Spectral pre-treatments included standard normal variate
(SNV)23 and second derivatives (calculated according to
the method of Savitzky and Golay, 1964).24 Each pre-
treatment was followed by mean centering prior to analysis.
The optimal combination of pre-processing and model
complexity was selected as the one leading to the lowest
classification error in a 10-fold cross-validation procedure.
Next, the test set was evaluated using these model condi-
tions to determine how well the model predicted the classes
of the external data set.

Feature waveband selection. Interpretation of the model in
terms of the spectral bands which contribute most to the
observed differentiation can be carried out by inspecting the
values of the variable importance in projection (VIP)
scores.25 VIP scores are used as an indication of how much
the individual variables contribute to the partial least
squares discriminant analysis (PLS-DA) model. They are
normalised in a manner that a ‘greater than one’ criterion
can be applied to assess the relevance of the predictors for a
model. Moreover, the Covariance Selection (CovSel) al-
gorithm26 was applied for further validation of the wave-
bands identified as significant and for selection of the
minimum number of non-redundant wavelengths that would
provide reliable classification. CovSel is a parsimonious
variable selection algorithmwhich is based on identifying the
predictors having maximum covariance with the response.
Parsimony and non-redundancy are achieved by orthogon-
alising the candidate predictors with respect to the ones
already selected prior to proceeding with any successive
iteration. Further details can be found in the original paper.26

Results and discussion

The need to discriminate between rooibos production
batches, originating from Western Cape and Northern
Cape, has been motivated by the possibility to promote
rooibos as an origin-based product for niche markets.
Descriptive sensory analysis of a large sample set, how-
ever, did not show clear differences between rooibos
originating from the two production areas. Similarly, the
composition of the infusions in terms of the content of the
major flavonoids, ferulic acid and phenylpyruvic acid
glucoside offered limited discrimination between the
production areas. Application of NIR-HSI to rooibos
would collect a wider range of chemical information re-
lated to molecular bonds (e.g., O-H, N-H, C-H) for both
non-volatile and volatile compounds which may reflect
differences between samples and allow discrimination
based on production area and quality.

From the raw spectra for both the geographical origin
and the grade it is clear that the spectral behaviour of the tea
samples was similar. Based on the average spectra for the
geographical origin, there is limited difference between the
spectra of the two areas compared to the spectra for the tea
grades where more prominent differences in the region
1400 – 2500 nm are clearly visible (Figure 3).

Classification of production area of rooibos

Altitude is known to affect composition of agricultural
products, including teas. Classification of rooibos samples
based on production area was therefore first attempted as
production of rooibos in the Western Cape generally takes
place at a lower altitude than in the Northern Cape. A
scenario based on climate change models predicts a sub-
stantial contraction in the suitable area where rooibos can be
cultivated in the future. The suitable area is predicted to
shift southeastwards and upslope.27

For development of a classification model to predict the
production area of rooibos samples, the mean spectra from
each sample were collected in a matrix with dimensions 696
(number of samples) x 255 (number of wavelengths). In
order to validate the chemometric models using a completely
external test set, the data set was split into a training and a test
set as described, prior to any classification analysis. The data
sets were generated in such a way to demonstrate as closely

Figure 3. Raw average spectra of (a) tea collected from two production areas (Western and Northern Cape) and (b) tea from different
quality grades (A-D).
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as possible the application of the models for predicting new
samples. All the grades were represented in both data sets.
The training set consisted of 419 samples (51 from NC and
368 from WC), while the remaining 277 samples (34 from
NC and 243 from WC) constituted the test set.

The possibility of building a classification model to dis-
criminate between samples from NC and WC was conducted
by first carrying out model selection. This entailed selection of
the optimal spectral pre-processing method and the number of
LVs resulting in separation between samples from the two
categories. At this stage, only samples from the training set were
used and the best combination of pre-processing and model
complexity was selected as the one leading to the lowest
classification error in a 10-fold cross-validation procedure. The
optimal model was the one build on pre-processed data, using
second derivative (19 points window and third order polyno-
mial) followed by mean centering and including nine latent
variables. This model allowed the correct classification of
99.9% of the training samples in both calibration (100.0% NC
and 99.7% WC) and in cross-validation. This result indicates
that only one WC sample was consistently misclassified
(Table 2). When the model was applied to the test samples for

external validation, comparably excellent results were obtained
indicating the absence of overfitting and the reliability of the
proposed approach. Indeed, in the validation stage an overall
predictive ability of 100.0% (no sample misclassified for any of
the classes) was obtained (Table 2).

The excellent discrimination between the two categories
is also evident from Figure 4, where the values of the
predicted Y (the response variable on which the classifi-
cation is based) are plotted for both the training and the test
samples, together with the classification threshold. Here, the
classification threshold was calculated by applying linear
discriminant analysis (LDA) on the predicted Y values28,29

and corresponds to the value of the predicted response for
which the probability of a sample being from Western Cape
is equal to that of a sample belonging to the Northern Cape.

