
Springer Nature 2021 LATEX template

A Weighted Average Consensus Approach for Decentralized

Federated Learning

Alessandro Giuseppi1, Sabato Manfredi2 and Antonio Pietrabissa1

1Department of Computer, Control, and Management Engineering, University of Rome
La Sapienza, Rome 00185, Italy.

2Department of Electrical Engineering and Information Technology, University of Naples
Federico II, Naples 80125, Italy.

Abstract

Federated Learning (FedL) is a machine learning technique utilized to train Deep Neural Net-
works in a distributed way without the need to share data among the federated training clients.
FedL was proposed for Edge Computing and Internet of Things (IoT) tasks in which a central-
ized server was responsible for coordinating and governing the training process. To remove the
design limitation implied by the centralized entity, this work proposes two different solutions to
decentralize existing FedL algorithms, enabling the application of FedL on networks with arbitrary
communication topologies, and thus extending the domain of application of FedL to more complex
scenarios and new tasks. Of the two proposed algorithms, one, called FedLCon, is developed based
on results from discrete-time weighted average Consensus Theory and is able to reconstruct the
performances of the standard centralized FedL solutions, as also shown by the reported validation tests.

Keywords: Federated learning, Deep Learning, Federated Averaging, Machine Learning, Artificial
Intelligence, Discrete-Time Consensus, Distributed Systems.

Acronyms

DecFedAvg Decentralized Federated Averaging
DeepNN Deep Neural Network
FedL Federated Learning
FedAvg Federated Averaging
FedLCon Consensus-based Federated Learn-

ing
FedProx Federated Proximal
IoT Internet of Things
ML Machine Learning

1 Introduction

Federated Learning (FedL) is a specialized branch
of Machine Learning (ML) developed to solve

problems in which, for privacy or security reasons,
it is not possible to gather the available data into
a single knowledge base. In such a setting, the goal
of a FedL training process is to let the clients of the
federation cooperate by sharing their knowledge,
while avoiding any data exchange.

To actuate this knowledge-sharing proce-
dure, the information exchanged among the
clients is typically limited to the parameters of
their ML predictor (e.g., Deep Neural Networks
(DeepNNs)), trained on their locally available
data. A model averaging procedure [1] is then
typically deployed so that the knowledge of the
clients contained in the shared parameters can be
propagated into the rest of the federation.

1

Springer Nature 2021 LATEX template

2

Most of the FedL solutions rely on the avail-
ability of a centralized server that collects all the
data and coordinates the entire learning process,
typically consisting of a model averaging proce-
dure – i.e., averaging the trainable parameters
of the clients’ ML predictors. This architecture
allows for communication-efficient FedL solutions,
as the information exchanges occur only between
clients and the server, but at the same time
imposes the significant design constraint of hav-
ing a centralized entity that has to be trusted by
the entire federation. The degree of trust that the
federation is required to have towards this cen-
tral entity may be too demanding for real-world
applications, such as in healthcare facilities: legal
regulations and commercial agreements often even
prevent all kinds of data exchanges between two
entities.

When dealing with a federation of critical insti-
tutions, it is worth studying FedL algorithms able
to cope with decentralized federations character-
ized by point-to-point client agreements (i.e., with
sparse communication topologies), as depicted in
Fig. 1. This work considers such a scenario and
thus will focus on the performance and conver-
gence aspects of the algorithm that will be assured
by the results of the Consensus Theory. It is
expected for scenarios of this kind to become of the
utmost criticality in the future, since a reserved
and secure information exchange is an enabling
technology for fast response to emergency situa-
tions, as the recent COVID-19 pandemic demon-
strated [2–5], and significantly boosts research
cooperation opportunities among parties that are
interested/obliged not to share their data directly.

Besides the fact that the centralized server that
oversees the FedL process must be trusted by the
entire federation, it also represents a single point
of failure, as the federated entities have no means
of verifying the behaviour of the server and do not
communicate with one another.

With these motivations, this work aims at
developing fully-decentralized solutions able to
extend the FedL paradigm to a group of federated
entities characterized by sparse and arbitrary com-
munication agreements. The highlights and main
contributions of the work are as folllows:

• The extension of standard FedL algorithms, and
in particular the original Federated Averaging

(FedAvg) [1], to a fully decentralized setting
that does not require a coordinating server.

• The design of two decentralized FedL algo-
rithms: Decentralized Federated Averaging
(DecFedAvg), a direct decentralization of
FedAvg, and Consensus-based Federated Learn-
ing (FedLCon), a more complex solution derived
from discrete-time averaging Consensus Theory.

• FedLCon relies on classic results from Consen-
sus Theory, originally obtained for the control of
dynamical systems , that enable its deployment
on federations with arbitrary communication
topologies – the topology, however, impacts
the communication overhead with respect to
DecFedAvg.

• The FedLCon approach will be shown to be
compatible with any FedAvg-like algorithm,
making it suitable to seamlessly decentralise
most of the latest results from the literature,
such as Federated Proximal (FedProx) [6]; fur-
thermore, FedLCon will be proven to be able
to reconstruct with arbitrary precision the per-
formances reached by any standard federated
approach.

• Validating examples are discussed, demonstrat-
ing the applicability and performance properties
of the proposed algorithms in various standard
settings.

The operative requirements that led to the
design of the proposed algorithms were iden-
tified in the scope of an e-health project,
FedMedAI, conducted in collaboration with the
Italian National Institute of Health.

The remainder of the paper is organized as fol-
lows: Section 2 discusses the relevant works in the
literature; Section 3 provides the reader with some
background on FedL and discrete-time weighted
Consensus Theory; Section 4 presents the two
proposed algorithms; Section 5 validates the algo-
rithms on two test scenarios; Section 6 draws the
conclusions and presents possible future works.

2 Related Works

Contrary to standard distributed learning solu-
tions, FedL does not envisage any coordinated
split or redistribution of the data and is specifi-
cally designed to analyze data partitioned as it is,
i.e., close to its sources. FedL was originally pro-
posed as FedAvg in [1, 7] to address a problem in

Springer Nature 2021 LATEX template

3

Fig. 1 (a) Standard Federated Learning system with a secure server (left); (b) Example of a decentralized FedL setting
with bi-directional point-to-point communications (right).

which a group of smartphones cooperates by shar-
ing their knowledge without disclosing any data
from their users.

Among the first and most impactful appli-
cations of FedL for the IoT/Edge Computing
setting [8, 9], we mention mobile keyboard predic-
tions [10–12] and distributed image analytics/vi-
sion [13, 14]. For its privacy-preserving properties,
FedL has then been applied also in scenarios in
which organisations and institutions cooperate to
analyze complex and highly confidential data, as
typical in the healthcare domain [15, 16], and has
found new applications in several fields [17], such
as 3D connectivity-based heterogeneous networks
enabled by aerial drones [18] and Industry 4.0 [19].
More general architectures, designed to cope with
federations in which the various clients do not have
a common data structure and/or feature space,
were proposed under the name of vertical FedL
[20], whereas the standard FedL setting, that is the
one considered in this work, has also been referred
to as horizontal FedL.

