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Abstract: Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM),
dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular car-
diomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger
populations. Accurate risk stratification is hampered by the variability in phenotypic expression and
genetic heterogeneity inherent in these conditions. This article explores the multifaceted strategies
for preventing SCD across a spectrum of cardiomyopathies and emphasizes the integration of clinical
evaluations, genetic insights, and advanced imaging techniques such as cardiac magnetic resonance
(CMR) in assessing SCD risks. Advanced imaging, particularly CMR, not only enhances our under-
standing of myocardial architecture but also serves as a cornerstone for identifying at-risk patients.
The integration of new research findings with current practices is essential for advancing patient care
and improving survival rates among those at the highest risk of SCD. This review calls for ongoing
research to refine risk stratification models and enhance the predictive accuracy of both clinical and
imaging techniques in the management of cardiomyopathies.

Keywords: cardiomyopathies; sudden cardiac death; cardiovascular prevention; risk stratification

1. Introduction

Sudden cardiac death (SCD) prevention in cardiomyopathies, such as hypertrophic
(HCM) (OMIM #192600), dilated (DCM) (OMIM #115200), non-dilated left ventricular
(NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) (OMIM #107970),
remains a crucial but complex clinical challenge, especially among younger populations [1].
Accurate risk stratification is hampered by the variability in phenotypic expression and
genetic heterogeneity inherent in these conditions. This article explores the multifaceted
strategies for preventing SCD across a spectrum of cardiomyopathies and emphasizes
the integration of clinical evaluations, genetic insights, and advanced imaging techniques
such as cardiac magnetic resonance (CMR) in assessing SCD risks. Advanced imaging,
particularly CMR, not only enhances our understanding of myocardial architecture but
also serves as a cornerstone for identifying at-risk patients. The integration of new research
findings with current practices is essential for advancing patient care and improving
survival rates among those at the highest risk of SCD [2,3].
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2. Materials and Methods

A comprehensive literature search was conducted using the PubMed database to
identify relevant studies on cardiomyopathies (HCM, DCM, NDLCM, and ARVC) and
sudden cardiac death (SCD). The search included articles published from January 2000
to December 2023. The keywords used were “hypertrophic cardiomyopathy”, “dilated
cardiomyopathy”, “non-dilated left ventricular cardiomyopathy”, “arrhythmogenic right
ventricular cardiomyopathy”, “sudden cardiac death”, “risk stratification”, “implantable
cardioverter-defibrillator”, and “cardiac magnetic resonance”. Additional articles were
identified through manual searches of reference lists from key articles and reviews. Only
studies published in English were considered. Studies were included if they met specific
criteria: they had to be original research articles, reviews, or meta-analyses focused on any
of the specified cardiomyopathies (HCM, DCM, NDLCM, and ARVC) and their association
with sudden cardiac death. They needed to discuss risk factors, genetic insights, and
advanced imaging techniques, particularly cardiac magnetic resonance (CMR), and provide
data on clinical outcomes and risk stratification models. We excluded studies that were not
related to the specified cardiomyopathies or sudden cardiac death, case reports and small
case series with fewer than 10 patients, and non-English publications. A narrative synthesis
of the findings was performed, focusing on the integration of clinical, genetic, and imaging
data in the prevention of sudden cardiac death in patients with cardiomyopathies.

3. Hypertrophic Cardiomyopathy: Incidence and Risk Factors for Sudden Cardiac Death

HCM is a genetic (autosomal dominant) heart muscle disease caused by a mutation in
sarcomere protein genes characterized by an increased left ventricular (LV) wall thickness
(>14 mm) or mass that is not solely explained by abnormal loading conditions. It can be
considered familial when two or more first- or second-degree relatives with HCM or a
first-degree relative with autopsy-proven HCM and sudden death at <50 years of age are
detected [1,4]. Once considered rare, it is now recognized as the most prevalent genetic
heart condition. Determined from echocardiographic studies, the prevalence of HCM in
the adult population is 0.2%, whilst in children it is 0.029% [5,6].

HCM is an important cause of heart failure and atrial fibrillation (AF) [4,7], even if the
most common cause of death in these patients is arrhythmic SCD mediated primarily by
ventricular fibrillation [8,9]. SCD in HCM often affects young and frequently asymptomatic
patients [6]. The annual SCD rate is <1%, but within the general population with HCM but
there are subgroups with a much higher incidence.

Since ventricular fibrillation (VF) appears to be the principal mechanism of sudden
death in patients with HCM, in high-risk patients implantable defibrillators (ICDs) are
highly effective in terminating such arrhythmias, indicating that these devices are the
gold standard for primary and secondary prevention of sudden death [10]. Drugs are not
effective in primary or secondary prevention of SCD in HCM patients [11].

