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This paper focuses on the use of meta-reinforcement learning for the autonomous guidance

of a spacecraft during the terminal phase of an impact mission towards a binary asteroid system.

The control policy is replaced by a convolutional-recurrent neural network, which is used to map

optical observations collected by the onboard camera to the control thrust and thrusting times.

The network is trained by a proximal policy optimization algorithm, a family of reinforcement

learning methods. The final phase of NASA’s Double Asteroid Redirection Test (DART) mission

is used as a test case. The objective is to maneuver the spacecraft to impact the smaller object,

Dimorphos, in the Didymos binary system. The spacecraft dynamics are described using the

bi-elliptic restricted four-body problem with solar radiation pressure. The initial conditions

are randomly scattered according to the actual specifications of the DART mission. A random

error on the orbital position of Dimorphos is also considered to reflect uncertainty on the binary

system’s characteristics and dynamics. The control system aims at minimizing the error on the

final spacecraft position. Numerical results show that the guidance system can correctly drive

the spacecraft towards the final impact point in more than 98% of the 500 test scenarios.
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Nomenclature

𝐴𝜋 = advantage function

𝒅 = vector connecting the primary asteroid to the secondary asteroid

diagp𝑨q = matrix composed of the diagonal elements of matrix 𝑨

E
𝜏

r𝑣s = expected value of variable 𝑣p𝜏q with respect to random variable 𝜏

𝒇 = spacecraft dynamical model

𝐽 = merit index

𝒍 = camera line-of-sight vector

𝑚 = spacecraft mass, kg

𝑀 = mean anomaly, rad

𝐻 = number of time-steps per episode

Np𝝁,𝚺q = Gaussian distribution with mean 𝝁 and covariance 𝚺

𝒚 = observation vector

𝑅 = reward

𝒓 = position vector, km

𝒙 = state vector

𝐾 = total number of training steps

𝑡 = time, s

𝑡 𝑓 = maximum duration of the terminal guidance phase, s

𝑻 = thrust, kN

𝒖 = control vector

Up𝑎, 𝑏q = uniform distribution in interval r𝑎, 𝑏s

𝑉 𝜋 = value function

𝒗 = velocity vector, km/s

𝜃 = neural network’s parameters

𝜇 = gravitational parameter, km3/s2

𝜋 = control policy

𝜎 = cumulative nondimensional gravitational parameter of the primaries

𝜎𝑥 = standard deviation of Gaussian random variable 𝑥

𝜏 = trajectory

𝜑, 𝜓 = in-plane and out-of-plane angles, rad

𝜑𝑆 = solar phase angle, rad

2



Subscripts

ℎ = value at ℎ-th time-step

𝐼 = value at impact

𝑝𝑖 = value referred to body 𝑝𝑖 , 𝑖 “ 1, . . . , 4

𝑝𝑖 𝑝 𝑗 = vector connecting body 𝑝𝑖 to body 𝑝 𝑗 , 𝑖 “ 1, . . . 4, 𝑗 ‰ 𝑖 “ 1, . . . , 4

max = maximum value

Superscripts

‹ = optimal value

ˆ = estimate

¯ = reference value

p 𝑗q = 𝑗-th component of a vector

J = transpose

I. Introduction
Over the recent years, space missions to asteroids have gained increasing interest from the scientific community.

This is mainly due to the valuable information that these small bodies can reveal about our Solar system, including

planetary formation and evolution, and the origin of life on Earth. Indeed, several space missions have already been

sent towards asteroids, such as the NEAR (Near Earth Asteroid Rendezvous) Shoemaker [1], Dawn [2], Hayabusa 1

and 2 [3, 4], and OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer)

[5]. Furthermore, a new generation of asteroid exploration missions are being designed, or about to be launched in

the next few years, from different space agencies, including The Near-Earth Asteroid Scout [6], Lucy [7], Hera and

DART (Double Asteroid Redirection Test) [8]. In particular, the latter mission has been launched in November 2021

and is directed to a synchronous binary asteroid system called 65803 Didymos. The main body of the system, simply

known as Didymos or Didymain, is a near-Earth sub-kilometer (780 m) asteroid, classified as a potentially hazardous

object within the Apollo and Amor groups. Its small 170-meter minor-planet moon, discovered in 2003 and named

Dimorphos in 2020 (but often referred to as Didymoon) is just 1.2-kilometer away from the primary asteroid. The origin

of binary systems such as 65803 Didymos is still under investigation by scientists, and future explorations missions to

such systems can shed light on their formation. In the case of the DART mission, having a binary system is also crucial

to achieving the main goal of the mission, which is to measure the deviation of Dimorphos’s trajectory around Didymos

after a kinetic impact with the spacecraft itself. The outcome of the mission will provide the scientific community with

fundamental clues for planetary defense purposes, such as understanding if the impact with a spacecraft could be a

viable option to counteract possible threats by hazardous near-Earth objects in the future.
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The terminal guidance of an asteroid impactor as DART is a complex task. Indeed, after a long interplanetary cruise,

the spacecraft is required to hit a body whose size is much smaller than the distances involved, and with a precise

impact angle, in order to maximize the target body’s trajectory deflection. In a binary asteroid system, the task is

further complicated by the complex dynamical environment, characterized by the gravitational influence of two small

irregularly-shaped bodies, which cause significant orbital perturbations. Additionally, the Sun’s effect on the spacecraft

motion cannot be neglected within this low-gravity environment, both because of its gravitational influence and for the

acceleration caused by the Solar radiation pressure (SRP). Many works in the literature have already dealt with the study

of the dynamics and control of a spacecraft around binary asteroid systems. For example, periodic orbits of a solar

sail around a binary system have been analyzed by considering different dynamical models, such as the Hill four-body

problem plus SRP and the bi-circular four-body problem plus SRP [9]. Solar sails have also been considered to study

the control effort required to maintain a hovering orbit about binary systems [10], taking into account the irregular

shape of both the asteroids, or to perform station-keeping around the Lagrangian point L4, within the framework of

the elliptic restricted three-body problem (ER3BP) plus SRP [11]. In addition, ballistic landing trajectories have been

studied to deploy science packages on binary systems [12]. In this case, the circular restricted three-body problem

(CR3BP) has been employed. The same dynamical model has also been used to study stable regions and periodic orbits

around L4 and L5 of the 1999 KW4 binary system [13]. A modified CR3BP, called Shape-based CR3BP (SCR3BP),

has been taken into account to obtain bounded orbits near Didymos, by considering a realistic shape for the primary and

an ellipsoidal shape for the secondary [14].

All of these studies agree that considering a high-fidelity dynamical model is essential for the correct design of a

mission around a binary asteroid system. This is especially true for a kinetic impactor mission, as also the smallest

deviation from the nominal trajectory can cause the spacecraft to miss the target and, consequently, lead to a failure

of the mission. For this reason, the presence onboard of a very accurate navigation and control system, with an

enhanced robustness against possible maneuvering errors and/or model uncertainties, is a crucial requirement of the

mission. Furthermore, a guidance system capable of autonomously deciding the corrective control on the basis of

real-time measurements would be preferable to a more traditional ground-controlled system. This is due to the short

time-length of the terminal approach maneuver, which, in most of the cases, can be of the same order of magnitude as

the communication delay with the Earth.

