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Abstract
The purpose of this study is to investigate the diagnostic and prognostic role of cerebrospinal fluid (CSF) biomarkers in the 
diagnostic work-up of glucose transporter 1 (GLUT1) deficiency. Reported here is a systematic review according to PRISMA 
guidelines collecting clinical and biochemical data about all published patients who underwent CSF analysis. Clinical pheno-
types were compared between groups defined by the levels of CSF glucose (≤ 2.2 mmol/L versus > 2.2 mmol/L), CSF/blood 
glucose ratio (≤ 0.45 versus > 0.45), and CSF lactate (≤ 1 mmol/L versus > 1 mmol/L). Five hundred sixty-two patients 
fulfilled the inclusion criteria with a mean age at the diagnosis of 8.6 ± 6.7 years. Patients with CSF glucose ≤ 2.2 mmol/L 
and CSF/blood glucose ratio ≤ 0.45 presented with an earlier onset of symptoms (16.4 ± 22.0 versus 54.4 ± 45.9 months, p 
< 0.01; 15.7 ± 23.8 versus 40.9 ± 38.0 months, p < 0.01) and received an earlier molecular genetic confirmation (92.1 ± 72.8 
versus 157.1 ± 106.2 months, p < 0.01). CSF glucose ≤ 2.2 mmol/L was consistently associated with response to ketogenic 
diet (p = 0.018) and antiseizure medications (p = 0.025). CSF/blood glucose ratio ≤ 0.45 was significantly associated with 
absence seizures (p = 0.048), paroxysmal exercise‐induced dyskinesia (p = 0.046), and intellectual disability (p = 0.016) 
while CSF lactate > 1 mmol/L was associated with a response to antiseizure medications (p = 0.026) but not to ketogenic diet.
Conclusions:This systematic review supported the diagnostic usefulness of lumbar puncture for the early identification of 
patients with GLUT1 deficiency responsive to treatments especially if they present with co-occurring epilepsy, movement, 
and neurodevelopmental disorders.

What is Known:
• Phenotypes of GLUT1 deficiency syndrome range between early epileptic and developmental encephalopathy to paroxysmal movement 

disorders and developmental impairment
What is New:
• CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with early onset absences
• CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with paroxysmal exercise induced dyski-

nesia and intellectual disability.
• CSF glucose may predict better than CSF blood/glucose and lactate the response to ketogenic diet and antiseizure medications.
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Y  Yes
M  Mean
SD  Standard deviation
PED  Paroxysmal exercise‐induced dyskinesia
GDD  Global developmental delay
ID  Intellectual disability

Introduction

Glucose transporter 1 (GLUT1) deficiency syndrome is a 
rare and treatable neurometabolic disorder with a multi-
faceted phenotypic spectrum ranging between early onset 
epileptic and developmental encephalopathy, early onset 
absence or myoclonic-atonic epilepsy, focal epilepsy, epi-
sodic choreoathetosis and spasticity, paroxysmal exercise-
induced dyskinesia, intermittent ataxia, and various degrees 
of neurodevelopmental impairment [1, 2]. These presenta-
tions are caused by pathogenic variants of solute carrier fam-
ily 2 member 1 (SLC2A1; OMIM 138140) gene encoding 
for the most important energy carrier of the brain across the 
blood-brain barrier (GLUT1) [1].

The early diagnosis of GLUT1 deficiency has remark-
able prognostic implications because an effective treatment 
(e.g., ketogenic diet) may result in a complete resolution of 

motor symptoms and epileptic seizures [3]. Lumbar puncture 
has always represented the initial diagnostic step since the 
first descriptions of GLUT1 deficiency even if the increas-
ing potentials of ultra-fast next-generation sequencing tech-
niques, the recent validation of a less invasive blood test 
(e.g., METAGLUT1), and the detection of novel candidate 
cerebrospinal biomarkers (e.g., gluconic + galactonic acid, 
xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose) 
provided possible alternative diagnostic tools [4, 5].

The precise definition of the diagnostic strength and the 
prognostic role of each measurable CSF biomarker in the 
real-world practice still represent an important gap in the 
literature. This review aimed to evaluate whether CSF glu-
cose, CSF/blood glucose ratio, and CSF lactate may impact 
the phenotyping process of patients with GLUT1 deficiency 
and guide therapeutic choices.