Over the years, several improvements have
been proposed from the original formulation [21,
22], mainly covering aspects related to privacy and
security enhancements [23–26] to prevent direct or
indirect data leakage [27–29], and to reduce the
communication cost associated with distributed
training [30–33]. Nevertheless, the common char-
acteristic that all the algorithms presented in the
literature share with the original formulation is
the ability to deal with data distributed over
clients in a non-IID and imbalanced way. The
focus on such a setting is due to the distributed
nature of the data sources that characterize the
considered tasks, as they are often geographically
dislocated. The spatial distribution of the sources

is paired with different local data distributions
and a high variance in the number of the available
samples.

The core of FedAvg and, in general, of FedL
is a model averaging procedure, in which the
DeepNNs trained by the federated clients on their
locally available data are collected and averaged
by a centralized server. After the averaging, the
server propagates the resulting DeepNN to the
federation clients. This procedure proved to be
a successful strategy for massive scenarios, such
as IoT/Edge Computing systems, but may be
limiting in other settings. For instance, if the
federation is constituted by a limited number of
entities with no computation or communication
constraints other than the requirement of not
sharing any data, the communication-efficiency
related features of the algorithm may be removed
for better performance and complete decentraliza-
tion. We mention that the typical target use cases
of FedL involve a private service provider responsi-
ble for both data harvesting and analysis, whereas
a decentralized setting is a more suitable choice
for situations in which different public or privately
owned entities cooperate.

The removal of the centralized server has been
already investigated in the literature, as in [34],
where a peer-to-peer gossip algorithm was pro-
posed to exchange portions of the DeepNN weights
among computing nodes with limited bandwidth
and improve the overall communication efficiency
of the federation. A similar goal is pursued by the
authors of [35], who proposed an algorithm based
on a partial aggregation of the gradients produced
by the training nodes. Works such as [36, 37]
investigated how blockchain technology may be

Springer Nature 2021 LATEX template

4

used in the FedL setting; [36] proposed a special-
ized privacy-preserving blockchain (called Learn-
ingChain) to sustain a decentralized Stochastic
Gradient Descent training algorithm; [37] devel-
oped a FedL algorithm in which the averaged
models are collected on a blockchain after a decen-
tralized committee of computing nodes reaches
a consensus (i.e., an agreement) regarding the
validity of the updates received from rest of the
federation.

Contrary to the cited approaches, this paper
focuses on developing a solution to attain the
exact decentralization of existing FedL algorithms,
enabling the seamless deployment of such solu-
tions in new scenarios and applications. The algo-
rithms of this work are hence not directly related
to the design of new distributed training proce-
dures, but instead provide a framework for the
complete decentralisation of FedL algorithms.

For the sake of presentation clarity, the two
algorithms presented in this work, particularly
FedLCon, were specialized for decentralizing the
FedAvg algorithm. The reason behind this choice
is twofold: many of the newer algorithms available
in the literature, such as FedProx [6], are derived
from it; most of the latest results related to com-
munication efficiency and privacy in FedL, like
those discussed in [21, 31], are typically compliant
with any algorithm that shares the same struc-
ture of FedAvg. Nevertheless, we mention that the
FedLCon algorithm may be specialized to decen-
tralise other FedL algorithms, provided that they
require the presence of a centralised model aver-
aging procedure that is replaced by a so-called
consensus round, as it will be clarified in section
IV.B and in Remark 2.

Consensus is a fundamental paradigm of
Multi-Agent Systems, in which a set of commu-
nicating systems exchange information (e.g., their
internal state and sensor readings) over a com-
munication topology to estimate/control variables
of interest (see, e.g., [38, 39] and the references
therein). As many fundamental problems over
networks can be reduced to an underlying consen-
sus framework for Multi-Agent Systems (including
opinion dynamics [40], formation control [41] and
synchronization of the electric power grid [42]),
FedLCon can be seen as a consensus problem, as
the clients in the federation aim at obtaining a
common DeepNN, able to solve the given task by
combining their local information.

3 Background

3.1 Background on Federated
Learning

Let I be the set of N clients. Considering
client i ∈ I, let wi be the vector of trainable
parameters/weights of its DeepNN and let Di =
{(αn, βn), n ∈ {1, ..., | Di |}} be the dataset
containing its available input-output pairs. We
denote the total data available as D =

⋃
i Di, and

we assume that the clients share the same DeepNN
architecture, implying that the cardinality of the
weight vectors is the same, i.e., | wi |=| wj | for
all i, j ∈ I.

In the federation, the client i is trained to min-
imize the so-called loss function li((αn, βn) | wi)
over the entire dataset Di. Loss functions are used
to quantify the quality of the output produced by
DeepNNs when given as input the generic αn ∈ Di

against the corresponding ground-truth value βn

(e.g., typical choices for loss functions are mean
squared error for regression tasks or categorical
cross-entropy for classification ones).

By setting

Li(wi) = Li(Di | wi) =

1

| Di |
∑

(αn,βn)∈Di

li((αn, βn) | wi),
(1)

as the loss function of the client i over its entire
dataset Di, the goal of the federation is then to
find the optimal vector of parameters w∗ that,
when shared by all clients, solves the minimiza-
tion problem with the joint cost function defined
as [43]

min
w
L(w) :=

∑
i∈I

piLi(w) (2)

with pi =| Di | / | D |.
In the standard ML setting, a centralized sys-

tem directly deals with the optimization (2): the
availability of the whole D enables the compu-
tation of the gradient ∇L(w). Instead, in the
distributed setting, the gradient ∇L(w) has to be
estimated starting on the gradients of the clients
∇Li(wi).

In standard (non-federated) distributed learn-
ing, data can be distributed arbitrarily by a
centralized entity over the clients. The typi-
cal assumption for this distribution is that the

Springer Nature 2021 LATEX template

5

datasets Di are IID with respect to D, imply-
ing E[Li(w)] = L(w). In practice, under this
assumption, Li(w) provides a good approximation
of L(w) [1] and the locally computed gradients
∇Li(wi) can be averaged to reconstruct ∇L(w).

On the contrary, in the federated setting, such
IID hypothesis cannot be assumed, as the training
data is processed without any redistribution, and
Li(w) could provide an arbitrarily bad approxi-
mation of L(w). For this reason, in the original
FedL algorithm, FedAvg [1, 7], the author pro-
posed a round-based iterative procedure for model
averaging.

FedAvg is divided into two main phases, which
are repeated iteratively. In the first phase (local
training), the server selects a subset of clients that
update the weights of their DeepNNs by training
on their local dataset Di with a gradient descent
update rule:

w̃i(t) = wi(t− 1)− η∇Li(wi(t− 1)), (3)

where 0 < η < 1 is the learning rate, and w̃i(t) is
the locally updated1 weight vector of the DeepNN
of agent i at time-step t. We mention that, in the
FedL setting, it is typically assumed that all clients
share a common initial weight vector, i.e., wi(0) =
w0 ∀i ∈ I [1].

In the second phase (centralized averaging),
the server collects the w̃i’s, computes the weight
vector w(t) as the weighted average

w(t) =
∑
i∈I

piw̃i(t) (4)

and propagates the weight vector w(t) to all the
clients:

wi(t) = w(t), ∀ i ∈ I. (5)
We report the pseudo-code for FedAvg (see

Algorithm 1), showing an implementation where
the clients perform E local training epochs using
mini-batch Gradient Descent with a batch size of
B. In the code, it is assumed for simplicity that
all clients participate in the averaging procedure.

1Actually, in practice, the local weight update is performed
iteratively over E training epochs using a variation of gradi-
ent descent (mini-batch gradient descent) that splits Di into
a set of mini-batches. Equation (3) exemplifies the update
rule with E = 1 and over the complete dataset, whereas the
pseudo-codes report the mini-batch multi-epoch version of the
algorithms.

