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Abstract

The purpose of this study is to investigate the diagnostic and prognostic role of cerebrospinal fluid (CSF) biomarkers in the
diagnostic work-up of glucose transporter 1 (GLUT1) deficiency. Reported here is a systematic review according to PRISMA
guidelines collecting clinical and biochemical data about all published patients who underwent CSF analysis. Clinical pheno-
types were compared between groups defined by the levels of CSF glucose (< 2.2 mmol/L versus > 2.2 mmol/L), CSF/blood
glucose ratio (< 0.45 versus > 0.45), and CSF lactate (< 1 mmol/L versus > 1 mmol/L). Five hundred sixty-two patients
fulfilled the inclusion criteria with a mean age at the diagnosis of 8.6 + 6.7 years. Patients with CSF glucose < 2.2 mmol/L
and CSF/blood glucose ratio < 0.45 presented with an earlier onset of symptoms (16.4 + 22.0 versus 54.4 + 45.9 months, p
< 0.01; 15.7 + 23.8 versus 40.9 + 38.0 months, p < 0.01) and received an earlier molecular genetic confirmation (92.1 + 72.8
versus 157.1 + 106.2 months, p < 0.01). CSF glucose < 2.2 mmol/L was consistently associated with response to ketogenic
diet (p = 0.018) and antiseizure medications (p = 0.025). CSF/blood glucose ratio < 0.45 was significantly associated with
absence seizures (p = 0.048), paroxysmal exercise-induced dyskinesia (p = 0.046), and intellectual disability (p = 0.016)
while CSF lactate > 1 mmol/L was associated with a response to antiseizure medications (p = 0.026) but not to ketogenic diet.
Conclusions:This systematic review supported the diagnostic usefulness of lumbar puncture for the early identification of
patients with GLUT1 deficiency responsive to treatments especially if they present with co-occurring epilepsy, movement,
and neurodevelopmental disorders.

What is Known:

o Phenotypes of GLUTI deficiency syndrome range between early epileptic and developmental encephalopathy to paroxysmal movement
disorders and developmental impairment

What is New:
o CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with early onset absences

o CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with paroxysmal exercise induced dyski-
nesia and intellectual disability.

o CSF glucose may predict better than CSF blood/glucose and lactate the response to ketogenic diet and antiseizure medications.
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Y Yes
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PED Paroxysmal exercise-induced dyskinesia
GDD Global developmental delay

ID Intellectual disability

Introduction

Glucose transporter 1 (GLUT1) deficiency syndrome is a
rare and treatable neurometabolic disorder with a multi-
faceted phenotypic spectrum ranging between early onset
epileptic and developmental encephalopathy, early onset
absence or myoclonic-atonic epilepsy, focal epilepsy, epi-
sodic choreoathetosis and spasticity, paroxysmal exercise-
induced dyskinesia, intermittent ataxia, and various degrees
of neurodevelopmental impairment [1, 2]. These presenta-
tions are caused by pathogenic variants of solute carrier fam-
ily 2 member 1 (SLC2A1; OMIM 138140) gene encoding
for the most important energy carrier of the brain across the
blood-brain barrier (GLUTTI) [1].

The early diagnosis of GLUT1 deficiency has remark-
able prognostic implications because an effective treatment
(e.g., ketogenic diet) may result in a complete resolution of

motor symptoms and epileptic seizures [3]. Lumbar puncture
has always represented the initial diagnostic step since the
first descriptions of GLUT1 deficiency even if the increas-
ing potentials of ultra-fast next-generation sequencing tech-
niques, the recent validation of a less invasive blood test
(e.g., METAGLUT1), and the detection of novel candidate
cerebrospinal biomarkers (e.g., gluconic + galactonic acid,
xylose-a1-3-glucose, and xylose-a1-3-xylose-a1-3-glucose)
provided possible alternative diagnostic tools [4, 5].

The precise definition of the diagnostic strength and the
prognostic role of each measurable CSF biomarker in the
real-world practice still represent an important gap in the
literature. This review aimed to evaluate whether CSF glu-
cose, CSF/blood glucose ratio, and CSF lactate may impact
the phenotyping process of patients with GLUT1 deficiency
and guide therapeutic choices.

