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A B S T R A C T   

Encouraging farmers to adopt environmentally friendly technology through the rational use of social learning 
and agricultural technology extension is an effective way to overcome the bottleneck caused by the slow 
diffusion of environmentally friendly technology. Based on expanding the existing objects of research on farmers’ 
technology adoption behavior, this paper examines the influence of social learning and agricultural technology 
extension on farmers’ environmentally friendly technology adoption behavior from a dynamic perspective. In 
doing so, it enriches theoretical and empirical research on farmers’ technology adoption behavior. Specifically, 
this paper takes fertigation technology as an example, constructs a dynamic analysis framework that is inde
pendent of the case study, and finds that social learning and agricultural technology extension, as the main 
channels for farmers to obtain technical information, can shorten the duration from awareness to the adoption of 
fertigation technology. Then, based on survey data, this paper uses the discrete-time cloglog model to conduct an 
empirical test. The empirical analysis supports the theoretical analysis results, and there is a complementary 
effect between social learning and traditional and new agricultural technology extension. Heterogeneity analysis 
shows that social learning and new agricultural technology extension have a greater marginal improvement 
effect on farmers’ fertigation technology adoption behavior in the middle-aged to young group, middle and high 
education degree group and above median land scale group. This paper provides not only new empirical evi
dence to explain farmers’ technology adoption behavior under the background of the internet revolution but also 
a decision-making reference for how to accelerate the construction of multivariate complementary, collaborative 
and efficient agricultural socialized service systems.   

1. Introduction 

The transformation of the agricultural production mode from the 
traditional extensive mode to the green and efficient mode is an 
important development path for solving the structural contradiction of 
the agricultural supply side, optimizing the efficiency of agricultural 
resource allocation, and improving the comparative income of the 
agricultural sector (Tang et al., 2017). As a key force supporting the 
green development of agriculture, effective agricultural technology 
extension (ATE) can encourage farmers to adopt environmentally 
friendly technologies, promote quality, green and brand agriculture, 

realize farmers’ income increase, and improve the agricultural ecolog
ical environment (Tong and Huang, 2018b). At the same time, social 
learning (SL) can effectively compensate for the shortage of ATE supply. 
Therefore, the impact of SL and ATE on farmers’ technology adoption 
behavior has always been of great concern to existing research. Most 
existing studies use binary variables as proxy variables for SL and ATE 
(Tong et al. 2018a; Khataza et al., 2018). Specifically, SL, ATE and other 
control variables are generally taken as explanatory variables, and 
farmers’ technology adoption behavior is used as an explained variable. 
Then, static analysis methods such as the probit model, logit model and 
sample selection model are used for empirical tests. However, existing 
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research is inconclusive. Some scholars believe that SL and ATE will 
promote farmers’ technology adoption. For example, Hoemer et al. 
(2022) found that ATE had a significant impact on the adoption of 
agricultural complex technology packages by sub-Saharan African 
farmers. Makate et al. (2019) confirmed that Zimbabwe and Malawi 
farmers’ access to ATE aids in climate-smart agricultural technology 
adoption. Nakano et al. (2018) showed that SL can effectively accelerate 
information transfer among Tanzanian farmers and thus improve 
adoption rates for rice improvement technology among farmers. Wang 
et al. (2020) believe that SL and ATE services can improve farmers’ 
water-saving irrigation technology adoption efficiency from Minqin, 
China. 

In contrast, some scholars have pointed out that SL and ATE are 
ineffective. For example, Baloch and Thapa (2018) argued that on-site 
guidance by agricultural technicians did not have a significant impact 
on the adoption of water-saving irrigation technology and integrated 
control technology among Pakistani farmers. Crane-Droesch (2017) 
found that SL transfers uncertainty in soil improvement technology to 
Kenyan farmers, thereby restricting their technology adoption. Kondylis 
et al. (2017) showed that agricultural technology training has no sig
nificant impact on farmers’ adoption of conservation agricultural tech
nology in Mozambique. 

According to the literature review, scholars in China and elsewhere 
have performed useful explorations of the effectiveness of SL and ATE. 
For example, in research on different types of technology adoption be
haviors of farmers, scholars have gradually begun to pay attention to the 
cross-integration of different disciplines. Research has also tried to 
construct a more comprehensive research framework in line with the 
natural resource endowment and social and cultural form of the study 
area, which plays an important role in identifying the factors affecting 
farmers’ technology adoption behavior. Given the reality of gradually 
tightening rural resource and environmental constraints, Sayyad et al. 
(2015), Malmir et al. (2021), Jafari et al. (2021), and Malmir et al. 
(2022) studied the sustainable development of resources under the 
comprehensive framework of nature, society and the humanities, 
providing very useful research ideas for this paper. Meanwhile, to better 
improve the accuracy of promotion policies, the internal differentiation 
of farmer groups has also become an important factor that cannot be 
ignored in research on farmers’ technology adoption behavior, and this 
factor contributes experience to the consideration of farmer heteroge
neity in this paper. 

However, there are still the following deficiencies. First, an inde
pendent theoretical analysis framework is lacking. Most of the existing 
studies are case studies based on survey data and lack a theoretical 
analysis framework independent of case studies, which makes the gen
erality and reliability of the research conclusions questionable. Second, 
the dynamic effects of SL and ATE on farmers’ technology adoption 
behavior were not examined. Farmers’ technology adoption should be a 
dynamic process from awareness to adoption (Martins et al., 2011), and 
the information that farmers acquire from SL and ATE accumulates 
continuously over time. Most existing studies adopt static analysis 
methods such as probit models, logit models and sample selection 
models, which fail not only to explain the duration of farmers’ cognitive 
technology to adoption process but also to estimate the dynamic impact 
of time-varying variables, such as the degree of information accumula
tion on farmers’ technology adoption behavior (Leggesse et al., 2004). 
Third, few studies have explored the impact of new agricultural tech
nology extension (NATE) in China on farmers’ technology adoption 
behavior. ATE can be divided into traditional and new methods in 
China. Traditional agricultural technology extension (TATE) mainly 
includes on-site guidance, technical training, science and technology 
demonstrations and mass media (newspapers, radio and television) 
publicity. NATE means releasing technical information, solving farmers’ 
technical problems online and providing agricultural technology sup
port for farmers through new media channels such as WeChat official 
accounts and other apps. However, most existing studies on the impact 

of ATE on farmers’ technology adoption behavior in China take TATE as 
an example, but studies on NATE methods as the research object are 
relatively scarce. Fourth, there is a lack of due attention to the com
plementary effect of SL, TATE and NATE. Theoretically, SL is embedded 
in ATE, and TATE and NATE should complement each other. However, 
most existing studies have explored how SL or ATE affects the technol
ogy adoption behavior of farmers considering a single aspect, and the 
complementary effects among SL, TATE and NATE have not been 
verified. 

