
Controlled Query Evaluation in OWL 2 QL:
A “Longest Honeymoon” Approach

Piero Bonatti1[0000−0003−1436−5660], Gianluca Cima2[0000−0003−1783−5605],
Domenico Lembo3[0000−0002−0628−242X], Lorenzo Marconi3[0000−0001−9633−8476],
Riccardo Rosati3[0000−0002−7697−4958], Luigi Sauro1[0000−0001−6056−0868], and

Domenico Fabio Savo4[0000−0002−8391−8049]

1 Università di Napoli Federico II
{pab,luigi.sauro}@unina.it

2 University of Bordeaux, CNRS, Bordeaux INP, LaBRI
gianluca.cima@u-bordeaux.fr
3 Sapienza Università di Roma

{lembo,marconi,rosati}@diag.uniroma1.it
4 Università degli Studi di Bergamo

domenicofabio.savo@unibg.it

Abstract. Controlled Query Evaluation (CQE) has been recently stud-
ied in the context of Semantic Web ontologies. The goal of CQE is con-
cealing some query answers so as to prevent external users from infer-
ring confidential information. In general, there exist multiple, mutually
incomparable ways of concealing answers, and previous CQE approaches
choose in advance which answers are visible and which are not. In this
paper, instead, we study a dynamic CQE method, namely, we propose to
alter the answer to the current query based on the evaluation of previous
ones. We aim at a system that, besides being able to protect confidential
data, is maximally cooperative, which intuitively means that it answers
affirmatively to as many queries as possible; it achieves this goal by
delaying answer modifications as much as possible. We also show that
the behavior we get cannot be intensionally simulated through a static
approach, independent of query history. Interestingly, for OWL 2 QL
ontologies and policy expressed through denials, query evaluation under
our semantics is first-order rewritable, and thus in AC0 in data com-
plexity. This paves the way for the development of practical algorithms,
which we also preliminarily discuss in the paper.

Keywords: Ontologies · Data Protection · Description Logics · First-
order rewritability

1 Introduction

Semantic Web technologies are increasingly used to represent and link together
different sources of information coming from public organizations as well as pri-
vate citizens. This information may include sensitive knowledge, e.g. medical
records or social network activities, whose disclosure may affect the privacy of

2 P. Bonatti et al.

individuals if not adequately protected [8,16]. Furthermore, OWL 2 ontologies
allow one to infer implicit information from explicit data, which amplifies the
risk of information leakage.

One goal of confidentiality-preserving data publishing is to prevent the dis-
closure of sensitive information to unauthorized users while being as cooperative
as possible, that is, answering queries honestly whenever this does not harm
confidentiality. Specifically, in controlled query evaluation (CQE) [3,4] the data
protection policy is declaratively specified through logical formulas and is en-
forced by altering query answers through so-called censors, which either refuse
to answer some queries or lie when this is needed to protect some secrets. In gen-
eral, there exist multiple, mutually incomparable ways of concealing answers, i.e.,
mutually incomparable censors. Different works have proposed static CQE meth-
ods, where a censor is constructed (or approximated) beforehand, establishing
once and for all which queries should be answered truthfully [8,15,17,13,11]. In
several cases, such approaches are not fully cooperative, because the secure view
of the data is chosen without taking the users’ interests into account.

Conversely, following the work of Biskup and Bonatti [5], in this paper we
introduce a dynamic CQE (dynCQE) method that progressively decides whether
being truthful or lying, based on the specific stream of queries. Roughly speaking,
the dynamic CQE approach selects, at each step, as many censors as possible,
coherently with the previous answers. By doing so, it maximizes the possibility of
answering the next query honestly by choosing from the current pool of censors
those that allow to answer the query truthfully (if any).

We will prove that this method satisfies the so-called “longest honeymoon”
property, which means that, given a sequence of queries, dynCQE returns the
longest possible sequence of honest answers before lying. This property can be
supported with several arguments. First, without any specific model of the users’
intentions, the order in which queries are posed allegedly reflects their impor-
tance. Secondly, since we cannot foresee which nor how many queries are coming
in the future, answering honestly the current query (if possible) is the most
cooperative possible strategy. We will prove also that dynCQE is optimal in a
more classical sense: the set of queries honestly answered by dynCQE is always
maximal under set containment.

After introducing the dynCQE framework and formally investigating its gen-
eral properties (Section 3), the paper focuses on ontologies in OWL 2 QL [20],
a tractable profile of OWL 2 designed for data-intensive applications. For this
setting, in Section 4, we first show that the behavior of dynCQE cannot be simu-
lated by static CQE through data-independent modifications of the intensional
components of the framework, i.e., the ontology (TBox) and the formulas rep-
resenting the data protection policy. It is thus necessary to devise specific tech-
niques to implement the dynamic approach. To this aim, we provide a tailored
query rewriting algorithm through which we show that dynCQE query processing
in OWL 2 QL is first-order rewritable, which implies that its data complexity
is in AC0 (like the evaluation of first-order sentences, i.e., SQL, queries). To-
wards practical implementations, in Section 5, we present a first optimization

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 3

of the query reformulation technique used to prove the first-order rewritability
result, based on the information acquired by the system during the interaction
with users; we also present a possible approximation of the approach, should the
sequence of queries become too long for our rewriting technique. A section on
related work and one on final remarks conclude the paper.

2 Preliminaries

For the technical treatment we resort to Description Logics (DLs), which are de-
cidable fragments of First-Order (FO) logic underpinning the OWL 2 standard.
We introduce here the basic notions needed in this work and refer the reader
to [1] for further details. The languages of our interest are built from an alphabet
Γ that consists of unary predicates (a.k.a. atomic concepts), binary predicates
(a.k.a. atomic roles), constants (a.k.a. individual names), and a countably in-
finite supply of variables. An atom is a formula of the form A(t) or P (t1, t2),
where A is an atomic concept, P is an atomic role, and the terms t, t1, t2 are
either variables or constants. An atom is ground if all its terms are constants.

A DL ontology O = T ∪ A is constituted by a TBox T and an ABox A,
specifying intensional and extensional knowledge, respectively. In particular, in
this paper we assume that the ABox is a set of ground atoms. A model of an
ontology O = T ∪A is a FO interpretation that satisfies all axioms in T and A.
O is consistent if it has at least one model, inconsistent otherwise, and entails an
FO sentence ϕ, denoted O |= ϕ, if ϕ is true in every model of O. Given an ABox
A and a FO sentence ϕ, we say that ϕ evaluates to true in A if the evaluation of
ϕ in the Herbrand model of A is true [18], otherwise we say that ϕ evaluates to
false in A. In the paper, we often refer to the set of ground atoms entailed by
T ∪ A, which we denote with clT (A).