Therefore, assessing the risk of SCD is crucial in clinical management. The 2022 Eu-
ropean Society of Cardiology (ESC) guidelines advise that for secondary prevention of
SCD in HCM patients, ICD implantation is recommended for all individuals experiencing
haemodynamically unstable ventricular tachycardias (VTs) or ventricular fibrillation (VF)
(class I, level of evidence B). Additionally, in patients with HCM who have haemodynami-
cally stable sustained monomorphic VT, ICD implantation is suggested (class IIa, level of
evidence C) [12].

Risk stratification and primary prevention of SCD in HCM is more challenging. Over
several decades, a multitude of studies have focused on the identification of major clinical
risk markers that stratify patients according to level of risk to identify high-risk patients who
may be candidates for SCD primary prevention with ICDs. This risk stratification strategy
and the penetration of ICDs into clinical practice has substantially reduced disease-related
mortality rates.

For this reason, SCD risk assessment at the initial visit and repeated every 1 to 2 years
is a critical part of the evaluation of patients with HCM [13].
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A large body of evidence suggests that on the basis of history taking, imaging eval-
uation, and continuous (24/48 h) ambulatory electrocardiographic monitoring, the most
important established risk markers are as follows: age, unexplained syncope, extreme
left ventricular wall thickness, HCM-related sudden death in a first-degree relative, and
multiple or prolonged episodes of non-sustained ventricular tachycardia (NSTV), left atrial
size, and LV outflow tract (LVOT) gradient [14,15].

LV systolic dysfunction, LV apical aneurysm, as well as extensive late gadolinium
enhancement (LGE) on CMR have been added to the risk-stratification algorithm for
HCM [16].

Some of these risk factors are widely recognized by both major HCM guidelines
(American and European), while others are considered differently.

3.1. Age

SCD is more common in younger patients, especially those under the age of 35 years [17].
Until recently, primary prevention data for children were scarce, before the advent of

specific scores and risk calculators. The HCM Risk-Kids score, designed and externally
validated for children aged 1–16 with HCM, includes factors such as unexplained syncope,
maximum LV wall thickness, large left atrial diameter, low LVOT gradient, and non-
sustained ventricular tachycardia (NSVT). Unlike in adults, adding age and family history
of SCD did not improve the predictive accuracy of the pediatric model [18,19].

3.2. Unexplained Syncope

The 2017 American Heart Association (AHA)/American College of Cardiology (ACC)
and the 2018 European Society of Cardiology (ESC) syncope guidelines defined unexplained
syncope as “syncope for which a cause is undetermined after an initial evaluation that is
deemed appropriate by the experienced healthcare provider [20,21]”.

In a recent systematic review and metanalysis, syncope was reported by 15.8% of
HCM patients and life-threatening arrhythmic events occurred in 3.6% of non-syncopal
patients and in 7.7% of syncopal patients during a mean follow-up of 5.6 years (relative
risk of 1.99). Syncope was considered unexplained in 91% of cases [22,23].

There are numerous factors that might lead to syncope in patients suffering from
HCM. These factors include hypovolemia, complete atrioventricular block, sinus node dys-
function, sustained ventricular tachycardia, obstruction of the left ventricular outflow tract,
atrial arrhythmias with a rapid ventricular response, and abnormal vascular reflexes [14].

Unexplained syncope has long been recognized as a marker for heightened risk of
sudden death; nevertheless, the timing of syncopal episodes in relation to patient evaluation
has emerged as clinically significant. Recent instances of unexplained syncope were linked
to a heightened risk of sudden death across all age brackets when compared to patients
without syncope. This finding suggests that recent unexplained syncope could warrant
consideration for the prophylactic implantation of ICD. Conversely, remote episodes of
syncope did not correlate with increased risk in older patients [24].

Additionally, patients with recurring episodes of unexplained syncope, who are at
low risk of SCD, should be considered for an implantable loop recorder [25].

3.3. Maximum LV Wall Thickness

In HCM, the magnitude of hypertrophy is directly related to the risk of sudden death
and is a strong and independent predictor of prognosis. In most clinically diagnosed cases,
left ventricular wall thickness is 15 mm or more (average, 21 mm), but there is massive
thickness (30 to 50 mm) in some cases [26].

Elliot et al. [27] showed the prognostic significance of LV hypertrophy in relation to
other clinical risk factors: 630 patients with HCM were evaluated, and it was observed
that there was a trend towards a greater likelihood of sudden death or ICD discharge with
increasing wall thickness (especially in those with a wall thickness of 30 mm or more).
However, it was shown that the estimated risk of sudden death or ICD discharge was
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influenced more by the number of clinical risk factors than by the extent of wall thickness.
In patients with a wall thickness of 30 mm or more, the estimated risk of sudden death or
ICD discharge at 5 years ranged from 5% in patients with no other risk factors to 34% in
patients with three additional risk factors.