Consequently, the DART spacecraft is equippedwith SMARTNav, acronym of Small-bodyManeuveringAutonomous

Real-Time Navigation, an autonomous navigation system designed to control and keep the spacecraft on its path towards

Dimorphos entirely on its own, without the need for any human intervention [15]. In particular, SMARTNav starts

operating roughly four hours before the designated impact time, when the spacecraft is about 90 000 km away from

the target, and controls DART’s trajectory until roughly 2 minutes from the goal, when a ballistic flight will naturally

drive the spacecraft towards a head-on collision with the asteroid. SMARTNav just relies on the high-resolution images
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provided by the onboard camera DRACO (Didymos Reconnaissance and Asteroid Camera for OpNav) [16], the only

payload of DART. Such images are used to locate in real-time the two asteroids in space, identify the target asteroid, and

estimate the trajectory corrections and commanding maneuvers necessary to hit Dimorphos. SMARTNav might open a

broad range of new possibilities in the context of deep-space guidance, by proving for the first time that is possible to

locate and fly towards an (eventually unknown) target in complete autonomy and with unprecedented accuracy.

It is worth mentioning that different works in the literature already studied the possibility of using an optical-only

guidance, navigation, and control (GNC) system during an asteroid impact mission. More precisely, an autonomous

GNC strategy, composed of a image processing and filtering followed by a targeting algorithm based on zero-effort

errors, has been recently investigated and applied to a simulated impact mission towards asteroid Bennu [17]. A

GPU-based optical navigation, which uses the light intensity of the image pixels to determine the line-of-sight vector,

has been coupled with traditional guidance strategies, such as proportional or predictive guidance laws, to control a

spacecraft during a simulated impact mission towards a scaled version of asteroid 433 Eros [18].

In this paper, we investigate the preliminary design of an alternative system for the autonomous guidance and

navigation of a kinetic impactor towards a binary asteroid system. The proposed approach is based on deep meta-

reinforcement learning (meta-RL). Guidance and navigation systems based on the use of deep neural networks (DNN)

and reinforcement learning (RL) are becoming increasingly popular also in research works on deep-space applications,

other than in the robotics [19], automotive [20], and video-game fields [21]. Such systems exploit the low computational

times and the high accuracy of DNNs as universal function approximators to compute in real-time a closed-loop control

law to be deployed on the onboard hardware, based on measurements, or observations, collected by the navigation

filter [22]. The DNN is trained offline (i.e., on the ground) to solve an optimal control problem (OCP), by leveraging

training data collected during repeated simulations, or rollouts, of the considered mission scenario. A numerical reward,

provided by the environment, is associated with each observation-control tuple as a performance measure during the

network training. After each policy rollout, the network’s parameters are updated to maximize the average cumulative

reward over a single trajectory. The lack of direct dependence of the optimal control policy on the exact mathematical

expression of the dynamical and observation model, which can be also arbitrarily complex black-box functions, makes

RL a perfect candidate to design robust guidance systems, able to cope with any kind of dynamical uncertainties, noisy

observations, and control errors.

For these reasons, several research papers have already dealt with the use of RL for the closed-loop guidance and

control of spacecraft. In particular, RL has been employed to study many different mission scenarios, ranging from

interplanetary [23–25] cislunar [26–28] and LEO-GEO [29, 30] trajectory design, to rendezvous missions [31–33], path

planning for asteroid hopping rovers [34], formation flying [35], and planetary landing [36, 37].

Furthermore, the combination of recurrent neural networks (RNNs) with RL brought to the definition of what is

commonly known as deep meta-reinforcement learning (meta-RL) [38], or learning to learn, which is the optimization
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framework employed in this work. RNNs are particular types of DNNs that can keep track of the temporal variation of

the observations collected over training in internal network states, thanks to feedback connections. The presence of the

internal states, which contain information on the evolution of the input data, allows the network to better specialize the

control outputs referred to different instances of the considered environment. This capability significantly boosts the

average performance achieved by the policy network in complex scenarios, such as non-Markov, multiple-task, uncertain

or partially-observable environments. Meta-RL versatility is confirmed by a number of works that used it to study

asteroid close-proximity operations and landing [39], body-fixed hovering over unmapped asteroids [40], multi-target

interplanetary missions [41] or image-based lunar landing [42, 43].

The guidance system designed in this work is supposed to exploit the same kind and amount of information provided

to a device like SMARTNav, i.e., optical images. During simulations, the images are generated and realistically rendered

in real-time using the open-source computer graphics software Blender [44], which can be easily interfaced with a

python programming environment. The initial spacecraft state is derived from the conditions at impact provided by

mission design, by using simplified dynamics (two-body). A three-dimensional bi-elliptic restricted four-body problem

(BER4BP), which also includes the presence of the Solar radiation pressure, is used as dynamical model to take into

account the influence of both the asteroids and of the Sun on the spacecraft motion. A random error on the initial

position of the minor asteroid along its orbit about the primary is considered too. Proximal policy optimization (PPO)

[45] is used as optimization algorithm to teach a deep convolutional neural network, with a recurrent layer, how to

control the spacecraft along its impact trajectory and compensate for the deviations caused by the unmodeled dynamical

perturbations and uncertainties. The entire framework is then applied to the terminal guidance of DART, used as a test

scenario for a fair comparison with SMARTNav.

This paper is organized as follows. Section II introduces the dynamical model, together with the mathematical

approach employed to generate feasible initial conditions for the spacecraft. Section III formulates the simulation

environment as a partially observable Markov decision process, and Section IV introduces the meta-RL framework used

to solve the control problem. Numerical results are provided in Section V, and, eventually, concluding remarks are

given in the last section.

II. Dynamical Model
This section presents the spacecraft dynamics about the binary system barycenter, together with the simplified model

used to determine the initial spacecraft state starting from known mission data. The final conditions of the terminal

guidance phase are also provided.
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A. Uncontrolled Dynamics

A restricted four-body problem (R4BP) is introduced to take into account the effect of the primary body 𝑝1 (Sun),

and two secondary bodies 𝑝2 and 𝑝3 (binary asteroid system) on the motion of a point-mass spacecraft (S/C) 𝑝4. The

motion of the barycenter of the asteroid system (𝑏) around the Sun is considered to be elliptic, out of the ecliptic plane.

The motion of 𝑝3 and 𝑝2 around 𝑏 is instead supposed to be circular and in a retrograde orbital plane. In this way, a

3-dimensional R4BP with a non-coplanar motion of the primaries is derived, which is named as bi-elliptic restricted

four-body problem (BER4BP) [46].

Let us consider a reference frame 𝑃 “ p𝑏; 𝒙̂𝑃 , 𝒚̂𝑃 , 𝒛𝑃q, which corresponds to the perifocal frame referred to the

orbit of 𝑝3 around 𝑝2, and let 𝒓 denote the spacecraft position with respect to 𝑏. Assuming a Newtonian gravity model,

the equations of motion for the 4-th body 𝑝4, in frame 𝑃, are

:𝒓 “ ´

3
ÿ

𝑖“1
𝜇𝑝𝑖

𝒓𝑝𝑖 𝑝4

𝒓𝑝𝑖 𝑝4



3 ` :𝒓𝑏 (1)

where :𝒓𝑏 is the acceleration of the barycenter 𝑏 with respect to an inertial frame, written in frame 𝑃, 𝜇𝑝𝑖 is the

gravitational constant of body 𝑝𝑖 , and 𝒓𝑝𝑖 𝑝 𝑗
“ 𝒓𝑝 𝑗

´ 𝒓𝑝𝑖 indicates a vector connecting 𝑝𝑖 to 𝑝 𝑗 , with 𝒓𝑝𝑖 the position

vector of 𝑝𝑖 with respect to 𝑏. In particular, by referring to Fig. 1

b

p1

p2

p3

p4
(S/C)

(primary asteroid)

(secondary asteroid)

(Sun)

rp1

r

rp3
rp2

d

Fig. 1 Schematic of the relative position among the four bodies.
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𝒅 “ 𝒓𝑝3 ´ 𝒓𝑝2

𝒓𝑝1 𝑝2 “ ´𝒓𝑝1 ´ 𝜇𝒅

𝒓𝑝1 𝑝3 “ ´𝒓𝑝1 ` p1 ´ 𝜇q𝒅

𝒓𝑝1 𝑝4 “ ´𝒓𝑝1 ` 𝒓

𝒓𝑝2 𝑝4 “ 𝒓 ` 𝜇𝒅

𝒓𝑝3 𝑝4 “ 𝒓 ´ p1 ´ 𝜇q𝒅

(2)

where 𝜇 “
𝜇𝑝3

𝜇𝑝2 `𝜇𝑝3
is the mass ratio of the secondary bodies.