In this work, we focus on ontologies expressed in DL-LiteR [9], which is the
logical counterpart of OWL 2 QL [19]. In this DL, a role R is an atomic role
P or its inverse P−, whereas a concept B takes the form A, ∃P , or ∃P−. The
concepts ∃P and ∃P− denote the domain and the range of a role P , respectively.
A DL-LiteR TBox T is a set of positive inclusions of the form B1 ⊑ B2 or
R1 ⊑ R2, and negative inclusions of the form B1 ⊑ ¬B2 or R1 ⊑ ¬R2.

By conj(x⃗) we mean a conjunction α1∧ . . .∧αn of atoms where x⃗ indicates all
the variables occurring in it. Then, a Boolean Conjunctive Query (BCQ) is an
existentially quantified conjunction of atoms ∃x⃗(conj(x⃗)) and a Boolean Union
of Conjunctive Queries (BUCQ) is a disjunction q1∨. . .∨qn of BCQs. Sometimes
we write q ∈ q′ to indicate that the BCQ q is one of the BCQs of the BUCQ q′.
Note that a ground atom can be seen as a BCQ with no variables, and that a
BCQ is a BUCQ with only one disjunct.

Given a BCQ q, Atoms(q) is the set of atoms occurring in q. Given two
BUCQs q1 = q11 ∨ . . .∨ qn1 and q2 = q12 ∨ . . .∨ qm2 , we denote by q1∧ q2 the BUCQ

(q11 ∧ q12) ∨ . . . ∨ (q11 ∧ qm2)∨
...

(qn1 ∧ q12) ∨ . . . ∨ (qn1 ∧ qm2) .

4 P. Bonatti et al.

We recall that entailment of BUCQs in DL-LiteR is FO rewritable, i.e., for
every DL-LiteR TBox T and BUCQ q, it is possible to compute an FO query qr,
called the perfect reformulation of q with respect to T , such that, for each ABox
A, T ∪A |= q iff qr evaluates to true in A. We will use the algorithm PerfectRef
presented in [9], which uses only positive inclusions in T as rewriting rules to
compute perfect reformulations. We point out that the reformulation returned
by PerfectRef is a BUCQ. The following proposition is from [9].

Proposition 1. Let T ∪ A be a consistent DL-LiteR ontology and let q be a
BUCQ. Then, T ∪ A |= q iff PerfectRef (q, T) evaluates to true in A.

Furthermore, a policy P is a (finite) set of denials, i.e., sentences of the form
q → ⊥, where q is a BCQ. An interpretation satisfies a denial q → ⊥ iff it does
not satisfy the BCQ q. We denote by q(P) the BUCQ

∨
q→⊥∈P q.

The following proposition follows from the definition of satisfaction of a denial
and from Proposition 1.

Proposition 2. Let T ∪A be a consistent DL-LiteR ontology and let P be a pol-
icy. Then, T ∪P ∪A is a consistent FO theory iff PerfectRef (q(P), T) evaluates
to false in A.

Our complexity results refer to data complexity, i.e., the complexity com-
puted with respect to the size of the ABox only.

3 Framework

We now introduce our framework. All definitions and properties given in this
section apply to any DL language.

A CQE specification is a pair ⟨T ,P⟩, where T is a TBox and P is a policy,
such that T ∪ P is consistent. A CQE instance is a triple E = ⟨T ,P,A⟩, where
⟨T ,P⟩ is a CQE specification, and A is an ABox such that T ∪ A is consistent.

Censors specify which consequences of an ontology can be disclosed without
violating the policy. The following definition is adapted from [11, Definition 1].1

Definition 1 (Censor). Let E = ⟨T ,A,P⟩ be a CQE instance. A censor for E
is an ABox C ⊆ clT (A) such that T ∪ P ∪ C is consistent.

Given a CQE instance E and a censor C for E , we say that C is optimal if
there exists no censor C′ for E such that C ⊂ C′. We denote by OptCens(E) the
set of all the optimal censors for E . We observe that a censor for a CQE instance
E always exists,2 and thus OptCens(E) ̸= ∅. Given a BUCQ q, we denote by
OptCens(E , q) the set of optimal censors that, together with T , entail q:

OptCens(E , q) = {C ∈ OptCens(E) | T ∪ C |= q}
1 Other definitions of censors have been considered in the literature, for example

in [15,17]. Definition 1 is chosen because it yields several important properties, such
as indistinguishability (cf. Section 6), and it has been thoroughly investigated in
various settings (e.g., in [10,11]).

2 Trivially, the empty set is a censor for any CQE instance E .

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 5

The following notion of protection state captures the history of queries sub-
mitted by the users to a CQE instance.

Definition 2 (State). Let E = ⟨T ,P,A⟩ be a CQE instance. A protection
state of E (or simply state of E) is a pair S = ⟨E ,Q⟩, where Q = ⟨q1, . . . , qn⟩
(with n ≥ 0) is a sequence of BUCQs.

Below we formalize our idea of dynamic CQE (dynCQE), i.e., a CQE that
takes into account the sequence of queries that have been already processed. In
what follows, given a CQE instance E , a sequence Qn = ⟨q1, . . . , qn⟩ of BUCQs,
and any integer i ∈ [0, n], we denote with Qi the sequence ⟨q1, . . . , qi⟩ and with
Si the state ⟨E ,Qi⟩ of E , with the convention that Q0 is the empty sequence ⟨⟩.

Definition 3 (Dynamic CQE – dynCQE). Let E = ⟨T ,P,A⟩ be a CQE in-
stance, and let Qn = ⟨q1, . . . , qn⟩ (with n ≥ 0) a sequence of BUCQs. The set
StCens(Sn) of censors of Sn is inductively defined as follows:

– StCens(S0) = OptCens(E);

– StCens(Si+1) =

{
StCens(Si) if StCens(Si) ∩OptCens(E , qi+1) = ∅,
StCens(Si) ∩OptCens(E , qi+1) otherwise,

for every 0 ≤ i ≤ n− 1.

For each BUCQ qi occurring in Qn, we say that qi is entailed by Sn, denoted by
Sn |= qi, if T ∪ C |= qi for every C ∈ StCens(Sn). We denote by EntQ(Sn) the
set of queries of Qn entailed by Sn, i.e., EntQ(Sn) = {q ∈ Qn | Sn |= q}.