In another study, Olivotto et al. observed that only in patients diagnosed at a very
young age might the presence of extreme LV wall thickness represent, per se, a potential
marker of risk of sudden death and that the degree of maximum LV wall thickness should
be considered in the context of a multifactorial approach to risk stratification, rather than
as an isolated risk factor [28].

3.4. NSVT

NSVT is defined as three consecutive ventricular beats at a rate of ≥120 beats per
minutes and <30 s in duration during Holter monitoring (minimum duration 24 h) at or
prior to evaluation [29].

Monserrat et al. studied 531 HCM patients undergoing Holter monitoring and found
that around 20% of these patients had at least one episode of NSVT [28].

In patients aged ≤30 years (but not in those who are >30 years old), freedom from sud-
den death at five years was lower in patients with NSVT and there was also no relationship
between the duration, frequency, or rate of NSVT episodes and prognosis at any age [30].

Moreover, Gimeno et al. showed that in a cohort of 1380 patients with HCM the
five-year survival from sudden death or ICD discharge was significantly lower in patients
with exercise-induced NSVT or VF [HR 3.14 (95% CI: 1.29–7.61, p = 0.01)] [31].

3.5. Family History of SCD

History of SCD is defined as SCD in one or more first-degree relatives under 40 years
of age, or SCD in a first-degree relative with confirmed HCM at any age (diagnosed
post-mortem or ante-mortem) [32].

Compared with HCM patients without an obvious family history, patients with a
family history of SCD had a 20% increased risk of SCD [33]. The recognition that SCD can
affect multiple members within the same family, combined with clinical research showing
that a family history of sudden death related to HCM independently predicts sudden
death, underscores the importance of considering family history as a significant risk factor.
In suitable clinical contexts, this family history can serve as the basis for recommending
prophylactic ICD therapy [33]. According to ACC/AHA guidelines, in HCM patients with
a family history of SCD, ICD implantation should be recommended (Class IIa, level of
evidence B) [34].

3.6. LVOT Gradient

The presence of a peak LVOT gradient of ≥30 mmHg is considered to be indicative of
obstruction, while resting or provoked gradients of ≥50 mmHg are generally considered
the threshold for septal reduction therapy in patients with drug-refractory symptoms [34].

The maximum LVOT gradient should be determined at rest and with Valsalva provo-
cation (irrespective of concurrent medical treatment) using pulsed- and continuous-wave
Doppler from the apical three and five chamber views. The peak outflow tract gradient
should be determined using the modified Bernoulli equation, gradient = 4V², where V is
the peak aortic outflow velocity [15].

Elliot et al. [27] showed that LVOT obstruction is associated with an increased risk of
SD/ICD [91.4% (95% CI: 87.4–95.3) vs. 95.7% (95% CI: 93.8–97.6), p = 0.0004] that is related
to the severity of obstruction [RR per 20 mmHg = 1.36 (95% CI: 1.12–1.65), p = 0.001] and
the presence of other recognized risk factors for SD.

Moron et al. investigated the impact of LVOT obstruction on morbidity and mortality
in a substantial cohort of HCM patients. The study involved the evaluation of 1101 patients,
revealing a notably elevated likelihood of death associated with HCM among those with
outflow tract obstruction compared to those without (RR 2.0; p = 0.001). Consequently, left
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ventricular outflow tract obstruction at rest was deemed a robust independent predictor of
mortality [35].

3.7. Left Atrial Size

The left atrial diameter, quantified with echocardiography, has been associated with
SCD in HCM patients. The left atrial diameter should be determined by M-mode or 2D
echocardiography in the parasternal long axis plane at the time of evaluation [15]. The left atrial
size may reflect the risk of SCD, as it may relate to atrial remodeling secondary to increasing
ventricular fibrosis, which makes the myocardium more susceptible to arrhythmias [17].

3.8. Additional Risk Factors: LV Systolic Dysfunction, LV Apical Aneurysm, and Extensive LGE
on CMR

HCM with LV systolic dysfunction (LVSD) is defined as occurring when left ventricular
ejection fraction is <50%. LVSD affects around 8% of patients with HCM.

Although the natural history of HCM with LV systolic dysfunction was variable, 75%
of patients experienced adverse events, including 35% experiencing a death equivalent in
an estimated median time of 8.4 years after developing systolic dysfunction [36].

AHA/ACC guidelines consider LVSD a major risk factor for SCD in HCM patients,
recommending ICD implantation in patients with HCM and a reduced ejection fraction
(<50%) (class IIa, level of evidence C), whilst the ESC guidelines decided to use the presence
of a reduced LV ejection fraction (<50%) only as an additional value in the decision-making
process [1,21].

LV apical aneurysms are outpouchings of the left ventricular apex, described as
discrete, thin-walled dyskinetic or akinetic segments of the most distal portion of the left
ventricular chamber, that are relatively common in patients with apical HCM or HCM with
midventricular obstruction [37].