The acceleration of the binary system barycenter 𝑏 is, according to the two-body dynamics

:𝒓𝑏 “ 𝜇𝑝1

«

p1 ´ 𝜇q
´𝒓𝑝1 ´ 𝜇𝒅

𝒓𝑝1 𝑝2



3 ` 𝜇
´𝒓𝑝1 ` p1 ´ 𝜇q𝒅

𝒓𝑝1 𝑝3



3

ff

(3)

By combining Eqs. (1)–(3), it is possible to rewrite the spacecraft acceleration in 𝑃 as

:𝒓 “𝜇𝑝1

«

p1 ´ 𝜇q
´𝒓𝑝1 ´ 𝜇𝒅

𝒓𝑝1 𝑝2



3 ` 𝜇
´𝒓𝑝1 ` p1 ´ 𝜇q𝒅

𝒓𝑝1 𝑝3



3 ´
´𝒓𝑝1 ` 𝒓

𝒓𝑝1 𝑝4



3

ff

`

´ 𝜇𝑝2

𝒓 ` 𝜇𝒅

𝒓𝑝2 𝑝4



3 ´ 𝜇𝑝3

𝒓 ´ p1 ´ 𝜇q𝒅

𝒓𝑝3 𝑝4



3

(4)

Let us assume that body 𝑝3 moves along a circular Keplerian orbit about 𝑝2, with classical orbital parameters

t𝑎𝑝3 “ 𝑑, 𝑖𝑝3 ,Ω𝑝3 , 𝑀𝑝3 , 𝜔𝑝3 “ 0, 𝑀𝑝3 “ 0u, where 𝑎 indicates the semi-major axis, 𝑖 the orbital inclination, Ω the

right ascension of the ascending node, 𝜔 the argument of the pericenter and 𝑀 the mean anomaly at current time.

Similarly, the binary system is supposed to move along an elliptic orbit about the Sun 𝑝1, with classical orbital parameters

t𝑎𝑏, 𝑒𝑏, 𝑖𝑏,Ω𝑏, 𝜔𝑏, 𝑀𝑏u. Physical quantities are made non-dimensional through the reference units

𝑟 “ 𝑑, 𝜇̄ “ 𝜇𝑝2 ` 𝜇𝑝3 , 𝑡 “

d

𝑑3

𝜇̄
, 𝑣̄ “

𝑟

𝑡
, 𝑎̄ “

𝑣̄

𝑡
(5)

that is, the semi-major axis of the orbit of 𝑝3 about 𝑝2, the cumulative gravitational constant of the binary system and

the orbital period of 𝑝3 about 𝑝2, divided by 2𝜋. In this way, relevant quantities are in a small range around unity,

reducing the errors related to the finite precision of the computer.

By passing from reference frame 𝑃 to a rotating frame 𝑁 “ p𝑏; 𝒙̂, 𝒚̂, 𝒛q, which corresponds to the radial-transverse-

normal (RTN) frame associated to the orbital motion of 𝑝3 around 𝑝2, the non-dimensional equations of motion of the
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spacecraft in frame 𝑁 can be written as

9𝒓 “ 𝒗 (6)

9𝒗 “ ´ 2 𝒛 ˆ 𝒗 ´ 𝒛 ˆ p𝒛 ˆ 𝒓q ` p𝜎 ´ 1q

«

p1 ´ 𝜇q
´𝒓𝑝1 ´ 𝜇𝒙̂

𝒓𝑝1 𝑝2



3 `

` 𝜇
´𝒓𝑝1 ` p1 ´ 𝜇q𝒙̂

𝒓𝑝1 𝑝3



3 ´
´𝒓𝑝1 ` 𝒓

𝒓𝑝1 𝑝4



3

ff

` p1 ´ 𝜇q
𝒓 ` 𝜇𝒙̂

𝒓𝑝2 𝑝4



3 ´ 𝜇
𝒓 ´ p1 ´ 𝜇q𝒙̂

𝒓𝑝3 𝑝4



3 (7)

where, from now on, all vector quantities are supposed to be written in frame 𝑁 , unless otherwise specified with

proper subscripts. In particular, 𝒅 “ 𝒙̂, 𝒛 “ r0 0 1sJ is the angular velocity of frame 𝑁 with respect to frame 𝑃, and

𝜎 “
𝜇𝑝1
𝜇̄

` 1 the cumulative gravitational parameter of the primaries. The Sun position 𝒓𝑝1 at any time is computed by

propagating its initial state 𝒓𝑝1 ,0, 𝒗𝑝1 ,0 forward in time through a Keplerian dynamics. So, it is just dependent on the

current time 𝑡: 𝒓𝑝1 “ 𝒓𝑝1 p𝑡q.

The solar radiation pressure (SRP) acting on the spacecraft can be evaluated as

𝑝@ “
𝜙@

𝑐0


𝒓𝑝1 𝑝4 ,AU



2 (8)

where 𝜙@ “ 1371 W{m2 is the Sun’s irradiance at 1 AU, 𝑐0 is the speed of light in vacuum and


𝒓𝑝1 𝑝4 ,AU



 the
spacecraft-Sun distance expressed in AU.

So, the net perturbing acceleration due to the SRP is, in non-dimensional unit,

𝒂@ “
1
𝑚

𝑝@𝐴

𝑚̄𝑎̄

´

𝒍 ¨ 𝒓𝑝1 𝑝4

¯

𝒓𝑝1 𝑝4 (9)

where 𝑚 indicates the non-dimensional mass of the spacecraft, 𝑚̄ “ 1000 kg a reference mass value, 𝐴 is the total area

of the spacecraft’s solar panels in m2 and 𝒍 denotes a vector directed in the opposite direction to the normal to the solar

panels. By supposing that the spacecraft is axial symmetric and that the onboard camera in mounted on the opposite

side with respect to the solar panels, 𝒍 coincides with the camera line-of-sight. For simplicity, 𝒍 is here supposed to be

known at any time 𝑡, and the spacecraft’s attitude dynamics is neglected.
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So, the final form of the ballistic equations of motion of the spacecraft is

9𝒓 “ 𝒗 (10)