Materials and methods

We conducted a systematic review of published pediatric 
cases with a compatible clinical phenotype and a confirmed 
molecular genetic diagnosis of GLUT1 deficiency syndrome 
according to PRISMA guidelines (Fig. 1). A PubMed, Web 
of Science, and Scopus search was performed using the 

Fig. 1  Flow-chart illustrating 
the selection of the articles ana-
lyzed in the present systematic 
review according to PRISMA 
guidelines
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search terms (GLUT1 OR “glut 1” OR glut-1 OR “glucose 
transporter type 1”) AND (deficit* OR disorder) and fil-
tered results for the age range 0–18 years and the tempo-
ral range January 1991–June 2023. Reference lists of each 
selected article and systematic reviews on the same focus 
were reviewed to collect additional papers.

Articles reporting patients without data about CSF analy-
sis or without a molecular genetic diagnosis, articles without 
data reported on patient-by-patient basis, articles about stud-
ies not focusing on human beings, and articles that were not 
written in English were excluded from the analysis (Fig. 1).

Results were screened by title, abstract, and full text. 
Duplicates were excluded. Studies reporting overlapping 
cohorts were identified by comparing relevant features (i.e., 
number of subjects, time variables, outcomes, institution, 
and year). The studies with the most extensive reporting 
were selected for inclusion in our analysis.

Data on demographic features, epilepsy, movement disor-
ders and developmental phenotypes, CSF biochemical mark-
ers, molecular genetic data, and neurological outcomes were 
collected for each of the patients satisfying the inclusion 
criteria.

Figure 1 summarizes the features of the selected arti-
cles. Study selection was performed independently by three 
authors (ECC, NC, and AB). Supplement 1 includes the 
complete data collection sheet including the main demo-
graphic, clinical, and biochemical data for each one of the 
published patients. Supplement 2 summarizes the distribu-
tion of the associated SLC2A1 gene variants. Supplement 
3 illustrates the evaluation of the articles that was realized 
according to NIH-Quality Assessment Tool (https:// www. 
nhlbi. nih. gov/ health- topics/ study- quali ty- asses sment- tools). 
Supplement 4 and 5 report the risk of bias for each one of 
the selected article according to the RoB 2.0-Robvis tool 
(https:// mcgui nlu. shiny apps. io/ robvis/). Supplement 6 
includes PRISMA checklist.

Clinical data were compared between (1) patients with 
CSF glucose ≤ 2.2 and patients with CSF glucose > 2.2 
mmol/L [2], (2) patients with CSF/blood glucose ratio ≤ 
0.45 and patients with CSF/blood glucose ratio > 0.45 [2], 
and (3) patients with CSF lactate < 1 mmol/L and patients 
with CSF lactate > 1 mmol/L (Table 1). Cut-off values for 
CSF glucose and CSF /blood glucose ratio were taken from 
the literature [2]. Cut-off values of CSF glucose, CSF /blood 
glucose ratio, and CSF lactate were also calculated through 
receiver operating characteristic (ROC) curve analysis (sen-
sitivity, specificity, and Youden index) within the cohort of 
published patients reported here.

Data extraction from all the selected articles was blindly 
performed by two authors (FM and GR). Controversies 
about study selection and data extraction were solved after 
a case-by-case discussion involving all the authors with the 
supervision of FP as Senior Author.

All statistical analyses were conducted using IBM SPSS 
Statistics version 25.0 (SPSS Inc., Chicago, IL, USA). 
Normality was assessed with the Kolmogorov-Smirnov 
test. Comparisons were performed using Mann–Whitney 
U test for non-normally distributed data and Fisher’s exact 
test for categorical variables. A p value < 0.05 represented 
statistical significance for all tests. Pairwise deletion was 
applied for each one of the analyzed parameters. Variables 
with missing data above a certain threshold (e.g., 20%) were 
scrutinized to decide on their processing.

The review was recorded in PROSPERO (https:// www. 
crd. york. ac. uk/ prosp ero/- CRD42 02348 0301) on 7/11/2023, 
and the registered protocol was updated on 3/5/2024 to 
include an extension of the initially planned completion date.

Results

Patient characteristics

The screening of the literature resulted in 136 articles fulfill-
ing all the inclusion criteria (60 case reports, 47 case series, 
15 retrospective cohort studies, 9 prospective cohort studies, 
4 case-control studies, and 1 survey). The quality of the arti-
cle according to NIH-Quality Assessment Tool was judged 
as fair in 78, good in 44, and poor in 17 cases (Suppl. 3). A 
consistent risk of bias was assessed by RoB 2.0-Robvis tool 
(https:// mcgui nlu. shiny apps. io/ robvis/) especially for the 
studies focused on the measurement of outcome.