Considering the wide variety of environmentally friendly agricul
tural technologies, this paper takes fertigation technology as an example 
to conduct analysis. The fertilization intensity in China is 2.6 and 2.5 
times higher than that in the United States and the European Union, 
respectively1. The excessive and inefficient use of chemical fertilizers 
not only wastes resources but also affects the quality and safety of 
agricultural products, aggravates agricultural nonpoint source pollution 
and deteriorates the agricultural ecological environment (Li et al., 
2018). Meanwhile, the per capita water resource availability in China is 
2,007.57 m3, less than one-fourth of the world’s average level, and the 
utilization rate of agricultural irrigation water is only approximately 
0.45, which is far from the utilization rate of 0.7 ~ 0.9 in developed 
countries2. Given the reality of gradually tightening rural resource and 
environmental constraints, it has become key for China to seek an in
tegrated agricultural production model that integrates rural develop
ment, farmers’ prosperity and ecological friendliness. Compared with 
traditional irrigation and fertilization methods, fertigation technology 
can improve both the water and fertilizer utilization rates, ensure a 
balanced supply of water and nutrients for each crop, and save labor and 
time as well as fertilizer and water (Wu et al., 2019). Therefore, the 
Chinese government is committed to promoting fertigation technology3. 
However, the application area of fertigation technology is <10% of 
China’s effective irrigation area4, and research on the factors influencing 
farmers’ adoption behavior with regard to fertigation technology is very 
rare. 

Based on the discussion above, this paper aims to construct a dy
namic analysis framework. Using information accumulated from SL and 
ATE, this paper analyzes the dynamic process through which farmers 
gradually adjust the expected discounted profit and make adoption de
cisions. The dynamic impact of SL and ATE on farmers’ technology 
adoption behavior is then theoretically derived. Subsequently, this 
paper uses duration analysis, combined with survey data covering 1109 
farmers in five provinces: Henan, Shandong, Hebei, Anhui and Jiangsu. 
The empirical study examines the relationship between SL, TATE, NATE 
and farmers’ technology adoption behavior and further discusses the 
complementary effect and distribution effect of SL, TATE and NATE. 
Finally, based on the research conclusions, this paper makes recom
mendations on promoting the large-scale application and extension of 
environmentally friendly technologies. 

The possible innovations and contributions of this paper mainly lie in 
the following. First, it innovates research perspectives. This is a brand 
new attempt to adopt a dynamic perspective to investigate the effects of 
SL and ATE on farmers’ technology adoption behavior. Second, it con
structs a dynamic analysis framework that is independent of the case 
study and broadens the theoretical boundary of farmers’ technology 

1 Ministry of Agriculture and Rural Affairs of the People’s Republic of China: 
< Action plan for zero growth of fertilizer use by 2020 >, http://www.moa.gov. 
cn/nybgb/2015/san/201711/t20171129_5923401.htm  

2 Information from the official website of the National Bureau of Statistics, 
http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C02&sj=2018  

3 Ministry of Agriculture and Rural Affairs of the People’s Republic of China: 
< Implementation plan of promoting fertigation (2016-2020) >, http://www. 
moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920793.htm  

4 Information from the official website of the National Bureau of Statistics, 
http://data.stats.gov.cn/easyquery.htm?cn=C01 

Y. Gao et al.                                                                                                                                                                                                                                     



Ecological Indicators 154 (2023) 110724

3

adoption behavior. Based on the rural reality of developing countries, 
this framework incorporates SL and ATE into systematic analytical 
thinking, includes farmers’ profits in the dynamic analytical logic, fully 
considers the impact of information accumulation, and provides a new 
theoretical paradigm for developing countries to diffuse environmen
tally friendly technologies. Third, it deepens the research content. We 
focus on the different effects of TATE and NATE patterns on farmers’ 
technology adoption behavior. Additionally, we parse the complemen
tary effects and distribution effects of SL and TATE and NATE. This not 
only provides new empirical evidence to explain farmers’ technology 
adoption behavior against the background of the internet revolution but 
also provides a decision-making reference for how to speed up the 
construction of multivariate complementary, collaborative and efficient 
agricultural socialized service systems5. 

2. Theoretical analysis 

This paper draws upon and improves the research of Genius et al. 
(2014) to construct a theoretical analysis framework to explore the re
lationships between SL, ATE and the duration of the process from 
farmers’ awareness to the adoption of fertigation technology. In this 
paper, the production function of farmer j is set as follows: 

yj = f (xf
j , xw

j , x
r
j ,Aj) (1)  

where yj represents the crop yield of farmer j; xf
j represents the amount 

of fertilizer applied by farmer j; xw
j represents the irrigation water con

sumption of farmer j; xr
j represents the number of inputs for other factors 

of production (labor, etc.) of farmer j; Aj represents the technical index 
of farmer j, specifically referring to water and fertilizer utilization; and 
f(⋅) represents a strictly concave function. 

As seen from Equation (1), on the premise that the input of other 
production factors xr

j remains unchanged, a higher technical index Aj of 
farmer j results in a higher water and fertilizer utilization rate, allowing 
the farmer to obtain the same yield yj with relatively less irrigation water 
xw

j and relatively less fertilizer xf
j . In this paper, A0

j represents the 
technical index of farmer j under traditional fertilization and irrigation 
patterns; A•

j represents the technology index of farmer j when he or she 
adopts fertigation technology; and A*

j represents the highest technology 
index that can be achieved by farmer j using fertigation technology. 
Obviously, A•

j > A0
j and A⋅

j⩽A∗
j . 

Although the advantages of fertigation technology are obvious, its 
actual adoption has not been ideal. The possible reasons are as follows: 
first, farmers cannot accurately quantify the change in profits after 
switching from traditional fertilization and irrigation patterns to ferti
gation technology, and their expected discounted profits are uncertain; 
second, for A• to reach the maximum value A∗, time is needed to 
accumulate information, and there is uncertainty about how long it will 
take. 

Regarding the uncertainty of farmers’ expected discounted profit and 
time, this paper assumes that (1) before adopting fertigation technology, 
farmers accumulate information through SL and ATE so that the ex
pected discounted profit of adopting fertigation can be accurately 
quantified and that (2) after adopting fertigation technology, farmers 
who are learning by doing improve the fertigation technology index. 

