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HiPE: Hierarchical Initialization for Pose Graphs
Tiziano Guadagnino Luca Di Giammarino Giorgio Grisetti

Abstract—Pose graph optimization is a non-convex optimiza-
tion problem encountered in many areas of robotics perception.
Its convergence to an accurate solution is conditioned by two
factors: the non-linearity of the cost function in use and the initial
configuration of the pose variables. In this paper, we present
HiPE, a novel hierarchical algorithm for pose graph initialization.
Our approach exploits a coarse-grained graph that encodes an
abstract representation of the problem geometry. We construct
this graph by combining maximum likelihood estimates coming
from local regions of the input. By leveraging the sparsity of this
representation, we can initialize the pose graph in a non-linear
fashion, without computational overhead compared to existing
methods. The resulting initial guess can effectively bootstrap the
fine-grained optimization that is used to obtain the final solution.
In addition, we perform an empirical analysis on the impact of
different cost functions on the final estimate. Our experimental
evaluation shows that the usage of HiPE leads to a more efficient
and robust optimization process, comparing favorably with state-
of-the-art methods.

Index Terms—SLAM, Mapping

I. INTRODUCTION

IN robotics perception, the problem of estimating a collec-
tion of poses from relative measurements arises in multiple

scenarios. These include, among others, Simultaneous Local-
ization And Mapping (SLAM) [1], structure from motion [2],
multi-sensor calibration [3] and bundle adjustment [4]. A pose
graph is a graphical representation of the problem, where
nodes represent poses, while edges encode spatial constraints
between pairs of nodes. As the constraints are typically
determined by processing exteroceptive observations, they are
affected by uncertainty and they need to be represented in
a probabilistic sense. In this context, Pose Graph Optimiza-
tion (PGO) is a non-convex maximum likelihood estimation
problem, where we seek for the configuration of nodes which
is maximally consistent with the probabilistic constraints.
It is traditionally solved under the non-linear least squares
framework [5] [6] [7], which iteratively refines an initial
configuration of the variables to obtain the final estimate.
Intuitively, a good initialization reduces the computational time
of the optimization and the risk of convergence to a sub-
optimal configuration.

The de-facto standard in pose graph initialization is the
approach proposed by Martinec and Pajdla [8] and experi-
mentally validated by Carlone et al. [9].
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Fig. 1: HiPE in a nutshell: (a) the input is partitioned in sub-
graphs, (b) the coarse-grained graph is constructed using the
local estimates of the partitions, (c) the maximum likelihood
estimate of the coarse-grained variables is computed, (d) the
solution is propagated to the remaining variables

This method is based on a linear relaxation of the spatial
constraints, which allows to compute an initial configuration
of the variables by linear least squares. Even though the
relaxation allows an efficient computation, its accuracy rapidly
deteriorates with the noise level. In this paper, we present
HiPE, a hierarchical initialization approach for pose graphs.
Our algorithm is inspired by early works in hierarchical
optimization for SLAM [10] [11] [12] [13], which already
shows the robustness and efficiency of this type of strategies.
Our method partitions the input into a set of sub-graphs
and extract local spatial constraints between salient variables.
These constraints are then combined in a coarse-grained graph,
which represents an abstract topology of the problem. By
exploiting a maximum likelihood estimation of this graph,
we are able to initialize the pose variables through non-
linear optimization. The sparse structure of the coarse-grained
representation allows us to efficiently perform the initialization
on large-scale problem instances. Further, we exploit rotation
estimation approaches [9] to bootstrap convergence.
In sum, we make two claims:

• Combining HiPE with a fine-grained optimization deliv-
ers performances on par or better than state-of-the-art
methods in terms of computational efficiency;

• HiPE is highly scalable to large graphs, since it is
significantly more accurate and efficient than state-of-the-
art methods as the size of the problem grows;

These claims are supported by our experimental evaluation.
In the experiments, we will also show how different assump-
tions on the distribution of the spatial constraints impact
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the optimization process. In addition, we release an open-
source implementation of HiPE1 and the datasets used for the
evaluation.

In the following, we will present the approach focusing on
the 3D case since closed-form initialization algorithm based
on rotation estimation [14] already exist for 2D pose graphs.