Our search strategy yielded 562 patients with a confirmed 
genetic diagnosis of GLUT1 deficiency syndrome with a 
male/female ratio of 1.06 and a mean age at the diagnosis of 
8.7 ± 6.7 years (range, 22 days–39 years; data available for 
279 patients) (Fig. 1, Suppl. 1) [2, 3, 5–140].

Lumbar puncture was mostly performed before the 
molecular-genetic confirm (Suppl. 1).

Epileptic seizures were reported in 457 patients (Suppl. 
1). Predominant seizure types at the onset mainly included 
absences (151 patients), myoclonic (95 patients), and gen-
eralized tonic-clonic seizures (97 patients) while focal onset 
was observed in 70 patients (Suppl. 1). EEG features were 
reported in 244 patients. The most frequent EEG patterns 
included diffuse spike and wave discharges (127 patients) 
with a frequency of 3–4 Hz being reported in 17 patients 
and a frequency of 1.5–2.5 Hz in 15 patients (Suppl. 1). 
Focal epileptiform abnormalities and slow abnormalities 
were respectively detected in 47 and 55 patients (Suppl. 1).

Data about the administered antiseizure medications were 
available for 208 published patients while details about the 
related therapeutic response were provided in 118 cases 
(seizures reduction reported in 53) (Suppl. 1). A remark-
able proportion of them had received GLUT1 inhibitors 
such as valproate (95 patients), benzodiazepines (9 patients), 

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://mcguinlu.shinyapps.io/robvis/
https://www.crd.york.ac.uk/prospero/-CRD42023480301
https://www.crd.york.ac.uk/prospero/-CRD42023480301
https://mcguinlu.shinyapps.io/robvis/
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phenobarbital (19 patients), or phenytoin (11 patients) before 
the diagnosis (Suppl. 1) with an apparently paradoxical effi-
cacy in 26 patients.

Four hundred forty-eight patients presented with move-
ment disorders mainly including intermittent or persistent 
ataxia (262 patients), dystonia (190 patients), paroxysmal 
exercise-induced dyskinesia (81 patients), and different 
pyramidal signs (78 patients) (Suppl. 1).

A neurodevelopmental disorder was diagnosed in 404 
patients (Suppl. 1). An intellectual disability was assessed in 
247 patients (25 patients had a borderline intelligence quo-
tient (IQ) while different degrees of delay in the achievement 
of developmental milestones were reported in 78 patients 
(Suppl. 1) with the predominant involvement of language 
domains in 29 patients and of learning in other 31 cases 
(Suppl. 1)).

Details about the administration of ketogenic diet were 
reported for 379 patients; data about the response was avail-
able for 263 patients and 234 of them experienced a clinical 
improvement of epilepsy and/or movement disorders (Suppl. 
1).

The duration of follow-up was reported for 89 patients 
(mean duration = 3.05 ± 3.95 years) (Suppl. 1). Data 
about long-term outcome were reported for a proportion 
of patients ranging between 23.9 and 37.9% (213 about 
epilepsy, 149 about movement disorders, and 135 about 

neurodevelopmental disorders) (Suppl. 1). A reduction/dis-
appearance of seizures was reported in 158 patients while 
motor symptoms improved in 116 patients and cognitive/
developmental gains occurred in 91 (Suppl. 1).

Published genotypes included 21 variants carried by 
55.2% of patients (Supplement 2). Most commonly reported 
variants included c.997C>T (p.Arg333Trp), c.376C>T 
(p.Arg126Cys), c.283_284delinsAT (p.Ser95Ile), c.377G>A 
(p.Arg126His), and c.884C>T (p.Thr295Met). Most of the 
variants were scarcely correlated with the values of CSF 
biomarkers with a distribution covering all possible bio-
chemical phenotypes. c.997C>T (p.Arg333Trp), c.457C>T 
(p.Arg153Cys), and c.884C>T (p.Thr295Met) were predom-
inantly observed in patients with CSF glucose ≤ 2.2 mmol/L 
and in patients with CSF/blood glucose ratio ≤ 0.45 (Supple-
ment 1). Conversely, c.283_284delinsAT (p.Ser95Ile) was 
mainly observed in patients with CSF glucose > 2.2 mmol/L 
(Supplement 1).

CSF biomarkers and associated phenotypes

Table 1 and Figure 2 summarize the available data about 
levels of CSF biomarkers and associated phenotypes.