In this paper, the production cycle of farmers from awareness to 
adoption and then to application of fertigation technology is represented 
by T. The production cycle of farmers’ awareness of adopting fertigation 
technology is represented by, s ∈ \{ 0, 1,2, ...,T − 1\} .τ represents the 

production cycle of farmers adopting fertigation technology, τ > s, and 
τ ∈ {s + 1,s + 2,s + 3,...,T}; t represents the production cycle of farmers 
using fertigation technology, t ∈ {τ,τ + 1,τ + 2, ...,T}; A⋅

s(t, τ) is used to 
represent the expected fertigation technology index of farmer j at the 
end of period if fertigation is adopted in period τ and applied in period t. 
With the continuous postponement of τ and t, farmers will accumulate 
more fertigation technology information, and A⋅

s(t, τ) will become 
higher. Therefore, the first partial derivatives of A⋅

s(t, τ) with respect to τ 
and t are both greater than or equal to 0; that is, ∂A⋅

j,s/∂t⩾0,∂A⋅
j,s/∂τ⩾0. 

In the framework of this paper, at the end of period s, farmers will 
form an expected discounted profit for period t based on the information 
accumulated from SL and ATE and use it to make the adoption decision 
regarding fertigation technology in period s + 1. If farmers do not 
adopt fertigation technology in period s + 1, they will continue to 
accumulate information. At the end of period s + 1, farmers will again 
form an expectation for their discounted profit for period t based on the 
accumulated information. This process is repeated until the farmer 
adopts fertigation technology in period τ. To adopt fertigation technol
ogy, farmers will also purchase the required equipment in period τ, 
resulting in equipment costs c. 

Based on the above analysis, at the end of period, farmer j’s expected 
discounted profit function for period t can be expressed as: 

πj(p,wf ,ww,wr,Aj)

= max
xf ,xw ,xr

{pf (xf
j , x

w
j , x

r
j ,Aj) − wf xf

j − wwxw
j − wrxr

j }
(2)  

where p,wf ,ww and wr represent the expected prices of crops, fertilizer, 
water and other factors of production in period t, respectively. This 
paper assumes that the expected prices of agricultural products and 
factors of production in the function, as well as the input of factors of 
production except water and fertilizer, will not change with time. 
Therefore, the expected discounted profit function πj(⋅) depends on the 
change in Aj. At this time, the expected discounted profit of farmer j in 
period t can be converted into the expected profit of A⋅

s(t, τ), and the 
decision to adopt fertigation technology can be made accordingly. 

Therefore, this paper replaces Aj in Equation (2) with A⋅
s(t, τ)

(omitting subscript j). 

πs,τ,t(p,wf ,ww,wr ,A⋅
s(t, τ))

= max
xf ,xw ,xr

{pf (xf
s,τ,t, x

w
s,τ,t, x

r
s,τ,t,A⋅

s(t, τ))

− wf xf
s,τ,t − wwxw

s,τ,t − wrxr
s,τ,t}

(3) 

To simplify the analysis, it is further assumed that the technical index 
of farmers remains constant6 from period τ to period τ+Te (Te is the 
expected production cycle of equipment use). The sum of the expected 
discounted profits of farmers in the total period T can be expressed as: 

Vs,τ,T :=
∑τ− 1

t=s+1
π +

∑{τ+Te − 1}∧T

t=τ
πs +

∑T

t=1+({τ+Te − 1}∧T)

π − cs,τ

= (τ − 1 − s)π + (({τ + Te − 1} ∧ T) − τ + 1)πs

+((T − ({τ + Te − 1} ∧ T)) ∨ 0)π − cs,τ

= [τ − 1 − s + (T − ({τ + Te − 1} ∧ T)) ∨ 0]π
+({{τ + Te − 1} ∧ T} − τ + 1)πs − cs,τ

(4)  

where a ∧ b = min{a,b}, a ∨ b = max{a,b}, and 
∑τ− 1

t=s+1π represents the 
sum of farmers’ expected discounted profits from period s + 1 to period 
τ;
∑{τ+Te − 1}∧T

t=τ πs represents the aggregate of farmers’ expected dis

counted profits from period τ to period τ + Te;
∑T

t=1+({τ+Te − 1}∧T)π 

5 
< Some opinions on strengthening the construction of socialized service 

system of agricultural science and technology > http://www.xinhuanet.com/ 
politics/leaders/2019-11/26/c_1125277614.htm 

6 In fact, the technical index changes from period τ to τ + Te. However, 
farmers cannot anticipate this change, and with the postponement of τand t, the 
higher A⋅

s(t, τ) is, the lower the likelihood that the technical index will be 
further improved through learning by doing. 
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represents the sum of farmers’ expected discounted profits from period 
to the end of period T; and cs,τ is farmers’ expected discounted equip
ment cost at the end of period s. If τ + Te⩾T, 1 + ({τ + Te} ∧ T)〉T, and is 
0. 

When τ + Te - 1⩽T, the result of Equation (4) can be simplified as: 

[τ − 1 − s + (T − ({τ + Te − 1} ∧ T)) ∨ 0]π
+({{τ + Te − 1} ∧ T} − τ + 1)πs − cs,τ

= [τ − 1 − s + T − τ − Te + 1]π
+ [τ + Te − 1 − τ + 1]πs − cs,τ
= [T − (s + Te)]π + Teπs − cs,τ

(5) 

With the continuous postponement of τ, the more technical infor
mation on fertigation technology that farmers accumulate, the lower 
their equipment transaction cost will be, and the better able they will be 
to purchase equipment with the best cost performance. In other words, 
cs,τ is a decreasing function of τ, and then Vs,τ,T is a decreasing function of 
τ. Therefore, the optimal adoption period for integrated water and fer
tilizer technology for farmers is τ∗1 = T − Te + 1. The maximum sum of 
the expected discounted profit can be expressed as: 

max
τ+Te⩽T

Vs
s,τ,T = Vs

s,τ*
1 ,T

= Vs
s,T − Te+1,T (6) 

Farmers will not adopt fertigation technology before the optimal 
adoption cycle T − Te + 1, s⩾T − Te. Meanwhile, T − Te +k is repre
sented by s+k in this paper, and k represents the k production cycle after 
farmers become aware of fertigation technology, where 1⩽k⩽T − s. 
Equation (6) can be transformed into: 

max
τ+Te⩽T

Vs
s,τ,T = max

1⩽k⩽T − s
Vs

s,s+k,T (7) 

According to Equation (5), max
1⩽k⩽T− s

Vs
s,s+k,T can be expressed as: 

Vs
s,s+k,T = (k − 1)π +(T − s − k + 1)πs − cs,s+k (8) 

and cs,s+k can be expressed as: 

cs,s+k = (1 + ase− δc,s(k− 1))c*
s (9) 

where, cs,s+k decreases as the value of k increases and converges to c*
s 

at, and lim
k→∞

cs,s+k = lim
k→∞

(1+ ase− δc,s(k− 1))c*
s = c*

s . When k = 1,. Since c*
s is 

a fixed real number, the specific form of cs,s+k can be obtained by 
substituting c*

s at k = 1 into Equation (9): 

cs,s+k =
(1 + ase− δc,s(k− 1))

1 + as
cs,s+1 (10) 