Algorithm 1 FedAvg [1]

1: SERVER UPDATE
2: for each communication round t = 1, ..., T do
3: select a subset of clients for the averaging

procedure
4: for all selected client i do
5: CLIENT UPDATE
6: Receive w̃i from client i
7: end for
8: set w(t) =

∑
i piw̃i(t)

9: propagate w in the federation (wi(t) =
w(t),∀i)

10: end for

11: CLIENT UPDATE
12: for each local epoch e from 1 to E do
13: for each mini-batch b from Di do
14: wi(t−1)← wi(t−1)−η∇Li(b | w(t−1))
15: end for
16: end for
17: set w̃i(t) = wi(t− 1)
18: return w̃i(t) to the server

Even if several variants of FedL algorithms
have been developed (e.g., [6, 21]), most of the
solutions available in the literature share with
FedAvg both the centralized setting and the two-
phases approach.

3.2 Background Discrete-time
weighted consensus

Consensus algorithms denote protocols dis-
tributively implemented among communicating
dynamical systems (agents) that allow each
agent’s state estimation to evolve to a common
value that takes the name of consensus value.

Representing the consensus network as a graph
in which the nodes are the N clients connected by
a set of edges, it is possible to define the follow-
ing matrices: the adjacency matrix A = (aij) ∈
RN×N , with aij = 1 if an edge connects clients
i and j and 0 otherwise; the out-degree diagonal
matrix O = (oij) ∈ RN×N , with oii =

∑
j aij

computed as the clients’ out-degrees; the Lapla-
cian matrix L = O − A and the diagonal matrix
P = diag(pi) ∈ RN×N , with pi representing the
weight given to the client i.

Let xi(t) be the state of agent i at time-step
t, and let Ni be its set of neighbors. Under the

Springer Nature 2021 LATEX template

6

hypothesis of a strongly connected undirected con-
sensus graph and under the following discrete-time
update rule

xi(t+ 1) = xi(t) +
ϵ

pi

∑
j∈Ni

aij(xj(t)− xi(t)), (6)

by assuming that the sampling time ϵ is such that
ϵ < mini∈I(pi/oii) [44, 45], the clients reach a con-
sensus value in their states xi that coincides with
the weighted average of their initial conditions:

x̄ =

∑
i∈I pixi(0)∑

i∈I pi
. (7)

The convergence of the agents follows the
dynamics of the discrete-time system (6) that can
be equivalently written in matrix form [45] as

xi(t+ 1) = Hpx(t), (8)

with Hp = I − ϵP−1L.
From (8), starting from the well-known defini-

tion of dominant time constant for a discrete-time
linear time-invariant system and its settling time
[46], it follows that the agents will reach conver-
gence, with precision of 99%, after a number of
steps nϵ:

nϵ = 5max
i∈I

⌈ −1
ln(| λi(Hp) |)

⌉
, (9)

where λi(Hp) is the i-th eigenvalue different from
1 of the matrixHp and ⌈·⌉ denotes the ceiling func-
tion of its argument, with a resulting 1%-settling
time ta ≈ nϵ · ϵ.

4 Decentralized Federated
Learning

This section presents the two algorithms devel-
oped for decentralized federated learning: a decen-
tralized version of FedAvg in Section 4.1 and an
algorithm based on discrete-time weighted average
consensus in Section 4.2.

4.1 Decentralized Federated
Averaging

As discussed, FedAvg was tailored to minimize
communication costs (e.g., by limiting the number

Algorithm 2 DecFedAvg

1: DECENTRALIZED FEDERATED
TRAINING

2: for all communication rounds t = 1, ..., T do
3: for all clients i ∈ I do
4: for each local epoch e from 1 to E do
5: for each mini-batch b from Di do
6: wi(t− 1)← wi(t− 1)− η∇Li(b |

w(t− 1))
7: end for
8: end for
9: set w̃i(t) = wi(t− 1)

10: update wi(t) according to (10)
11: end for
12: end for

of clients exchanging their models at each com-
munication round). It was designed for IoT/Edge
Computing settings, as most of its evolutions (see,
e.g., [6, 8, 9, 22]).

In scenarios where communication costs are
negligible (e.g., in healthcare facilities coopera-
tion), the main communication constraints are
related to the presence of point-to-point communi-
cations among the clients and to the unavailability
of a centralized server. A natural choice is then
to develop a decentralized version of FedAvg, i.e.,
of equations (3)-(5). A direct decentralization of
FedAvg would consist of using equation (3) and
the following equation:

wi(t) =

1

| Di |

(
| Di | w̃i(t) +

∑
j∈Ni

| Dj | w̃j(t)
)
,∀ i ∈ I,

(10)

with | Di |=| Di | +
∑

j∈Ni
| Dj |. If the graph

is complete (i.e., all clients are neighbours of each
other) substituting (4) into (5) yields that (3) and
(10) are equivalent to (3)-(5).

Equation (10) states that, at every communi-
cation round t, the clients exchange the weights
w̃i(t) of their locally trained DeepNNs with their
neighbours. Each client then updates the vector
wi(t) by computing a weighted average of the col-
lected vectors w̃j(t), with j ∈ Ni ∪ {i} (including
its own vector), with weights set as the cardi-
nality | Dj | of the clients’ data. In general,

Springer Nature 2021 LATEX template

7

arbitrary weights can be attributed to the clients,
e.g., depending on the in/out-degree of the nodes
in the federation graph or reflecting the trust level
that client i has in client j.

The pseudo-code for the Decentralized FedAvg
algorithm (DecFedAvg) is reported (see Algo-
rithm 2) to improve the clarity of the presentation.

Remark 1. The proposed DecFedAvg algo-
rithm does not utilize any information on the
communication network topology. Also, we note
that the proposed distribution of (3)-(5), for its
simplicity, can in principle be applied to any FedL
algorithm with the same structure as FedAvg.
However, the convergence results of such algo-
rithms typically rely on the propagation of a
common averaged DeepNN into the federation.
Hence, the convergence of the decentralized ver-
sions is not guaranteed, as, in general, at each
communication round t the various wi(t) are dif-
ferent. In the FedAvg case, (3) and (10) yield that,
at each t, the various wi(t), and consequently the
performance of the clients, may differ significantly.

4.2 Consensus-based Decentralized
Federated Learning

To overcome the main limitation of the DecFe-
dAvg algorithm, i.e., the lack of convergence
guarantees, we propose a novel consensus-based
algorithm. In fact, even if the clients considered
in the FedL setting are not dynamical systems,
there are similarities between the framework for
FedL and the one for discrete-time weighted aver-
age consensus. By interpreting the weights wi(t)
of the federated clients as the states xi(t) of a set
of agents seeking consensus (see Section 3.2), we
propose to combine (3)-(5) and (6) as described
below.