ROC analysis evidenced that CSF glucose had a sensi-
tivity of 87%, a specificity of 100%, and a Youden index 
of 87% at 2.2 mmol/L. CSF/blood glucose ratio showed 

Fig. 2  Distribution of CSF glucose, CSF/blood glucose ratio, and CSF lactate levels in the 537 patients included in the analysis of this system-
atic review
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a sensitivity of 87%, a specificity of 100%, and a Youden 
index of 87% at values > 0.45. Sensitivity, specificity, and 
Youden index for CSF lactate at 1.0 ng/mL were 95%, 98%, 
and 93%, respectively.

Patients with CSF glucose ≤ 2.2 mmol/L and CSF/blood 
glucose ratio ≤ 0.45 presented with an earlier onset of 
symptoms and received an earlier molecular genetic con-
firm (Table 1).

Absence seizures, paroxysmal exercise-induced dyski-
nesia, and intellectual disability were significantly associ-
ated with a CSF/blood glucose ratio ≤ 0.45 with a relevant 
impact of sexual differences (Table 1).

The relationships between CSF parameters and devel-
opmental functions other than intelligent quotient were 
scarcely explorable because of the paucity of available data 
(Table 1; Supplement 1).

Positive response to ketogenic diet was more commonly 
reported in patients with CSF glucose ≤ 2.2 mmol/L. The 
same group had a significant response also to antiseizure 
medications but not to combined treatment (antiseizure med-
ication + ketogenic diet) (Table 1). A significant response 
to antiseizure medications but not to ketogenic diet was 
observed in patients with CSF lactate higher than 1 mmol/L 
(Table 1).

Discussion

This systematic review suggested a relationship between the 
levels of CSF biomarkers and the distribution of some clini-
cal parameters (age at the onset of symptoms, seizure and 
movement disorder types, cognitive profiles, and efficacy 
of available treatments) in patients with GLUT1 deficiency 
syndrome (Table 1).

The reliability of hypoglycorrhachia as diagnostic bio-
marker has been acquired since the last decade, when a ret-
rospective analysis on 147 patients evidenced that CSF was 
below the 10th percentile of reference range in all published 
patients while CSF blood/glucose ratio was normal in 10% 
and data about CSF lactate were often not informative [141]. 
It was also evidenced that CSF glucose may range between 
0.9 to 2.8 mmol/L in GLUT1 deficiency, and milder pheno-
types may have CSF values between 2.2 and 2.9 mmol/L [1, 
141]. Low CSF glucose mirrors the impoverishment of neu-
ronal bioenergetic resources and might be better correlated 
with more severe phenotypes [142]. The herein reported 
data confirmed that hypoglycorrhachia was associated with 
factors having a relevant therapeutic and prognostic impact 
(e.g., earlier onset of symptoms and efficacy of ketogenic 
diet and/or antiseizure medications) (Table 1). The nega-
tive impact of hypoglycorrhachia on the developing brain 
is probably independent by etiologies even if the severity of 
its effects may vary in the different age ranges [143–146]. 

The concept of “window of vulnerability” to the damages, 
induced by the low quote of glucose available to face the 
increased energy demands by the immature brain in the first 
months of life, might explain the worst outcome observed 
in late-treated patients with hypoglycorrhachia and earlier 
onset of symptoms [2, 108]. This window was placed by 
some authors between the first and the sixth month after 
birth and overlapped with the ideal timing for the beginning 
of ketogenic diet and the optimization of the related thera-
peutic results [2, 75].

CSF blood/glucose ratio may be considered an index of 
the degree of transporter function impairment with a higher 
sensitivity towards the detection of later onset and less 
severe phenotypes in which a residual activity of GLUT1 
might be preserved [142]. The significant association of 
CSF/blood glucose ratio ≤ 0.45 with sex differences that 
was observed in published patients has no clear explana-
tions (Table 1). No evident sex predisposition to GLUT1 
deficiency was highlighted in the literature even if a nega-
tive regulation of GLUT1 protein mediated by estrogens has 
been reported in in vitro models [1, 147].

The association between low CSF/blood glucose ratio and 
absence seizures supported the results of previous studies 
that had highlighted the etiological role of SLC2A1 path-
ogenic variants in a proportion of cases ranging between 
5.6% and 10% of all patients presenting with a childhood 
onset absence epilepsy [37, 105, 148]. Other authors had 
evidenced the same pathogenic role in a lower percentage 
of cases (1.4%) if the analyzed cohorts included patients 
with all types of idiopathic generalized epileptic syndromes 
[37, 105, 149]. In these cases, the indication for a lumbar 
puncture should be mandatory for children in which epilepsy 
is associated with other clinical hallmarks such as the pre-
dominance of seizures after periods of fasting, developmen-
tal impairment, or paroxysmal exercise-induced dyskinesia 
[105]. The lack of significance for seizure types other than 
absences might contraindicate the procedure especially if 
epilepsy is the only clinical manifestation [105, 149].

