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Abstract— The paper deals with the sampled-data asymptotic
stabilization of the Acrobot at its upward equilibrium. The
proposed controller results from the action of an Input-
Hamiltonian-Matching (IHM) strategy that shapes the closed-
loop energy combined with a Damping Injection (DI) feedback
designed on the sampled-data equivalent model. Simulations
show the effectiveness of the proposed controller.

Index Terms— Sampled data control; Lyapunov methods;
Energy systems

I. INTRODUCTION

The Acrobot is a planar two-link robotic arm in the vertical
plane actuated at the elbow. It provides an interesting case
study to simulated or experimental tests for nonlinear control
methods. The upward stabilization of this underactuated
mechanical system has been proposed for the first time in [1]
and then several control strategies have been developed in the
continuous-time control literature such as partial feedback
linearization [2], trajectory tracking [3], Lyapunov based
control [4], optimal control [5], energy-based feedback [6].

One of the most celebrated control strategies for under-
actuated mechanical systems relies on Interconnection and
Damping Assignment Passivity-Based Control (IDA-PBC)
[7]. In this context, asymptotic stabilization is achieved by
injecting damping into the passive system resulting from a
suitable shaping of the total energy of the system according
to the desired control objective. In [8] such an approach has
been applied to design a controller stabilizing the Acrobot
at the upward position.

Following these lines and motivated by recent results on
the topic [9], [10], [11], we propose a control strategy for
solving the problem in the digital context; namely, when the
control signal is piecewise constant and implemented from
synchronized sampled-data measures of the state. In this con-
text, standard strategies relying on an approximate discrete-
time IDA-PBC approach beyond emulation do not apply
as the discrete-gradient function involved in the sampled-
data model is highly nonlinear and not separable. The
solution we propose combines two control components: an
energy shaping feedback, designed to ensure matching at the
sampling instants of the target continuous-time Hamiltonian
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versité Franco-Italienne/Università Italo-Francese (Vinci Grant 2019) for
supporting the mobility between Italy and France.

1Dipartimento di Ingegneria Informatica, Automatica e Gestionale
A. Ruberti (Sapienza University of Rome); Via Ariosto 25, 00185
Rome, Italy {mattia.mattioni, alessio.moreschini,
salvatore.monaco}@uniroma1.it.

2Laboratoire de Signaux et Systèmes (L2S, CNRS-Univ. Paris-
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Fig. 1: The acrobot system

[8]; a damping injection negative output feedback, set on
the passivating average-output of the sampled-data equivalent
model after the action of the energy shaping component.
Simulations highlight the performances in a comparative
perspective.

The paper is organized as follows. In Section II the model
and preliminaries on the continuous-time stabilizer [8] are
given and the problem is formally set. The main result is
proposed in Section III for the case-study. Simulations that
outperform the continuous-time solution are in Section IV.
Section V concludes the paper.

Notations and definitions: Functions and vector fields are
assumed smooth and complete over the respective definition
spaces. R and N denote the set of real and natural numbers
including 0. 0 denotes the zero matrix of suitable dimension,
depending on the context. For any vector z ∈ Rn, ‖z‖ and
z> define respectively the norm and transpose of z. x =
col(a1, . . . , an) ∈ Rn1+···+nn denotes the column vector
with entries provided by ai ∈ Rni of suitable dimensions.
I and Id denote respectively the identity matrix (of suit-
able dimension) and identity operator. Lf =

∑n
i=1 f(·) ∂

∂xi

denotes the Lie derivative and eLf = Id +
∑
i≥1

Lif
i! the

exponential Lie series operator, associated with the vector
field f . Given two vector fields f(x), g(x), adfg(x) =
(LfLg − LgLf )(x) denotes their Lie bracket. Given a twice
continuously differentiable function S(·) : Rn → R, ∇S
represents its gradient (column) vector and ∇2S its Hessian
matrix. Given a smooth real-valued function S(·) : Rn →
R, the corresponding discrete gradient is a vector-valued
function, ∇̄S|zx : Rn×Rn → Rn satisfying, for all x, z ∈ Rn,
the variational equality