At each communication round t, the w̃i’s
are computed by the same equation (3) used
in standard FedL solutions. Differently from the
DecFedAvg algorithm, the update of the weight
vectors wi(t) is not performed by equation (10)
but involves a consensus round. Let k be the
consensus round index and recall that nϵ is the
number of iterations required to reach consensus
within the round. Then, to reach consensus the
federated clients exchange information nϵ times,
starting from the initial values xi(0) = w̃i(t), for

Algorithm 3 FedLCon

1: DECENTRALIZED FEDERATED
TRAINING

2: for all communication rounds t = 1, ..., T do
3: for all clients i ∈ I do
4: for each local epoch e from 1 to E do
5: for each mini-batch b from Di do
6: wi(t − 1) ← wi(t − 1) −

η∇Li(b|w(t− 1))
7: end for
8: end for
9: set w̃i(t) = wi(t− 1)

10: end for
11: update wi(t) via a CONSENSUS ROUND
12: end for

13: CONSENSUS ROUND
14: Compute nϵ according to (9) depending on the

topology
15: Set xi(0) = w̃i(t) for all clients i ∈ I
16: for k = 0, ..., nϵ − 1 do
17: for all clients i ∈ I do
18: update xi according to (11)
19: end for
20: end for
21: set wi(t) = xi(nϵ) for all clients i ∈ I

all i ∈ I. The following iteration rule is executed
for k = 0, ..., nϵ − 1:

xi(k + 1) = x(k) +
ϵ

| Di |
∑
j∈Ni

aij
(
xj(k)− xi(k)

)
,

(11)
with ϵ chosen as in Section 3.2.

Due to the structure of the update rule (11),
which is the same as (6), for the consensus-based
convergence properties presented in Section 3.2
and discussed in [44, 45], one observes that the
states of the federation clients converge towards
the value

xi(nϵ) ≈
∑

i | Di | w̃i(t)

| D |
, ∀ i ∈ I, (12)

i.e., at the end of the communications (when con-
sensus is reached among the federated clients),
the proxy variables xi approximate the weights

Springer Nature 2021 LATEX template

8

w(t) computed by the centralized FedL case with
equation (4). Setting

wi(t) = xi(nϵ), (13)

the procedure can be repeated starting from the
training of equation (3) for all the communication
rounds t. Note that each communication round
t now yields nϵ information exchanges since it
involves a consensus round.

The resulting consensus-based distributed Fed-
erated Learning algorithm (FedLCon) is reported
as a pseudo-code (see Algorithm 3) in the same
form as the two previous cases.

Remark 2. Contrary to DecFedAvg, FedLCon
approximates the exact decentralization of the
original FedAvg algorithm, as at the end of each
communication round (i.e., after the nϵ steps of
the consensus round), the weights of all the clients
converge to the same values. This consideration
has two consequences:

• The proposed consensus-based solution can be
directly applied to any FedAvg-like algorithm
available in the literature, as it is transparent
from the model-averaging point of view and its
implementation details (e.g. privacy-preserving
features and complex weighting criteria for the
various clients);

• As the consensus round is transparent to the
FedAvg algorithm, different consensus algo-
rithms can be used to exploit the communica-
tion and/or topology properties of the appli-
cation scenarios (e.g., multi-hop discrete-time
consensus).

Remark 3. The introduction of the consensus
round (and its nϵ information exchanges) consti-
tutes a communication overhead and the main
limitation of the proposed algorithm. In fact,
from (9), one may note how nϵ is influenced by
the eigenvalues of the matrix Hp, which in turn
depend on the communication network Laplacian
matrix L. We mention that, in general, such eigen-
values do not depend directly on the number
of clients in the federation and instead capture
the topology connectivity level, meaning that the
scalability of FedLCon is mostly affected by the
number of links available in the communication
topology and their positioning. In order to reduce
the impact of the communication overhead, one
may apply to the information exchanges over the

Fig. 2 Considered Federation Topologies

consensus network some of the latest solutions for
communication efficiency that have been designed
for the standard FedL setting (e.g. gradient/-
model compression approaches [31, 32, 47, 48]; the
approach in [49], where clients evaluate the con-
tribution of their training before joining the data
exchange; or transfer learning solutions, as they
envisage the exchange of only a small portion of
the overall model). Nevertheless, in scenarios in
which the time for data transmission is limited
and/or non-negligible with respect to the training
time, one may consider employing DecFedAvg at
the cost of a performance degradation.

Remark 4. From the point of view of the
federation client, both DecFedAvg and FedLCon
involve comparable computations, that are negli-
gible when compared to the training process. In
fact, the amount of operations (unrelated to the
training) conducted in a communication round by
a client in a DecFedAvg-based federation increases
linearly with its number of neighbours, whereas
FedLCon repeats the same amount of computa-
tions nϵ times due to the consensus round.

5 Simulations

This section reports on the test simulations per-
formed to validate the proposed approaches and
to assess their differences in two different set-
tings. We utilized the MNIST dataset [50] (one
of the most used benchmark solutions in the ML
literature, also used in the original FedL paper
[1]), distributed among the clients in two differ-
ent ways, as will be described in the following
subsections. The MNIST dataset consists of a set

Springer Nature 2021 LATEX template

9

of 60k+10k labeled images of handwritten digits
(from 0 to 9), where the last 10k images are used
as a test dataset to evaluate the performance of
DeepNNs trained over the first 60k training data
samples.

We tested our algorithms on four different
topologies with N = 6 clients: a complete graph,
two sparse topologies - a circle and a star one -
and a fairly connected random topology with 9
links. Additionally, we included in all our tests a
centralized benchmark implementing the standard
FedAvg algorithm that involves the presence of a
coordinating server. For our consensus-based algo-
rithm we set for each federation ϵ = 0.99mini∈I(|
Di | /oii), leading to nϵ = 5 for the complete and
circle topologies, nϵ = 10 for the random one and
nϵ = 25 for the star topology (for the evaluation
of equation (9) we mention that the Lapla-
cian matrix L may be trivially obtained from the
graphs in Fig. 2). Note that oii and, consequently,
ϵ vary depending on the topology. The topologies
were selected so that the proposed algorithms will
have to deal with information flows of different
natures and characteristics to better assess their
limits and adaptability properties. The amount of
communication overhead that FedLCon has com-
pared to DecFedAvg depends on the different
values of nϵ.

In this work, we used for all clients a convo-
lutional neural network constituted by two con-
volutional layers with 32 and 64 filters of size
3 × 3, respectively, followed by a 2 × 2 maxpool-
ing layer with a dropout of 0.25 and a dense
layer of 128 neurons with a dropout of 0.5. All
the activation functions were set as Rectified Lin-
ear Units (ReLUs), save for the output layer that
was constituted by a dense layer of 10 neurons
with a softmax activation function, as common
in multi-label classification tasks. The resulting
DeepNN has about 1.2M trainable parameters
(weights). The optimizer employed for the training
was Adam, with an initial learning rate of 0.01. All
the federation clients trained locally for 2 epochs
(E = 2 in the algorithm pseudo-codes), i.e., at
each training step the clients train two times over
their entire dataset, with a mini-batch size of 32.
All the other parameters and the initialization are
the standard ones from Keras 2.4.0.

For the sake of presentation, in the figures of
this section we report, for the decentralized algo-
rithms, only the accuracy curves for the first client

Table 1 Summary of the simulations

Test Objective Data
Set

Nodes Results Sum-
mary

1.A Validate
the pro-
posed
algorithms
against
FedAvg

MNIST,
bal-
anced

6 DecFedAvg
and FedLCon
perform well
and similarly to
the centralised
case (FedAvg)

1.B Test the
scalability
of the algo-
rithms on
a bigger
network

CIFAR-
10,
IID

20 FedLCon
manages to
reconstruct the
performance of
FedAvg, while
we observe
that the per-
formance of
DecFedAvg
degrades
slightly

2 Test the
algorithms
on non-IID
data distri-
butions

MNIST,
non-IID

6 DecFedAvg
fails to con-
verge on sparse
topologies,
FedLCon is
unaffected and
successfully
obtains the
same perfor-
mances of the
centralized case

of the federation (i.e., i = 1) averaged over 10
runs, as the behaviour shown by the others is
equivalent. Table 1 reports the main character-
istics of the three simulations performed, briefly
reporting their main results.