II. RELATED WORK

Pose graph optimization was first formulated as a non-
linear least squares problem in the seminal paper by Lu et
al. [15]. Even though the Gauss-Newton (GN) algorithm was
already known from theory, the lack of an efficient numerical
implementation prevented its usage in real scenarios.

The problem was initially tackled using stochastic gradient
descent [16] [17], due to its efficiency and large basin of
convergence to the global optimum. However, performances
were bounded by the slow convergence rate. As more efficient
linear algebra libraries became available [18], the community
rapidly shifted back towards non-linear least squares methods.
In the context of SLAM, Dellaert et al. [7] was the first to show
an efficient approach based on the GN algorithm that exploits
sparse matrix decomposition. Moreover, the authors showed
the relation between the sparsity pattern of the approximate
Hessian and the graph topology. Kaess et al. [19] extended
these ideas and used a sparse QR factorization to incrementally
optimize the graph as new nodes and edges were added.
By representing the matrix factorization using a novel data
structure called the Bayes Tree, iSAM2 [20] can further
identify the sub-graph which is affected by the newly added
measurements.

As the scale and complexity of the problems continued
to grow, the community investigated hierarchical strategies
to increase robustness [11] [13], parallelize the computa-
tion [21] and incrementally update the graph [10] [12]. For
large scale problems, solving the linear system underlying
the GN algorithm constitutes the major computational bottle-
neck. To reduce the number of iterations required, researchers
developed several initialization strategies with the aim of
computing an initial guess as close as possible to the optimum.
Konolige et al. [22] introduced an initialization strategy based
on a minimum spanning tree, while Hu et al. [23] proposed an
approach that relies on M-estimators and the GN algorithm.
In the context of PGO, the attention shifted towards rotation
estimation as, with known orientations, the problem can be
casted into a linear least squares problem [24] [9]. Sharp et
al. [25] proposed a closed-form solution in the single-loop
case, while Govindu et al. [26] formulated a quaternion relax-
ation that can be solved through homogenous least squares.
Martinec and Pajdla [8] proposed to estimate the rotations
through chordal relaxation. As outlined by Carlone et al. [9]
the latest approach performs extremely well in practice and is
considered the standard for pose graph initialization.

Recently, researchers explored novel formulations of PGO
to enhance efficiency and performance guaranties. Rosen et
al. [27] developed a specialized solver based on semi-definite
relaxation which is guaranteed to recover the optimal estimate

1https://github.com/srrg-sapienza/srrg2-hipe

of the poses under mild assumptions on the measurements
noise. Using a similar formulation, Dellaert et al. [28] pro-
posed a rotation averaging algorithm which can be used on
large scale rotation-only problems. Bai et al. [29] proposed
a cycle-based approach for PGO. In this new paradigm,
relative poses associated with edges are considered as vari-
ables and loop constraints are added to mitigate the over-
parameterization of the problem. Then, the resulting con-
strained least squares is solved using sequential quadratic
programming.

III. POSE GRAPH OPTIMIZATION

Pose graph optimization is the problem of estimating the ab-
solute poses of a set of 3D frames, given a collection of noisy
measurements of relative position and orientation between
them. This problem is typically represented by an undirected
graph G = {V, E}, were the nodes i ∈ V represent the pose
variables and the edges (i, j) ∈ E represent measurements
between pairs of frames. Traditionally, Maximum Likelihood
Estimation (MLE) is used to find the configuration of variables
which is maximally consistent with the measurements by
solving:

X ∗ = argmax
X∈SE(3)N

p(Z|X ) (1)

where X = {Xi ∈ SE(3) | i ∈ V} is the set of variables
and Z = {Zij ∈ SE(3) | (i, j) ∈ E} is the set of relative
measurements. Under the assumption that the measurements
are independent and identically distributed, we can write:

X ∗ = argmax
X∈SE(3)N

∏
(i,j)∈E

p(Zij |X ) (2)

Usually, it is assumed that the distribution p(Zi,j |X ) belongs
to the (simplified) exponential family, with form:

p(Zij |X ) ∼ cij exp(−rij(X )) (3)

By plugging Eq. (3) into Eq. (2) and taking the negative
logarithm we can write:

X ∗ = argmin
X∈SE(3)N

∑
(i,j)∈E

rij(X ) (4)

Eq. (4) is highly non-convex in general, so it has to be solved
using iterative unconstrained minimization algorithms. Starting
from an initial configuration of the variables, these approaches
iteratively refine the estimate by minimizing a linear (or
quadratic) approximation of the cost computed using Taylor
expansion. Intuitively, the closer the initial configuration is
to the optimum the more likely the algorithm can converge
to it. At the same time, highly non-linear functions are not
well approximated by the Taylor expansion, resulting in poor
convergence properties of the algorithms.