S(z)− S(x) = (z − x)>∇̄S|zx, ∇̄Sxx = ∇S(x). (1)



II. PRELIMINARIES AND PROBLEM STATEMENT

The Acrobot is an underactuated planar two-link robotic
arm in the vertical plane [1] as depicted in Fig. 1. More in
detail, for the ith joint (i = 1, 2), we denote by qi ∈ R
the angle, mi > 0 the mass, Ii > 0 the link inertia
moment around the vertical axis passing through the center
of mass, li the length, lci the distance from the ith link to
the center of mass, u ∈ R the input torque acting on the
elbow joint and g the gravitational constant. Accordingly, the
dynamics admits the canonical port-controlled Hamiltonian
(pcH) representation of the form(

q̇
ṗ

)
=

(
0 I
−I 0

)(
∇qH
∇pH

)
+

(
0
G

)
u (2)

with p = M(q)q̇ the momenta vector, G =
(
0 1

)>
,

Hamiltonian function

H(q, p) =
1

2
p>M−1(q)p+ V (q) (3)

when setting the generalized inertia matrix as

M(q) =

(
c1 + c2 + 2c3 cos(q2) c2 + c3 cos(q2)
c2 + c3 cos(q2) c2

)
and the potential energy as

V (q) = g (c4 cos(q1) + c5 cos(q1 + q2))

with

c1 = m1l
2
c1 +m2l

2
1 + I1, c4 = m1lc1 +m2l1

c2 = m2l
2
c2 + I2, c3 = m2l1lc2 , c5 = m2lc2 .

Setting

y = G>M−1(q)p

the so defined input-output link u 7→ y is passive with output
corresponds to the velocity at the second joint. We refer to [1]
for further details on the mathematical model of the Acrobot
system.

The problem we consider consists in defining a digital
control law to swing-up the Acrobot from some configuration
positions in the lower half plane, or equivalently to stabilize
the upright equilibrium q? = (0, 0)>, via Passivity-Based
Control (PBC). As usual under sampling, we assume the
measures of the state (q, p) available at the sampling instants
t = kδ only and the control piecewise constant over sampling
intervals of length δ > 0; i.e. u(t) = uk for t ∈ [kδ, (k+1)δ[,
for all k ≥ 0.

A. Swing-up in continuous time
In continuous time, stabilization of the upright equilibrium

relies upon Interconnection and Damping Assignment PBC
(IDA-PBC) [7] by setting the control

u(q, p) = ues(q, p) + udi(q, p). (4)

with: ues(q, p) the so-called energy shaping component de-
signed to assign a suitably defined desired energy function
Hd : R2 × R2 → R≥0 of the form

Hd(q, p) =
1

2
p>M−1d p+ Vd(q) (5)

for a constant Md � 0 and possessing its minimum at
x? = (q>? 0>)> with q? = (0 0)>; ues(q, p) is the so-
called damping injection component designed to guarantee
asymptotic convergence to the swing-up configuration while
assigning a suitably defined dissipation to the closed loop.

In detail, as proposed in [8, Proposition 6.1], one first sets

u = ues(q, p) + v

with the energy-shaping component

ues(q, p) = G>
(
∇qH(q, p)−MdM

−1(q)∇qVd(q)
)

(6)

assigning the conservative pcH structure(
q̇
ṗ

)
= J(q)

(
∇qHd

∇pHd

)
+

(
0
G

)
v (7)

with new interconnection matrix

J(q) =

(
0 M−1(q)Md

−MdM
−1(q) 0

)
(8)

virtual generalized inertia matrix

Md =

(
k2 − k2

√
c1
c2

k2

k2 k3

)
, k2 < k3

(
1−

√
c1
c2

)
and potential energy (see the Appendix for further details)

Vd(q) = N(q1)eAq2 Γ + b1 cos(q1) + b2 cos(q1+q2) (9)

+ b3 cos(q1+2q2) + b4 cos(q1−q2) +
kp
2

(q1−µq2)2.