Substituting Equation (10) into Equation (8) yields: 

Vs
s,s+k,T = (k − 1)π +(T − s − k + 1)πs −

(
1 + ase− δc,s(k− 1)

)

1 + as
cs,s+1 (11) 

Then, the first partial derivative of Vs with respect to k is: 

∂Vs

∂k
= π − πs +

asδc,scs,s+1

1 + as
e− δc,s(k− 1) (12) 

The second partial derivative of Vs with respect to k is: 

∂2Vs

∂k2 = −
asδ2

c,scs,s+1

1 + as
e− δc,s(k− 1) < 0 (13) 

Farmers’ willingness to adopt fertigation technology in period s and 
the critical conditions for adopting fertigation technology in period s+1 
are as follows: 

∂Vs

∂k

⃒
⃒
⃒
⃒

k=1
⩽0 ⇔ πs⩾π + δc,s

ascs,s+1

1 + as
(14) 

As mentioned above, under the condition that the expected price of 
production factors and input amount remain unchanged, the duration 
from awareness to adoption of fertigation technology depends on πs, 
while πs continuously increases with the increase in A⋅

s(t, τ). Therefore, 

the more information farmers accumulate through SL and ATE, the 
higher their A⋅

s(t, τ) and πs and, thus, the shorter the duration from 
awareness to the adoption of fertigation technology. 

3. Research design 

3.1. Econometric model 

The discrete-time cloglog model uses a hazard function to represent 
the instantaneous probability of an event mutation (Gao et al., 2019). 
The hazard function is defined as h(m), which means that the awareness 
of fertigation technology by farmers persists for m − 1 years, and the 
probability of adoption in year m is as follows: 

h(m) = Pr(m − 1⩽M⩽m|M > m − 1) = 1 −
S(m)

S(m − 1)
(15) 

The formula for the discrete-time cloglog model is: 

Cloglog[1 − h(m|X) ]
= θ + β1ξ + β2ω1 + β3ω2 + β4K + u (16)  

where h(m|X) refers to the timing of farmers’ awareness of fertigation 
technology after m − 1 years, which is the probability of adopting ferti
gation technology in year m; ξ represents SL; ω1 represents TATE; ω2 
represents NATE; K represents control variables; u is the error term that 
controls unobservable heterogeneity; and θ andβ1 ~ β4represent the 
estimated parameters. 

Furthermore, to investigate the dynamic impact of the complemen
tary effects of SL and ATE on farmers’ adoption behavior of fertigation 
technology, this paper adds the interaction term of SL and ATE on the 
basis of Equation (18): 

Cloglog[1 − h(m|X) ]
= θ + β1ξ + β2ω1 + β3ω2 + β5ξω1 + β6ξω2 + β7ω1ω2 + β4K + u (17)  

where ξω1 represents interaction terms between SL and TATE, ξω2 
represents interaction terms between SL and NATE, ω1ω2 represents 
interaction terms between TATE and NATE, andβ5 ~ β7represent the 
estimated parameters of interaction terms. Other variables are the same 
as in Equation (16). 

Finally, on the basis of the above analysis, this paper divides farmers 
into groups according to age, education level and land scale and further 
examines which type of farmers benefit more to analyze the distribution 
effects of SL and TATE and NATE in detail. 

3.2. Variable measurements 

3.2.1. Dependent variable 
The duration of the process from farmers’ recognition of fertigation 

technology to adoption. Because this paper formally researched the year 
2018 and the National Agricultural Technology Extension Service Cen
ter officially launched fertigation technology technical training, 
demonstration and extension in 2010 (Liu et al., 2016), this paper set the 
farmers’ cognitive basis for fertigation technology to between 2010 and 
2018 and a duration from awareness to adoption of 0 ~ 9 years, 
namely,M integer values in the interval [0, 9]. 

3.2.2. Core independent variable 
In this paper, the measurement indexes of SL and TATE and NATE are 

selected to avoid associativity with farmers’ fertigation technology 
adoption behavior, thus weakening to some extent the potential endo
geneity problems of SL and TATE and NATE. Meanwhile, referring to 
Gao et al. (2019), this paper used the entropy weight method, and the 
actual sample utility value it produced was used to modify the weight 
obtained from the factor analysis to create a comprehensive index of 
each index of the core independent variables, further weakening the 
potential endogeneity problems of SL and TATE and NATE. 
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3.2.2.1. SL. Rural neighbors are the main source of farmers’ SL 
(Nakano et al., 2018). The greater the number of rural neighbors who 
adopt a technology is, the higher the degree of technical information 
accumulation (Liverpool-Tasie and Winter-Nelson, 2012). At the same 
time, the strength of SL also depends on the geographical distance be
tween farmers and their neighbors (Genius et al., 2014). The closer the 
distance to rural neighbors who adopt new technologies, the more 
beneficial the accumulation of information for farmers. Therefore, ‘the 
number of rural neighbors who adopt technology’ and ‘distance from 
technology adoption neighbors’ in the year when sample farmers 
adopted fertigation technology were used in this paper to reflect SL. ‘The 
number of rural neighbors who adopt technology’ is reflected by ‘the 
number of rural neighbors adopting fertigation technology around the 
sample farmers’, ‘the number of similar rural neighbors’7, and ‘the 
number of similar rural neighbors identified by the sample farmers’8. 
‘The distance from technology-adopting neighbors’ is reflected by ‘the 
average distance between the sample farmers and rural neighbors who 
adopt fertigation technology’, ‘the average distance between the sample 
farmers and similar rural neighbors’, and ‘the average distance between 
the sample farmers and similar rural neighbors identified by the sample 
farmers’. 

3.2.2.2. TATE. Agricultural technicians are the main body of TATE. 
The more times agricultural technicians enter fields, the more it will 
promote farmers to accumulate technical information (Verkaart et al., 
2019). Meanwhile, the closer farmers are to agricultural technical sta
tions, the more convenient it is for them to obtain technical guidance, 
and the more beneficial it is for them to accumulate information (Genius 
et al., 2014). Therefore, ‘the number of times agricultural technicians 
enter the fields’ and ‘distance from the nearest agricultural technology 
department’ for the year before the sample farmers adopted fertigation 
technology was used to reflect TATE in this paper, where ‘the number of 
times agricultural technicians enter the fields’ is reflected by ‘the cu
mulative number of agricultural technicians entering the sample 
farmers’ fields’, ‘the cumulative number of agricultural technicians 
entering the fields of similar farmers’, and ‘the cumulative number of 
agricultural technicians entering the fields of those similar farmers 
identified by sample farmers’. ‘The distance from the nearest agricul
tural technology department’ is reflected by ‘the distance between the 
nearest agricultural technology department and the sample farmers’, 
‘the distance between the nearest agricultural technology department 
and the similar farmers’, and ‘the distance between the nearest agri
cultural technology department and the similar farmers identified by the 
sample farmers’. 