IV. COST FUNCTIONS IN POSE GRAPH OPTIMIZATION

Inspecting Eq. (3), we can observe how the properties of
the cost function are directly related to the measurements
distribution, p(Zij |X ). In a nutshell, we can vary the conver-
gence properties of our optimization algorithm using different
assumptions on the noise affecting the measurements. In the

https://github.com/srrg-sapienza/srrg2-hipe
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following subsections, we will present the most common
choices of this distribution, together with some properties of
the corresponding cost function.

A. Gaussian distribution over a minimal euclidean parame-
terization

The most common choice in MLE is to assume Gaussian
distributed measurements. In the case of PGO, we need to
find a suitable representation of a Gaussian over a manifold.
In this sense, we can exploit the smoothness of SE(3) to
locally parameterize a Gaussian distribution around one of its
elements. In particular, the mean will be a SE(3) element,
while the covariance matrix will be defined over the Lie
Algebra. The resulting local Gaussian distribution around
µ ∈ SE(3) can be defined as:

NSE(3)(x;µ,Σ) =
exp(− 1

2
‖Log(x−1µ)‖2Σ)√

(2π)6 det(Σ)
(5)

where µ is the mean, Σ ∈ R6×6 is the covariance matrix,
Log : SE(3)→ R6 is the logarithmic mapping, and:

‖a‖2Σ = aTΣ†a (6)

is the squared Mahalonobis distance and ·† denotes the
Moore–Penrose inverse.
By using Eq. (5), we can define our distribution of interest as:

p(Zij |X ) ∝ exp(−1

2
‖Log(Z−1ij Z̃ij(X ))‖2Σij

) (7)

where Z̃ij : SE(3)N → SE(3) determines the mean of the
distribution given the current value of the variables. In practice,
the mean is conditioned just on the pair of poses involved in
the relative measurement, so that:

Z̃ij(X ) = X−1i Xj (8)

By inspecting Eq. (7) we obtain:

ri,j(X ) =
1

2
‖Log(Z−1ij Z̃ij(X ))‖2Σij

(9)

which we will refer to as the Geodesic cost in the rest of this
work.

While being the most widely used cost function for PGO,
Eq. (9) is highly non-convex due to the usage of the logarith-
mic mapping. In fact, this function involves multiple non-linear
operations to extract a minimal representation of the rotational
part of an SE(3) element.

B. Gaussian distribution over a non-minimal euclidean pa-
rameterization

Aloise et al. [30] propose a 12-dimensional over-
parameterization of the local Gaussian distribution Eq. (5).
In particular, they relax the constraints of SE(3) on the
measurements and interpret them as euclidean objects. Given
a transformation matrix:

Z =

[[
r1 r2 r3

]
t

01×3 1

]
∈ SE(3) (10)

they define the corresponding euclidean measurement using
the flat operator as:

z = flat(Z) =


r1
r2
r3
t

 ∈ R12 (11)

Once the measurements are projected in R12, one needs to
define a covariance matrix in this new space. A straightfor-
ward solution is to perform a first order propagation of the
covariance defined over the Lie algebra:

Σ[c] = J Σ JT (12)

where J ∈ R12×6 is the jacobian of Eq. (11) with respect
to a minimal euclidean parameterization of SE(3). Notice
that the resulting covariance matrix will be rank-deficient by
construction.
The over-parametrized Gaussian distribution can be defined
as:

p(Zij |X ) ∝ exp(−1

2
‖flat(Z̃ij(X ))− flat(Zij)‖2Σ[c]

ij

) (13)

By simple inspection of Eq. (13):

rij(X ) =
1

2
‖flat(Z̃ij(X ))− flat(Zij))‖2Σ[c]

ij

(14)

which will be referred to as the Chordal cost.
The intuition behind this approach is that by projecting the

measurements into a higher dimensional space, we reduce the
non-linearity of the corresponding cost function [30].