One can see that, for any i = 1, . . . , n, the set of censors of a state Si is always
non-empty and consists of a subset of the set of censors in its predecessor state
Si−1, i.e. StCens(Si−1) ⊇ StCens(Si) ⊃ ∅. This also means that EntQ(Si−1) ⊆
EntQ(Si) holds for any i = 1, . . . , n.

Informally speaking, each set StCens(Si) (with 1 ≤ i ≤ n) in the above def-
inition progressively selects the optimal censors of E that agree with EntQ(Si).
If none of the surviving optimal censors in StCens(Si) entails (together with T)
a query qi+1, then Si+1 ̸|= qi+1, so we have that StCens(Si+1) = StCens(Si).
Conversely, if at least one of the censors in StCens(Si), together with the
TBox, entails qi+1, then, according to dynCQE, we have a positive answer, and
StCens(Si+1) keeps only the censors in StCens(Si) that agree with such answer.

As a result, the stream of queries is processed greedily, answering the truth
as long as some of the censors in StCens(Sn) allows to do it (longest honeymoon
approach [5]), as we will formally show below.

Note that, by Definition 3, given a state S = ⟨E ,Q⟩ and a query q occurring
in Q, we have that either T ∪ C |= q for every C ∈ StCens(S), or T ∪ C ̸|= q for
every C ∈ StCens(S). This means that S |= q if and only if there exists a censor
C ∈ StCens(S) such that T ∪ C |= q.

Example 1. Some pharmaceutical products may reveal with high accuracy which
kind of disease is affecting a person. For instance, drugs that contain phenytoin,
or that are classified as anti-seizure medications, indicate some form of epilepsy.

Let E = ⟨T ,P,A⟩ be a CQE instance, where:

6 P. Bonatti et al.

T = {Abc ⊑ Antiseizure};
P = {∃x, y(buy(x, y) ∧ Antiseizure(y))→ ⊥,

∃x, y(buy(x, y) ∧ contain(y, phenytoin))→ ⊥};
A = {buy(john,ma),Abc(ma), buy(alice,mb), contain(mb, phenytoin)}.

In words, the TBox states that Abc is an anti-seizure medication, while the policy
conceals the presence of patients suffering from epilepsy.

Let us start by considering an empty sequence of BUCQs. By definition, we
have that StCens(⟨E , ⟨⟩⟩) coincides with the set of the optimal censors for E :

– C1 = {buy(john,ma), buy(alice,mb)};
– C2 = {buy(john,ma), contain(mb, phenytoin)};
– C3 = {Abc(ma),Antiseizure(ma), buy(alice,mb)};
– C4 = {Abc(ma),Antiseizure(ma), contain(mb, phenytoin)}.

Let q1 = buy(john,ma) be the first query. The censors C1 and C2 agree with
answering true to this query. All the censors that disagree with such answer are
then removed, obtaining StCens(⟨E , ⟨q1⟩⟩) = StCens(⟨E , ⟨⟩⟩) ∩OptCens(E , q1) =
{C1, C2}. Then, let q2 = Abc(ma) be a new query in the sequence. Since neither
T ∪ C1 nor T ∪ C2 entail q2, then StCens(⟨E , ⟨q1, q2⟩⟩) = StCens(⟨E , ⟨q1⟩⟩). Now,
consider to add q3 = ∃xbuy(x,mb) to the sequence. Since T ∪ C1 |= q3 while
T ∪ C2 ̸|= q3, we have StCens(S) = {C1}, where S = ⟨E ,Q⟩ with Q = ⟨q1, q2, q3⟩.
Clearly, S |= q1 and S |= q3, but S ̸|= q2. ⊓⊔

Let E = ⟨T ,P,A⟩ be a CQE instance. For all states S of E , our dynamic CQE
method is optimal with respect to S, in the sense that we have that EntQ(S) is
never strictly contained in the set of queries of S entailed by any censor C for
E . In order to formalize this property, for all states S = ⟨E ,Q⟩ and all censors
C for E , let EntQ(Q, C, T) be the subset of queries of Q entailed by C ∪ T , i.e.
EntQ(Q, C, T) = {q ∈ Q | T ∪ C |= q}.

Proposition 3. Let E = ⟨T ,P,A⟩ be a CQE instance, Q = ⟨q1, . . . , qn⟩ (with
n ≥ 0) be a sequence of BUCQs, and S = ⟨E ,Q⟩. There exists no censor C ∈
OptCens(E) such that EntQ(S) ⊂ EntQ(Q, C, T).

Proof. By contradiction, let such a censor C exist and let i be the least index
such that T ∪C |= qi and qi ̸∈ EntQ(S). By the minimality of i we have that, for
all j ∈ {1, . . . , i−1}, T ∪C |= qj iff qj ∈ EntQ(⟨E , ⟨q1, . . . , qi−1⟩⟩). It follows that
C ∈ StCens(⟨E , ⟨q1, . . . , qi−1⟩⟩). But then, by definition, we should have that C ∈
StCens(⟨E , ⟨q1, . . . , qi⟩⟩), and, consequently, that qi ∈ EntQ(⟨E , ⟨q1, . . . , qi⟩⟩) ⊆
EntQ(S) (a contradiction). ⊓⊔

Moreover, dynCQE is the only way to guarantee that such optimality is preserved
in the future. One might object that answering the current query q honestly
may prevent the system from answering honestly another set of queries Q′ in
the future. However, the queries in Q′ might never be submitted, so any censor
that conceals the answer to q now might remain sub-optimal in the future. This
may happen no matter how many additional queries are submitted by the users.
Formally, we have:

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 7

Proposition 4. Let E = ⟨T ,P,A⟩ be a CQE instance, Q = ⟨q1, . . . , qn⟩ be a se-
quence of BUCQs, and S = ⟨E ,Q⟩. For all BUCQs qn+1, and for all censors C in
StCens(S)\StCens(⟨E ,Q◦⟨qn+1⟩⟩)3, there exist queries qn+2, qn+3, . . . , qn+k, . . .
such that EntQ(⟨q1, . . . , qi⟩, C, T) ⊂ EntQ(⟨E , ⟨q1, . . . , qi⟩⟩) for all i > n.

In the above proposition, the hypothesis C ∈ StCens(S)\StCens(⟨E ,Q◦⟨qn+1⟩⟩)
implies that qn+1 can be given a positive answer without disclosing any protected
data, but C does not allow a positive answer to qn+1.

Another property of dynamic CQE is that the first answer modification oc-
curs as late as possible (longest honeymoon property). The following notion of
maximal cooperativity implies and strengthens the longest honeymoon property.