Materials and methods

We conducted a systematic review of published pediatric
cases with a compatible clinical phenotype and a confirmed
molecular genetic diagnosis of GLUT1 deficiency syndrome
according to PRISMA guidelines (Fig. 1). A PubMed, Web
of Science, and Scopus search was performed using the
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search terms (GLUT1 OR “glut 1” OR glut-1 OR “glucose
transporter type 1) AND (deficit* OR disorder) and fil-
tered results for the age range 0—18 years and the tempo-
ral range January 1991-June 2023. Reference lists of each
selected article and systematic reviews on the same focus
were reviewed to collect additional papers.

Articles reporting patients without data about CSF analy-
sis or without a molecular genetic diagnosis, articles without
data reported on patient-by-patient basis, articles about stud-
ies not focusing on human beings, and articles that were not
written in English were excluded from the analysis (Fig. 1).

Results were screened by title, abstract, and full text.
Duplicates were excluded. Studies reporting overlapping
cohorts were identified by comparing relevant features (i.e.,
number of subjects, time variables, outcomes, institution,
and year). The studies with the most extensive reporting
were selected for inclusion in our analysis.

Data on demographic features, epilepsy, movement disor-
ders and developmental phenotypes, CSF biochemical mark-
ers, molecular genetic data, and neurological outcomes were
collected for each of the patients satisfying the inclusion
criteria.

Figure 1 summarizes the features of the selected arti-
cles. Study selection was performed independently by three
authors (ECC, NC, and AB). Supplement 1 includes the
complete data collection sheet including the main demo-
graphic, clinical, and biochemical data for each one of the
published patients. Supplement 2 summarizes the distribu-
tion of the associated SLC2A1 gene variants. Supplement
3 illustrates the evaluation of the articles that was realized
according to NIH-Quality Assessment Tool (https://www.
nhlbi.nih.gov/health-topics/study-quality-assessment-tools).
Supplement 4 and 5 report the risk of bias for each one of
the selected article according to the RoB 2.0-Robvis tool
(https://mcguinlu.shinyapps.io/robvis/). Supplement 6
includes PRISMA checklist.

Clinical data were compared between (1) patients with
CSF glucose < 2.2 and patients with CSF glucose > 2.2
mmol/L [2], (2) patients with CSF/blood glucose ratio <
0.45 and patients with CSF/blood glucose ratio > 0.45 [2],
and (3) patients with CSF lactate < 1 mmol/L and patients
with CSF lactate > 1 mmol/L (Table 1). Cut-off values for
CSF glucose and CSF /blood glucose ratio were taken from
the literature [2]. Cut-off values of CSF glucose, CSF /blood
glucose ratio, and CSF lactate were also calculated through
receiver operating characteristic (ROC) curve analysis (sen-
sitivity, specificity, and Youden index) within the cohort of
published patients reported here.

Data extraction from all the selected articles was blindly
performed by two authors (FM and GR). Controversies
about study selection and data extraction were solved after
a case-by-case discussion involving all the authors with the
supervision of FP as Senior Author.

All statistical analyses were conducted using IBM SPSS
Statistics version 25.0 (SPSS Inc., Chicago, IL, USA).
Normality was assessed with the Kolmogorov-Smirnov
test. Comparisons were performed using Mann—Whitney
U test for non-normally distributed data and Fisher’s exact
test for categorical variables. A p value < 0.05 represented
statistical significance for all tests. Pairwise deletion was
applied for each one of the analyzed parameters. Variables
with missing data above a certain threshold (e.g., 20%) were
scrutinized to decide on their processing.

The review was recorded in PROSPERO (https://www.
crd.york.ac.uk/prospero/-CRD42023480301) on 7/11/2023,
and the registered protocol was updated on 3/5/2024 to
include an extension of the initially planned completion date.

Results
Patient characteristics

The screening of the literature resulted in 136 articles fulfill-
ing all the inclusion criteria (60 case reports, 47 case series,
15 retrospective cohort studies, 9 prospective cohort studies,
4 case-control studies, and 1 survey). The quality of the arti-
cle according to NIH-Quality Assessment Tool was judged
as fair in 78, good in 44, and poor in 17 cases (Suppl. 3). A
consistent risk of bias was assessed by RoB 2.0-Robvis tool
(https://mcguinlu.shinyapps.io/robvis/) especially for the
studies focused on the measurement of outcome.

Our search strategy yielded 562 patients with a confirmed
genetic diagnosis of GLUT1 deficiency syndrome with a
male/female ratio of 1.06 and a mean age at the diagnosis of
8.7 + 6.7 years (range, 22 days—39 years; data available for
279 patients) (Fig. 1, Suppl. 1) [2, 3, 5-140].