The pathomechanisms behind the higher frequency of 
early onset absences among patients with a lower CSF/
blood/glucose ratio might result from a lower functional 
adaptability to energy deprivation of mutated neuronal trans-
porters in the networks involving thalamus and connected 
cortical areas including posterior cingulate cortex, precu-
neus, angular gyrus, supramarginal gyrus, parietal superior, 
and occipital mid-region [37, 78, 105, 148, 149] (Table 1). 
Similar mechanisms might be involved in the impairment 
of astrocyte-to-neuron lactate shuttles in putamen and cor-
tico-striatal pathways in patients with paroxysmal exercise-
induced dyskinesia [78].

The assessed links between CSF/blood glucose ratio and 
intellectual disability are probably due to the lower ability 
of impaired cerebral GLUT1 to face the higher functional 
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request of developing brain, and it was firstly highlighted in 
a nationwide survey including 33 Japanese patients carrying 
missense variants of SLC2A1 [71]. A comparable correla-
tion between CSF/blood glucose ratio and severity of speech 
and language impairment was not demonstrated in a smaller 
Italian series of eight patients [127].

Data from the analyzed literature did not demonstrate 
any association between lactate levels and developmental/
clinical hallmarks of GLUT1 deficiency (Table 1) despite 
various basic/science and clinical studies highlighted the 
role of lactate in various cerebral networks, especially the 
ones involved in learning and memory [142, 150]. A bet-
ter response to antiseizure medications was evidenced in 
patients with normal levels of lactate suggesting a less-com-
promised epilepsy phenotype in patients with a better basal 
energy metabolic compensation (Table 1).

The maintenance of lumbar puncture in the early diagnos-
tic work-up of patients with GLUT1 deficiency syndrome, 
despite the increased quote of rapid turnaround time for 
genetic testing, has relevant prognostic implications because 
it still allows an earlier access to an effective disease-modi-
fying treatment such as ketogenic diet. The herein reported 
data highlighted a more significant response to ketogenic 
in patients with CSF glucose ≤ 2.2 mmol/L while signifi-
cance was not relevant in patients with low CSF/blood ratio 
(Table 1). Conversely, another recent systematic review of 
230 published patients confirmed significant improvement 
in movement disorders in 104 out of 127 patients with better 
results in children with higher CSF/blood glucose ratio [3]. 
Another direct relationship between CSF/blood glucose ratio 
and total and verbal IQ improvement, after the introduction 
of ketogenic diet, was found in a smaller single center series 
of 14 patients [75].

Few correlations between genotypes and CSF glucose 
and CSF/blood glucose ratio may be highlighted. Variants 
c.997C>T (p.Arg333Trp) and c.457C>T (p.Arg153Cys) 
result in a less flexible and efficient glucose transport 
because of a higher quote of salt bridges stabilizing the 
conformation of GLUT1 protein and reducing electrostatic 
interactions during the activation of its intracellular and 
transmembrane segments [151]. The variant c.884C>T 
(p.Thr295Met) results in conformational changes that inhibit 
the access of glucose molecules in the exofacial site of the 
transporter [152].

Some limitations, mainly due to the predominant retro-
spective nature of the collected data, should be considered 
in the interpretation of the results of this systematic review: 
(a) differences in the ages of clinical evaluation, cerebro-
spinal fluid acquisition, achievement of molecular genetic 
confirm, and introduction of ketogenic diet or antiseizure 
medications; (b) lack of CSF measurements for a consider-
able number of published patients; and (c) differences in the 
methodologies used for the definition of phenotypic severity, 

clinical variability, response to treatments, and developmen-
tal outcome.

Conclusions

The analysis of the literature confirmed the usefulness of 
lumbar puncture for the early identification of patients with 
severe and mild phenotypes of GLUT1 deficiency and the 
subsequent prognostic implications of an earlier initiation 
of ketogenic diet. CSF analysis is easily and diffusively 
available diagnostic tool and contributes to a faster diag-
nostic work-up in patients with more severe phenotypes. The 
turnaround time of ultra-rapid next-generation sequencing 
techniques will not probably impact on the real-world thera-
peutic planning for the next few years. The results of this 
systematic review highlighted that a lumbar puncture should 
be strongly considered when severe developmental delay, 
paroxysmal exercise-induced dyskinesia, and early onset 
absences co-exist.
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