9𝒗 “ ´ 2 𝒛 ˆ 𝒗 ´ 𝒛 ˆ p𝒛 ˆ 𝒓q ` p𝜎 ´ 1q

«

p1 ´ 𝜇q
´𝒓𝑝1 ´ 𝜇𝒙̂

𝒓𝑝1 𝑝2



3 `

` 𝜇
´𝒓𝑝1 ` p1 ´ 𝜇q𝒙̂

𝒓𝑝1 𝑝3



3 ´
´𝒓𝑝1 ` 𝒓

𝒓𝑝1 𝑝4



3

ff

` p1 ´ 𝜇q
𝒓 ` 𝜇𝒙̂

𝒓𝑝2 𝑝4



3 `

´ 𝜇
𝒓 ´ p1 ´ 𝜇q𝒙̂

𝒓𝑝3 𝑝4



3 ` 𝒂@ (11)

B. Controlled Dynamics

In order to actively control its approach trajectory to the binary asteroid system, the spacecraft makes use of a

low-thrust engine with maximum thrust 𝑇max and effective exhaust velocity 𝑐. So, the control thrust at any time can be

expressed in frame 𝑁 as

𝑻 “ 𝑇𝑥 𝒙̂ ` 𝑇𝑦 𝒚̂ ` 𝑇𝑧 𝒛 (12)

The following condition on the maximum thrust must hold along the whole spacecraft trajectory

∥𝑻∥ ď 𝑇max (13)

Eventually, the controlled dynamics of the spacecraft is governed by the equations of motion

9𝒓 “ 𝒗 (14)

9𝒗 “ ´ 2 𝒛 ˆ 𝒗 ´ 𝒛 ˆ p𝒛 ˆ 𝒓q ` p𝜎 ´ 1q

«

p1 ´ 𝜇q
´𝒓𝑝1 ´ 𝜇𝒙̂

𝒓𝑝1 𝑝2



3 `

` 𝜇
´𝒓𝑝1 ` p1 ´ 𝜇q𝒙̂

𝒓𝑝1 𝑝3



3 ´
´𝒓𝑝1 ` 𝒓

𝒓𝑝1 𝑝4



3

ff

` p1 ´ 𝜇q
𝒓 ` 𝜇𝒙̂

𝒓𝑝2 𝑝4



3 `

´ 𝜇
𝒓 ´ p1 ´ 𝜇q𝒙̂

𝒓𝑝3 𝑝4



3 ` 𝒂@ `
𝑻

𝑚
(15)

9𝑚 “ ´
∥𝑻∥
𝑐

(16)

9𝑡 “1 (17)

By defining the spacecraft state as 𝒙 “ r𝒓J 𝒗J 𝑚 𝑡sJ, Eqs. (14)-(17) can be rewritten in compact form as

9𝒙 “ 𝒇 p𝒙,𝑻q (18)
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Note that the independent variable time 𝑡, with derivative 9𝑡 “ 1, has been included in the state vector to recast the

problem as an autonomous one. This transformation is necessary for the problem to be formulated as a Markov decision

process, as will be described in the next section.

C. Boundary Conditions

1. Initial Conditions

The terminal guidance of the spacecraft is supposed to start a few hours before the collision occurs. Let’s denote

with 𝑡 𝑓 the final time of this mission phase. We want to determine a nominal spacecraft state at the beginning of the

terminal guidance, that is, at time 𝑡0 “ 0, starting from the target value of some quantities at impact time provided

by mission design. These quantities are the spacecraft’s impact velocity 𝑣𝐼 , the impact in-plane angle 𝜑𝐼 , the impact

out-of-plane angle 𝜓𝐼 and the impact solar phase angle 𝜑𝑆 , as well as, of course, the impact date 𝑡𝐼 . They play a central

role on the outcome of the mission. Indeed, the impact velocity and impact angles determine the amount of momentum

transferred to the target asteroid, and, with it, the deflection imparted on its orbit; on the other hand, the solar phase

angle affects the lighting conditions of the impact site and the ability of the spacecraft to autonomously navigate to it by

just using visual images.

Specifically, the impact in-plane and out-of-plane angles are defined as the angles between the spacecraft’s impact

velocity 𝒗̂𝐼 and the secondary asteroid’s velocity 𝒗̂𝑝3 measured into and out of the binary system’s orbital plane,

respectively

𝜑𝐼 “ arctan2p𝒗̂𝐼 ¨ 𝒅, 𝒗̂𝐼 ¨ 𝒗̂𝑝3 q (19)

𝜓𝐼 “ sin´1 p´𝒗̂𝐼 ¨ 𝒉̂𝑝3 q (20)

where 𝒉̂𝑝3 “ 𝒅 ˆ 𝒗̂𝑝3 “ 𝒛𝑃 “ 𝒛 is the angular momentum of the secondary asteroid. The solar phase angle, instead,

denotes the angle, measured in the binary system’s orbital plane, between the spacecraft’s impact velocity and the

asteroid-Sun direction at impact time

𝜑𝑆 “ cos´1 p𝒗̂𝐼,ip ¨ 𝒓𝑝1 𝑝3 ,ipq (21)

with 𝒗̂𝐼,ip “ p𝒗̂𝐼 ¨ 𝒙̂𝑃q 𝒙̂𝑃 ` p𝒗̂𝐼 ¨ 𝒚̂𝑃q 𝒚̂𝑃 and 𝒓𝑝1 𝑝3 ,ip “ p𝒓𝑝1 𝑝3 ¨ 𝒙̂𝑃q 𝒙̂𝑃 ` p𝒓𝑝1 𝑝3 ¨ 𝒚̂𝑃q 𝒚̂𝑃 the in-plane (i.e., in the binary

system’s orbital plane) components of the impact velocity and asteroid-Sun direction.

A sufficiently accurate value for the initial position 𝒓0 and velocity 𝒗0 that the spacecraft should have to meet those

impact conditions can be computed using a two-body dynamical model, obtained by neglecting the Sun’s influence and

supposing the total mass of the binary system as concentrated in the primary asteroid. First, let us compute the mean

anomaly 𝑀𝑝3 , 𝑓 of the minor asteroid at impact time. It can be easily derived starting from the Sun’s angular position

11
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d

x̂P

ŷP

vp3

vI

ϕI

ϕS

Mp3,f

θp1,f
to p1

to p1

Fig. 2 View of the impact geometry on the binary system’s orbital plane.

𝜃𝑝1 , 𝑓 in frame 𝑃 at the impact date 𝑡𝐼 (computed from the binary system’s ephemeris) and the value of the angles 𝜑𝐼 ,

𝜓𝐼 , and 𝜑𝑆 . Indeed, with reference to Fig. 2, by supposing that the Sun is sufficiently far to be approximated as a light

source at infinity, we have that

𝑀𝑝3 , 𝑓 “ ´
𝜋

2
` 𝜑𝑆 ` 𝜑𝐼 ` 𝜃𝑝1 , 𝑓 (22)

Figures 3a and 3b show a sketch of the hyperbolic approach of the spacecraft till the impact with the minor body in a

two-body model. The spacecraft hyperbolic excess velocity is 𝑣8 “

b

𝑣2
𝐼

´ 2 𝜇̄
𝑑
. Because of the small mass of the

binary system, and the large incoming velocity of the spacecraft, its hyperbolic trajectory can be safely approximated as

a straight line. So, a fairly-accurate value of the initial distance of the spacecraft from the system is given by 𝑟0 “ 𝑣8𝑡 𝑓 .

The conservation law of the specific angular momentum ℎhyp of the spacecraft along the hyperbola can be written as

ℎhyp “ 𝑟0𝑣8 cos 𝛾 “ ´𝑑 𝑣𝐼 cos 𝜑𝐼 (23)

from which the initial flight path angle 𝛾 can be derived as

𝛾 “ arccos
ˆ

´
𝑑 𝑣𝐼 cos 𝜑𝐼
𝑟0𝑣8

˙

(24)

The parameters describing the hyperbola, that is, the semi-latus rectum 𝑝hyp, the eccentricity 𝑒hyp, the argument of

12
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(a) In-plane view.
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ψI δ

ẑL

(b) Out-of-plane view.