Definition 4 (Cooperativity). Let E = ⟨T ,P,A⟩ be a CQE instance, Q =
⟨q1, . . . , qn⟩ (with n ≥ 0) a sequence of BUCQs, and C and C′ two censors for
E. We say that C is more cooperative than C′ with respect to Q if there exists a
non-negative natural number m < n such that

– T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi for every 1 ≤ i ≤ m, and
– T ∪ C |= qm+1 and T ∪ C′ ̸|= qm+1.

We also say that C is maximally cooperative with respect to Q if there does
not exist any censor C′′ for E that is more cooperative than C.

The following intermediate result shows that a state of a CQE instance cannot
discriminate between two optimal censors if they have answered all the queries
posed so far in the same way.

Lemma 1. Let E = ⟨T ,P,A⟩ be a CQE instance, Q = ⟨q1, . . . , qn⟩ (with n ≥ 0)
be a sequence of BUCQs, and C and C′ be two optimal censors for E such that
T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi, for all i ∈ {1, . . . , n}. Then, C ∈ StCens(⟨E ,Q⟩) iff
C′ ∈ StCens(⟨E ,Q⟩).

Proof. The proof is by induction on the length of Q.
Case n = 0. Since Q is empty, both C and C′ are in StCens(⟨E ,Q⟩).
Case n ≥ 1. In this case Q = Q′ ◦ ⟨qn⟩, where Q′ = ⟨q1, . . . , qn−1⟩. From

the assumption T ∪ C |= qi iff T ∪ C′ |= qi, for all i ∈ {1, . . . , n}, the following
two facts hold: (i) C ∈ OptCens(E , qn) iff C′ ∈ OptCens(E , qn); (ii) by IH, C ∈
StCens(⟨E ,Q′⟩) iff C′ ∈ StCens(⟨E ,Q′⟩). Then, since StCens(⟨E ,Q⟩) is by Defi-
nition 3 equal either to StCens(⟨E ,Q′⟩) or to StCens(⟨E ,Q′⟩) ∩OptCens(E , qn),
we have the thesis. ⊓⊔

Then, we prove that for all states S = ⟨E ,Q⟩ of a CQE instance, the set
StCens(S) coincides with the set of all censors that are maximally cooperative
with respect to Q.

Theorem 1. Let E = ⟨T ,P,A⟩ be a CQE instance, and Q = ⟨q1, . . . , qn⟩ (with
n ≥ 0) be a sequence of BUCQs. A censor C for E is maximally cooperative with
respect to Q iff C ∈ StCens(⟨E ,Q⟩).
3 With Q ◦ ⟨qn+1⟩ we denote the sequence ⟨q1, . . . , qn, qn+1⟩.

8 P. Bonatti et al.

Proof. We start by showing that every C ∈ StCens(⟨E ,Q⟩) is maximally cooper-
ative with respect to Q. Let Sh = ⟨E , ⟨q1, . . . , qh⟩⟩, with h ≤ n, and assume by
contradiction that, for some C ∈ StCens(Sn), there exists an optimal censor C′
and a number m < n such that (i) T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi, for each i ≤ m,
and (ii) T ∪ C ̸|= qm+1 and T ∪ C′ |= qm+1.

Note that the sets StCens(Sh) form by construction a descending ⊆-chain,
hence C is in StCens(Sm). Then, from (i) and Lemma 1, C′ ∈ StCens(Sm) too.

From (ii) we have that C′ occurs in OptCens(E , qm+1) whereas C does
not. Then, on the one hand, since C′ ∈ StCens(Sm) ∩ OptCens(E , qm+1),
StCens(Sm+1) is equal by definition to StCens(Sm)∩OptCens(E , qm+1). On the
other hand, StCens(Sm+1) does not contain C, as C is not in OptCens(E , qm+1).
But this means that also StCens(Sn) does not contain C, a contradiction.

Now, we show that if a censor C for E is maximally cooperative w.r.t. Q, then
C ∈ StCens(⟨E ,Q⟩). By contradiction, assume that C ̸∈ StCens(⟨E ,Q⟩). So, there
exists in Q = ⟨q1, . . . , qn⟩ a query qi such that C ∈ StCens(⟨E , ⟨q1, ..., qi−1⟩⟩) \
StCens(⟨E , ⟨q1, ..., qi⟩⟩). Hence, there exists a censor C′ ∈ StCens(⟨E , ⟨q1, ..., qi⟩⟩)
such that T ∪C′ |= qi, while T ∪C ̸|= qi and such that T ∪C′ |= qj ⇐⇒ T ∪C |= qj
for every 1 ≤ j ≤ i−1. So, by Definition 4, C′ is more cooperative than C, which
contradicts the fact that C is maximally cooperative. ⊓⊔

We conclude this section by comparing our new semantics of entailment with
some other semantics from the literature. A first proposed strategy is arbitrarily
choosing an optimal censor [6,13,14]. In this case, it might happen, as also stated
by Proposition 4, that one looses optimality with respect to the state S. For
instance, if one arbitrarily picks censor C2 in Example 1, then EntQ(Q, C2, T) ⊂
EntQ(S). On the other hand, when the chosen censor C turns out to be optimal
with respect to a state S, then, due to Theorem 1, either C ∈ StCens(S) or C is
not maximally cooperative with respect to Q.

Other two CQE semantics proposed in literature are: (i) skeptical reason-
ing [13,17], where a query q is entailed by a CQE instance E = ⟨T ,P,A⟩,
denoted by E |= q, if it is entailed by all the optimal censors for E together with
the TBox, i.e., T ∪ C |= q for each C ∈ OptCens(E), and (ii) its approximation,
called IGA semantics [10], under which q is entailed – in symbols, E |=IGA q –
if it is entailed by T ∪ CIGA, where CIGA is the intersection of all the optimal
censors for E , i.e, CIGA =

⋂
C∈OptCens(E) C. The following proposition shows that

skeptically reasoning over all optimal censors is always a sound approximation
of dynCQE.

Proposition 5. Let E = ⟨T ,P,A⟩ be a CQE instance, Q = ⟨q1, . . . , qn⟩ (with
n ≥ 0) be a sequence of BUCQs, and q be a BCQ in Q. We have that E |=IGA

q =⇒ E |= q =⇒ ⟨E ,Q⟩ |= q. The converse does not necessarily hold.

Proof. Suppose that E |=IGA q. By [10, Proposition 1], we already know that
E |= q. Now, since E |= q by definition means that T ∪ C |= q holds for each
C ∈ StCens(S) ⊆ OptCens(E), we trivially have that ⟨E ,Q⟩ |= q.