5.1 Test 1.A (MNIST): one missing
class per client

In this test, the MNIST dataset was split into 6
parts and distributed to the clients so that client
i, provided with about 10k data samples, had no
samples of the class i (i.e., the (i − 1)-th digit).
The purpose of this test is to demonstrate how
the algorithms perform on a fairly even data dis-
tribution compared to the standard, centralized,
FedAvg solution involving a server.

Fig. 3 reports the accuracy evolution vs. the
communication rounds for the DecFedAvg algo-
rithm of Section 4.1. The picture shows how the
lines for the centralized (FedAvg) and the com-
plete topologies perfectly overlap, as expected
from equations (3), (10). Minor performance drops
(less than 1%) are observed for the sparser topolo-
gies, i.e., the circle and star ones.

Springer Nature 2021 LATEX template

10

Fig. 3 Test 1.A: accuracy evolution over communication
rounds for the DecFedAvg algorithm.

Fig. 4 Test 1.A: accuracy evolution over communication
rounds for the FedLCon algorithm.

Fig. 4 reports the behaviour of a federa-
tion governed by the FedLCon algorithm. In
this case, the performances achieved with all the
topologies - including the sparser ones - converge
towards the performance reached by the central-
ized solution within errors of less than 0.2%.
The drawback of FedLCon is that it requires a
significantly higher communication overhead (nϵ

information exchanges per communication round
vs. one exchange for DecFedAvg).

In this first simulation, both algorithms per-
formed well due to the balanced data distribution
that makes the local updates of DecFedAvg com-
parable, from a knowledge discovery point of view,
to the global ones reconstructed by FedLCon. The
fact that the topology did not affect the perfor-
mance of any algorithm significantly suggests that
the data distribution allows all agents to solve a
good portion of the task independently of their
neighbours’ contribution. In the following test,
we aim to discover whether the two algorithms
continue to perform similarly on harder tasks.

5.2 Test 1.B (CIFAR-10): Transfer
Learning with IID-Data

This test was designed to assert the scalability
of the algorithms and to highlight their seam-
less integration capabilities with more complex

Fig. 5 Random Federation Topology of 20 clients

Fig. 6 Test 1.B: accuracy evolution over the communica-
tion rounds for the FedLCon and DecFedAvg algorithms.

tasks such as transfer learning. In this test, we
analyze the well known CIFAR-10 [51] by apply-
ing transfer learning to the VGG19 [52] neural
network trained for ImageNet [53]. As custom-
ary with transfer learning tasks, our DeepNN was
constituted by the pre-trained VGG19 combined
with a stack of fully connected layers of 1024, 512
and 256 neurons. For this simulation, we consid-
ered a federation of 20 clients, depicted in Fig.
5 (nϵ = 20). The entire dataset was distributed
uniformly to the clients.

As in the previous case, thanks to the balanced
data distribution, from Fig. 6 we can note how
both algorithms perform similarly, with a slight
advantage of FedLCon that is able to reconstruct
from the very start the performance of FedAvg
whereas DecFedAvg slightly lags behind. This
slower increase rate for the accuracy of DecFe-
dAvg is most likely due to the fact that a client
obtains information (knowledge) only from its
neighbours: this may be too limiting in complex
tasks, as more communication rounds are required
to gather knowledge from the entire federation.
FedLCon, on the other hand, at the end of each
consensus round, ensures that all clients are pro-
vided with the same information, in the form of
having the same DeepNN approximated by the
entire federation.

In the following test, we will demonstrate how
DecFedAvg is also substantially more sensitive

Springer Nature 2021 LATEX template

11

Fig. 7 Test 2: accuracy evolution over communication
rounds for the DecFedAvg algorithm.

Fig. 8 Test 2: accuracy evolution over communication
rounds for the FedLCon algorithm.

to unbalanced data distributions among clients,
whereas FedLCon, thanks to its consensus-based
update protocol, shows a significantly more robust
behaviour.

5.3 Test 2 (MNIST): four random
classes per client

In this test, the MNIST dataset is distributed so
that each client has access only to four digits, with
each client having between 7.5k and 8.5k data
samples. In particular, client 1 had digits 1, 2, 3, 4,
client 2 had digits 0, 2, 8, 9, client 3 had digits
3, 4, 5, 6, client 4 had digits 0, 7, 8, 9, client 5 had
digits 1, 2, 7, 9 and client 6 had digits 1, 3, 4, 6. The
goal is to evaluate the algorithm performance with
data distributions that are significantly different
among the clients.

With the DecFedAvg algorithm, Fig. 7 high-
lights, as expected, that also, in this test, the
plots of the centralized and the complete topolo-
gies overlap. However, the figure shows that the
algorithm struggles with the unfavourable data
distribution, as it achieves significantly lower per-
formances with the sparser star and circle topolo-
gies. It is worth noting that, from the very first
communication round, the various topologies have
different accuracy levels: this is due to the local
nature of the algorithm - each client exchanges

information only with its neighbours - with no
convergence guarantee, meaning that each client
has a different DeepNN.

We also observe that in this case the accuracy
obtained with the random topology is surprisingly
close to the one obtained with the centralized one.
In general, the DeepNNs of a federation controlled
by (3) and (10) do not converge to the DeepNN of
the centralized case. However, depending on the
data distribution, it may happen (as depicted in
the figure) that sparser connectivity graphs lead
to a well-performing DeepNN.

Fig. 8 reports the accuracy curves for a feder-
ation controlled by FedLCon. The accuracy evo-
lution is practically equivalent with all topologies,
with a performance drop of less than 2% com-
pared to the centralized case. This result is in
line with the nature of the consensus-based com-
munication protocol, as at the beginning of each
training phase, all the various clients have at their
disposal the same common values for their wis
(save for slight deviations due to the usage of the
1% settling time in (9)), independently from the
communication topology.

We observe that, in this scenario, the commu-
nication overhead of FedLCon allowed the feder-
ation to reach satisfactory performances on arbi-
trary topologies, whereas the simpler DecFedAvg
algorithm failed the task on sparser communica-
tion graphs where the local nature of the updates
prevents the information from being exchanged
correctly over the federation, causing the clients
not to generalize correctly.

6 Conclusions and future
works

This paper presented two decentralized Federated
Learning (FedL) algorithms, the former (DecFe-
dAvg), obtained as a direct decentralization of
the original FedL algorithm, FedAvg, and the lat-
ter (FedLCon), obtained on the ground of results
from discrete-time average Consensus Theory. As
shown by simulations, the proposed consensus-
based algorithm is an enabler to deploy FedL
solutions on arbitrary topologies at the expense of
higher communication overhead. On the contrary,
DecFedAvg proved to be a reasonable approxi-
mation of FedLCon in scenarios in which data is

Springer Nature 2021 LATEX template

12

distributed more uniformly over the clients and
the communication topology is not sparse.