Fig. 3 The hyperbolic approach of the spacecraft.

periapsis 𝜃𝐼 , and the true anomaly at infinite distance 𝜃8, can be derived from the conics equations:

𝑝hyp “
ℎ2
hyp

𝜇̄
“
𝑑2𝑣2

𝐼
cos 𝜑𝐼2

𝜇̄
(25)

𝑒hyp “

d

𝑝hyp𝑣
2
8

𝜇̄
` 1 (26)

𝜃𝐼 “ signp𝜋 ´ 𝜑𝐼q arccos

˜

𝑝hyp
𝑑

´ 1
𝑒hyp

¸

(27)

𝜃8 “ arccos
ˆ

´
1
𝑒hyp

˙

(28)

Let us define a local frame 𝐿 “ p𝑝2; 𝒙̂𝐿 , 𝒚̂𝐿 , 𝒛𝐿q, with 𝒙̂𝐿 pointing from the primary asteroid to the secondary asteroid’s

position at impact time, 𝒛𝐿 directed as the angular momentum of the spacecraft, and 𝒚̂𝐿 defined to create a right-handed

system (see Fig. 3a).

The angles between 𝒙̂𝐿 and 𝒓0 and 𝒙̂𝐿 and 𝒗0, measured in the plane of the spacecraft trajectory, are

𝛼𝑟 “ ´𝜃𝐼 ´ 𝜃8 ´ 𝛾 `
𝜋

2
(29)

𝛼𝑣 “ 𝛼𝑟 ` 𝛾 `
𝜋

2
(30)
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So, the components of the initial spacecraft position and velocity in 𝐿 are:

r𝒓0s𝐿 “ 𝑟0 cos𝛼𝑟 𝒙̂𝐿 ` 𝑟0 sin𝛼𝑟 𝒚̂𝐿 (31)

r𝒗0s𝐿 “ 𝑣8 cos𝛼𝑣 𝒙̂𝐿 ` 𝑣8 sin𝛼𝑣 𝒚̂𝐿 (32)

The angle 𝛿 between the spacecraft trajectory plane and the binary system’s orbital plane is

𝛿 “ atan2
ˆ

sin𝜓𝐼 ,
cos𝜓𝐼
cos 𝜑𝐼

˙

(33)

So, eventually, the components of 𝒓0 and 𝒗0 in the perifocal frame 𝑃 can be obtained through a rotation around axis 𝒙̂𝐿

of an angle 𝛿, and a rotation around axis 𝒛𝑃 of an angle ´𝑀𝑝3 , 𝑓

r𝒓0s𝑃 “ 𝑪3p´𝑀𝑝3 , 𝑓 q
J𝑪1p𝛿qJr𝒓0s𝐿 (34)

r𝒗0s𝑃 “ 𝑪3p´𝑀𝑝3 , 𝑓 q
J𝑪1p𝛿qJr𝒗0s𝐿 (35)

being

𝑪1p𝜃q “

»

—

—

—

—

—

—

–

1 0 0

0 cos 𝜃 ´ sin 𝜃

0 sin 𝜃 cos 𝜃

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36)

𝑪3p𝜃q “

»

—

—

—

—

—

—

–

cos 𝜃 ´ sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(37)

the rotation matrices referred to a counter-clockwise rotation of 𝜃 around the first and third axis of a right-handed triad,

respectively.

In order to account for an imperfect knowledge of the binary system’s characteristics, a random error has been added

to the nominal value 𝑀 𝑝3 ,0 of the initial mean anomaly of the secondary asteroid, simply computed by propagating its

position at impact backward for a time 𝑡 𝑓 . The actual value of the mean anomaly is sampled from a uniform distribution

centered about 𝑀 𝑝3 ,0 at the beginning of each simulation:

𝑀𝑝3 ,0 „ U
´

𝑀 𝑝3 ,0 ´ 𝛿𝑀, 𝑀 𝑝3 ,0 ` 𝛿𝑀

¯

(38)
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where 𝛿𝑀 is the maximum angular error.

2. Terminal Conditions

Concerning the final conditions, any simulation is terminated either at time 𝑡 𝑓 or when the spacecraft reaches the

minimum distance from the secondary asteroid along its trajectory. This latter condition occurs when the spacecraft

incoming velocity has a null component along the line connecting the minor asteroid to the spacecraft. The condition

can be expressed mathematically as

𝜒p𝑡q “ 𝒗p𝑡q ¨ p𝒓p𝑡q ´ 𝒓𝑝3 p𝑡qq “ 0 (39)

III. Problem Statement
In this section, the image-based terminal guidance of the spacecraft is mathematically posed as a partially observable

Markov decision process. The optical sensor model used to generate the camera images is also described.

A. Problem Formulation as a Markov Decision Process

The terminal guidance problem can be formulated as a discrete-time Markov decision process (MDP). The system

evolution in an MDP is determined by a finite number of interaction events or time steps ℎ “ 0, 1, . . . , 𝐻, spaced

between the initial time 𝑡0 “ 0 and the final time 𝑡 𝑓 :

𝑡0 ă 𝑡1 ă . . . ă 𝑡𝐻 ď 𝑡 𝑓 (40)

At each time step ℎ a decision maker (referred to as the agent) chooses a control action 𝒖ℎ among the admissible ones,

on the basis of its knowledge of the current system state 𝒙ℎ. As a consequence of this action, the environment transitions

to a new state 𝒙ℎ`1 and returns a scalar reward 𝑅ℎ “ 𝑅p𝒙ℎ, 𝒙ℎ`1q, which can be intended as a measure of the goodness

of the last decision maker’s choice. MDPs satisfy the Markov property, that is, at any time the system state depends only

on the previous state and the agent’s control.

In this application, the control 𝒖ℎ returned by the agent at step ℎ is the output of a closed-loop control policy 𝜋,

taking as input an observation 𝒚ℎ of the current state 𝒙ℎ

𝒖ℎ “ 𝜋p𝒚ℎq (41)

𝒚ℎ “ 𝜼p𝒙ℎq (42)

To give the spacecraft an additional degree of freedom, and let it decide on its own when and for how long to thrust, the
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control 𝒖ℎ P r´1, 1s5 defines both the thrust 𝑻ℎ and the thrusting time Δ𝑡ℎ:

𝑻ℎ “ 𝚪p𝒖ℎq “
𝑇max


r𝑢p2q

ℎ
𝑢

p3q

ℎ
𝑢

p4q

ℎ
s




 𝑢
p1q

ℎ
` 1

2

”

𝑢
p2q

ℎ
𝒍 ` 𝑢

p3q

ℎ
𝒗̂ ` 𝑢

p4q

ℎ
𝒏̂
ı

(43)

Δ𝑡ℎ “
𝑢

p5q

ℎ
` 1

2
p𝑡 𝑓 ´ 𝑡ℎq (44)

where 𝑉 “ p𝑝4; 𝒍, 𝒗̂, 𝒏̂q is a reference frame attached to the velocity of the spacecraft

𝒍 “
𝒗̂ℎ
𝑣ℎ,ip

ˆ 𝒛 (45)

𝒗̂ “ 𝒗̂ℎ (46)

𝒏̂ “ 𝒍 ˆ 𝒗̂ (47)

This definition of the control has been selected as it inherently meets the constraint on the maximum value of the thrust

modulus (Eq. (13)). Furthermore, RL performs better when the actions are sampled from intervals centered about zero.