The energy-shaping control makes the closed-loop link

v 7→ yd = G>M−1d p (10)

passive, or more properly lossless, with dissipation rate
Ḣd(q, p) = p>M−1d Gv. Based on this, asymptotic stabi-
lization at q? = (0 0)> is ensured by the output damping
injection

udi(p) = −kvG>M−1d p, kv > 0 (11)

assigning the desired closed-loop dynamics(
q̇
ṗ

)
=

(
0 M−1(q)Md

−MdM
−1(q) −kvGG>

)(
∇qHd

∇pHd

)
(12)

with Ḣd(q, p) = −kvp>G>Gp ≤ 0.

B. Sampled-data systems and problem statement

Consider (2) under piecewise constant control over the
sampling period δ > 0. Setting x = col(q, p), the sampled-
data equivalent model is given in the form of a map [12]

x+(u) = x+ δF δ(x, u) = x+ δ
(
F δ0 (x) + gδ(x, u)u

)
(13)

when denoting at time t = kδ, x = xk, u = uk, and at time
t = (k + 1)δ, x+(u) = x+(uk) = xk+1. From (2), setting

f(x) =

(
0 I
−I 0

)
∇H, B =

(
0
G

)



one computes

δF δ(x, u) = eδ(Lf+uLB)x− x =
∑
i≥1

δi

i!
(Lf + uLB)ix

F δ0 (x) = F δ(x, 0), gδ(x, u) = F δ(x, u)− F δ0 (x).

The problem stands in designing a sampled-data feedback
u = uδ(q, p) to swing-up the robot at the upward equilibrium
q? = (0 0)> or equivalently making x? = (0>, 0>)>

asymptotically stable for the sampled-data equivalent model
(13). Analogously to the continuous-time solution, we look
for a feedback law of the form

uδ(x) = uδes(x) + uδdi(x) (14)

with uδes(x) and uδdi(x) the energy-shaping and damping
injection components respectively. The energy-shaping com-
ponent is designed so that the feedback

u = uδes(x) + v (15)

assigns, at the sampling instants, the same energy function
Hd(x) = Hd(q, p) as in continuous time (5) with stable
equilibrium at the desired configuration. As a consequence,
the dissipation equality below holds

Hd(x
+(u))−Hd(x) = vY δd (x, v).

with respect to a suitably defined passifying output Y δd (x, v).
According, setting v solution to the implicit equality v =
−kvY δd (x, v) with kv > 0 achieves asymptotic stabilization
of x? = (0>0>)> under damping feedback v = uδdi(q, p).

III. MAIN RESULT

The first result is based on the preservation of passivity
under sampling with respect to a new output suitably defined
based on discrete-time average passivity [12]. In this case,
one recovers the result in [13], [9] deduced over suitably
defined approximate discrete-time models of the lossless
continuous-time system (2) [14].

Proposition 3.1: Consider the Acrobot dynamics (2) be-
ing lossless with respect to the output y = B>M−1(q)p

Ḣ(q, p) = p>M−1(q)Bu. (16)

Then the sampled-data equivalent model (13) with is lossless
with respect to the modified output

Y δ(q, p, u) =
1

δ
B>(q+(u)− q) (17)

so verifying the dissipation equality

H(q+(u), p+(u))−H(q, p) =δY δ(q, p, u)u

=(q+(u)− q)>Bu.
(18)

Proof: In the lossless case, the sampled-data passivat-
ing output reduces to the time average of the continuous-
time output. By integrating the continuous-time dissipation
equality (16) over the sampling interval, one gets∫ (k+1)δ

kδ

Ḣ(q(s), p(s))ds = uB>
∫ (k+1)δ

kδ

M−1(q(s))p(s)ds.