Decentralized FedL solutions are of crucial
interest for small-scale federations of collaborat-
ing companies, such as healthcare facilities, that
may be prevented from joining a centralized fed-
eration, e.g., due to privacy regulations. The
proposed consensus-based solution is then rele-
vant also considering that, in such scenarios, the
communication overhead is not a key performance
indicator as, e.g., in IoT scenarios. In this direc-
tion, FedLCon represents a solution able to be
seamlessly applied to almost all FedAvg-like FedL
algorithms.

On-going and future work is aimed at using
the proposed consensus-based approach to tailor
solutions to specific use cases, in the first place
considering healthcare federations, in line with the
objectives of the FedMedAI project.

Acknowledgments

This work has been partially funded by the Lazio
region, in the scope of the project FedMedAI,
POR FESR Lazio 2014 – 2020 (Azione 1.2.1),
Prot. n. A0375-2020-36491 - 23/10/2020

References

[1] McMahan, H.B., Moore, E., Ramage, D.,
Hampson, S.: Communication-efficient learn-
ing of deep networks from decentralized data.
In: Proceedings of the 20 Th International
Conference on Artificial Intelligence and
Statistics (AISTATS) 2017. JMLR: W&CP
Volume 54 (2016). arXiv:1602.05629

[2] Lenert, L., McSwain, B.Y.: Balancing health
privacy, health information exchange, and
research in the context of the COVID-19
pandemic. Journal of the American Med-
ical Informatics Association 27(6), 963–
966 (2020). https://doi.org/10.1093/jamia/
ocaa039

[3] Qian, F., Zhang, A.: The value of feder-
ated learning during and post-COVID-19.
International Journal for Quality in Health
Care 33(1) (2021). https://doi.org/10.1093/
intqhc/mzab010

[4] Feki, I., Ammar, S., Kessentini, Y., Muham-
mad, K.: Federated learning for covid-19
screening from chest x-ray images. Applied
Soft Computing 106, 107330 (2021). https:
//doi.org/10.1016/j.asoc.2021.107330

[5] Zhang, W., Zhou, T., Lu, Q., Wang, X.,
Zhu, C., Sun, H., Wang, Z., Lo, S.K., Wang,
F.-Y.: Dynamic fusion-based federated learn-
ing for covid-19 detection. IEEE Internet of
Things Journal, 1–1 (2021). https://doi.org/
10.1109/JIOT.2021.3056185

[6] Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M.,
Talwalkar, A., Smith, V.: Federated Opti-
mization in Heterogeneous Networks (2018).
arXiv:1812.06127

[7] McMahan, H.B., Moore, E., Ramage, D., y
Arcas, B.A.: Federated Learning of Deep Net-
works using Model Averaging (2016). arXiv:
1602.05629

[8] Ye, Y., Li, S., Liu, F., Tang, Y., Hu,
W.: EdgeFed: Optimized federated learn-
ing based on edge computing. IEEE Access
8, 209191–209198 (2020). https://doi.org/10.
1109/access.2020.3038287

[9] Khan, L.U., Alsenwi, M., Yaqoob, I., Imran,
M., Han, Z., Hong, C.S.: Resource optimized
federated learning-enabled cognitive internet
of things for smart industries. IEEE Access
8, 168854–168864 (2020). https://doi.org/10.
1109/access.2020.3023940

[10] Hard, A., Rao, K., Mathews, R.,
Ramaswamy, S., Beaufays, F., Augenstein,
S., Eichner, H., Kiddon, C., Ramage, D.:
Federated Learning for Mobile Keyboard
Prediction (2018). arXiv:1811.03604

[11] Yang, T., Andrew, G., Eichner, H., Sun, H.,
Li, W., Kong, N., Ramage, D., Beaufays,
F.: Applied Federated Learning: Improving
Google Keyboard Query Suggestions (2018).
arXiv:1812.02903

[12] Ramaswamy, S., Mathews, R., Rao, K., Bea-
ufays, F.: Federated Learning for Emoji Pre-
diction in a Mobile Keyboard (2019). arXiv:
1906.04329

arXiv:1602.05629
https://doi.org/10.1093/jamia/ocaa039
https://doi.org/10.1093/jamia/ocaa039
https://doi.org/10.1093/intqhc/mzab010
https://doi.org/10.1093/intqhc/mzab010
https://doi.org/10.1016/j.asoc.2021.107330
https://doi.org/10.1016/j.asoc.2021.107330
https://doi.org/10.1109/JIOT.2021.3056185
https://doi.org/10.1109/JIOT.2021.3056185
arXiv:1812.06127
arXiv:1602.05629
arXiv:1602.05629
https://doi.org/10.1109/access.2020.3038287
https://doi.org/10.1109/access.2020.3038287
https://doi.org/10.1109/access.2020.3023940
https://doi.org/10.1109/access.2020.3023940
arXiv:1811.03604
arXiv:1812.02903
arXiv:1906.04329
arXiv:1906.04329

Springer Nature 2021 LATEX template

13

[13] Luo, J., Wu, X., Luo, Y., Huang, A., Huang,
Y., Liu, Y., Yang, Q.: Real-World Image
Datasets for Federated Learning (2019).
arXiv:1910.11089

[14] Ahmed, L., Ahmad, K., Said, N., Qolomany,
B., Qadir, J., Al-Fuqaha, A.: Active learning
based federated learning for waste and natu-
ral disaster image classification. IEEE Access
8, 208518–208531 (2020). https://doi.org/10.
1109/access.2020.3038676

[15] Brisimi, T.S., Chen, R., Mela, T., Olshevsky,
A., Paschalidis, I.C., Shi, W.: Federated
learning of predictive models from fed-
erated electronic health records. Inter-
national Journal of Medical Informatics
112, 59–67 (2018). https://doi.org/10.1016/
j.ijmedinf.2018.01.007

[16] Sheller, M.J., Reina, G.A., Edwards, B.,
Martin, J., Bakas, S.: Multi-institutional
deep learning modeling without shar-
ing patient data: A feasibility study on
brain tumor segmentation. In: Brainle-
sion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries, pp.
92–104. Springer, ??? (2019). https:
//doi.org/10.1007/978-3-030-11723-8 9

[17] Aledhari, M., Razzak, R., Parizi, R.M.,
Saeed, F.: Federated learning: A survey
on enabling technologies, protocols, and
applications. IEEE Access 8, 140699–140725
(2020). https://doi.org/10.1109/access.2020.
3013541

[18] Yang, H., Zhao, J., Xiong, Z., Lam, K.-Y.,
Sun, S., Xiao, L.: Privacy-preserving fed-
erated learning for uav-enabled networks:
Learning-based joint scheduling and resource
management. IEEE Journal on Selected
Areas in Communications, 1–1 (2021). https:
//doi.org/10.1109/JSAC.2021.3088655

[19] Hao, M., Li, H., Luo, X., Xu, G., Yang, H.,
Liu, S.: Efficient and privacy-enhanced fed-
erated learning for industrial artificial intelli-
gence. IEEE Transactions on Industrial Infor-
matics 16(10), 6532–6542 (2020). https://
doi.org/10.1109/TII.2019.2945367

[20] Wei, K., Li, J., Ma, C., Ding, M., Wei, S.,
Wu, F., Chen, G., Ranbaduge, T.: Vertical
Federated Learning: Challenges, Methodolo-
gies and Experiments. arXiv (2022). https://
doi.org/10.48550/ARXIV.2202.04309. https:
//arxiv.org/abs/2202.04309