3.2.2.3. NATE. Farmers who adopt NATE to obtain technical informa
tion can not only browse personalized customized information anytime 
and anywhere but also interact and communicate with online experts 
instantly, thus satisfying their needs for efficient, accurate, real-time, 
convenient and personalized interaction (Ruan et al., 2017). Gener
ally, the more times farmers receive effective answers to their questions 
and the sooner they receive effective answers to their questions, the 
greater their risk perception of the technology is reduced and thus their 
confidence in adopting new technology is increased. Therefore, ‘the 

number of effective answers’ and ‘the average time to obtain an effective 
answer to a question’ before the year when sample farmers adopted 
fertigation technology were used to reflect NATE in this paper, where 
‘the number of effective answers’ is reflected by ‘the cumulative number 
of effective answers to the questions of sample farmers’, ‘the cumulative 
number of effective answers to the questions of similar farmers’, and ‘the 
cumulative number of effective answers to the questions of similar 
farmers identified by sample farmers’. ‘The average time to obtain an 
effective answer to a question’ is reflected by ‘the average time for 
sample farmers to obtain effective answers to questions’, ‘the average 
time for similar farmers to obtain effective answers to questions’, and 
‘the average time for similar farmers identified by sample farmers to 
obtain effective answers to questions’. 

3.2.3. Control variables 
Drawing on relevant research results, eight variables covering the 

characteristics of the household head and resource endowment of the 
sample farmers in the year of technology adoption, namely, gender, age, 
level of education, risk preference, scale of cultivated land, size of the 
labor force, condition of assets and crop type, were selected as control 
variables affecting farmers’ adoption behavior of fertigation 
technology9. 

In addition, village dummy variables are introduced to control for 
the differences in unobservable variables at the village level, such as 
hydrological conditions, pest conditions, geographic factors, agricul
tural production practices and institutional characteristics. The dummy 
variable for all villages takes the value of 0 or 1, and the first village is 
used as the reference group. 

3.3. Data sources 

In this paper, five provinces, i.e., Henan, Shandong, Hebei, Anhui 
and Jiangsu (as shown in Fig. 1), in the North China Plain were selected 
as the setting for this field study for several reasons. First, the above five 
provinces are important agricultural production bases in China, with 
grain production accounting for 35.48% of China’s total production10. 
Second, the purity of the chemical fertilizer applied in the above five 
provinces was 692.8, 420.3, 312.4, 311.8 and 2.925 million tons, 
ranking first, second, third, fourth and sixth in China, respectively. The 
excessive application of chemical fertilizer is serious, and the utilization 
rate of fertilizer is low11. Third, the above five provinces are key 
demonstration areas for the extension of fertigation technology12; thus, 
the extension and application of fertigation technology has a certain 
foundation. 

The survey was conducted in two stages. The first was a pre- 
investigation stage. In June 2018, 20 farmers in each province were 
randomly selected for household interviews to gain a preliminary un
derstanding of their knowledge of fertigation technology and technology 
adoption. The deficiencies in the questionnaire were modified and 
improved based on the presurvey results. The second stage is formal 
investigation. From July to September 2018, the survey was conducted 
using the multistage random sampling method. First, all counties (cities 
and districts) in each province were divided into three levels according 
to per capita income: high, medium and low. Two counties (cities and 
districts) were randomly selected from each group. Then, two townships 
(towns) were randomly selected from each sample county (cities and 

7 Referencing the research of Genius et al. (2014), farmers of similar age 
(within a range of 6 years) and of a similar educational level (within a range of 
2 years) as the sample farmers are defined as similar farmers throughout this 
section. 

8 In this paper, from the perspectives of the sample farmers, similar neigh
boring farmers and similar farmers identified by the sample farmers, items were 
designed to reflect the indicators of the core explanatory variable, and the 
weighting method combined with the factor analysis and the entropy weight 
method was used to obtain the comprehensive index of each indicator of the 
core explanatory variable. The same applies below. 

9 For the selection of specific control variables, please refer to Appendix 1.  
10 <China Statistical Yearbook-2019>, http://www.stats.gov.cn/tjsj/ndsj/ 

2019/indexch.htm  
11 <China Statistical Yearbook-2019>, http://www.stats.gov.cn/tjsj/ndsj/ 

2019/indexch.htm  
12 Ministry of Agriculture and Rural Affairs of the People’s Republic of China: 
< Implementation plan of promoting fertigation (2016-2020) >, http://www. 
moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920793.htm 
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districts) using the same standard, and two villages were randomly 
selected from each sample township (towns). Finally, 10 farmers were 
randomly selected from the east, south, west, north and middle of each 
sample village to form a sample of 1200 farmers. Sample farmers were 
required to provide the exact year in which they adopted fertigation 
technology as well as relevant data of core explanatory variables and 
control variables before and in the year of technology adoption. At the 
same time, considering the farmers’ level of education, this paper adopts 
the method of household interview to fill in the questionnaire, and the 
investigators were either trained graduate students or senior under
graduate students. Overall, 1200 questionnaires13 were distributed, and 
ultimately, 1109 valid questionnaires were obtained after eliminating 
missing key information, containing irrelevant content or with left- 
censored14 data problems. The effective response rate of the question
naires was 92.42%. The flow chart of the complete study procedure of 
this paper is shown in Fig. 2. 

3.4. Sample description 

As shown in Table 1, in terms of the gender of famers, male farmers 
were the majority, accounting for 78.42%, and 52.31% were aged be
tween 50 and 60. The average farmer (56.23% of the sample) had<9 
years of education, which indicates that the average level of education 
for household heads is low. Regarding cultivation scale, 44.38% of the 
farmers had<10 mu, and 55.62% of the farmers had more than 10 mu. 
Most often (64.87% of the sample), the size of the labor force included 3 
~ 4 people of farmers. The average duration from the respondents’ 
awareness of fertigation technology to its adoption was 3.175 years. 
These statistics are basically consistent with the results reported in the 
third agricultural census of China15, indicating that the results of this 
survey are representative. 

4. Empirical results and analysis 

4.1. Regression analysis results 

As shown in Table 2, Model 1 provides the regression result without 
interaction items, while Model 2 provides the regression result with 

Fig. 1. Study area.  

13 Please refer to Appendix 2 for the part of the questionnaire related to this 
paper  
14 There were 23 farmers who had adopted fertigation technology before 

2010, and the sample data covering these 23 farmers were left-censored. Since 
there is currently no effective method to deal with left-censored data, this part 
of the sample is eliminated in this paper. 