Substituting in the equality above q̇ = M−1(q)p and recall-
ing that q+(u) = qk+1 = q((k + 1)δ) and p+(u) = pk+1 =
p((k + 1)δ), one gets (18) and thus the result.

A. Sampled-data energy-shaping

The idea is to design a feedback so to make the sampled-
data dynamics (13) conservative with respect to the desired
energy function Hd(·) in (5). Namely, we design uδes(x) :
R4 → R so to guarantee Input-Hamiltonian Matching (IHM)
of the target Hamiltonian Hd(x) along the continuous-time
trajectories (7) when v = 0; i.e. for all x ∈ R4

Hd(x
+(uδes(x)))−Hd(x) = 0.

Proposition 3.2: Consider the Acrobot dynamics (2) un-
der the energy-shaping feedback (6) assigning the pcH struc-
ture (7) and let (13) be its sampled-data equivalent model.
Then, the IHM equality

Hd(F
δ(x, u))−H(x) =

∫ (k+1)δ

kδ

∇>Hd(x(s))fd(x(s))ds.

(19)

with fd(x) = J(q)∇Hd(q, p) and J(q) in (8) admits a
unique solution u = uδes(x) as a series expansion in powers
of δ around the continuous-time feedback

uδes(x) = ues(x) +
∑
i>0

δi

(i+ 1)!
uies(x). (20)

Proof: Setting u = uδes(x) in both sides of the IHM
equality (19) and comparing the terms with the same power
in δ, one gets the result from the Implicit Function Theorem
because the rank condition B>∇Hd(x) = B>M−1d p 6= 0
holds for p 6= 0. It is a matter of computations to verify that,
as δ → 0, (19) is solved by the continuous-time solution (6).
More details can be found in [14].

The next result describes the passivating output that can
be associated to the sampled-data dynamics in closed loop
with the energy-shaping feedback computed as the solution
to the matching equality (19).

Theorem 3.1: Consider the Acrobot dynamics (2) with
sampled-data equivalent (13). Let the control (15) with
uδes(q, p) solution to (19). Then, the closed-loop dynamics

x+(uδes(x) + v) =x+ δ
(
F δd (x) + gδd(x, v)v

)
(21)

with

F δd (x) =F δ(x, uδes(x))

gδd(x, v)v =gδ(x, uδes(x) + v)v

+
(
gδ(x, uδes(x) + v)− gδ(x, uδes(x))

)
uδes(x)

is stable at the upward equilibrium x? = (q>? , 0
>)> and

conservative for v = 0, i.e.

Hd(x
+(uδes(x))) = Hd(x).

Moreover, for v 6= 0, it is lossless

Hd(x
+(uδes(x) + v))−Hd(x) = Y δd (x, v)v. (22)



with respect to the output

Y δd (x, v) = ∇̄>Hd|
x+(uδes(x)+v)

x+(uδes(x))
gδd(x, v) (23)

with discrete-gradient function defined as

∇̄Hd|x
+

x =

(
∇̄Vd|q

+

q
1
2M

−1
d (p+ + p)

)
.

Proof: Because the energy-shaping component is so-
lution to the IHM equality (19) and ∇>Hd(x)fd(x) =
∇>Hd(x)J(x)∇Hd(x) = 0, one gets

∆kHd(x) =Hd(x
+(uδes(x) + v))−Hd(x)

=Hd(x
+(uδes(x) + v))−Hd(x

+(uδes(x))).

Exploiting the discrete gradient (1), the equality above reads

∆kHd(x) =∇̄>Hd|
x+(uδes(x)+v)

x+(uδes(x))
gδd(x, v)v = Y δd (x, v)v.

Thus, because Hd(x?) = 0 one has ∇̄Hd|x?x?∇Hd(x?) = 0
and by the matching equality (19), the upright equilibrium
is stable for the sampled-data dynamics (21).