As for the converse, consider Example 1. We have that ⟨E ,Q⟩ |= q1 but
E ̸|= q1 (and thus, also E ̸|=IGA q1) because T ∪ C3 ̸|= q1. ⊓⊔

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 9

4 First-order Rewritability of Query Entailment

We now move to the study of computational complexity of query entailment. In
this investigation, we focus on DL-LiteR CQE specifications, i.e., whose TBox
and ABox are expressed in DL-LiteR.

A first way to solve query entailment in a state might consist in finding a re-
duction to the stateless CQE approach, for which algorithms are already known.
It turns out, however, that the behavior of dynCQE cannot be intensionally sim-
ulated by a stateless CQE instance, independent of query history.

Theorem 2. There exist a DL-LiteR CQE specification ⟨T ,P⟩ and a BUCQ q
such that there exist no DL-LiteR CQE specification ⟨T ′,P ′⟩ such that, for every
ABox A, OptCens(⟨T ′,P ′,A⟩) = StCens(S), where S = ⟨⟨T ,P,A⟩, ⟨q⟩⟩.

Proof. Let T = ∅, let P = {C(x) ∧ D(x) → ⊥}, and let q = ∃xC(x). By
contradiction, suppose there exist a TBox T ′ and a policy P ′ such that, for
every ABox A, OptCens(⟨T ′,P ′,A⟩) = StCens(S).

Now consider the ABox A = {C(a1), C(a2), D(a1), D(a2)}, where a1, a2
are individual names that do not appear in P ′. The optimal censors for
⟨T ,P,A⟩ are C1 = {C(a1), C(a2)}, C2 = {C(a1), D(a2)}, C3 = {D(a1), C(a2)},
C4 = {D(a1), D(a2)}. Among such optimal censors, only C4 does not sat-
isfy q. Therefore, StCens(S) = {C1, C2, C3}. Since by hypothesis StCens(S) =
OptCens(⟨T ′,P ′,A⟩), it follows that T ′∪P ′∪C4 is inconsistent and T ′∪P ′∪C3
is consistent. Consequently, by Proposition 2, PerfectRef (q(P ′), T ′) evaluates to
true in C4 and evaluates to false in C3.

On the other hand, it is immediate to see that, for every BUCQ q that does
not mention individual names in A, q evaluates to true in C4 only if q evaluates
to true in C3. Consequently, PerfectRef (q(P ′), T ′) evaluates to true in C4 only if
PerfectRef (q(P ′), T ′) evaluates to true in C3. Thus we get a contradiction. ⊓⊔

We now study the data complexity of the query entailment problem in a state,
i.e., given a state S = ⟨E ,Q⟩ of a CQE instance E = ⟨T ,P,A⟩, the problem of
checking whether a BUCQ q in Q belongs to EntQ(S). In particular, we prove
that this problem is FO rewritable, and, so, that it is in AC 0 in data complexity.

We start by showing a fundamental property of query entailment in a state,
which holds for all DLs.

Theorem 3. Let E = ⟨T ,P,A⟩ be a CQE instance, Q = ⟨q1, . . . , qn⟩ be a
sequence of BUCQs, and let S = ⟨E ,Q⟩. For every i such that 1 ≤ i ≤ n,
qi ∈ EntQ(S) iff there exists a censor C for E such that

T ∪ C |=
(∧
q∈EntQ(Si−1)

q
)
∧ qi

Proof. (⇐:) Suppose there exists a censor C for E such that T ∪ C |=
(
∧

q∈EntQ(Si−1)
q)∧ qi. Then, it follows immediately that there exists an optimal

censor C′ for E such that C′ ⊃ C, consequently T ∪ C′ |= (
∧

q∈EntQ(Si−1)
q) ∧ qi.

Hence, by Definition 3, C′ ∈ StCens(⟨E , ⟨q1, . . . , qi⟩⟩). Therefore, qi ∈ EntQ(S).

10 P. Bonatti et al.

(⇒:) Suppose qi ∈ EntQ(S). Now, let C′ be an optimal censor for E such
that C′ ∈ StCens(S). We have that T ∪ C′ |= q for every q ∈ EntQ(S), and
since qi ∈ EntQ(S) and EntQ(Si−1) ⊆ EntQ(S), it follows that T ∪ C′ |=
(
∧

q∈EntQ(Si−1)
q) ∧ qi, thus proving the thesis. ⊓⊔

Given a BUCQ q and an ABox A, we say that an image of q in A is a minimal
subset A′ of A such that A′ |= q. Furthermore, given a BUCQ q, a TBox T and
an ABox A, we say that an image of q in A with respect to T is a minimal subset
A′ of A such that T ∪ A′ |= q.

Theorem 4. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance and Q =
⟨q1, . . . , qn⟩ (with n ≥ 0) be a sequence of BUCQs. For every i such that 1 ≤ i ≤
n, qi ∈ EntQ(S) iff there exists an image IM of PerfectRef ((

∧
q∈EntQ(Si−1)

q)∧
qi, T) in clT (A) such that PerfectRef (q(P), T) evaluates to false in IM .

Now observe that: (i) clT (A) can be computed in PTIME w.r.t. data com-
plexity; (ii) every image of a BUCQ q has a size that is not larger than the
length of the longest BCQ in q; (iii) such a maximum length is a constant w.r.t.
data complexity; (iv) all the conditions in the theorem can be verified in PTIME
with respect to data complexity [9]. This implies that the entailment problem in
a state can be decided in PTIME w.r.t. data complexity.

In the following, we provide a tighter upper bound, showing that this en-
tailment problem is in AC 0 in data complexity. We do so by proving that the
problem is FO rewritable. That is, for every BUCQ q of the state, there exists
an FO query q′ that does not depend on the ABox and is such that q is entailed
in the state iff q′ evaluates to true in the ABox.

To this purpose, we will find an FO query that depends on the intensional
part of the state, i.e., the TBox, the policy and the sequence of queries, and such
that its evaluation on the ABox is true if and only if the condition expressed
in Theorem 4 holds (Theorem 7). We will make two intermediate steps towards
this result: first (Theorem 5), given a query q on a DL-LiteR CQE specification
⟨T ,P⟩, we will find a query denoted by BraveRef (q, T ,P) whose evaluation on
clT (A) corresponds to checking the existence of an optimal censor C for the CQE
instance ⟨T ,P,A⟩ such that T ∪ C |= q; then (Theorem 6), we will find an FO
query such that its evaluation on clT (A) is true if and only if the condition
expressed in Theorem 4 holds.