15 The website of the Central People’s Government of the PRC: <Main Data 
Bulletin of the Third Agricultural Census of China (No.5) >, http://www.gov. 
cn/xinwen/2017-12/16/content_5247683.htm 
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interaction items16. In statistical principles, the log likelihood is gen
erally negative. The greater the actual value is, the smaller the sum of 
squares in the residual. In Model 1 and Model 2, the log likelihood values 
are − 375.434 and − 435.796, respectively, indicating that the model has 
a good overall fitting degree. Therefore, the estimated results were 
statistically significant. In addition, this paper observes the effect of each 
variable on the duration of the process from awareness to adoption of 
fertilizer technology by calculating the hazard ratio, which is the 
exponential form of the coefficients of each variable. If the hazard ratio 
of a variable is greater than 1, then the variable is conducive to reducing 
the duration of farmers; otherwise, it will prolong it. If the hazard ratio is 
equal to 1, then this variable has no effect on the duration of farmers. 
The details are as follows: 

As shown in Model 1, the hazard ratio of the number of rural 
neighbors who adopt technology is higher than 1, i.e., 1.144, and sig
nificant at the 1% level. That is, every 1-unit increase in the number of 
rural neighbors adopting technology can significantly shorten the 
duration of farmers’ process from awareness to adoption and will in
crease the probability of farmers adopting technology by 14.4%. The 
hazard ratio of the distance from technology-adopting neighbors is 
lower than 1, i.e., 0.878, and significant at the 5% level. That is, every 1- 
unit increase in the distance from technology-adopting neighbors will 

prolong the duration of farmers’ process from awareness to adoption 
and will reduce the probability of farmers adopting technology by 
12.2%. The reason may be that the more rural neighbors adopt new 
technologies, the stronger the demonstration and synergistic effects will 
be, and the easier it will be to obtain relevant technical information, thus 
encouraging farmers to adopt new technologies more quickly (Krishnan 
and Patnam, 2013). However, the longer the geographical distance from 
the adoption of technology by neighbors, the higher the time and 
transportation cost of SL among farmers, which is not conducive to the 
diffusion and dissemination of technical information, thus delaying the 
adoption of new technology by farmers (Li and Xu, 2018). 

The hazard ratio of the number of times agricultural technicians 
enter the fields is higher than 1, i.e., 1.131, and significant at the 1% 
level. That is, every 1-unit increase in the number of times agricultural 
technicians enter the fields can significantly shorten the duration of 
farmers’ process from awareness to adoption and will increase the 
probability of farmers adopting technology by 13.1%. The hazard ratio 
of the distance from the nearest agricultural technology department is 
lower than 1, i.e., 0.931, and significant at the 5% level. That is, every 1- 
unit increase in the distance from the nearest agricultural technology 
department will prolong the duration of farmers’ process from aware
ness to adoption and will reduce the probability of farmers adopting 
technology by 6.9%. It is not difficult to understand that the more 
agricultural technicians enter fields, their presence not only helps 
farmers understand more and obtain more accurate technical informa
tion but also improves the level of trust of farmers to agricultural 
technicians, thus effectively speeding up the pace of farmers to adopt 
new technologies (Ward and Pede, 2015). The farther the distance from 
the agricultural technology department is, the more inconvenient it is 
for farmers to communicate with the agricultural technology 

Fig. 2. Flow chart of the study procedure.  

16 Referring to the research of Genius et al. (2014), ‘the number of rural 
neighbors who adopt technology’ and ‘the number of visits of agricultural 
technicians entering the fields’ were selected in this paper to represent SL and 
TATE for interaction. In addition, to keep the type of interaction items 
consistent with SL and TATE, ‘the number of effective answers’ was selected to 
represent the interaction of NATE. The same applies below. 
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department, the more difficult it is for farmers to accept ATE services, 
and the higher the cost of information search, all of which lead to delays 
among farmers in the adoption of new technologies (Suvedi et al., 2017). 

The hazard ratio of the number of effective answers is higher than 1, 
i.e., 1.178, and significant at the 5% level. That is, every 1-unit increase 
in the number of effective answers can significantly shorten the duration 
of farmers’ process from awareness to adoption and will increase the 
probability of farmers adopting technology by 17.8%. The hazard ratio 
of the average time to obtain a valid answer to a question is lower than 1, 
i.e., 0.891, and significant at the 5% level. That is, every 1-unit increase 
in the average time to obtain a valid answer to a question will prolong 
the duration of farmers’ process from awareness to adoption and will 
reduce the probability of farmers adopting technology by 10.9%. The 
reason is that the more cumulative times farmers obtain effective an
swers to questions, the more comprehensively will they grasp the rele
vant technical information, leading to a greater reduction in their 

technical uncertainty and thus shortening its duration. The longer the 
average time for farmers to obtain valid answers to questions is, the 
worse the timeliness of obtaining technical information acquisition, thus 
extending its duration. 

By comparing the results of Model 1, this study finds that the positive 
indicators among the three core explanatory variables have the 
following effects (from weak to strong) on farmers’ technology adoption 
behavior: TATE, SL and NATE. The possible reasons are as follows: First, 
due to the limited resources of TATE, to ensure extension efficiency in 
rural areas, the main subjects of TATE are still large households or 
village elites (Liu et al., 2020). As a result, farmers’ acceptance of the 
information technology provided by TATE is uneven, and the collective 
appeal to farmers is lacking. Through SL, farmers can have more intui
tive cognition and a more convenient understanding of the operation 
process, which is more conducive to shortening the adoption time. 
Second, compared with SL, NATE can better meet the actual needs of 

Table 2 
Regression results of the discrete-time cloglog model.  

Variable Definition Model 1 Model 2 
Hazard 
ratio 

Standard 
error 

Hazard 
ratio 

Standard 
error 

SL The number of rural neighbors who adopt technology 1.144***  0.057  1.138**  0.063 
Distance from technology adoption neighbors 0.878**  0.074  0.919**  0.081 

TATE The number of times agricultural technicians enter the fields 1.131***  0.011  1.122***  0.023 
Distance from the nearest agricultural technology department 0.931**  0.053  0.977*  0.070 

NATE The number of effective answers 1.178**  0.180  1.116**  0.174 
The average time to get an effective answer 0.891**  0.078  0.904**  0.073 

SL × TATE The number of rural neighbors who adopt technology × The number of times agricultural 
technicians enter the fields 

—  —  1.188***  0.092 

SL × NATE The number of rural neighbors who adopt technology × The number of effective answers —  —  1.074*  0.115 
TATE × NATE The number of times agricultural technicians enter the fields × The number of effective answers —  —  1.162***  0.165 
Control 

variables 
Age 0.866*  0.084  0.932*  0.096 
Gender 0.845*  0.079  0.733*  0.082 
Level of education 1.126*  0.174  1.271*  0.155 
Risk preferences 1.054***  0.005  1.105***  0.003 
Scale of cultivated land 1.108**  0.004  1.084*  0.168 
Size of the labor force 0.923*  0.092  0.917*  0.007 
Condition of assets 1.023**  0.031  1.046**  0.029 
Crop type 0.904**  0.072  0.911*  0.076 
Village dummy variables —  —  —  — 

Log likelihood − 375.434 − 435.796 
Observations 584 584 

Note: *** p < 0.01; ** p < 0.05; * p < 0.1. To save space, the hazard ratio and standard error of village dummy variables are omitted here. 