[21] Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., He,
B.: A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data Privacy
and Protection (2019). arXiv:1907.09693

[22] Lim, W.Y.B., Luong, N.C., Hoang, D.T.,
Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D.,
Miao, C.: Federated learning in mobile edge
networks: A comprehensive survey. IEEE
Communications Surveys Tutorials 22(3),
2031–2063 (2020). https://doi.org/10.1109/
COMST.2020.2986024

[23] Bonawitz, K., Ivanov, V., Kreuter, B., Marce-
done, A., McMahan, H.B., Patel, S., Ram-
age, D., Segal, A., Seth, K.: Practical secure
aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Com-
munications Security, pp. 1175–1191. ACM,
??? (2017). https://doi.org/10.1145/3133956.
3133982

[24] Geyer, R.C., Klein, T., Nabi, M.: Differen-
tially Private Federated Learning: A Client
Level Perspective (2017). arXiv:1712.07557

[25] Truex, S., Baracaldo, N., Anwar, A., Steinke,
T., Ludwig, H., Zhang, R., Zhou, Y.: A
hybrid approach to privacy-preserving feder-
ated learning. In: Proceedings of the 12th
ACM Workshop on Artificial Intelligence and
Security, pp. 1–11. ACM, ??? (2019). https:
//doi.org/10.1145/3338501.3357370

[26] Zhang, Q., Gu, B., Deng, C., Huang, H.:
Secure bilevel asynchronous vertical feder-
ated learning with backward updating. CoRR
abs/2103.00958 (2021) https://arxiv.org/
abs/2103.00958

[27] Wang, Z., Song, M., Zhang, Z., Song, Y.,
Wang, Q., Qi, H.: Beyond inferring class
representatives: User-level privacy leakage

arXiv:1910.11089
https://doi.org/10.1109/access.2020.3038676
https://doi.org/10.1109/access.2020.3038676
https://doi.org/10.1016/j.ijmedinf.2018.01.007
https://doi.org/10.1016/j.ijmedinf.2018.01.007
https://doi.org/10.1007/978-3-030-11723-8_9
https://doi.org/10.1007/978-3-030-11723-8_9
https://doi.org/10.1109/access.2020.3013541
https://doi.org/10.1109/access.2020.3013541
https://doi.org/10.1109/JSAC.2021.3088655
https://doi.org/10.1109/JSAC.2021.3088655
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.48550/ARXIV.2202.04309
https://doi.org/10.48550/ARXIV.2202.04309
https://arxiv.org/abs/2202.04309
https://arxiv.org/abs/2202.04309
arXiv:1907.09693
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
arXiv:1712.07557
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357370
{2103.00958}
{2103.00958}

Springer Nature 2021 LATEX template

14

from federated learning. In: IEEE INFO-
COM 2019 - IEEE Conference on Computer
Communications (2019). https://doi.org/10.
1109/infocom.2019.8737416

[28] Kim, S.: Incentive design and differential
privacy based federated learning: A mech-
anism design perspective. IEEE Access 8,
187317–187325 (2020). https://doi.org/10.
1109/access.2020.3030888

[29] Gu, B., Xu, A., Huo, Z., Deng, C.,
Huang, H.: Privacy-preserving asynchronous
federated learning algorithms for multi-
party vertically collaborative learning. CoRR
abs/2008.06233 (2020) https://arxiv.org/
abs/2008.06233

[30] Konečný, J., McMahan, H.B., Yu, F.X.,
Richtárik, P., Suresh, A.T., Bacon, D.: Feder-
ated Learning: Strategies for Improving Com-
munication Efficiency (2016). arXiv:1610.
05492

[31] Sattler, F., Wiedemann, S., Muller, K.-R.,
Samek, W.: Robust and communication-
efficient federated learning from non-i.i.d.
data. IEEE Transactions on Neural Networks
and Learning Systems, 1–14 (2019). https:
//doi.org/10.1109/tnnls.2019.2944481

[32] Zhang, Q., Gu, B., Deng, C., Gu, S., Bo,
L., Pei, J., Huang, H.: AsySQN: Faster
vertical federated learning algorithms
with better computation resource utiliza-
tion. In: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Dis-
covery & Data Mining. ACM, ??? (2021).
https://doi.org/10.1145/3447548.3467169.
https://doi.org/10.1145/3447548.3467169

[33] Zhang, Q., Gu, B., Dang, Z., Deng, C.,
Huang, H.: Desirable companion for verti-
cal federated learning. In: Proceedings of the
30th ACM International Conference on Infor-
mation & Knowledge Management. ACM,
??? (2021). https://doi.org/10.1145/3459637.
3482249

[34] Hu, C., Jiang, J., Wang, Z.: Decentralized
Federated Learning: A Segmented Gossip
Approach (2019). arXiv:1908.07782

[35] Jiang, J., Hu, L.: Decentralised federated
learning with adaptive partial gradient aggre-
gation. CAAI Transactions on Intelligence
Technology 5(3), 230–236 (2020). https://
doi.org/10.1049/trit.2020.0082

[36] Chen, X., Ji, J., Luo, C., Liao, W., Li, P.:
When machine learning meets blockchain: A
decentralized, privacy-preserving and secure
design. In: 2018 IEEE International Con-
ference on Big Data (Big Data), pp.
1178–1187 (2018). https://doi.org/10.1109/
BigData.2018.8622598

[37] Li, Y., Chen, C., Liu, N., Huang, H., Zheng,
Z., Yan, Q.: A blockchain-based decentralized
federated learning framework with commit-
tee consensus. IEEE Network 35(1), 234–241
(2021). https://doi.org/10.1109/MNET.011.
2000263

[38] Nedic, A.: Distributed gradient methods for
convex machine learning problems in net-
works: Distributed optimization. IEEE Signal
Processing Magazine 37(3), 92–101 (2020)

[39] Manfredi, S., Angeli, D.: Robust distributed
estimation of the maximum of a field. IEEE
Transactions on Control of Network Systems
7(1), 372–383 (2020)

[40] Anderson, B.D.O., Ye, M.: Recent advances
in the modelling and analysis of opinion
dynamics on influence networks. Interna-
tional Journal of Automation and Computing
16(2), 129–149 (2019). https://doi.org/10.
1007/s11633-019-1169-8

[41] Ren, W.: Consensus based formation control
strategies for multi-vehicle systems. In: 2006
American Control Conference (2006). https:
//doi.org/10.1109/ACC.2006.1657384

[42] Zhang, Z., Chow, M.-Y.: Convergence anal-
ysis of the incremental cost consensus algo-
rithm under different communication network
topologies in a smart grid. IEEE Transactions
on Power Systems 27(4), 1761–1768 (2012)