Given two BCQs q and q′, a mapping of q′ into q is a function h : Atoms(q′)→
Atoms(q) such that there exists a most general unifier σh such that, for every
atom α ∈ Atoms(q′), σh(α) = σh(h(α)). Such a most general unifier (variable
substitution) assigns variables occurring either in q′ or in q to either variables of
q or constants. We denote by Map(q′, q) the set of all the mappings of q′ into q.

Furthermore, we denote by σh[q] the variable substitutions of σh limited to
variables occurring in q. For instance, if q = ∃x, y, zR(x, y, z), q′ = ∃x′R(x′, x′, a)
(where a is a constant and all other arguments are variables), then σh = {x′ ←
x, y ← x, z ← a} and σh[q] = {y ← x, z ← a}.

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 11

Given two BCQs q and q′, we denote by Unify(q, q′) the formula:∨
h∈Map(q′,q)

(∧
x←t ∈σh[q]

x = t
)

Definition 5. Given a BUCQ q, a DL-LiteR TBox T and a policy P, we define
BraveRef (q, T ,P) as the FO sentence:∨

qr∈PerfectRef (q,T)

∃x⃗r
(
conjr(x⃗r) ∧ ¬

(∧
qd∈PerfectRef (q(P),T)

Unify(qr, qd)
))

(where we assume qr = ∃x⃗r(conjr(x⃗r))).

We now establish the fundamental property of the above query reformulation
function BraveRef .

Theorem 5. Let ⟨T ,P⟩ be a DL-LiteR CQE specification. For every ABox
A, there exists an optimal censor C for ⟨T ,P,A⟩ such that T ∪ C |= q iff
BraveRef (q, T ,P) evaluates to true in clT (A).

Then, we use BraveRef to define the new query reformulation function
StateRef as follows.

Definition 6. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance, Q = ⟨q1, . . . , qn⟩
(with n ≥ 0) be a sequence of BUCQs, let i be such that 1 ≤ i ≤ n, and let
I ⊆ {1, . . . , i − 1}: I represents the set of indexes of the queries that precede
query qi in Q and that are guessed to be true in the state S = ⟨E ,Q⟩. We define
StateRef (S, i, I) as the FO sentence:(∧

1 ≤ j ≤ i− 1
∧ j ̸∈ I

¬BraveRef ((
∧

ℓ∈I ∧ ℓ<j

qℓ)∧ qj , T ,P)
)
∧BraveRef ((

∧
ℓ∈I

qℓ)∧ qi, T ,P)

As an example, consider the DL-LiteR CQE instance E = ⟨T ,P,A⟩ and the
query sequence Q = ⟨q1, q2, q3⟩ of Example 1, and let us set i = 3 and I = {1}.
We have that StateRef (⟨E ,Q⟩, i, I) is the FO sentence ¬BraveRef (q1∧q2, T ,P)∧
BraveRef (q1 ∧ q3, T ,P) = ¬(buy(john,ma) ∧ Abc(ma) ∧ ¬(∃z, w(buy(z, w) ∧
Abc(w) ∧ z = john ∧ w = ma))) ∧ ∃x(buy(john,ma) ∧ buy(x,mb)).

The query reformulation function StateRef allows for reducing query entail-
ment in a state to evaluating an FO query, as stated by the following property.

Theorem 6. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance, Q = ⟨q1, . . . , qn⟩
(with n ≥ 0) be a sequence of BUCQs. For every i such that 1 ≤ i ≤ n, qi ∈
EntQ(S) iff the following FO sentence evaluates to true in clT (A):∨

I∈℘({1,...,i−1})

StateRef (S, i, I),

where ℘({1, . . . , i− 1}) denotes the powerset of {1, . . . , i− 1}.

12 P. Bonatti et al.

The last two theorems show the FO rewritability of the problems studied on
clT (A). We now modify the respective reformulations to evaluate them directly
on the ABox A and thus produce "genuine" FO rewritability results.

In what follows we will make use of the algorithm AtomRewr provided in [13],
that we now briefly describe. Given an FO sentence ϕ and a DL-LiteR TBox T ,
AtomRewr(ϕ, T) computes the FO sentence obtained from ϕ by replacing every
atom α = p(x⃗) (where x⃗ are all the variables occurring in α) with the disjunction
of atoms corresponding to the perfect rewriting of the non-Boolean atomic query
qα = {x⃗ | p(x⃗)} with respect to T .

For our purposes, we recall the key property of AtomRewr provided in [13].

Proposition 6. For every FO sentence ϕ, DL-LiteR TBox T , and ABox A, ϕ
evaluates to true in clT (A) iff AtomRewr(ϕ, T) evaluates to true in A.

Now, Proposition 6 and Theorem 6 immediately imply the next property.

Theorem 7. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance, Q = ⟨q1, . . . , qn⟩
be a sequence of BUCQs. For every i such that 1 ≤ i ≤ n, qi ∈ EntQ(S) iff the
following FO sentence evaluates to true in A:

AtomRewr(
∨

I∈℘({1,...,i−1})

StateRef (S, i, I), T)

The previous theorem shows the FO rewritability of the problem of entail-
ment of BUCQs in a state.

Example 2. Let E and Q = ⟨q1, q2, q3⟩ be as in Example 1. According to Theo-
rem 7, the query q3 = ∃xbuy(x,mb) belongs to EntQ(⟨E ,Q⟩) if and only if the FO
sentence below evaluates to true in A (fI denotes the sub-formula considering
the guess I of the indexes of the queries that precede the query q3):

AtomRewr(
∨

I∈℘({1,2}) StateRef (⟨E ,Q⟩, i, I), T) =
fI=∅ ¬BraveRef (q1, T ,P) ∧ ¬BraveRef (q2, T ,P) ∧ BraveRef (q3, T ,P)∨
fI={1} ¬BraveRef (q1 ∧ q2, T ,P) ∧ BraveRef (q1 ∧ q3, T ,P)∨
fI={2} ¬BraveRef (q1, T ,P) ∧ BraveRef (q2 ∧ q3, T ,P)∨
fI={1,2} BraveRef (q1 ∧ q2 ∧ q3, T ,P) =
fI=∅ ¬buy(john,ma) ∧ ¬Abc(ma) ∧ ∃xbuy(x,mb)∨
fI={1} ¬(buy(john,ma) ∧ Abc(ma) ∧ ¬(∃z, w(buy(z, w) ∧ Abc(w)∧

z = john ∧ w = ma))) ∧ ∃x(buy(john,ma) ∧ buy(x,mb))∨
fI={2} ¬(buy(john,ma)) ∧ (∃x(Abc(ma) ∧ buy(x,mb)))∨
fI={1,2} ∃x(buy(john,ma) ∧ Abc(ma) ∧ buy(x,mb))∧

¬(∃z, w(buy(z, w) ∧ Abc(w) ∧ z = john ∧ w = ma))

which, indeed, evaluates to true in A thanks to fI={1}. ⊓⊔

5 Towards Practical Techniques and Approximations

We now provide a simplification of the query rewriting presented in Theorem 7.
In particular, in a real maximally collaborative CQE system, the answers to

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 13

the queries already executed (i.e., the queries belonging to the state) can obvi-
ously be stored and re-used when the next query is submitted. This allows for
greatly simplifying the structure of the FO reformulation of the query defined
in Theorem 7, as shown in the following.