Table 1 
Descriptive statistics of the variables.  

Variable type Variable Measure Mean Standard 
deviation 

Dependent variable Duration from farmers’ awareness of fertigation 
technology to their adoption 

0 ~ 9 years  3.175  1.859 

Core independent 
variable 

SL The number of rural neighbors who adopted technology  0.531  0.441 
Distance from technology-adopting neighbors  0.415  0.382 

TATE The number of times agricultural technicians enter the fields  0.480  0.296 
Distance from the nearest agricultural technology 
department  

0.427  0.334 

NATE The number of effective answers  0.469  0.287 
The average time to get an effective answer to a question  0.503  0.237 

Control variables Gender 1 = male, 0 = female  0.784  0.317 
Age Farmer’s actual age when technology was adopted  56.726  5.210 
Level of education Farmer’s number of years of education  7.935  2.541 
Risk preferences 1 = very low, 2 = low, 3 = neutral, 4 = high, 5 = very high  3.041  1.315 
Scale of cultivated land Actual area of cultivated farmland (mu) when technology 

was adopted  
14.920  9.546 

Size of the labor force Number of household members in the labor force when 
technology was adopted  

3.614  1.448 

Condition of assets 1 = very poor, 2 = poor, 3 = neutral, 4 = abundant, 5 = very 
abundant  

3.079  1.541 

Crop type 1 = food crop, 0 = economic crop  0.738  0.246 

Note: To save space, the descriptive statistics of the village dummy variables are omitted here, and the descriptive statistics of SL and the TATE and NATE patterns are 
presented in Appendix 3. 

Y. Gao et al.                                                                                                                                                                                                                                     



Ecological Indicators 154 (2023) 110724

9

different types of farmers. Meanwhile, NATE can ensure the standards 
and norms of technology application, can more effectively help farmers 
form correct ecological cognition, and has the strongest positive impact 
on farmers’ technology adoption. In addition, the research conclusions 
of Yang et al. (2023) can constitute a useful supplement to this paper’s 
result: NATE is rich in content and diversified in forms, and farmers can 
choose the content matching their own knowledge reserve and under
standing ability to learn, quickly realizing the effective connection be
tween technology demand and supply. This is an important advantage 
that other channels of information accumulation do not have. 

As shown in Model 2, the interaction items between SL and TATE, the 
interaction items between SL and NATE, and the interaction items be
tween TATE and NATE all significantly shortened the duration from 
farmers’ process from awareness to their adoption of fertigation tech
nology to different degrees, and their hazard ratios are significantly 
higher than 1, i.e., 1.188, 1.074 and 1.162, respectively. These results 
show that, first, there is a complementary effect between SL and ATE, 
which is consistent with the research conclusion of Genius et al. (2014). 
For farmers, the existence of both SL and ATE can complete their access 
channels to technical information, and complete information channels 
are convenient for farmers to quickly obtain important and effective 
information and then adopt fertigation technology more quickly. Sec
ond, there are complementary effects between NATE and TATE. The 
main reason is that the TATE does not need to rely on information 
media, the method of information acquisition is more intuitive and 
humanized, and the process of information acquisition is more realistic 
and interactive, which is easy for most farmers to understand and accept 
(Strong et al., 2014). NATE, such as WeChat official accounts and other 
apps, can effectively compensate for the shortcomings of TATE related 
to the distance of information transmission and ensure the convenience, 
diversity and timeliness of information transmission (Yin et al., 2018). 
The advantages of TATE and NATE complement each other; thus, 
effectively solving the ‘last kilometer’ problem of ATE becomes a 
promising future. Notably, the complementary effect of NATE and TATE 
is weaker than that of SL and TATE. One possible reason is that the 
current deep integration of TATE and NATE is insufficient, it is still only 
a simple accumulation of elements, and a complete social service system 
has not yet been formed (Yin et al., 2020). 

In addition, the significance and direction of influence of the control 
variables after the addition of interaction items are basically consistent 
with those before. Gender, age, size of the labor force and crop type 
significantly prolonged the duration of the process from the awareness 
of fertigation technology to its adoption. However, the level of educa
tion, risk preference, scale of cultivated land and condition of assets 
significantly shortened the duration of the process from awareness of 
fertigation technology to its adoption. This is basically consistent with 
the research conclusions of Tong et al. (2017), Kong et al. (2019), and 
Gao et al. (2019). 

4.2. Robustness test 

To prove the reliability of the conclusions above, this paper refers to 
the study of Chen et al. (2012) and changes the form of the discrete-time 
model, using the probit model and the logit model to conduct a 
regression of the total sample for the robustness test. The estimation 
results in this paper are proven to be robust17. 

4.3. Heterogeneity analysis 

To further analyze the effect of SL and TATE and NATE on the 
duration of the process from awareness of fertigation technology to 
adoption by different types of farmers, farmers were classified in this 
study. In terms of age, referring to the research of Yang and Chen (2016), 
this paper takes 60 years old as the demarcation standard for farmers’ 
age. In terms of educational level, in view of the nine-year compulsory 
education currently implemented in China, this paper divides farmers 
into low-education and high-education farmers by taking nine years of 
schooling as the boundary. In terms of the cultivated land scale, the 
samples were grouped according to the median cultivated land size (10 
mu) in the sample data to better balance the subsample sizes of the 
treated groups and the nontreated groups. After grouping the different 
types of farmers, the discrete-time cloglog model was again used for 
estimation. The results show that the effects of SL, TATE and NATE on 
the process duration from awareness of fertigation technology to 
adoption vary with the farmers’ age, education level and cultivated land 
size. The estimation results are shown in Table 3. 

TATE had a greater promoting effect among elderly farmers. The 
hazard ratio is 1.218 and significant at the 1% level. SL and NATE had a 
greater promoting effect on middle-aged to young farmers. The hazard 
ratios are 1.215 and 1.184 and significant at the 1% level. The possible 
reasons are as follows: Demps et al. (2012) found that the ability and 
awareness of SL would gradually weaken with the growth of age, and 
elderly farmers have poor understanding and acceptance of WeChat 
official accounts and agricultural technology apps (Badu et al., 2015). 
Therefore, it is difficult for elderly farmers to obtain information 
through SL and NATE. Compared with elderly farmers, middle-aged to 
young farmers are more sensitive to the adoption of new technologies by 
their neighbors and have a more positive attitude toward NATE. 
Therefore, the marginal effect of SL and NATE is stronger for middle- 
aged and young farmers; however, elderly farmers are restricted by 
their learning consciousness and ability, and the TATE more guided by 
agricultural technicians at home and entering the field has a greater 
marginal promoting effect on their adoption of fertigation technology. 