Lumbar puncture was mostly performed before the
molecular-genetic confirm (Suppl. 1).

Epileptic seizures were reported in 457 patients (Suppl.
1). Predominant seizure types at the onset mainly included
absences (151 patients), myoclonic (95 patients), and gen-
eralized tonic-clonic seizures (97 patients) while focal onset
was observed in 70 patients (Suppl. 1). EEG features were
reported in 244 patients. The most frequent EEG patterns
included diffuse spike and wave discharges (127 patients)
with a frequency of 3—4 Hz being reported in 17 patients
and a frequency of 1.5-2.5 Hz in 15 patients (Suppl. 1).
Focal epileptiform abnormalities and slow abnormalities
were respectively detected in 47 and 55 patients (Suppl. 1).

Data about the administered antiseizure medications were
available for 208 published patients while details about the
related therapeutic response were provided in 118 cases
(seizures reduction reported in 53) (Suppl. 1). A remark-
able proportion of them had received GLUTI1 inhibitors
such as valproate (95 patients), benzodiazepines (9 patients),
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phenobarbital (19 patients), or phenytoin (11 patients) before
the diagnosis (Suppl. 1) with an apparently paradoxical effi-
cacy in 26 patients.

Four hundred forty-eight patients presented with move-
ment disorders mainly including intermittent or persistent
ataxia (262 patients), dystonia (190 patients), paroxysmal
exercise-induced dyskinesia (81 patients), and different
pyramidal signs (78 patients) (Suppl. 1).

A neurodevelopmental disorder was diagnosed in 404
patients (Suppl. 1). An intellectual disability was assessed in
247 patients (25 patients had a borderline intelligence quo-
tient (IQ) while different degrees of delay in the achievement
of developmental milestones were reported in 78 patients
(Suppl. 1) with the predominant involvement of language
domains in 29 patients and of learning in other 31 cases
(Suppl. 1)).

Details about the administration of ketogenic diet were
reported for 379 patients; data about the response was avail-
able for 263 patients and 234 of them experienced a clinical
improvement of epilepsy and/or movement disorders (Suppl.
1).

The duration of follow-up was reported for 89 patients
(mean duration = 3.05 + 3.95 years) (Suppl. 1). Data
about long-term outcome were reported for a proportion
of patients ranging between 23.9 and 37.9% (213 about
epilepsy, 149 about movement disorders, and 135 about

CSF glucose levels

CSF glucoselevels(mmol/L)

Number of patients

neurodevelopmental disorders) (Suppl. 1). A reduction/dis-
appearance of seizures was reported in 158 patients while
motor symptoms improved in 116 patients and cognitive/
developmental gains occurred in 91 (Suppl. 1).

Published genotypes included 21 variants carried by
55.2% of patients (Supplement 2). Most commonly reported
variants included ¢.997C>T (p.Arg333Trp), c.376C>T
(p.Argl26Cys), c.283_284delinsAT (p.Ser951le), c.377G>A
(p-Argl26His), and ¢.884C>T (p.Thr295Met). Most of the
variants were scarcely correlated with the values of CSF
biomarkers with a distribution covering all possible bio-
chemical phenotypes. c.997C>T (p.Arg333Trp), c.457C>T
(p-Arg153Cys), and ¢.884C>T (p.Thr295Met) were predom-
inantly observed in patients with CSF glucose < 2.2 mmol/L
and in patients with CSF/blood glucose ratio < 0.45 (Supple-
ment 1). Conversely, c.283_284delinsAT (p.Ser95Ile) was
mainly observed in patients with CSF glucose > 2.2 mmol/L
(Supplement 1).

CSF biomarkers and associated phenotypes

Table 1 and Figure 2 summarize the available data about
levels of CSF biomarkers and associated phenotypes.

ROC analysis evidenced that CSF glucose had a sensi-
tivity of 87%, a specificity of 100%, and a Youden index
of 87% at 2.2 mmol/L. CSF/blood glucose ratio showed

CSF/blood glucose ratio

CSF/blood glucose ratio

Number of patients

CSF lactate levels

Ledvd

0

CSF lactate levels (mmol/L)

2RI

@o&go&%%&% ﬁé’ g?%g‘é)%
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0 " R ©

<

Number of patients

Fig. 2 Distribution of CSF glucose, CSF/blood glucose ratio, and CSF lactate levels in the 537 patients included in the analysis of this system-

atic review
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a sensitivity of 87%, a specificity of 100%, and a Youden
index of 87% at values > 0.45. Sensitivity, specificity, and
Youden index for CSF lactate at 1.0 ng/mL were 95%, 98%,
and 93%, respectively.