To avoid having a number of time-steps 𝐻 which is either too low or too high, the time-length of each step Δ𝑡ℎ is further

limited between 1 s and 1 h. The minimum step-size has been selected in accordance to the actual update frequency of

SMARTNav [15]. A time horizon 𝐻max has also been set.

To ensure that the terminal condition in Eq. (39) is not missed, the time 𝑡ℎ`1 at the next step is computed as

𝑡ℎ`1 “ 𝜏p𝑡ℎ, 𝒖ℎq “

$

’

’

&

’

’

%

𝑡𝑟 : 𝜒p𝑡𝑟 q “ 0 𝜒p𝑡ℎq ą 0 ^ 𝜒p𝑡ℎ ` Δ𝑡ℎq ă 0

𝑡ℎ ` Δ𝑡ℎ otherwise
(48)

Thus, Eq. (39) is checked @𝑡 P r𝑡ℎ, 𝑡ℎ`1s by looking for a change of sign of function 𝜒 with a root-finding method as the

secant method. The corresponding root 𝑡𝑟 , or, if none is found, time 𝑡ℎ ` Δ𝑡ℎ, is returned as next time.

The new state 𝒙ℎ`1 is obtained through the numerical integration of Eqs. (18) starting from the previous state 𝒙ℎ,

and by assuming a constant thrust 𝑻ℎ during the whole time-step. Hence, the state transition function is

𝒙ℎ`1 “ 𝝓p𝒙ℎ, 𝒖ℎq “ 𝒙ℎ `

ż 𝜏p𝑡ℎ ,𝒖ℎq

𝑡ℎ

𝒇 p𝒙, 𝚪p𝒖ℎqq d𝑡 (49)

Note that the transition function in Eq. (49) satisfies the Markov property, thus justifying why the time 𝑡 has been

considered as an additional state variable. The episode is terminated if the stopping (or done) condition is met, defined

as

𝑑p𝒙ℎq “
`

p𝑡ℎ “ 𝑡 𝑓 q _ p𝜒p𝑡ℎq “ 0q
˘

“ 1 (50)
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The observation 𝒚ℎ received by the agent at step ℎ is made up of the current time 𝑡ℎ and a gray-scale image 𝑰ℎ taken

by the onboard camera, which corresponds to a matrix of dimension 𝑖ℎ ˆ 𝑖𝑤 , being 𝑖ℎ and 𝑖𝑤 the number of pixels

along height and width, respectively. Each entry of 𝑰ℎ is an integer number in r0, 255s, specifying the brightness of

the corresponding pixel. For simplicity, it is assumed that, as in SMARTNav, an onboard system is able to recognize

the secondary asteroid in the image frame and align the camera bore-sight with it at each time-step; so the camera

line-of-sight is 𝒍 “ ´𝒓𝑝3 𝑝4 . Moreover, it is assumed that the satellite is capable of producing thrust in each direction

independently from the onboard camera pointing. Since the agent does not have direct access to the full spacecraft state

𝒙 to decide the next control, but only to an observation 𝒚 dependent on it, the MDP is defined as partially observable

(POMDP).

The initial state 𝒙0 of the spacecraft is determined with the procedure described in Sec. II.C. Actually, the

interplanetary trajectory design provides a nominal range of variation for the impact quantities, whose precise value

will depend on the actual departure date from Earth within the launch window. Since the terminal guidance algorithm

should be designed to correctly face every possible impact condition within the nominal range, the actual value of the

generic quantity 𝑞 P t𝑡𝐼 , 𝑣𝐼 , 𝜑𝐼 , 𝜓𝐼 , 𝜑𝑆u at impact is sampled at the beginning of each episode according to a uniform

distribution

𝑞 “ 𝑞𝑙 ` 𝑝p𝑞𝑢 ´ 𝑞𝑙q (51)

where 𝑝 P Up0, 1q is sampled once for all the quantities, thus simulating that a launch date has been fixed. 𝑞𝑙 , 𝑞𝑢

denote the lower and upper bound for quantity 𝑞 provided by mission design. The combined effect of the random impact

condition and the uncertainty 𝛿𝑀 on the initial mean anomaly of the target asteroid can be modeled as a probability

distribution X0 for the initial state 𝒙0.

The goal of the mission is to hit the secondary asteroid within the maximum time 𝑡 𝑓 , in spite of the dynamical

perturbations not modeled during mission design (i.e., during derivation of the initial conditions) and the uncertainty on

the minor asteroid position. To this aim, a delayed reward definition has been used in this study:

𝑅ℎ “

$

’

’

&

’

’

%

´


𝒓𝑝3 𝑝4 ,ℎ`1



 if 𝑑p𝒙ℎ`1q

0 otherwise
(52)

The goal of the agent is to find the control policy 𝜋‹ that maximizes the expected sum of rewards (or return) 𝐺p𝜏q

collected along a trajectory 𝜏 “ tp𝒙0, 𝒖0q, . . . , p𝒙𝐻´1, 𝒖𝐻´1q, 𝒙𝐻u

𝐽p𝜋q “ E
𝜏„𝜋

«

𝐻´1
ÿ

ℎ“0
𝑅ℎ

ff

“ E
𝜏„𝜋

r𝐺p𝜏qs (53)
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Overall, the terminal guidance problem can be formulated as a POMDP as follows:

M :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max
𝜋
𝐽p𝜋q

s.t.: 𝒙ℎ`1 “ 𝝓p𝒙ℎ, 𝒖ℎq, ℎ “ 0, . . . , 𝐻 ´ 1

𝒖ℎ “ 𝜋p𝒚ℎq, ℎ “ 0, . . . , 𝐻 ´ 1

𝒚ℎ “ t𝑡ℎ, 𝑰ℎu “ 𝜼p𝒙ℎq, ℎ “ 0, . . . , 𝐻 ´ 1

𝒙0 „ X0

𝑑p𝒙𝐻q “ 0

(54)

B. Optical Sensor Model

The simulation environment is created using a custom class derived from the OpenAI Gym formalization [47]. The

simulated images taken from the onboard camera are generated using VisualEnv [48], a tool for real-time rendering

based on the open-source software Blender [44]. With this tool, it is possible to create realistic visual environments

leveraging physically based materials, light sources, and cameras. Moreover, the tool seamlessly integrates with python

through an API which allows it to run within the environment itself. The scene is created using the built-in modeling

tools available in Blender. The two asteroids of the binary system are created starting from spheres, which are then

modified using a procedurally generated random texture to create surface roughness and displacements. A second

random texture is used to create craters. Sunlight is simulated using a light source at infinite distance generating parallel

rays. The camera field-of-view is instead supposed to be always centered on the target asteroid, for simplicity. The

position of all the objects in the scene (i.e. the spacecraft, the two asteroids, and the Sun) is updated at each step and

the scene seen by the camera is rendered and returned as a matrix 𝑰ℎ. So, 𝑰ℎ can be evaluated just starting from the

spacecraft position 𝒓ℎ and the celestial body position (dependent only on the current time 𝑡ℎ). Function 𝜼 is thus a

black-box function that models the rendering engine of Blender. Figure 4 shows a 3D view of the scene configuration

inside Blender software exactly two minutes before the impact, along one of the obtained solutions (Fig. 4a), and the

corresponding rendered image as seen by the camera onboard (Fig. 4b).