TATE had a greater promoting effect on farmers with low education 
levels. The hazard ratio is 1.378 and significant at the 1% level. SL and 
NATE had a greater promoting effect on farmers with middle and high 

Table 3 
Distribution effects of SL and TATE and NATE.   

Age Education level Land scale 
Older farmers (More 
than 60 years of 
age) 

Middle-aged to young 
farmers (Age 60 and 
below) 

Farmers with low 
education degree (<9 
years of education) 

Farmers with high 
education degree (9 
years and above) 

Small land scale farmers 
(Land scale 10 mu and 
below) 

Above median land scale 
farmers (More than 10 mu 
of land scale) 

SL 1.083 
(0.054) 

1.215*** 

(0.051) 
1.057 
(0.043) 

1.334*** 

(0.041) 
1.072 
(0.057) 

1.143*** 

(0.047) 
TATE 1.218*** 

(0.023) 
1.207 
(0.031) 

1.378*** 

(0.021) 
1.125 
(0.026) 

1.058** 

(0.035) 
1.155 
(0.022) 

NATE 1.016 
(0.145) 

1.184*** 

(0.156) 
1.146 
(0.147) 

1.248*** 

(0.169) 
1.088 
(0.145) 

1.101** 

(0.188) 
Control 

variables 
Controlled Controlled Controlled Controlled Controlled Controlled 

Note: *** p < 0.01; ** p < 0.05; * p < 0.1. 

17 For specific robustness test results, see Appendix 4. 
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education levels. The hazard ratios are 1.334 and 1.248 and significant 
at the 1% level. One possible reason is that due to the high cultural 
quality, strong learning awareness and ability of farmers with middle 
and high education levels (Chatzimichael et al., 2014) and their higher 
acceptance of modern information technology (Aldosari et al., 2019), SL 
and NATE can become the main channels for them to obtain information 
and have a greater marginal improvement effect on their adoption of 
fertigation technology. Because farmers with a low education level have 
relatively poor information acceptance and understanding ability and it 
is difficult to actively obtain information through SL and NATE, the 
marginal effect of TATE on accelerating low-education farmers’ adop
tion of fertigation technology will be more obvious. 

TATE had a greater promoting effect on small land scale farmers. The 
hazard ratio is 1.058 and significant at the 5% level. SL and NATE had a 
greater promoting effect on medium-sized and above farmers; the haz
ard ratios are 1.143 and 1.101, respectively, and significant at the 1% 
and 5% levels, respectively. One possible reason is that farmers of me
dium size and above tend to actively search for and acquire new tech
nical information due to their high technical demand and extensive 
interpersonal communication network (Tong and Huang, 2018b). 
Therefore, SL and NATE had a greater marginal improvement effect on 
the medium scale and above farmers’ adoption of fertigation technol
ogy. However, limited by their available resources, small land scale 
farmers lack the ability to acquire and adopt new technology informa
tion (Grabowski et al., 2016). In this case, TATE can promote their 
adoption of fertigation technology to a greater extent at the margin. 

5. Conclusions and policy recommendations 

This paper theoretically derives the dynamic impact of SL and ATE 
on farmers’ fertigation technology adoption behavior by constructing a 
dynamic analysis framework. Then, using the survey data of 1109 
farmers in the five provinces of Henan, Shandong, Hebei, Anhui and 
Jiangsu, this paper adopts a discrete-time cloglog model for empirical 
analysis, revealing the effects of SL and TATE and NATE on the duration 
from farmers’ awareness to their adoption of fertigation technology. The 
main conclusions of this paper are as follows. First, the theoretical 
analysis found that SL and ATE, as the main channels for farmers to 
obtain technical information, could significantly shorten the duration of 
farmers’ process from awareness to adoption of fertigation technology. 
Second, the empirical analysis based on research data supports the 
above theoretical analysis results, and there is a complementary effect 
between SL and TATE and NATE, which can accelerate the diffusion of 
fertigation technology collaboratively and efficiently. Third, the het
erogeneity analysis showed that SL and NATE have a greater marginal 
improvement effect on the adoption behavior of fertigation technology 
in the middle-aged to young group, high education degree group and 
above-median land scale group. TATE had a greater marginal 
improvement effect on the adoption behavior of fertigation technology 
in the elderly group, low education degree group and small land scale 
group. 

The main research conclusions of this paper have the following 
policy implications for the formulation of environmentally friendly 
technology promotion policies. First, it is necessary to create a diversi
fied and complementary environment for technology information 
acquisition. As an informal information acquisition channel, SL can be 
embedded in TATE and NATE, and TATE and NATE can also form 
complementary advantages. Therefore, the government should optimize 
and broaden rural information communication channels and create a 
diversified and complementary technology information environment for 
farmers. Specifically, by organizing exchange meetings among farmers, 
constructing communication platforms in villages, enhancing the in
teractions among farmers in other ways, and broadening and strength
ening the SL network among farmers. By strengthening the construction 
of grassroots ATE teams, rationally improving the salary and treatment 
of grassroots ATE staff, and protecting the enthusiasm of grassroots ATE 

staff to enter the field. By maintaining active publicity, organizing 
training, issuing coupons for agricultural materials on the platform and 
other means, farmers can be guided to adopt NATE. Second, the distri
bution effect of different information channels should be emphasized. In 
view of the limited resources of TATE, it cannot provide direct services 
to all farmers. Therefore, its limited resources should be appropriately 
tilted to the elderly, low education level and small land scale farmers. 
For middle-aged to young farmers, farmers with a high education level 
and those with an above-median land scale, the work should focus on the 
cultivation of SL ability and the ability to use NATE to realize the 
rational allocation of agricultural technology socialization service re
sources and effectively improve the environmentally friendly technol
ogy adoption level of farmers. 

Of course, this paper still has certain limitations. First, based on the 
literature review and the reality of rural China, this paper uses proxy 
variables to measure NATE. As an indirect measurement method, there 
may be some errors. Second, SL consists of multiple dimensions. This 
paper focuses on one of the important dimensions, which may not be 
enough to fully cover the overall concept of SL. Future research should 
comprehensively consider the impact of multiple dimensions of SL on 
the duration of farmers’ technology adoption. Third, with the cross- 
sectional data used in this paper, it is difficult to identify the impact of 
individual time variables on the duration of farmers’ technology adop
tion. To further enhance the robustness of the research conclusions, 
future research should conduct follow-up surveys on farmers to gain a 
deeper understanding of the adoption process and to capture the dy
namic effects of time variables. 
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