Patients with CSF glucose < 2.2 mmol/L and CSF/blood
glucose ratio < 0.45 presented with an earlier onset of
symptoms and received an earlier molecular genetic con-
firm (Table 1).

Absence seizures, paroxysmal exercise-induced dyski-
nesia, and intellectual disability were significantly associ-
ated with a CSF/blood glucose ratio < 0.45 with a relevant
impact of sexual differences (Table 1).

The relationships between CSF parameters and devel-
opmental functions other than intelligent quotient were
scarcely explorable because of the paucity of available data
(Table 1; Supplement 1).

Positive response to ketogenic diet was more commonly
reported in patients with CSF glucose < 2.2 mmol/L. The
same group had a significant response also to antiseizure
medications but not to combined treatment (antiseizure med-
ication + ketogenic diet) (Table 1). A significant response
to antiseizure medications but not to ketogenic diet was
observed in patients with CSF lactate higher than 1 mmol/L
(Table 1).

Discussion

This systematic review suggested a relationship between the
levels of CSF biomarkers and the distribution of some clini-
cal parameters (age at the onset of symptoms, seizure and
movement disorder types, cognitive profiles, and efficacy
of available treatments) in patients with GLUT1 deficiency
syndrome (Table 1).

The reliability of hypoglycorrhachia as diagnostic bio-
marker has been acquired since the last decade, when a ret-
rospective analysis on 147 patients evidenced that CSF was
below the 10th percentile of reference range in all published
patients while CSF blood/glucose ratio was normal in 10%
and data about CSF lactate were often not informative [141].
It was also evidenced that CSF glucose may range between
0.9 to 2.8 mmol/L in GLUT]1 deficiency, and milder pheno-
types may have CSF values between 2.2 and 2.9 mmol/L [1,
141]. Low CSF glucose mirrors the impoverishment of neu-
ronal bioenergetic resources and might be better correlated
with more severe phenotypes [142]. The herein reported
data confirmed that hypoglycorrhachia was associated with
factors having a relevant therapeutic and prognostic impact
(e.g., earlier onset of symptoms and efficacy of ketogenic
diet and/or antiseizure medications) (Table 1). The nega-
tive impact of hypoglycorrhachia on the developing brain
is probably independent by etiologies even if the severity of
its effects may vary in the different age ranges [143—-146].

The concept of “window of vulnerability” to the damages,
induced by the low quote of glucose available to face the
increased energy demands by the immature brain in the first
months of life, might explain the worst outcome observed
in late-treated patients with hypoglycorrhachia and earlier
onset of symptoms [2, 108]. This window was placed by
some authors between the first and the sixth month after
birth and overlapped with the ideal timing for the beginning
of ketogenic diet and the optimization of the related thera-
peutic results [2, 75].

CSF blood/glucose ratio may be considered an index of
the degree of transporter function impairment with a higher
sensitivity towards the detection of later onset and less
severe phenotypes in which a residual activity of GLUT1
might be preserved [142]. The significant association of
CSF/blood glucose ratio < 0.45 with sex differences that
was observed in published patients has no clear explana-
tions (Table 1). No evident sex predisposition to GLUT1
deficiency was highlighted in the literature even if a nega-
tive regulation of GLUT1 protein mediated by estrogens has
been reported in in vitro models [1, 147].

The association between low CSF/blood glucose ratio and
absence seizures supported the results of previous studies
that had highlighted the etiological role of SLC2A1 path-
ogenic variants in a proportion of cases ranging between
5.6% and 10% of all patients presenting with a childhood
onset absence epilepsy [37, 105, 148]. Other authors had
evidenced the same pathogenic role in a lower percentage
of cases (1.4%) if the analyzed cohorts included patients
with all types of idiopathic generalized epileptic syndromes
[37, 105, 149]. In these cases, the indication for a lumbar
puncture should be mandatory for children in which epilepsy
is associated with other clinical hallmarks such as the pre-
dominance of seizures after periods of fasting, developmen-
tal impairment, or paroxysmal exercise-induced dyskinesia
[105]. The lack of significance for seizure types other than
absences might contraindicate the procedure especially if
epilepsy is the only clinical manifestation [105, 149].