IV. Reinforcement Learning
This section describes the optimization framework used in this study, based on reinforcement learning. Specifically,

after the architecture chosen for the control policy network has been introduced, the optimization algorithm is explained

in detail. Then, the role of the recurrent layer in the policy network and the deep meta-reinforcement learning framework

adopted in this study are presented.
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(a) 3D view of the scene. (b) Rendered image taken from the camera.

Fig. 4 System configuration in Blender two minutes before the impact along one sample solution.

A. Policy Network

Solving a control problem via deep reinforcement learning means approximating the exact control policy 𝜋 by a deep

neural network (DNN) with parameters 𝜃, 𝜋𝜃 , which is trained by trial-and-error to maximize the expected trajectory

return 𝐽p𝜋q “ 𝐽p𝜃q. So, the objective becomes determining the optimal set of network parameters 𝜃‹ (i.e., weights of

the neuron-to-neuron connections and neurons’ biases).

A diagonal multi-variate Gaussian policy is used in this study to achieve a good balance between exploration and

exploitation during training. Hence, at each time-step 𝑡ℎ, the network 𝜋𝜃 receives the current observation 𝒚ℎ as input,

and returns the mean value of the control 𝝁ℎ and the corresponding standard deviation 𝝈ℎ. Being the policy stochastic,

in current RL notation the symbol 𝜋𝜃p¨|𝒚ℎq is typically used to indicate the probability that a given control 𝒖ℎ is

returned, given the observation 𝒚. This notation has been adopted also in this paper for the sake of consistency with RL

terminology, although, practically, the policy 𝜋𝜃 returns the parameters of the probability distribution and not directly

the probability value.

To allow a wide exploration of the solution space, during training the actual control is sampled according to the

Gaussian distribution

𝒖ℎ „ 𝜋𝜃p¨|𝒚ℎq “ Np𝝁ℎ, Σℎq (55)

with Σℎ “ diagp𝝈ℎ 𝝈J
ℎ

q the covariance matrix. To ensure that the control 𝒖 always lies in the definition interval, the

probability that each of its components falls outside of interval r´1, 1s (that is, the tails of the Gaussian) is clipped to

zero. During the final policy deployment or evaluation, instead, the exploration is turned off and the mean control is
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returned for a given observation: 𝒖ℎ “ 𝝁ℎ.

The network architecture used in this work is schematized in Fig. 5. The network is composed of a sequence of

layers, each one carrying out a specific task. The image 𝑰ℎ is first fed to a sequence of four convolutional layers that

extract spatial information by simultaneously increasing the depth of the image and decreasing the height and width

dimensions. The kernel size and number of layers have been selected to transform the 256 ˆ 256 input matrix into an

output vector of length 128. The vector output of the convolutional block is then concatenated with the time 𝑡ℎ and

fed to a fully connected block (MLP) with two hidden layers, to increase the non-linearity in the network. The width

of the two layers is intermediate between the number of inputs and the number of outputs of the MLP block. Indeed,

a similar architecture, with progressively thinner layers going from inputs to outputs, has reconstructed the optimal

solution of several space trajectory optimization problems with satisfying accuracy [23, 31, 37]. Lastly, the previous

control 𝒖ℎ´1 is appended to the output of the MLP block and fed to a long short-term memory (LSTM) block, that is

a recurrent layer capable of understanding the temporal relationship between the observations making up the input

sequences. The LSTM has been preferred to other RNN alternatives because of its increased capability of capturing and

storing information about long-term temporal dependencies in the input data. The role of the LSTM layer in the whole

network will be further discussed in Sections IV.C and IV.D.

th
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hidd: tanh

[50]
10-step unroll

uh−1

out: lin

V̂h

Fig. 5 Neural network architecture.

B. Proximal Policy Optimization

The optimization algorithm used in this work for the network training is proximal policy optimization (PPO) [45],

which is a family of model-free policy-gradient reinforcement learning methods developed in 2017 by Schulman et al.

at OpenAI. PPO exploits a first-order unconstrained optimization, thus representing an easier, but equally-performing,

alternative to trust region policy optimization (TRPO) [49]. While both the methods try to limit the distance between
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the new and the previous policy at each update to avoid a performance collapse, the basic difference between the two

methods resides in the mathematical expression of the objective function.

Indeed, TRPO tackles the problem by maximizing a surrogate objective function subject to a KL-divergence

constraint 𝐷KL [50] to limit the distance 𝛿 between policies at successive iterations. Mathematically speaking, at

iteration 𝑘 of the training procedure, TRPO computes the new parameters 𝜃p𝑘`1q by solving the following constrained

optimization problem:

max
𝜃

E
𝜏„𝜋𝜃p𝑘q

ℎ“0,...,𝐻´1

“

𝑟ℎp𝜃, 𝜃p𝑘qq𝐴
𝜋𝜃p𝑘q p𝒚ℎ, 𝒖ℎq

‰

s.t.: E
𝜏„𝜋𝜃p𝑘q

ℎ“0,...,𝐻´1

“

𝐷KL
`

𝜋𝜃p¨|𝒚ℎq}𝜋𝜃p𝑘q
p¨|𝒚ℎq

˘‰

ď 𝛿

(56)

where 𝑟ℎ is the probability ratio between the updated and the previous policy at time-step ℎ

𝑟ℎp𝜃, 𝜃p𝑘qq “
𝜋𝜃p𝒖ℎ|𝒚ℎq

𝜋𝜃p𝑘q
p𝒖ℎ|𝒚ℎq

(57)

and 𝐴𝜋𝜃 p𝒚ℎ, 𝒖ℎq corresponds to the advantage function at time-step ℎ, and it is a measure of the return improvement

obtained by taking the specific action 𝒖ℎ after receiving observation 𝒚ℎ, instead of randomly selecting the action

according to 𝜋p¨|𝒚ℎq.

However, the advantage function cannot be computed exactly and its value has to be approximated. The generalized

advantage estimator (GAE) 𝐴̂ℎ [51] is used to this aim. Let 𝑉̂ℎ “ 𝑉̂p𝒚ℎq be an estimation of the value function at

time-step ℎ, which represents the expected return obtained until the end of the episode by receiving the observation 𝒚ℎ

and then acting according to policy 𝜋𝜃 . Then, the GAE is defined as

𝐴̂ℎ “

𝐻´1
ÿ

ℎ1“ℎ

𝜆ℎ
1´ℎ𝛿𝑉̂ℎ1 (58)

where

𝛿𝑉̂ℎ “ 𝑅ℎ ` 𝑉̂ℎ`1 ´ 𝑉̂ℎ (59)

𝜆 is defined GAE factor. In particular, the value function estimate 𝑉̂ℎ is either the output of a second and independent

DNN, named critic, which usually receives, just like the policy network (also known as actor), the current observation

𝒚ℎ as input, or is an additional output of the policy network itself, which plays both the actor and critic role (as done in

this work, see Fig. 5). Hence, the set of parameters 𝜃 includes the weights and biases of both networks (actor and critic),

which must be computed and updated accordingly.