C. Combining a Gaussian distribution and an isotropic
Langevin distribution

Rosen et al. [27] propose a decoupling of the measurements
distribution over SE(3) as:

p(Rij |X ) ∼ Langevin(Rij ; R̃ij(X ), κij) (15)

p(tij |X ) ∼ N (tij ; t̃ij(X ), τ−1ij I3×3) (16)

where Langevin() stands for the isotropic Langevin distribu-
tion. Implicitly, Rosen et al. assume that the measurements
have independent components (e.g. the uncertainty of the x-
component of the translation is uncorrelated with the uncer-
tainty of the y-component). Our distribution of interest in this
case will be:

p(Zij |X ) ∝
{

exp(− τij2 ‖tij − t̃ij(X )‖2)

× exp(κij trace(R̃ij(X )TRij))

}
(17)

Using a simple identity for the trace function, we can define
the cost as:

rij(X ) =
κij
2
‖R̃ij(X )−Rij‖2F +

τij
2
‖t̃ij(X )− tij‖2 (18)

To solve the PGO problem Rosen et al. form a convex semidef-
inite relaxation of problem Eq. (4) with cost Eq. (18). The
minimizer of this relaxation provides a globally optimal solu-
tion, as long as the noise magnitude is below a certain bound.
Moreover, the optimality of the solution can be verified a
posteriori. However, in real-world scenarios, measurements are
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rarely affected by isotropic noise, especially in the Langevin
sense. As such, Eq. (17) is typically an approximation of the
original measurements distribution. In those cases, while the
solution found by this approach is optimal in the sense of the
cost in Eq. (18), it does not coincide with the MLE estimate
of the variables given the measurements.

V. CHORDAL INITIALIZATION

A typical problem in PGO is to find an initial configuration
of the variables, as close as possible to the minimum of Eq. (4).
In this context, the most widely used algorithm is the so-
called Chordal Initialization [8] [9] [24]. The idea behind
this approach is to first estimate the rotation matrices through
chordal relaxation and then use this estimate to compute the
translation vectors. This rough estimation of the poses is then
used as an initial guess for the iterative optimization algorithm.

Chordal relaxation allows to estimate the rotation matrices
by solving the unconstrained (linear) problem:

min
{Ai∈R3×3}

∑
(i,j)∈E

‖RT
ijAi −Aj‖2F (19)

and obtain the matrices Ai. These are not rotations in general,
so we need to enforce the SO(3) constraints on each of
them. We can do that in closed-form using the singular value
decomposition A = USVT and the formula:

R∗ = U diag([1 1 det(UVT )]) VT (20)

Given the rotation matrices we can estimate the translation
vectors by linear least squares:

min
{ti∈R3}

∑
(i,j)∈E

‖tj − ti −R∗i tij‖2 (21)

While being straightforward, the algorithm performs surpris-
ingly well in practice [9]. Furthermore, this represents an
efficient solution, as the initialization is constituted by two
linear problems.

VI. OUR APPROACH

In this section, we present HiPE, our proposed initialization
algorithm for pose graphs. The key idea of this approach is to
initialize the input using a coarse-grained graph composed of
a subset of variables. This graph, which we call the skeleton,
must contain enough variables to preserve the spatial structure
of the problem while being sparser.

To construct the skeleton, we divide the input into partitions
that represent spatially connected regions of the problem. For
each of these partitions, a chunk of skeleton is assembled using
the available measurements within the local graph. As such,
each of these chunks encode an abstract representation of the
local geometry of the input.

We then proceed with the initialization in two stages. First,
we compute the initial guess for the coarse-grained variables
through maximum likelihood estimation. This step merges the
local information in the chunks to get a consistent estimate of
the skeleton. In the second step, we propagate this solution to
the remaining variables.

All the steps in our approach use a non-linear least squares
minimization algorithm as a back-end. At each iteration, this
approach computes the update ∆x for the estimate by solving
the linear system:

H ∆x = −g (22)

where H ∈ R6N×6N is the approximate Hessian, and g ∈
R6N is the gradient vector. We can solve Eq. (22) efficiently
by exploiting the sparsity of the system matrix H, as well
known in literature [7] [19] [31] [5]. In particular, the sparsity
pattern of H reflects the connectivity of the pose graph.