Remark 3.1: By Proposition 3.1 and the matching equality
(19), the passivating output (23) gets the form

Y δd (x, v) =
1

δ

∫ (k+1)δ

kδ

∇>Hd(x(s))Bds

=
1

δ
G>M−1d

∫ (k+1)δ

kδ

p(s)ds

=
1

δ
G>M−1d

(
M(q+(uδes + v))q+(uδes + v)−M(q)q

)
− 1

δ
G>M−1d

∫ (k+1)δ

kδ

Ṁ(q(s))q(s)ds

Again, by losslessness of the continuous-time the passivating
output is the time average of the continuous-time one in (10)
but over the sampled-data trajectories under (15). Accord-
ingly, such an output is not the same as the one deduced in
[9] which is based on an approximate discrete-time model
of the dynamics.

B. Sampled-data damping injection

At this point, the main result can be stated.

Theorem 3.2: Consider the Acrobot dynamics (2) with
sampled-data equivalent (13). Let the control (15) with
uδes(q, p) solution to (19). Consider the corresponding closed-
loop dynamics provided by (21) passive with the output (23).
Then, the damping injection equality

v = −kvY δd (x, v), kv > 0 (24)

admits a unique solution v = uδdi(x) in the form of a series
expansion in powers of δ; namely, one gets

uδdi(x) = udi(x) +
∑
i>0

δi

(i+ 1)!
uidi(x) (25)

and udi(x) the continuous-time damping feedback (11).
Consequently, the piecewise constant feedback law (14), with
energy shaping and damping injection components solutions

to (19) and (24) respectively, makes the upright configuration
x? = (q>? 0)> asymoptotically stable for (2).

Proof: Existence of a solution to (24) in the form
(25) follows from [12] by virtue of the Implicit Function
Theorem. Accordingly, substituting (24) into the dissipation
equality (22) one gets

∆kHd(x) = −kv‖Y δd (x, uδdi(x))‖2 ≤ 0, kv > 0

and asymptotic stability of x? = (q>? 0)> with q? = (0 0)>

follows by zero-state detectability of (21) with output (23).

C. Computational aspects

Similarly to the continuous-time counterpart, the sampled-
data stabilizer of the upright position of the Acrobot is a PBC
feedback of the form (14) with both components computed
as the implicit solutions to the corresponding series equalities
(19) and (24) respectively. In particular, both of them admit
a power expansion in powers of δ, the sampling period, and
around the continuous time solutions (6) and (11) which are,
then, naturally recovered as δ → 0. Despite exact forms
cannot be computed in practice, each term of the series
expansions (20)-(25) can be computed via an iterative and
constructive procedure solving, at each step, a linear equality
in the corresponding unknown. Substituting (20)-(25) into
(19)-(24) and equating the terms with the same power of δ,
one gets for the first terms

u1es(x) =(∇ques(q, p))M−1(q)p

− (∇pues(q, p))MdM
−1(q)∇qVd(q)

u1di(x) =k2v(udi(q, p)G
>M−1d G−G>M−1(q)∇qVd(q)

−G>M−1d GkvG
>M−1d p)− kv(∇>q Vd(q)M−1(q)

− p>M−1d ∇
>
p ∇qH(q, p))G.

Accordingly, the feedback law (14) rewrites in the form

uδ(x) = u(x) +
∑
i>0

δi

(i+ 1)!
ui(x), ui(x) = uies(x) + uidi(x).

(26)

As typical under sampling, only feedback laws deduced by
truncating (26) at any fixed and arbitrary order r ≥ 0 in δ
can be implemented in practice. For, rth-order approximate
feedback laws are formally defined as

uδ[r](x) = u(x) +

r∑
i=1

δi

(i+ 1)!
ui(x) (27)

recovering, for r = 0, the well-known emulation-based
control [15], typically implemented in practice. For r >
0, performances are improved by including the so-called
correcting terms ui(x), for i = 1, . . . , r, ensuring practical
asymptotic stability in closed loop. As a matter of fact,
approximate solutions guarantee convergence of the closed-
loop trajectories to a ball of radius O(δr+1) centered the
equlibrium to stabilize [16].
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Fig. 2: Comparison for δ = 5 · 10−3