The frequency of this occurrence in patients selected without bias is unclear, but they
were documented in 3% of individuals in the prospective Hypertrophic Cardiomyopathy
Registry [38].

This represents a non-negligible category of patients within the clinical spectrum
of HCM. This finding raises a number of management considerations, including risk
stratification for SCD.

The areas of myocardial scarring contiguous to the scarring edge of the aneurysm, at
the junction between vital and abnormal tissue, represent the site where re-entry circuits
occur, thus constituting the primary arrhythmogenic substrate for the generation of malig-
nant ventricular tachyarrhythmias, irrespective of the size of the aneurysm [39]. However,
VT may be repetitive, thereby raising considerations for additional treatment strategies
such as radiofrequency ablation [40].

Rowin et al. retrospectively analyzed 1940 consecutive HCM patients, 93 of whom
(4.8%) were identified to have an apical LV aneurysm. In the study, the authors point out
that HCM patients with apical aneurysm had an adverse event rate of 6.4%/year, more than
three times higher than the HCM cohort without aneurysm. Around 20% of the patients
with aneurysms in this group underwent potentially life-saving ICD interventions for
ventricular tachycardia/ventricular fibrillation. In nearly half of the patients, an ICD was
implanted mainly due to the presence of the aneurysm itself. This results in an arrhythmic
event rate of nearly 5% per year, which is more than five times higher than that observed in
our patient cohort without aneurysms [41].

Another study by Papanastasiou et al. [42] also showed that left ventricular apical
aneurysm in HCM patients is associated with an increased risk of SCD events (pooled OR:
4.67, 95% CI: 2.30 to 9.48, I2: 38%).

Based on these and other studies, to date there is a difference in the treatment path-
ways of SCD risk assessment. AHA/ACC guidelines include LV aneurysms as a major
independent SCD risk factor and they are considered a reasonable sole indication for an
ICD (class IIa, level of evidence C) [34].
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Conversely, the ESC guidelines [1] suggest that the number of events is insufficient to
determine the independent predictive value of apical aneurysms in SCD. For instance, in
the study by Rowin et al. [39], most SCD events were ICD interventions for monomorphic
VT, indicating a significant inclusion bias. Additionally, many subjects with events had
other critical risk markers, such as previous sustained ventricular arrhythmias. Based on the
current data, the European Task Force recommends that decisions on ICD implantation for
primary prevention of SCD should rely on well-established risk factors rather than solely
on the presence of an apical left ventricular aneurysm [1]. Recently, LGE during CMR has
become an in vivo marker for myocardial fibrosis, although its role in stratifying the sudden
death risk in HCM subgroups is not yet fully understood. Chan et al., investigated the
relationship between LGE and cardiovascular outcomes in 1293 HCM patients undergoing
CMR, with an average follow-up of 3.3 years. They discovered that an LGE extension of
15% or more of LV mass was associated with a twofold increase in the risk of SCD events in
patients otherwise considered at lower risk, with an estimated 5-year SCD event probability
of 6%. Conversely, the absence of LGE correlated with a lower risk of SCD events [43].

Several meta-analyses [44–46] have confirmed these data, showing that LGE is com-
mon in HCM and that, when extensive (expressed as a percentage of LV mass), it is
associated with an increased risk of SCD and other events, particularly in the presence of
other markers of disease severity.

In addition to the arbitrary cutoff of ≥15% of LV mass (exclusive of right ventricular
insertion areas) a linear relationship is demonstrated between sudden death risk and LGE
extension, suggesting that an LGE of 10–15% can be clinically relevant in some patients;
absent or focal LGE (<5% of LV mass) is generally regarded as most consistent with low
risk [47].

AHA/ACC guidelines suggest that extensive LGE on CMR in HCM patients may be
an indication for ICD implantation (class IIb, level of evidence C), whilst ESC guidelines
do not recommend ICD implantation in primary prevention for SCD only on the basis of
the presence of an extensive LGE at CMR in HCM patients [48] Figure 1.
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non-sustained ventricular tachycardia.
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4. Dilated Cardiomyopathy: Incidence and Risk Factors for Sudden Cardiac Death

DCM is characterized by the enlargement of the left ventricle and a decrease in its
ability to pump effectively, without any blockages in the coronary arteries or other adverse
conditions affecting the heart’s workload. While some studies suggest that DCM may affect
as many as one in 250 individuals, precise contemporary prevalence figures are not readily
available [49]. Despite advancements in treatment over the last few decades that have led
to better survival rates, DCM continues to pose a significant global health threat, primarily
due to heart failure and SCD. The incidence of SCD in a large registry of unselected DCM
patients has fallen from 2% per year before current therapy to 0.15% per year now [50,51].