By inspecting the values of the VIP scores (Figure 5), the
spectral bands which contribute most to the observed dif-
ferentiation between the two regions can be identified. From
Figure 5(a), it is apparent that the spectral regions, which
contribute most significantly to the PLS-DA model and, as a
consequence, which may carry discriminant information to
differentiate rooibos samples according to their production

Table 2. Results for the PLS-DA model for the authentication of the production area of rooibos tea samples. The model was developed
using 10-fold cross validation and application of second derivative (19 points window and third order polynomial) pre-processing.

Class (Production
area) LV

Correct classification (%)
(Training set)

Correct classification (%) for Cross
Validation (Training set)

Correct classification (%)
(Test set)

Northern Cape 9 100.00 (51/51) 100.00 (51/51) 100.00 (34/34)
Western Cape 99.73 (367/368) 99.73 (367/368) 100.00 (243/243)

The value in brackets indicate the number of correctly classified samples for each class.

Figure 4. Classification accuracy of the optimal PLS-DA model for authenticating the production areas of rooibos tea samples. Results for
the predicted Y values vs the sample index for both the training (upper panel) and test (lower panel) sets are shown; legend: circles –
Northern Cape; diamonds – Western Cape. The dashed line indicates the classification threshold between the two categories.
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area, are: 1389–1405 nm (combination of the first overtone of
C-H stretching and -CH2 deformation), 1700–1732 nm (first
overtone of C-H stretching), 1923–2005 nm (combination
between O-H stretching and O-H or C-H deformation/
bending), 2048–2070 nm (combination between O-H and
C-O stretching), 2228–2261 nm (combination between arylic
C-C and C-H stretching), 2288–2337 nm (C-H stretching and
CH2 deformation combination).

A variable selection approach, based on the coupling of
the CovSel algorithm and LDA, was also applied to the data.
This approach was taken to (i) identify the spectral variables,
which were mostly associated with the discriminant infor-
mation, and (ii) to determine whether only a reduced subset
of wavelengths could be used for classification. This would
be required to facilitate the real-world application of the
method (e.g., by means of generating more affordable fast
filter instruments for specific applications). The optimal
number of experimental variables to be retained in the final
predictive model was optimised on the training set (pre-
treated as already described, i.e., by second derivative

followed by mean centering) resulting in the lowest classi-
fication error in a 10-fold cross-validation procedure. It
appeared that a model including 12 variables (Figure 5(b))
was able to correctly classify all the training samples both in
calibration and cross-validation. When applied to the samples
of the external test set, the model also allowed the correct
classification of all the validation samples. These results are
very promising as they indicate that perfect classification can
be achieved using a very parsimonious model.

By inspecting the plot in Figure 5(b), it is apparent that
the variables selected by the CovSel-LDA approach are
consistent with those highlighted as relevant by the cal-
culation of VIP scores, thus confirming the robustness of
the interpretation. The 12 predictors identified as mostly
discriminant are the spectral intensities at: 953 nm,
1716 nm, 1901 nm, 1934 nm, 1994 nm, 2059 nm, 2174 nm,
2217 nm, 2245 nm, 2310 nm, 2326 nm and 2337 nm.
Additional work would be required to identify compounds
which correspond to these wavebands. Such information
could lead to the development of additional models to
discriminate between rooibos production batches.

PLS-DA analysis to discriminate samples according
to grade

In the second stage of the study, the possibility of differ-
entiating between rooibos tea samples according to their
grade was also investigated. For this analysis, attention was
focused exclusively on the samples derived from the
Western Cape production area.

Analogous to the approach to model the production area
of the rooibos samples, the training set was prepared using
the large number of WC samples (n = 368) from years 2011–
2018 (43 grade A, 127 grade B, 176 grade C, and 22 grade
D). The test set comprised the samples collected in 2019
representing the remaining 243 samples (2 grade A, 40 grade
B, 148 grade C and 53 grade D). This approach was followed
in order to mimic as closely as possible the use of the model
for predicting new samples from successive harvesting years.

Due to the uneven distribution of grades across the
samples and the degree of subjectivity connected to the
grading operation and possible overlap of grade B and C
samples, it was decided to adopt a hierarchical strategy. This
entailed contructing a model to differentiate grade A
(representing the highest quality grade tea) from grades B,
C and D (class BCD), and successively, another model to
differentiate grade D (representing the lowest quality grade
tea) from grades B and C (class BC), and lastly a model to
differentiate grade B from C.