The pathomechanisms behind the higher frequency of
early onset absences among patients with a lower CSF/
blood/glucose ratio might result from a lower functional
adaptability to energy deprivation of mutated neuronal trans-
porters in the networks involving thalamus and connected
cortical areas including posterior cingulate cortex, precu-
neus, angular gyrus, supramarginal gyrus, parietal superior,
and occipital mid-region [37, 78, 105, 148, 149] (Table 1).
Similar mechanisms might be involved in the impairment
of astrocyte-to-neuron lactate shuttles in putamen and cor-
tico-striatal pathways in patients with paroxysmal exercise-
induced dyskinesia [78].

The assessed links between CSF/blood glucose ratio and
intellectual disability are probably due to the lower ability
of impaired cerebral GLUT1 to face the higher functional
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request of developing brain, and it was firstly highlighted in
a nationwide survey including 33 Japanese patients carrying
missense variants of SLC2A1 [71]. A comparable correla-
tion between CSF/blood glucose ratio and severity of speech
and language impairment was not demonstrated in a smaller
Italian series of eight patients [127].

Data from the analyzed literature did not demonstrate
any association between lactate levels and developmental/
clinical hallmarks of GLUT1 deficiency (Table 1) despite
various basic/science and clinical studies highlighted the
role of lactate in various cerebral networks, especially the
ones involved in learning and memory [142, 150]. A bet-
ter response to antiseizure medications was evidenced in
patients with normal levels of lactate suggesting a less-com-
promised epilepsy phenotype in patients with a better basal
energy metabolic compensation (Table 1).

The maintenance of lumbar puncture in the early diagnos-
tic work-up of patients with GLUT1 deficiency syndrome,
despite the increased quote of rapid turnaround time for
genetic testing, has relevant prognostic implications because
it still allows an earlier access to an effective disease-modi-
fying treatment such as ketogenic diet. The herein reported
data highlighted a more significant response to ketogenic
in patients with CSF glucose < 2.2 mmol/L while signifi-
cance was not relevant in patients with low CSF/blood ratio
(Table 1). Conversely, another recent systematic review of
230 published patients confirmed significant improvement
in movement disorders in 104 out of 127 patients with better
results in children with higher CSF/blood glucose ratio [3].
Another direct relationship between CSF/blood glucose ratio
and total and verbal IQ improvement, after the introduction
of ketogenic diet, was found in a smaller single center series
of 14 patients [75].

Few correlations between genotypes and CSF glucose
and CSF/blood glucose ratio may be highlighted. Variants
c.997C>T (p.Arg333Trp) and c.457C>T (p.Argl53Cys)
result in a less flexible and efficient glucose transport
because of a higher quote of salt bridges stabilizing the
conformation of GLUT]1 protein and reducing electrostatic
interactions during the activation of its intracellular and
transmembrane segments [151]. The variant c¢.884C>T
(p-Thr295Met) results in conformational changes that inhibit
the access of glucose molecules in the exofacial site of the
transporter [152].

Some limitations, mainly due to the predominant retro-
spective nature of the collected data, should be considered
in the interpretation of the results of this systematic review:
(a) differences in the ages of clinical evaluation, cerebro-
spinal fluid acquisition, achievement of molecular genetic
confirm, and introduction of ketogenic diet or antiseizure
medications; (b) lack of CSF measurements for a consider-
able number of published patients; and (c) differences in the
methodologies used for the definition of phenotypic severity,

@ Springer

clinical variability, response to treatments, and developmen-
tal outcome.

Conclusions

The analysis of the literature confirmed the usefulness of
lumbar puncture for the early identification of patients with
severe and mild phenotypes of GLUT1 deficiency and the
subsequent prognostic implications of an earlier initiation
of ketogenic diet. CSF analysis is easily and diffusively
available diagnostic tool and contributes to a faster diag-
nostic work-up in patients with more severe phenotypes. The
turnaround time of ultra-rapid next-generation sequencing
techniques will not probably impact on the real-world thera-
peutic planning for the next few years. The results of this
systematic review highlighted that a lumbar puncture should
be strongly considered when severe developmental delay,
paroxysmal exercise-induced dyskinesia, and early onset
absences co-exist.
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