ICDs can identify and promptly address life-threatening heart rhythms, reducing the
risk of SCD. However, determining which patients will benefit most from ICD therapy
involves a complex evaluation balancing the individual’s arrhythmic risk against the risk
of death from other causes. The approach of using a single measurement of the LVEF and
NYHA class to gauge the relative risk of SCD is widely acknowledged as an inadequate
method for determining ICD candidacy [49]. Registry data reveal a subset of patients with
an LVEF > 35% in whom a notable proportion of SCD cases occur, indicating the need
to consider additional factors when evaluating the appropriateness of ICD implantation
in a disease characterized by significant etiological diversity [52–54]. Multi-parametric
assessment of myocardial, electrical, and genetic substrates can predict significant arrhyth-
mias. Balancing the risk of non-sudden death allows for personalized therapy and prevents
wasteful device placement for people who may not benefit.

4.1. Clinical Characteristics

ICD implantation for primary prevention of SCD is currently recommended for pa-
tients with DCM who have a left ventricular ejection fraction (LVEF) ≤ 35%, New York
Health Association (NYHA) class II or III symptoms, and who have been treated with
optimal therapy for at least 3 months, with a life expectancy of >1 year [1].

However, research looking into the use of ICDs for primary SCD prevention in DCM
patients has yielded mixed results. Key trials like The Sudden Cardiac Death in Heart
Failure Trial (SCD-HeFT) and Defibrillators in Non-Ischemic Cardiomyopathy Treatment
Evaluation (DEFINITE) have contributed significantly to understanding ICD efficacy [52,53].
For instance, SCD-HeFT enrolled patients with both ischemic cardiomyopathy and DCM,
showing an all-cause mortality benefit in those receiving single-chamber ICDs [52,55].
In contrast, the DEFINITE trial, focusing on DCM patients, did not find a significant
reduction in overall mortality in the ICD group compared to OMT (HR 0.65; 95% CI
0.40–1.06; p = 0.08) in spite of a significant reduction in SCD (HR 0.20; 95% CI 0.06–0.71;
p = 0.006) [53]. The DANISH study sheds light on the critical features of predicting SCD
and risk stratification for ICD therapy in current clinical practice. For starters, it highlights
the rarity of life-threatening arrhythmic events in this population, as indicated by the low
frequency of SCD in the control group. This finding is consistent with a larger examination
of individuals with systolic heart failure, which showed a decrease in SCD with time due
to improved guideline-based management [56]. Additionally, the potential effects of new
treatments, such as angiotensin receptor–neprilysin inhibitors (ARNIs) and sodium–glucose
cotransporter 2 (SGLT2) inhibitors, on reducing this risk have yet to be formally evaluated.
It is important to note that both age and comorbidities seem to influence the risk of SCD
in DCM. A predetermined analysis of the DANISH trial indicated that age significantly
impacts the effectiveness of ICDs on overall mortality. Notably, patients aged 70 or younger
have a higher incidence of SCD, with a greater proportion of their deaths attributed to SCD
compared to older patients. In these younger patients, ICDs have been shown to reduce
overall mortality by 30%. Conversely, in patients over 70, the occurrence of non-sudden
deaths is double that of younger patients, which diminishes the impact of ICDs on reducing
overall mortality [55]. Furthermore, the presence of other health conditions can increase the
risk of non-sudden death, affecting the overall benefit derived from ICDs [57,58]. A meta-
analysis of data from three primary prevention ICD trials revealed that a decline in kidney
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function, measured by glomerular filtration rate, correlated with a reduced survival benefit
from ICDs in patients with heart failure with reduced ejection fraction (HFrEF), including
those with DCM [59]. Additionally, analysis from the SCD-HeFT trial found that patients
with type 2 diabetes, despite facing a higher risk of SCD, did not see a reduction in SCD or
overall mortality with ICD use, irrespective of whether their heart failure was ischemic or
non-ischemic [60]. These insights suggest that while comorbidities play a crucial role in
influencing the arrhythmic risk in DCM, their impact on the effectiveness of ICD therapy
needs further investigation. Furthermore, advanced risk assessment models like the Seattle
Heart Failure Model and the Seattle Proportional Risk Model, which include a range of
comorbidities, demonstrate promise in distinguishing between risks of SCD and death
from progressive heart failure in HFrEF patients, including those with DCM. However, the
practical application of these models in predicting the benefits of ICD implantation remains
to be fully validated in clinical settings [61,62].