Theorem 8. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance, Q = ⟨q1, . . . , qn⟩
be a sequence of BUCQs, let S = ⟨E ,Q⟩, let qn+1 be a BUCQ, and let S ′ =
⟨E , ⟨q1, . . . , qn, qn+1⟩⟩. Then, qn+1 is entailed by S ′ iff the following FO sentence
evaluates to true in A:

AtomRewr(BraveRef ((
∧

qi∈EntQ(S)

qi) ∧ qn+1, T ,P), T)

Proof. Suppose S ′ |= qn+1, i.e. EntQ(S ′) = EntQ(S) ∪ {qn+1}. By Theo-
rem 7, the sentence ψ = AtomRewr(StateRef (S ′, n + 1, I), T) evaluates to
true in A, where I = {i | qi ∈ EntQ(S ′)}. Consequently, the sentence
AtomRewr(BraveRef ((

∧
qi∈EntQ(S) qi)∧ qn+1, T ,P), T) is equal to the last con-

junct of ψ, and therefore evaluates to true in A as well.
Suppose now S ′ ̸|= qn+1. From Theorem 7, we have that the sentence

AtomRewr(StateRef (S ′, n + 1, I), T) evaluates to false in A, where I = {i |
qi ∈ EntQ(S)}. Since EntQ(S) is the set of BUCQ from ⟨q1, . . . , qn⟩ entailed by
S, all the conjuncts of AtomRewr(StateRef (S ′, n+ 1, I), T) except the last one
evaluate to true in A. This means that its last conjunct evaluates to false in A.
Such a conjunct is equal to the sentence AtomRewr(BraveRef ((

∧
qi∈EntQ(S) qi)∧

qn+1, T ,P), T), which proves the thesis. ⊓⊔

Example 3. Let E and the queries q1, q2, and q3 be as in Example 1. Con-
sider the sequence of queries Q = ⟨q1, q2⟩. From Example 1, we know that only
q1 = buy(john,ma) belongs to EntQ(⟨E ,Q⟩). Hence, according to Theorem 8,
the query q3 = ∃xbuy(x,mb) is entailed by the state ⟨E ,Q ◦ {q3}⟩ if and only if
the FO sentence ∃x(buy(john,ma) ∧ buy(x,mb)) evaluates to true in A. ⊓⊔

An issue that the query rewriting technique of Theorem 8 does not solve is
the scalability w.r.t. the number of submitted queries, which might become too
large to make the FO query produced by the rewriting executable in practice. On
the other hand, Theorem 2 shows that it is not always possible to intensionally
simulate dynCQE by using a stateless CQE specification, i.e., through an ABox-
independent transformation of the intensional part of a CQE instance.

To overcome the above issue, a possible approach is to materialize a censor C
of the current state S of the CQE instance, and then evaluate the next queries
over the ontology T ∪ C. If the current state S has multiple censors, evaluating
a query over T ∪ C is only an approximation of the query entailment through
dynCQE, i.e., in the corresponding state. More precisely: as long as the materi-
alized system processes only queries entailed by T ∪ C (i.e., it always answers
“yes”), it returns exactly the same answers provided by dynCQE. The first time
it processes a query q non-entailed by T ∪ C (i.e., it answers “no”), its behaviour
might differ from the dynamic approach, where q might be either entailed or not

14 P. Bonatti et al.

entailed (depending on how the censors of the states evolve). After the first neg-
ative answer, the system using C might answer “yes” (resp. “no”) to a subsequent
query q even if the state does not entail (resp. entail) q. Obviously, if the state
S has the only censor C, then T ∪ C and the dynCQE system will have the same
behaviour. Below we describe how to materialize a censor of a state.

1. Split the FO query of Theorem 8, execute only one q′ ∈
PerfectRef (EntQ(S) ∪ {q}, T) at a time, and turn all the variables
appearing in AtomRewr(q′, T) as free variables.

2. As soon as one of such queries is true in A, we can construct (through the
corresponding binding of the free variables of the query) an image of this
query in A. Let A′ be such a subset of A.

3. P ∪A′ is consistent, so there exists at least one censor C of S that contains
A′. One such censor can be computed by first setting C = A′, and then, as
long as it possible, by iteratively adding to C ground atoms γ from clT (A)\A′
such that T ∪ P ∪ C ∪ {γ} is consistent.

6 Related Work

As shown in [11], the censors introduced in Definition 1 enjoy the indistinguisha-
bility property, that is, for all CQE instances E = ⟨T ,P,A⟩ and all censors C for
E , there exists an ABox A′ that entails no secrets, such that C is also a censor
for E = ⟨T ,P,A′⟩. Such censors are called indistinguishability-based (IB) be-
cause the instances with A and A′ cannot be distinguished based on the answers
allowed by C. IB censors are secure against attackers that know the censor’s
algorithm. In particular, even if the attackers could compute the ABoxes that
yield C, using their knowledge about the algorithm, the ABox A′ would prevent
them from inferring any secret.

Benedikt et al. [2] provide, for OBDA settings, a systematic complexity anal-
ysis of confidentiality preserving query answering based on indistinguishability.
They do not address the issue of selecting a secure data disclosure among the
available ones. IB censors in OBDA are also considered in [10], where a practical
approach to skeptical reasoning in CQE is presented. Differently from our ap-
proach, in [10] censors do not take into account the history of the users’ queries.

In [13], IB censors are compared with so-called confidentiality preserving
(CP) censors, that in general do not enjoy the indistinguishability property.
Moreover, [13] introduces algorithms and complexity results for skeptical rea-
soning in CQE, i.e., the problem of computing only the query answers that are
returned by all IB censors. By definition, the skeptical CQE method is generally
less cooperative than the dynamic method introduced and analyzed in this paper
(Theorem 5). In [12], policies have been extended with numerical restrictions,
and it is proved that this extension preserves FO rewritability.