In the next subsections, we will discuss in detail the different
steps outlined above.

Algorithm 1 Breadth-first Partitioner

Input: Graph G = {X ,Z}, minimum number of variables k,
minimum distance on the graph γ

Output: Graph skeleton S = {XS ,ZS}
1: for all Xi ∈ X do markUnvisited(Xi)
2: XS = ∅, ZS = ∅
3: Initialize empty queue Q = ∅
4: X = MaxDegreeNode(X , Z)
5: do
6: Xp, Zp, X̄B = BreadthFirstVisit(G, X, k, γ)
7: Xa = MaxDegreeNode(Xp, Zp)
8: X̄p = Xp \Xa

9: Solve X ∗p ,X ∗B = argmax p(Zp|X̄p, X̄B,Xa)
10: ZB = ComputeVirtualMeasurements(Xa, X ∗B)
11: XB = X ∗B ∪Xa

12: XS = XS ∪ XB

13: ZS = ZS ∪ ZB

14: for all Xp ∈ Xp ∪ XB do markVisited(Xp)
15: for all Xb ∈ XB do addToQueue(Q, Xb)
16: X = popFromQueue(Q)
17: while Q 6= ∅

A. Graph Partitioning

Our partitioning strategy is presented in Alg. (1). The core
of the algorithm is a limited breadth-first visit of the graph [32]
that is used to form the partitions (line 6). In particular,
we require a minimum number of visited variables k and a
minimum distance traversed on the graph γ. This is done so
that each partition incorporates a sufficient amount of spatial
information.

The visit collects variables Xp and measurements Zp that
belongs to each partition. Further, it identifies the set of
boundary nodes XB that will be shared between multiple
chunks of the skeleton. These boundary variables correspond
to the frontier nodes of the breadth-first algorithm plus the
visited variables from previous iterations.

Every time a new partition is formed, we optimize it to
get a local estimate of its variables (line 9). As we have just
relative measurements available, we need to fix the value of
a variable during optimization. We select this anchor as the
node with maximum degree within the local graph (line 7).
The local estimate is then used to form the chunk of the
skeleton. In particular, we want to capture the (local) spatial
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relationships between boundary variables while ignoring all
the others. To this end, we add virtual measurements between
the anchor and each of the boundary variables, resulting in a
sparse approximation of the local graph (line 10).

We characterize a virtual measurement between boundary
variable Xb and anchor Xa using the relative pose ZSab

between the two frames and a covariance matrix ΣSab
that

quantifies the uncertainty associated with the measurement. In
particular, the relative pose can be computed as:

ZSab
= X−1a Xb (23)

while ΣSab
corresponds to the marginal covariance of

variable Xb conditioned on Xa. We can compute this quantity
efficiently using dynamic programming [33].
The overall skeleton will be formed by the set of anchors
and boundary variables XS and corresponding virtual mea-
surements ZS .

B. Skeleton Optimization

The above procedure incrementally creates partitions during
the graph visit. As a consequence, boundary variables will
have inconsistent estimates due to multiple optimizations in
different local graphs. To align the chunks, we compute a
maximum likelihood estimate of the skeleton variables by
solving:

X ∗S = argmax
XS

p(ZS |XS) (24)

We initialize XS using Chordal Initialization to bootstrap
convergence. Both steps can be performed efficiently, as the
skeleton contains just a fraction of variables in the original
graph. In particular, the number of variables is controlled by
the size of the partitions. As it is intuitive, bigger chunks shift
the computation from the skeleton to the partitions. At the
same time, smaller partitions produce a skeleton that is more
geometrically consistent with the original graph, improving
initialization performances. A visual example is given in
Fig. 2.

C. Optimization of the remaining variables

The previous step determines an initial configuration of the
skeleton variables given the local estimates of the partitions.
We would like to propagate this local information to construct
an initial guess for the remaining variables, denoted by XR =
X \XS . To do that, we fix the value of the skeleton variables
and solve the maximum likelihood problem:

X ∗R = argmax
XR

p(Z |XR, XS = X ∗S) (25)

To boost convergence, we initialize XR using Chordal initial-
ization. Both these operations are extremely efficient as we
are fixing the boundary variables of the partitions. As such,
we are optimizing independent sub-graphs, which result in a
block diagonal structure of the approximate Hessian.