4.2. Genetic Background

Recent studies indicate that phenotype influences the risk of SCD. Patients with vari-
ants in PLN, DSP, LMNA, FLNC, TMEM43, DES, and RBM20 have a significantly higher
incidence of major arrhythmic events compared to other causes of DCM, regardless of
LVEF values [63,64]. Laminopathy is linked to an especially severe condition marked by
high penetrance, early onset of ventricular arrhythmias, an atrioventricular (AV) block, and
progression to advanced heart failure. The combination of a high risk of ventricular arrhyth-
mias and the potential for bradyarrhythmia due to an AV block places patients with LMNA
mutations at a particularly elevated risk of sudden cardiac death (SCD). This necessitates
a much lower threshold for considering the implantation of an implantable cardioverter–
defibrillator (ICD) [65]. In a recent retrospective study involving 1161 patients diagnosed
with DCM, it was found that individuals carrying pathogenic or likely pathogenic (P/LP)
causative genetic variants faced a more challenging clinical trajectory and exhibited a
higher incidence of major arrhythmic events compared to those without identified genetic
variants. This trend was particularly pronounced when comparing them to patients with
DCM and an LVEF ≤ 35%. Additionally, regardless of their left ventricular ejection fraction
(LVEF) levels, patients with DCM and specific causative genetic variants were observed
to have an elevated risk of major arrhythmic events. Notably, genes associated with a
heightened risk of arrhythmias included those encoding nuclear envelope proteins (LMNA,
EMD, and TMEM43), desmosomal proteins (DSP, DSG2, DSC2, and PKP2), and certain
cytoskeleton proteins. These findings collectively suggest that DCM patients harboring
pathogenic variants in high-risk genes (such as LMNA, EMD, TMEM43, DSP, RBM20, and
PLN, and truncating variants of FLNC) should be identified as having a predisposition to
SCD [66]. Therefore, the consideration of ICD placement for primary prevention should
extend beyond conventional LVEF threshold values >35%, especially in the presence of
additional risk factors (e.g., non-sustained ventricular tachycardia, frequent premature
ventricular contractions, male gender, significant late gadolinium enhancement, and spe-
cific genetic variants). For selecting high-risk genotypes (e.g., LMNA), gene-specific (or
variant-specific, as seen with the p.Arg14del variant of PLN) risk estimation scores have
been developed to incorporate genotype and additional phenotypic characteristics [67,68].
Whenever available, these risk scores should inform the decision-making process regarding
ICD implantation for primary prevention.

4.3. Late Gadolinium Enhancement

Patients with DCM who do not possess a high-risk genotype or who have an LVEF
greater than 35% might benefit from risk stratification based on the presence and extent of
myocardial scarring detected by LGE on CMR. Myocardial replacement fibrosis, identifiable
through late gadolinium enhancement cardiovascular magnetic resonance imaging (LGE-
CMR), is found in around 30% of DCM patients, typically situated in the mid-wall of the
septum. Numerous studies have established a strong association between the presence of
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non-ischemic LGE and SCD [69]. In a significant prospective observational cohort study by
Gulati et al. [70], which tracked 472 DCM patients over a median of 64 months, a strong con-
nection was observed between the presence of LGE on CMR and the composite arrhythmic
endpoint (SCD or aborted SCD), even after adjusting for the left ventricular ejection fraction
(LVEF) [71]. Furthermore, a less potent association was noted with all-cause mortality and a
composite heart failure endpoint. Subsequent evaluation of the dose–response relationship
between LGE and SCD risk in a larger DCM patient cohort revealed a non-linear correlation,
suggesting that the mere presence of LGE might be a better predictor of risk than its extent
alone. This study also highlighted the heightened risk of SCD or aborted SCD in patients
with both septal and left ventricular free wall LGE [71]. A prospective study focusing on
patients with a milder DCM phenotype and no existing indication for an ICD demonstrated
LGE’s predictive power for SCD or aborted SCD in individuals with an LVEF > 40%,
underscoring its significance even in patients not meeting current guidelines for primary
prevention ICD placement [72]. Recent progress in computational modeling techniques
has shed light on the varied fibrosis patterns and densities observed with late gadolinium
enhancement (LGE) in patients with dilated cardiomyopathy (DCM), associating these
patterns with the potential for re-entry and arrhythmogenesis. Furthermore, an alterna-
tive method that evaluates LGE entropy, which measures the heterogeneity of scarring,
has shown independent predictive value for major arrhythmic events in a registry-based
study of DCM patients with primary prevention ICDs [73]. In conclusion, the additional
insights provided by LGE assessment offer significant prognostic value beyond that of
echocardiography, making it the preferred imaging technique for assessing DCM patients.

4.4. Markers of Electrical Instability

Additional considerations, including syncope, the presence of NSVT, and the fre-
quency of ventricular extrasystoles (VEs), are also potential indicators to assist in deter-
mining the need for ICD implantation. Currently, there is insufficient data to establish a
precise threshold for VE burden, as it may vary depending on the patient’s genotype and
other clinical variables [74]. For patients experiencing unexplained syncope, programmed
electrical stimulation (PES) may offer further insights into the underlying etiology. Current
European guidelines include syncope in the algorithm for ICD, because these events are
mostly related to ventricular tachycardias [75].