[43] Dinh, C.T., Tran, N.H., Nguyen, M.N.H.,
Hong, C.S., Bao, W., Zomaya, A.Y., Gramoli,
V.: Federated learning over wireless networks:

https://doi.org/10.1109/infocom.2019.8737416
https://doi.org/10.1109/infocom.2019.8737416
https://doi.org/10.1109/access.2020.3030888
https://doi.org/10.1109/access.2020.3030888
{2008.06233}
{2008.06233}
arXiv:1610.05492
arXiv:1610.05492
https://doi.org/10.1109/tnnls.2019.2944481
https://doi.org/10.1109/tnnls.2019.2944481
https://doi.org/10.1145/3447548.3467169
https://doi.org/10.1145/3447548.3467169
https://doi.org/10.1145/3459637.3482249
https://doi.org/10.1145/3459637.3482249
arXiv:1908.07782
https://doi.org/10.1049/trit.2020.0082
https://doi.org/10.1049/trit.2020.0082
https://doi.org/10.1109/BigData.2018.8622598
https://doi.org/10.1109/BigData.2018.8622598
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1109/MNET.011.2000263
https://doi.org/10.1007/s11633-019-1169-8
https://doi.org/10.1007/s11633-019-1169-8
https://doi.org/10.1109/ACC.2006.1657384
https://doi.org/10.1109/ACC.2006.1657384

Springer Nature 2021 LATEX template

15

Convergence analysis and resource alloca-
tion. IEEE/ACM Transactions on Network-
ing, 1–12 (2020). https://doi.org/10.1109/
tnet.2020.3035770

[44] R.O. Saber R.O., R.M.M.: Consensus prob-
lems in networks of agents with switching
topology and time-delays. IEEE Transac-
tions on Automatic Control 49(9), 1520–1533
(2004)

[45] Pedroche, F., Rebollo, M., Carrascosa, C.,
Palomares, A.: Convergence of weighted-
average consensus for undirected graphs.
International Journal of Complex Systems in
Science 4(1), 13–16 (2014)

[46] Ogata, K.: Discrete-time Control Systems.
Prentice-Hall, Inc., ??? (1995)

[47] Haddadpour, F., Kamani, M.M., Mokhtari,
A., Mahdavi, M.: Federated learning with
compression: Unified analysis and sharp
guarantees. In: Banerjee, A., Fukumizu, K.
(eds.) Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence
and Statistics. Proceedings of Machine Learn-
ing Research, vol. 130, pp. 2350–2358. PMLR,
??? (2021). https://proceedings.mlr.press/
v130/haddadpour21a.html

[48] Albasyoni, A., Safaryan, M., Condat, L.,
Richtárik, P.: Optimal gradient compression
for distributed and federated learning. CoRR
abs/2010.03246 (2020) https://arxiv.org/
abs/2010.03246

[49] WANG, L., WANG, W., LI, B.: CMFL: Miti-
gating communication overhead for federated
learning. In: 2019 IEEE 39th International
Conference on Distributed Computing Sys-
tems (ICDCS). IEEE, ??? (2019). https://
doi.org/10.1109/icdcs.2019.00099

[50] LeCun, Y., Cortes, C., Burges, C.:
MNIST handwritten digit database.
ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010)

[51] Krizhevsky, A.: Learning Multiple Lay-
ers of Features from Tiny Images
(2009). https://www.cs.toronto.edu/kriz/

learning-features-2009-TR.pdf

[52] Shaha, M., Pawar, M.: Transfer learning for
image classification. In: 2018 Second Interna-
tional Conference on Electronics, Communi-
cation and Aerospace Technology (ICECA),
pp. 656–660 (2018). https://doi.org/10.1109/
ICECA.2018.8474802

[53] Huh, M., Agrawal, P., Efros, A.A.: What
makes ImageNet good for transfer learning?
(2016). arXiv:1608.08614

https://doi.org/10.1109/tnet.2020.3035770
https://doi.org/10.1109/tnet.2020.3035770
https://proceedings.mlr.press/v130/haddadpour21a.html
https://proceedings.mlr.press/v130/haddadpour21a.html
{2010.03246}
{2010.03246}
https://doi.org/10.1109/icdcs.2019.00099
https://doi.org/10.1109/icdcs.2019.00099
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/ICECA.2018.8474802
https://doi.org/10.1109/ICECA.2018.8474802
arXiv:1608.08614

Springer Nature 2021 LATEX template

16

Alessandro Giuseppi is an Assistant Profes-
sor (RTDa) in automatica at the Department of
Computer, Control, and Management Engineer-
ing “Antonio Ruberti” (DIAG) of the University
of Rome “La Sapienza,” where he received his
master degree in Control Engineering and his
Ph.D. degree in Automatica respectively in 2016
and 2019. Since 2016, he has participated in 6
other EU and National research projects, mainly
in the fields of Control Systems and Artificial
Intelligence. Currently, he is the scientific coordi-
nator of the ESA-funded research project ARIES,
related to wildfire emergency management and
Work Package Leader in the EU-Korea H2020
project 5G-ALLSTAR. Since 2020 he is serving as
associate editor for the International Journal of
Control, Automation and Systems (Springer). His
main research activities are in the fields of network
control and intelligent systems, where he pub-
lished about 50 papers in international journals
and conferences.

E-mail: giuseppi@diag.uniroma1.it
(Corresponding author)

ORCID iD: 0000-0001-5503-8506

Sabato Manfredi is currently an Associate
Professor of Automatic Control with the Depart-
ment of Electrical Engineering and Information
Technology, University of Naples Federico II,
Naples, Italy. He has been a Visiting Academic
with the Control and Power Group, Electrical
and Electronic Engineering Department, Impe-
rial College London, London, U.K., since 2012.
He has been a Visiting Professor with the School

of Mathematical Sciences, Queen Mary, London,
during 2017–2018. He has authored/coauthored
more than 90 scientific publications including 18
single-author papers and the monograph: Multi-
layer Control of Networked Cyber-Physical Sys-
tems. Application to Monitoring, Autonomous
and Robot Systems (Advances in Industrial Con-
trol Series, Springer, 2017). He collaborates with
many international universities and companies,
holds European patent, is a proponent member of
an academic spin-off, and is involved in a range
of academic, industrial, and consulting projects.
His research interests include automatic control
with a special emphasis on nonlinear and com-
plex networks, distributed control and optimiza-
tion, sensor/drone networks, and new technolo-
gies/algorithms for smart city and cyber–physical
systems.

E-mail: sabato.manfredi@unina.it

Antonio Pietrabissa is Associate Professor at
the Department of Computer, Control, and Man-
agement Engineering “Antonio Ruberti” (DIAG)
of the University of Rome Sapienza, where he
received his degree in Electronics Engineering
and his Ph.D. degree in Systems Engineering
in 2000 and 2004, respectively, and where he
teaches Automatic Control and Process Automa-
tion. Since 2000, he has participated in about
25 EU and National research projects. Currently,
he is the coordinator of the project ARIES on
fire emergency prevention, funded by ESA, and
the scientific responsible of the research projects
5G-ALLSTARS on 5G communications, funded
within the H2020 Europe-South Korea coopera-
tion, and FedMedAI on medical applications of
federated learning, funded by regione Lazio (IT).
He serves as Associate Editor for Control. Eng.
Pract. (Elsevier) and for IEEE Trans. Autom. Sci.
Eng. His research focuses on the application of
systems and control theory to the analysis and

Springer Nature 2021 LATEX template

17

control of networks. He is author of more than 50
journal papers and 80 conference papers.

E-mail: pietrabissa@diag.uniroma1.it

	Introduction
	Related Works
	Background
	Background on Federated Learning
	Background Discrete-time weighted consensus

	Decentralized Federated Learning
	Decentralized Federated Averaging
	Consensus-based Decentralized Federated Learning

	Simulations
	Test 1.A (MNIST): one missing class per client
	Test 1.B (CIFAR-10): Transfer Learning with IID-Data
	Test 2 (MNIST): four random classes per client

	Conclusions and future works