As in the case of production area, different pretreatments
were tested and the optimal one, together with the most suitable
model complexity, was selected as the combination resulting in
the lowest error in a 10-fold cross-validation procedure. The
best pre-processing strategy was found to be second derivative
(with 19 points window and a third order interpolating poly-
nomial) followed by mean centering, and 10 LVs were retained
as optimal model complexity. The classification ability of the
corresponding PLS-DA model is reported in Table 3.

When the first discriminant model (class A vs BCD) was
applied to the test samples, all the grade A samples from 2019

Figure 5. VIP plots illustrating the relevant spectral regions,
which contribute most to the PLS-DA model for the
authentication of production areas of rooibos tea. (a) Spectral
regions marked with bars were identified using VIP analysis as
contributing most to the PLS-DA model; (b) the 12 spectral
variables identified as optimal by the CovSel-LDA algorithm to
differentiate between the production areas of the rooibos
samples.
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were correctly classified. For class BCD, only five out of 241
samples were incorrectly classified. These results demonstrate
the accuracy of the model to differentiate samples harvested in
a different year than those of the training set.

Inspection of the values of the VIP scores (Figure 6(a))
again enabled identification of spectral regions which con-
tributed most to the model. These spectral regions are 953–
964 nm (second overtone of O-H stretching), 1378–1389 nm

(combination of the first overtone of C-H stretching and
-CH2 deformation), 1422–1465 nm (first overtone of O-H
stretching), 1847–1961 nm (combination between O-H
stretching and O-H or C-H deformation/bending), 2010–
2054 nm/2125–2163 nm (combination between O-H and C-
O stretching), 2223–2256 nm (combination between arylic
C-C and C-H stretching), and 2315–2338 nm (C-H stretching
and CH2 deformation combination).

Table 3. Results of PLS-DA modeling for discrimination of Western Cape rooibos samples according to quality grade.

Class
(Grade) LV

Correct classification (%)
(Training set)

Correct classification (%) for Cross
Validation (Training set)

Correct classification (%)
(Test set)

A 10 90.1 (39/43) 86.0 (37/43) 100.0 (2/2)
BCD 88.61 (288/325) 86.77 (282/325) 97.93 (236/241)

Class
(Grade)

LV Correct classification (%)
(Training set)

Correct classification (%) for Cross
Validation (Training set)

Correct classification (%)
(Test set)

D 4 72.7 (16/22) 72.7 (16/22) 96.2 (51/53)
BC 80.53 (244/303) 80.20 (243/303) 79.79 (158/188)

Class
(Grade)

LV Correct classification (%)
(Training set)

Correct classification (%) for Cross
Validation (Training set)

Correct classification (%)
(Test set)

B 5 67.72 (86/127) 66.14 (84/127) 82.5 (33/40)
C 67.62 (119/176) 67.62 (119/176) 66.2 (102/148)

The value in brackets indicate the number of correctly classified samples for each class.

Figure 6. VIP plots illustrating the relevant spectral regions, which contribute most to the PLS-DA models for the authentication of the
quality grades of rooibos tea. Spectral regions marked with bars contribute most to the PLS-DA models of (a) grade A vs class BCD; (b)
grade D vs class BC; (c) grade B vs grade C.
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Next, a discriminant model was built to differentiate D
grade samples from those of grades B and C (class BC). In
this case, the best pre-processing strategy and optimal
model complexity were again selected on the basis of a 10-
fold cross-validation procedure. This entailed second de-
rivative (with 19 points window and a third order inter-
polating polynomial) followed by mean centering and the
use of four LVs. The corresponding classification accuracy
is reported in Table 3.

When the model was applied to the external test set,
consisting of the samples from 2019, a very good prediction
accuracy was obtained, especially for grade D samples
(Table 3). Inspection of the VIP scores (Figure 6(b)) also
made it possible to highlight the spectral regions, which
mostly contribute to the observed discrimination of the
samples. In particular, the spectral bands which contributed
significantly to the model were: 953–958 nm (second
overtone of O-H stretching), 1383–1411 nm (combination
of the first overtone of C-H stretching and -CH2 defor-
mation), 1427–1471 nm (first overtone of O-H stretching),
1847–1950 nm/1978–2005 nm (combination between O-H
stretching and O-H or C-H deformation/bending), 2119–
2147 nm (combination between O-H and C-O stretching),
2217–2266 nm (combination between arylic C-C and C-H
stretching), and 2310–2338 nm (C-H stretching and CH2

deformation combination).
Finally, a third model was generated to discriminate

samples from grades B and C. For these two grades, we
were expecting the classification to be difficult since the
boundary between the two grades is less clear than with the
other grades. The optimal data pre-processing and number
of LVs were, as before, based on the combination leading to
the highest classification accuracy in a 10-fold cross-
validation. In this case, the optimal data processing was
also found to be second derivative (with 19 points window
and a third order polynomial) followed by mean centering.
The optimal model complexity was fixed at five LVs.