(a)

(b)

(c)

Fig. 2: (a) The original pose graph, (b) skeleton obtained with
a small partition size, (c) skeleton obtained with a bigger
partition size. In (b) and (c) anchors are in green and boundary
variables are in light orange

D. Fine-grained optimization
In the last two steps, we find the MLE of the input graph by

considering an approximate topology of anchors and boundary
variables. As a result, the solution does not take into account
all the measurements at once. We regard this estimate as a
robust initialization of the pose graph. To obtain the optimal
solution of Eq. (4), we need to perform a fine-grained opti-
mization using all the available measurements in the input. For
this step, any unconstrained non-linear optimization algorithm
can be used.

VII. EXPERIMENTS

The experiments are designed to validate our claims:
1) Combining HiPE with a fine-grained optimization de-

livers performances on par or better than state-of-the-art
methods in terms of computational efficiency;

2) HiPE is highly scalable to large graphs, as it is signif-
icantly more accurate and efficient than state-of-the-art
methods as the size of the problem grows;

Additionally, we will show how the distribution of the
measurements influences the convergence properties of the
optimization algorithms.

A. Compared approaches
We provide a comparative analysis between HiPE and state-

of-the-art approaches. In particular, we select the Chordal Ini-
tialization method presented in Sec. V, the Spanning Tree (SP)
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approach [22] and the Cauchy Boosting algorithm (CB) [23].
To evaluate the quality of the initialization, we solve Eq. (4)
starting from the initial guesses computed by each algorithm.
We then compare the quality of the final estimates and the
total computational time. Further, within the evaluation, we
perform an empirical analysis on the impact of different cost
functions and optimization algorithms. In particular:

• Geodesic: NLS algorithm that minimizes the Geodesic
cost Sec. IV-A;

• Chordal: NLS algorithm that minimizes the Chordal
cost Sec. IV-B;

• SE-Sync: The approach described in [27]. This method
uses a truncated Newton algorithm to minimize the cost
presented in Sec. IV-C;

The evaluation of the initialization strategies is performed
separately for each of the above cases. The NLS algorithm and
all the initialization algorithms are implemented in C++ using
the srrg2 solver framework [5]. For the NLS optimization, we
use the Powell-Dogleg algorithm [34] and clamp the maximum
iterations to 10. For the SE-Sync algorithm, we leave the
default configuration provided with the software package.

A cost-based termination criterion is used for all the pre-
sented algorithms. The SE-Sync method has a further termi-
nation criteria based on the global optimality of the solution.
We will include this step in the timing comparison, as the
algorithm will proceed with the optimization if the solution is
a saddle point.

B. Benchmarks and metrics

We perform the evaluations on both publicly available
dataset and own ones, in particular we select:

• grid3D and torus3D which are publicly available syn-
thetic datasets;

• parking-garage, a publicly available real-world dataset;
• rim and cubicle which are real-world datasets. In partic-

ular, we select the version with isotropic noise model;
• sphere5000 that we generated by simulating a vehicle

moving on the surface of a sphere. To make the dataset
challenging we injected an extremely high Gaussian noise
on the rotation (σθ = 0.6[rad]);

We released these datasets to make the experiments repeatable
by the community.

To evaluate the quality of the estimate, we use the normal-
ized χ2 metric, defined as:

χ2(X ) =
1

6 (m− n)

∑
(i,j)∈E

rij(X ) (26)

where m is the number of measurements and n is the number
of variables. In addition, we report the number of iterations of
the fine-grained optimizer and the cumulative time (initializa-
tion + optimization).

All the experiments are performed on a Dell XPS 15 laptop
with an Intel Core i7-10750H and 16 GB of RAM running
Ubuntu 20.04.