4.5. Future Perspectives

Cardiovascular magnetic resonance parametric mapping provides a non-invasive
method for assessing diffuse interstitial fibrosis in various cardiac conditions. Puntmann
et al. [76] found a correlation between native T1 values and both all-cause mortality and
composite heart failure outcomes. Additionally, there may be a link between diffuse fibrosis
and arrhythmogenesis, as T1 mapping was predictive of major arrhythmias in patients
with ischemic cardiomyopathy and DCM. However, further research is needed to validate
this technique and determine its additional value alongside LGE imaging.

Looking ahead, diffusion tensor cardiovascular magnetic resonance (DT-CMR) emerges
as a promising technique for the non-invasive examination of cardiac microstructure at
the cellular level [77]. While studies have revealed microstructural abnormalities in DCM
patients, the potential of DT-CMR in predicting SCD remains unexplored. Notably, a study
on HCM patients demonstrated an association between low fractional anisotropy and
ventricular arrhythmia, suggesting a possible new imaging biomarker for arrhythmic risk.
Further investigation into this relationship in DCM patients could provide valuable insights
into microstructural pathophysiology and arrhythmogenesis [78].

The convergence of advanced cardiac imaging with artificial intelligence and machine
learning holds significant promise. These approaches have already been utilized for CMR
image analysis, offering opportunities for extracting vast datasets and developing new
risk markers in DCM patients. Ongoing studies are exploring the potential utility of these
applications [79].
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Also, left ventricular global longitudinal strain (LV GLS) serves as a reliable alternative
to the left ventricular ejection fraction (LVEF) for assessing LV contractile function and
may be more sensitive to subtle dysfunction. Myocardial strain has shown associations
with survival across various cardiovascular conditions. Romano et al. documented a link
between LV GLS and all-cause mortality in a large cohort of patients with an LVEF < 50%,
indicating that each 1% decline in GLS corresponded to an 89.1% increase in the risk of
death after adjusting for clinical and imaging variables. However, the correlation between
LV GLS and ventricular arrhythmias remains uncertain, as indicated by a retrospective
echocardiography-based study. It is unclear whether myocardial strain can effectively
identify candidates for ICD therapy or if it is more adept at stratifying heart failure mortality
rather than arrhythmic events [80] (Figure 2).
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5. Arrhythmogenic Right Ventricular Cardiomyopathy: Incidence and Risk Factors for
Sudden Cardiac Death

ARVC is a genetically determined heart disease that predisposes individuals to SCD,
particularly in young patients and athletes, characterized anatomically by fibrofatty re-
placement of the myocardium and clinically by prominent ventricular arrhythmias and
impairment of ventricular systolic function. ARVC has a prevalence that varies between
1/1000 and 1/5000 subjects in the general population, and the variability can be explained
by the difficulty on the one hand of detecting the disease, especially when a mild form is
present, and on the other hand by SCD as the first manifestation [81]. A meta-analysis of
52 cohort studies (total of 5485 ARVC patients) reported an incidence of SCD of ∼0.7% per
year in ARVC patients without an ICD, and a significantly lower SCD incidence (0.65 per
1000 patients per year) in ICD recipients [82]. However, some post-mortem studies have
documented the presence of ARVC in 20–30% of SCD victims and in 10–13% of young
athletes with SCD [83].
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5.1. Clinical Characteristics

Clinical data indicate that extensive myocardial involvement in ARVC leads to a
greater risk of severe ventricular arrhythmias and SCD. Factors such as right ventricular
dilatation and systolic dysfunction, particularly a reduced fractional area change, left
ventricular involvement, overt heart failure, and signs of advancing structural disease are
linked to an increased SCD risk [84]. Recent episodes of syncope (within 6–12 months) have
similarly been tied to a heightened SCD risk [85]. Studies also suggest that men with ARVC
are more likely to experience ventricular arrhythmias and SCD than women, potentially due
to higher levels of physical activity and specific biological mechanisms [86]. Moreover, high-
intensity physical activity has been associated with earlier onset of symptoms, increased
risk of ventricular arrhythmias, and a greater likelihood of progressive heart failure leading
to the need for heart transplantation. Consequently, high-intensity exercise is generally
discouraged for individuals with ARVC, including those who carry the gene but do not
show symptoms [87].

5.2. Genetic Background

ARVC is typically an inherited condition linked to pathogenic gene variants mainly
in desmosome-related genes, including PKP2 (plakophilin-2), DSP (desmoplakin), DSG2
(desmoglein-2), and DSC2 (desmocollin-2), though occasionally in non-desmosome genes as
well [88]. The genetic variants generally display an autosomal dominant inheritance pattern
with incomplete penetrance, except for the fully penetrant TMEM43 p.S358L variant, which
is linked to progressive cardiomyopathy and a substantial arrhythmic risk. Individuals
with mutations tend to experience an earlier onset of the disease [89]. Notably, possessing
multiple mutations correlates with a higher risk of early ventricular arrhythmias and
a worse overall prognosis [90]. Approximately 30% of family members show disease
penetrance, and positive genetic testing can pinpoint individuals at an elevated risk of
developing ventricular arrhythmias. Nonetheless, there is some disagreement regarding
the independent predictive value of genetic factors for SCD in ARVC. It is important to
highlight that specific non-desmosomal mutations, such as those in TMEM43, LMNA, and
PLN, are particularly associated with a high risk of SCD [91].