Given the poor classification accuracy results for grades
B and C (Table 3), it was difficult to differentiate between
samples of these two grades. This was expected, consid-
ering the results of previous studies on the sensory and
flavonoid profiles of infusions prepared from B and C grade
samples. The study11 on a sample set of 69 rooibos samples

showed that the infusions of B and C grade samples had
similar intensities of the different aroma, flavour and taste
attributes and the only significant difference was for the
higher intensity of the minor ‘green’ note in C grade
samples. In terms of individual flavonoid composition
of the infusions little to no significant difference also
existed between B and C grades as determined for a larger
sample set (n = 114).30

When applied to the test set, better prediction results,
especially for grade B, were obtained. By inspecting the
VIP scores (Figure 6(c)), it is also possible to identify the
spectral regions, which contribute most to the discriminant
model: 1182–1196 nm (second overtone of C-H stretching),
1378–1411 nm (combination of the first overtone of C-H
stretching and -CH2 deformation), 1427–1471 nm (first
overtone of O-H stretching), 1651–1672 nm/1705–
1727 nm (first overtone of C-H stretching), 1847–1956 nm
(combination between O-H stretching and O-H or C-H
deformation/bending), 2136–2141 nm (combination be-
tween O-H and C-O stretching), and 2283–2338 nm (C-H
stretching and CH2 deformation combination).

In the final part of the study, we wanted to verify how
consistent the grading methods are between the two pro-
duction areas (WC and NC). To achieve this, we attempted
to classify (grade) the NC samples based on the models
generated using the WC samples. Here it is important to
note that there were no grade D samples among the sample
set from the Northern Cape. Despite the lack of grade D
samples in the NC sample set, the second model was ap-
plied to determine how many grade B and C samples would
be misclassified as grade D or even A. The results are
summarised in Table 4. It is clear that the grading of rooibos
tea was not consistent by the respective expert panels from
the Western Cape and the Northern Cape. This is a further
demonstration of the necessity to investigate a more ob-
jective approach for grading of rooibos, such as the one
proposed in the present study. It is also important to select
representative samples including all sources of variation for
the training set, i.e. including grade D samples.

As a further confirmation of the validity of the hierar-
chical approach proposed for the classification of the
rooibos samples according to their grade, a single multi-
class PLS-DAmodel for the simultaneous discrimination of
all four grades was built and validated using the same
training/test splitting scheme. The final classification of the
samples in this case was also accomplished by applying
LDA to the values of the responses predicted by the PLS
algorithm. Optimal spectral pre-processing was achieved

Table 4. Results of predicting the quality grade of Northern
Cape rooibos samples based on the PLS-DA hierarchical models
developed on rooibos samples from the Western Cape.

Class (Grade) Correct prediction (%) of NC samples
A 12.5 (1/7)
BCD 72.7 (56/77)

Class (Grade) Correct prediction (%) of NC samples
D 0 (0/0)
BC 71.4 (55/77)

Class (Grade) Correct prediction (%) of NC samples
B 12.5 (7/56)
C 85.7 (18/21)

The values in brackets indicate the number of correctly classified samples
for each class.

Table 5. Results of the multi-class PLS-DA model for
discrimination of Western Cape rooibos samples according to
quality grade.

Class LV Calibration CV Prediction

A 13 76.7 (33/43) 79.1 (34/43) 100.0 (2/2)
B 63.0 (80/127) 51.2 (65/127) 87.5 (35/40)
C 58.5 (103/176) 53.4 (94/176) 14.2 (21/148)
D 77.3 (17/22) 59.1 (13/22) 81.1 (43/53)

The values in brackets indicate the number of correctly classified samples
for each class.
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with SNV followed by first derivative. The optimal number
of latent variables was 13, as evaluated by cross-validation.
The corresponding results are summarised in Table 5.

From Table 5, it is evident that the multi-class dis-
criminant approach resulted in poorer classification accu-
racy, in particular for samples of the lowest grades. These
sample would, in general, be predicted as having a higher
quality, thus resulting in a potential commercial problem.

Conclusions

The aim of the study was to investigate the potential of
SWIR-HSI, combined with suitable data analytical tools, to
develop classification models which can distinguish be-
tween two production areas and four different quality
grades of rooibos tea. A PLS-DA classification model could
successfully differentiate between tea based on their pro-
duction area. A hierarchical classification model, using
Western Cape samples, was developed to distinguish be-
tween rooibos of different quality grades. The model could
accurately distinguish grade A and D samples from class
BC, but the model was less effective for distinguishing
between B and C grade samples. This model was also less
effective when applied to Northern Cape samples. There-
fore, to build a global, robust model that could discriminate
rooibos on the basis of quality grade, irrespective of pro-
duction area, future work should include a larger Northern
Cape sample set, spanning several production years, as well
as grading by one expert panel to exclude discrepansies
between panels.
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