0.0001

0.01

1

100

10000

1e+06

1e+08

torus3D grid3D garage sphere5000 rim cubicle

co
st

Initial
CI

HiPE
CB
SP

Fig. 3: Normalized χ2 after initialization using the Geodesic
cost. Initial stands for the odometry configuration given with
the datasets

C. Performances

The first set of experiments is designed to show the per-
formance of our approach. The experimental evaluation is
presented in Tab. I, while in Fig. 3 we report the normalized
χ2 value after initialization. The most impressive result is
obtained in the sphere5000 dataset, where the usage of HiPE
leads to a substantial improvement in estimation accuracy
and computational time. In this particular benchmark, we
can see how, by exploiting a coarse-grained representation,
our proposed initialization strategy is effective in high noise
regimes, no matter the cost function used in the fine-grained
optimization.

Another interesting result is obtained in grid3D, which is
the graph with the highest density of edges. In this benchmark,
the proposed initialization strategy significantly improves com-
putational efficiency. The higher density of measurements in
this dataset makes the CI and CB methods computationally
demanding, as the corresponding linear systems are dense.
Instead, due to the sparse structure of the skeleton, HiPE can
exploit non-linear optimization efficiently without compromis-
ing initialization quality.

In the garage dataset, the other methods have a slight
advantage over our approach in terms of computation time.
However, looking at the number of iterations required by the
optimizer, we can see that the results are overall comparable.
As this benchmark has the smallest number of variables and
measurements, the construction and optimization of the skele-
ton are slightly more demanding in terms of time compared to
a graph visit (SP) and optimization-based strategies (CB and
CI).

For what concern rim and cubicle, results are overall com-
parable. In these benchmarks we can see how, depending on
the cost function in use, the compared initialization strategies
lead to different performances in terms of computational time.

D. Cost functions analysis

In the previous experiments, we can observe how dif-
ferent assumptions on the measurement distribution impact
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Geodesic Chordal SeSync
SP CB CI HiPE SP CB CI HiPE SP CB CI HiPE

torus3D
n=5000
m=9049

Cost
Iter

Time

0.60
7

4.62

1.00
10

12.98

0.60
3

3.14

0.60
3

2.84

0.07
6

3.66

0.16
10

13.15

0.07
3

3.06

0.07
3

2.92

1.00
13

1.23

1.00
58

14.76

1.00
6

2.10

1.00
9

1.93
grid3D
n=8000

m=22237

Cost
Iter

Time

0.58
7

108.96

0.58
4

220.32

0.58
3

92.15

0.58
3

51.54

0.06
6

96.67

0.06
5

229.42

0.06
3

90.41

0.06
3

51.65

0.99
15

9.66

0.99
12

165.94

0.99
8

50.23

0.99
9

9.47
garage
n=1661
m=6276

Cost
Iter

Time

4e-5
8

0.35

4e-5
7

0.37

4e-5
3

0.29

4e-5
3

0.49

4e-5
1

0.09

4e-5
1

0.17

4e-5
1

0.21

4e-5
1

0.63

4e-5
9

3.95

4e-5
7

4.23

4e-5
5

2.24

4e-5
8

4.76
sphere5000

n=5000
m=19800

Cost
Iter

Time

775.47
10

12.29

3165.34
10

15.22

435.32
10

16.17

1.33
5

9.11

70.61
10

12.40

35711.60
1

5.53

29.14
10

10.90

0.46
10

11.99

4.25
344

478.79

4.25
259

516.09

4.25
205

372.02

4.25
17

96.80
rim

n=10195
m=29744

Cost
Iter

Time

0.20
8

8.50

0.21
10

11.73

0.20
5

7.93

0.20
5

7.42

0.01
7

7.29

0.03
10

11.55

0.01
6

8.89

0.01
5

8.02

0.31
29

49.88

0.31
135

153.18

0.31
10

38.23

0.31
13

34.61
cubicle
n=5750

m=16870

Cost
Iter

Time

0.01
7

2.94

0.01
4

5.76

0.01
3

2.52

0.01
3

2.55

0.01
7

2.81

0.01
5

6.14

0.01
4

2.72

0.01
5

3.02

0.02
19

9.67

0.02
7

9.99

0.02
6

6.42

0.02
9

6.81

TABLE I: Comparative analysis on the selected benchmarks. With reference to Alg. (1) we use k = 100, γ = 50.

the convergence behaviour of the optimization algorithms.
In particular, each combination of initialization strategy and
cost function lead to a substantial change in computational
performances. For example, SP significantly improves its
effectiveness when combined with the Chordal cost, as we
can see in the rim and garage benchmarks. Even though this
initialization strategy typically provides a poor initial guess in
datasets with multiple loops, combining its efficiency with the
smoothness of the Chordal cost delivers good performances in
terms of computational time. Instead, HiPE achieves the best
performances when combined with the Geodesic cost, as the
proposed strategy better handles non-linearities compared to
other state-of-the-art methods.