5.3. Markers of Electrical Instability

Patients with ARVC frequently display electrocardiographic abnormalities, such as
T-wave inversions in the right precordial leads (usually V1 to V3), reduced QRS voltages in
the limb leads, and a terminal activation delay referred to as the ‘epsilon wave’ in the right
precordial leads [92]. A history of sustained ventricular tachycardia (VT), typically with a
left bundle branch block pattern, is recognized as a significant predictor of increased SCD
risk in individuals with ARVC. Furthermore, studies have linked additional markers of
electrical instability, such as NSVT and frequent ventricular premature complexes, to an
increased SCD risk [93–95].

5.4. Future Perspectives: Myocardial Fibrosis and Fatty Infiltration

Recent findings suggest that CMR imaging provides crucial prognostic details in cases
of arrhythmogenic right ventricular cardiomyopathy (ARVC). Notably, signs of myocardial
fibrosis and fatty infiltration identified through CMR are linked to a heightened risk of
serious adverse events such as SCD or aborted SCD, and the necessity for appropriate
ICD interventions [96]. Since 2005, the prognostic significance of late gadolinium enhance-
ment (LGE) in arrhythmogenic cardiomyopathy (ACM) patients has been well recognized.
Tandri et al., through a study comparing the results of contrast-enhanced CMR with elec-
trophysiological studies and endomyocardial biopsies, found that RV LGE presence was
associated with the inducibility of arrhythmias during electrophysiological tests [97]. A
more recent piece of research by Aquaro et al. involved a comprehensive CMR assessment
incorporating wall motion, chamber size, function, and tissue characterization of both
ventricles. The study classified patients according to their phenotypic presentation into
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categories of isolated right ventricular (RV) disease, isolated left ventricular (LV) disease,
biventricular disease, and absence of structural disease [98]. The findings indicated that dis-
tinct ACM CMR phenotypes are associated with different prognostic outcomes, especially
highlighting that patients with left ventricular late gadolinium enhancement (LV LGE) had
a worse prognosis compared to those with only right ventricular disease. Furthermore,
recent research has identified that elevated native T1 and extracellular volume (ECV) values
serve as predictors of negative outcomes during follow-up [99] (Figure 3).
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6. Non-Dilated Left Ventricular Cardiomyopathy

NDLVC is characterized by non-ischemic left ventricular (LV) scarring or fatty deposits
identified through CMR, without enlargement of the LV. This condition may also present
with either global or regional LV wall motion irregularities, or as an isolated global LV
hypokinesia (i.e., LVEF < 50%) that cannot be explained by abnormal loading conditions.
NDLVC has a genetic basis similar to that of DCM and arrhythmogenic right ventricular
cardiomyopathy (ARVC), as depicted in Figure 1. Most of the knowledge regarding the
natural progression and SCD risk associated with NDLVC comes from research on patients
with DCM and ARVC. The presence of high-risk genetic markers such as LMNA, TMEM43,
DSP, RBM20, PLN, and FLNC truncating variants is a primary factor determining the risk
of SCD in NDLVC. Currently, there is a lack of dependable risk assessment methods for
patients without identified gene mutations. Consequently, until more data are available,
the existing guidelines recommend that the approach to primary ICD implantation for
patients with NDLVC should align with those established for patients with DCM [1,10]
(Figure 4).
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 Figure 4. Overlapping genetic background in cardiomyopathies. * The list is not exhaustive. ARVC,
arrhythmogenic right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; DES, desmin;
DSG, desmoglein; DSP, desmoplakin; FLNC, filamin C; JUP, plakoglobin; LMNA, lamin A/C; NDLVC,
non-dilated left ventricular cardiomyopathy; PKP, plakophilin; PLN, phospholamban; TMEM43,
transmembrane protein 43; RBM20, RNA-binding motif protein 20; and SCN5A, sodium channel
protein type 5.

7. Conclusions

The prevention of SCD in cardiomyopathies requires a multifaceted approach combin-
ing genetic screening, clinical assessment, and advanced imaging. Our review highlights
the critical role of CMR in identifying structural abnormalities that precede SCD, par-
ticularly in conditions like HCM and arrhythmogenic right ventricular cardiomyopathy
(ARVC).

Our findings, along with the literature, suggest that factors such as extreme left
ventricular hypertrophy, myocardial fibrosis detected by LGE, and genetic predispositions
significantly impact SCD risk. By integrating these factors, we can better stratify risk and
guide the use of preventive measures like ICDs.

This approach aims to improve the prediction and prevention of SCD, enhancing
patient outcomes through tailored management strategies.
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