IV. SIMULATIONS

Simulations reported in Fig. 2 and Fig. 3 are performed
comparing the effect of the continuous-time feedback (4)
with the emulation design, that is the controller (27) when
setting r = 0, and the proposed approximate second-order
sampled-data control, that is (27) with r = 2. The parameters
considered in the simulations are displayed in Table I with
k2 = 1, k3 = 5.9073, Γ2 = 10, kp = 280, and kv = 12 set
as in [8] and initial condition q0 = (− 2π

3 , 0)>, p0 = (0, 0)>.
We notice in Fig. 2 that for small sampling periods, such

as δ = 5 · 10−3, both the emulation and the proposed
sampled-data design achieve stabilization of the Acrobot
system in the upright configuration. However, the benefit
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of the proposed approximate controller with respect to the
more standard emulation approaches of the continuous-time
design (4) is emphasized in Fig. 3 for δ = 5 · 10−2.
In fact, despite the larger sampling period, the proposed
sampled-data controller stabilizes the Acrobot at its upright
position, with a piecewise constant torque vanishing after few

Symbol Value Unit Symbol Value Unit
m1 4 Kg m2 4 Kg
l1 1 m l2 2 m
lc1 1/2 m lc2 2 m
I1 1/3 Kg·m2 I2 4/3 Kg·m2

TABLE I: System parameters of the Acrobot



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

1

1.5

2

2.5

3

3.5

Fig. 4: Energy used by the digital controllers (normalized
over the one of the continuous-time controller) for δ ∈
[0, 0.05].

seconds, while the emulation design fails in the stabilization
objective as also underlined by further simulations avail-
able at shorturl.at/fqAG1. Finally, the energy used
by both digital controllers (normalized with respect to the
continuous-time one) are depicted in Fig. 4 when defined as,

umax
[r] (δ) =

δ
kfin−1∑
k=0

||uδr(xk)||2

tfin∫
0

||u(x(τ))||2dτ
, tfin = kfinδ

for r = 0, 2, and tfin = 40. The result highlights that the
effort required by proposed sampled-data controller, and thus
the control effort, is generally the half then the one used by
the emulation design as δ increases.

V. CONCLUSIONS

In this paper, a new control scheme for stabilization of
the Acrobot system at the upward equilibrium has been
proposed via sampled-data PBC. The control consists of
two components: the first one, whose design is based on
IHM [17], assigns the energy of the system so to possess a
minimum at the desired equilibrium; then, damping injection
is performed to guarantee asymptotic swing up. Future works
concern PBC of underactuated mechanical structures at large.
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[13] R. Costa-Castelló and E. Fossas, “On preserving passivity in sampled-
data linear systems,” in 2006 American Control Conference. IEEE,
2006, pp. 6–pp.

[14] S. Monaco, D. Normand-Cyrot, and F. Tiefensee, “Sampled-data sta-
bilization; a pbc approach,” IEEE Transactions on Automatic Control,
vol. 56, no. 4, pp. 907–912, 2010.
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APPENDIX

The desired potential energy given in (9), and
formally computed in [8], comes with N(q1) =
col(sin(q1), cos(q2))>, Γ = col(0,Γ2) for arbitrary
Γ2, µ = −(1 +

√
c1
c2

)−1, matrix

Aq2 =

(
0 µq2
−µq2 0

)
,

and constants

kp > Γ2 −
g(c1c2 − c23)(c4 + c5)2

k2(c5c1 ± c4
√
c1c2 − c4c3 ∓ c5c3

√
c1
c2

)

b1 =
g

2k2
(c3c5 ± 2

√
c1c2c4), b3 =

gc3c5µ

k2(2µ+ 4)
,

b2 =
gµ

2k2(µ+ 1)
(c3c4 − 2

√
c1c2c5), b4 =

µ(gc3c4)

2k2(µ− 1)
.
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