For what concern SE-Sync, it is worth noticing the distinc-
tion between isotropic Gaussian and Langevin [27, Appendix
A]. Moreover, approximating a Gaussian distribution with
a Langevin one typically leads to an overconfident estima-
tion of the uncertainty and thus, a relaxed version of the
corresponding optimization problem. As all the considered
benchmarks have a Gaussian measurement distribution, the
variables configuration found by SE-Sync differs from the
MLE computed using the Geodesic cost. To show that, we
report in Tab. II the Absolute Trajectory Error between the
two estimates for all the selected datasets. As we can see,
the two solutions are significantly different. Nevertheless, this
approach has impressive robustness to noise independently
from the initialization strategy in use, as we can see in
sphere5000. Moreover, it is the only method that can verify
the optimality of the solution a posteriori2.

E. Scalability

In the second experiment, we aim to support our claim
that HiPE is highly scalable to large graphs. To do that, we
generate four sphere-like datasets with an increasing number
of variables and measurements using g2o [6].
• sphere-a : 10000 variables 39799 measurements;

2For the benchmarks, SE-Sync verify the optimality of the returned solution
in all the cases except sphere5000

ATE [rad] ATE [m]
torus3D 0.0303 0.2036
grid3D 0.0255 0.4083
garage 0.0088 1.6175

sphere5000 0.0226 3.3795
rim 0.0414 0.3781

cubicle 0.0104 0.1301

TABLE II: Absolute Trajectory Error (ATE) of the SE-Sync
estimate with respect to the MLE estimate

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

sphere-a sphere-b sphere-c sphere-d

co
st

Initial
CI

HiPE
CB
SP

Fig. 4: Normalized χ2 after initialization using the Geodesic
cost. Initial corresponds to the odometry configuration.

• sphere-b : 20000 variables 79799 measurements;
• sphere-c : 40000 variables 159799 measurements;
• sphere-d : 80000 variables 309799 measurements;

In all of these dataset we inject Gaussian noise on both
rotation (σθ = 0.03[rad]) and translation (σt = 0.01[m]). A
comparative analysis with state-of-the-art methods is reported
in Fig. 4 and Tab. III. The analysis shows that HiPE is more
efficient and accurate than state-of-the-art methods as the size
of the graph grows. This is due to the capability of the
proposed method to better handle the additional non-linearities
resulting from the increased number of spatial constraints in
the graphs.
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SP CB CI HiPE

sphere-a
Cost
Iter

Time

1.01
10

22.97

1.08
10

59.23

1.01
3

11.09

1.01
2

9.09

sphere-b
Cost
Iter

Time

1.01
10

63.84

1.02
10

157.48

1.01
4

28.52

1.01
2

19.03

sphere-c
Cost
Iter

Time

23.70
10

107.35

1.32
10

253.03

112.23
10

104.02

1.01
2

38.56

sphere-d
Cost
Iter

Time

8944.29
10

218.43

2973.68
10

492.15

262.87
10

215.28

1.01
3

98.39

TABLE III: Comparative analysis for the scalability experi-
ments using the Geodesic cost. With reference to Alg. (1), we
use k = 100, γ = 50.

VIII. CONCLUSION

In this paper, we presented HiPE: a hierarchical approach to
pose graph initialization. Our method exploits a coarse-grained
graph that encodes a high-level representation of the graph
geometry to robustly initialize the variables. We implemented
and evaluated our method on different datasets and provided
comparisons with state-of-the-art methods. Experiments show
that HiPE leads to a more efficient and robust optimization
process, comparing favorably with state-of-the-art methods.
In addition, we show how different choices of the measure-
ments distribution impact the convergence of the optimization.
Finally, we publicly release our own datasets, as well as an
open-source implementation of the approach.
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