The first IB CQE method for Description Logics was introduced in [8]. Its
confidentiality model is more robust and general, as it takes into account both
object-level and meta-level background knowledge of the attacker. However, CQ
answering and FO rewritability are not addressed. Moreover, the secure views of

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 15

[8] are constructed from a sequence of queries that covers all possible relevant
queries, while the properties we investigate here hold for arbitrary (possibly
non-exhaustive) sequences of queries submitted by the users.

The issue of how to select an optimal censor has been tackled in [11]. The se-
lection criterion is based on explicit preferences over predicates, that are specified
together with the CQE instance. This approach, in general, is neither maximally
cooperative nor optimal w.r.t. a given state, because the optimal censor is se-
lected statically, in a stateless fashion. Moreover, the given preferences are not
always able to select a single optimal censor.

Other CQE approaches based on censors, such as CP censors, in general do
not enjoy the indistinguishability property [15,17], which makes them vulnerable
to attacks based on knowledge of the CQE algorithm. Moreover, they do not ad-
dress dynamic query-based censor selection. See [8] for a list of earlier approaches
with similar features focused on publishing secure subsets of the ontology. Two
nice abstract analyses of censors properties can be found in [22,21].

Finally, Cuenca Grau et al. [16] introduce and investigate an anonymization
framework for knowledge graphs based on substituting nodes with blanks.

7 Conclusions

In this paper, we have presented a maximally cooperative approach to controlled
query evaluation in OWL and Description Logic ontologies. We have shown
that the approach is computationally not harder than the previous static and
less cooperative approaches to CQE. Moreover, we have defined a new query
rewriting algorithm to solve the query entailment problem in this framework.

The present work can be extended in several interesting directions. First,
while the presented results indicate the possibility of a query rewriting approach
to dynamic CQE, more work is still needed to define a practical query answering
technique and to extend it to non-Boolean UCQs.

Then, the policy language adopted in this paper (set of denials) can be ex-
tended to encompass more expressive data protection policies. One step towards
this direction, although in the context of static CQE, has been presented e.g. in
[12]: it would be interesting to see whether dynCQE can also be extended in a
similar way. Finally, it would be interesting to study the computational prop-
erties of dynamic CQE in ontology languages different from OWL 2 QL and
DL-LiteR, in particular in the other lightweight profiles of OWL 2.

Supplemental Material Statement: For complete proofs of our results we refer
the reader to an extended version of the present paper [7].

Acknowledgements This work was partly supported by the EU within the
Horizon Europe Programme under the Glaciation project (ref. no. 101070141)
and within the H2020 Programme - ERA-NET Cofund ICT-AGRI-FOOD under
the ADCATER Project (ref. no. 862665).

16 P. Bonatti et al.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. M. Benedikt, B. Cuenca Grau, and E. V. Kostylev. Logical foundations of in-
formation disclosure in ontology-based data integration. Artif. Intell., 262:52–95,
2018.

3. J. Biskup. For unknown secrecies refusal is better than lying. Data and Knowledge
Engineering, 33(1):1–23, 2000.

4. J. Biskup and P. A. Bonatti. Controlled query evaluation for enforcing confidential-
ity in complete information systems. Int. J. of Information Security, 3(1):14–27,
2004.

5. J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by
combining lying and refusal. Ann. Math. Artif. Intell., 40(1-2):37–62, 2004.

6. J. Biskup and P. A. Bonatti. Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell., 50(1–2):39–77, 2007.

7. P. Bonatti, G. Cima, D. Lembo, L. Marconi, R. Rosati, L. Sauro, and D. F.
Savo. CQE in OWL 2 QL: A "longest honeymoon" approach (extended version).
arXiv:2207.11155, 2022.

8. P. A. Bonatti and L. Sauro. A confidentiality model for ontologies. In Proc. of
ISWC 2013, volume 8218 of LNCS, pages 17–32. Springer, 2013.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

10. G. Cima, D. Lembo, L. Marconi, R. Rosati, and D. F. Savo. Controlled query
evaluation in ontology-based data access. In Proc. of ISWC 2020, volume 12506
of LNCS, pages 128–146. Springer, 2020.

11. G. Cima, D. Lembo, L. Marconi, R. Rosati, and D. F. Savo. Controlled query
evaluation over prioritized ontologies with expressive data protection policies. In
Proc. of ISWC 2021, volume 12922 of LNCS, pages 374–391. Springer, 2021.

12. G. Cima, D. Lembo, L. Marconi, R. Rosati, D. F. Savo, and D. Sinibaldi. Controlled
query evaluation over ontologies through policies with numerical restrictions. In
Proc. of AIKE 2021, pages 33–36. IEEE, 2021.

13. G. Cima, D. Lembo, R. Rosati, and D. F. Savo. Controlled query evaluation in
description logics through instance indistinguishability. In Proc. of IJCAI 2020,
pages 1791–1797, 2020.

14. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled
query evaluation over OWL 2 RL ontologies. In Proc. of ISWC 2013, volume 8218
of LNCS, pages 49–65. Springer, 2013.

15. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled
query evaluation for datalog and OWL 2 profile ontologies. In Proc. of IJCAI 2015,
pages 2883–2889, 2015.

16. B. Cuenca Grau and E. V. Kostylev. Logical foundations of linked data anonymi-
sation. J. Artif. Intell. Res., 64:253–314, 2019.

17. D. Lembo, R. Rosati, and D. F. Savo. Revisiting controlled query evaluation in
description logics. In Proc. of IJCAI 2019, pages 1786–1792, 2019.

18. J. W. Lloyd. Foundations of Logic Programming (Second, Extended Edition).
Springer, Berlin, Heidelberg, 1987.

CQE in OWL 2 QL: A “Longest Honeymoon” Approach 17

19. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2
Web Ontology Language profiles (second edition). W3C Recommendation, W3C,
Dec. 2012. Available at http://www.w3.org/TR/owl2-profiles/.

20. B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. Cuenca Grau. OWL Web
Ontology Language profiles. W3C Recommendation, W3C, Oct. 2009. Available
at http://www.w3.org/TR/owl-profiles/.

21. T. Studer. No-go theorems for data privacy. CoRR, abs/2005.13811, 2020.
22. T. Studer and J. Werner. Censors for boolean description logic. Trans. Data

Privacy, 7(3):223–252, 2014.

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl-profiles/

	Controlled Query Evaluation in OWL 2 QL: A ``Longest Honeymoon'' Approach