As opposed to TRPO, PPO avoids using the KL-divergence constraint by introducing a so-called clipped policy
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objective function 𝐽clip, that is expressed as

𝐽clipp𝜃q “ E
𝜏„𝜋𝜃p𝑘q

ℎ“0,...,𝐻´1

“

min
␣

𝑟ℎ 𝐴̂ℎ, clip p𝑟ℎ, 1 ´ 𝜖, 1 ` 𝜖q 𝐴̂ℎ
(‰

(60)

As it can be observed, 𝐽clip tries to force the policy 𝜋𝜃 to stay within a small range, named clip range and defined by the

tolerance 𝜖 P r0, 1s, around its previous value 𝜋𝜃p𝑘q
. The complete surrogate objective function used in PPO is defined as

𝐽ppop𝜃q “ 𝐽clipp𝜃q ´ 𝑐𝑣𝐿
vp𝜃q (61)

where 𝑐𝑣 is a hyperparameter known as value function coefficient and 𝐿v is a mean-squared-error between the current

value function estimation 𝑉̂ℎ and the obtained reward-to-go, required to correctly update also the critic network’s

parameters

𝐿vp𝜃q “ E
𝜏„𝜋𝜃p𝑘q

ℎ“0,...,𝐻´1

»

–

˜

𝑉̂ℎ ´

𝐻
ÿ

ℎ1“ℎ

𝑅ℎ1

¸2
fi

fl (62)

A graphical overview of the training process is given in Fig. 6. The network training via PPO consists of alternating

a rollout and an update phase at every iteration. In the rollout phase of iteration 𝑘 , a set Dp𝑘q “ t𝜏𝑖u of trajectories, a

set Rp𝑘q “ tt𝑅ℎu𝑖u of corresponding rewards and a setVp𝑘q “ tt𝑉̂ℎu𝑖u of value functions are collected by 𝑛𝑤 worker

agents that run in parallel the most up-to-date policy 𝜋𝜃p𝑘q
in as many independent realizations of the environment, for

𝑛𝑠 training steps each. In the update phase, the trajectories in Dp𝑘q are randomly shuffled and divided into mini-batches,

each with 𝑛𝑏 steps. Then, the network’s parameters 𝜃 are updated by performing, sequentially, 𝑛sga stochastic gradient

ascent (SGA) iterations on each mini-batch, with a learning rate 𝛼p𝑘q

𝜃p𝑘`1q “ 𝜃p𝑘q ` 𝛼p𝑘q ∇𝜃 𝐽ppop𝜃q
ˇ

ˇ

𝜃p𝑘q
(63)

where 𝐽ppo indicates an empirical approximation of the objective function 𝐽ppo obtained by substituting the expected

values in Eq. (60) and (62) with the average over the finite set of trajectories in Dp𝑘q and a time average over the 𝐻 time

steps in a single trajectory

𝐽ppop𝜃q “ 𝐽clipp𝜃q ´ 𝑐𝑣 𝐿̂
vp𝜃q (64)

𝐽clipp𝜃q “
1

|Dp𝑘q|𝐻

ÿ

𝜏PDp𝑘q

𝐻´1
ÿ

ℎ“0
min

␣

𝑟ℎ 𝐴̂ℎ, clip p𝑟ℎ, 1 ´ 𝜖, 1 ` 𝜖q 𝐴̂ℎ
(

(65)

𝐿̂vp𝜃q “
1

|Dp𝑘q|𝐻

ÿ

𝜏PDp𝑘q

𝐻´1
ÿ

ℎ“0

ˆ

𝑉̂ℎ ´

𝐻
ÿ

ℎ1“ℎ

𝑅ℎ1

˙2
(66)
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The training process is stopped when a maximum number of iterations 𝐾 is reached.

Update Rollout

MDP

Agent

φ, η, X0, d

πθ(k)

yh

Rh

uh

θ(k+1) ← θ(k) + α(k) ∇θĴppo(θ)
∣∣∣
θ(k)

D(k), R(k), V(k)

θ(k)

k ←− k + 1

V̂h

Fig. 6 Schematic of the training process by PPO.

C. Recurrent Neural Network

Image-based environments, as the one considered in this work, come with the downside of not providing the agent

with all the information it would need to make thoughtful decisions about the next control action to choose. In fact, a

single image as observation is usually not enough to decode the whole system state at a given step, as, for example, it

does not provide any clue about the system’s velocity and/or the motion of the other objects making up the scene. For

this reason, policy-gradient RL usually struggles to cope with these partial-observable scenarios using just a standard

fully-connected network as a control policy. A possible workaround, often used in Atari problems [52], consists in

stacking a number of images (typically 3 or 4) in a 3D tensor before feeding them to the network. This solution gives the

network some information about the evolution of the state of the environment over time.

A second approach relies on the use of a recurrent neural network (RNN) within the policy network, that is, a

network with a feedback connection capable of keeping track of temporal dependencies in sequential input data. In

this study, a particular RNN architecture called long-short term memory (Figure 7) has been used. An LSTM cell is

composed of three internal gates (an input gate, a forget gate, and an output gate) that control the flow of data within the

cell. The feedback connection of the LSTM unit has been unrolled in Fig. 7 to better clarify how it works. The three

gates allows the network to store in an internal cell state 𝒄ℎ relevant information about the temporal evolution of the

input observations 𝒚 received so far, in order to form a belief (or an estimate) of the present system state 𝒙ℎ, thus playing

the role of the navigation system. When using an LSTM, the different time points in a single trajectory are provided to it

one by one, and the value of the output at step ℎ is computed by combining, through the net weights, the current input

𝒚ℎ, the previous output 𝒉ℎ´1 and the cell state 𝒄ℎ. The current cell state 𝒄ℎ, in turn, is computed by properly dropping

and/or updating elements of the previous state 𝒄ℎ´1 on the base of 𝒚ℎ and 𝒉ℎ´1. At the beginning of each episode, all
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Fig. 7 Unrolling of the policy network with an LSTM unit.

the components of the network output 𝒉0 and state 𝒄0 are re-initialized to 0. More detailed information about LSTM

units can be found in Ref. [53]. In this application, the sequences fed to the network have at most 10 consecutive time

steps, as the little improvement in performance noted by using longer observation sequences did not justify the, much

more consistent, increase in training time.

D. Meta-Reinforcement Learning

Using a recurrent neural network is one of the most common approaches to implement a meta-learning [54].

The term meta-learning, or “learning to learn”, can be in general applied to any machine learning procedure, from

reinforcement learning to standard supervised learning. The most common view of meta-learning is to learn a flexible

learning algorithm that generalizes well across different tasks sampled from a distribution 𝑝pT q, where each task T is

identified by a dataset DT and an objective function 𝐽T . Typically, the goal of meta-RL is to exploit the data coming

from previously-seen tasks to better and/or quickly learn a new task from the same distribution. Focusing just on the RL

version (meta-reinforcement learning or meta-RL), each task may represent a different realization of a single stochastic

environment (as in the present application), or a slightly different environment sampled from a multi-environment

distribution. The key idea in meta-RL is to train a neural network with parameters 𝜃 to represent a function 𝜙T “ 𝑓𝜃pT q

of the specific task T , so that 𝜋p𝒚; 𝜙Tq is the optimal control policy for that task. The optimal network parameters are

thus the parameters that maximize the expected return obtained in the different tasks

max
𝜃

E
T„𝑝pTq

r𝐽Tp 𝑓𝜃pT qqs (67)

A variety of approaches have been used to date to implement the meta-learning paradigm [55], including the use of
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recurrent networks. When using a recurrent cell within the policy network, the model embeds the dataset DT (i.e., the

evolution of the received observations) of the specific task into the internal network state 𝒄, which is used for action

predictions together with the last observation. So, when a recurrent network is used, the task-specific function 𝜙T

consists of the task-dependent internal network state 𝒄pT q. The general network parameters 𝜃, instead, are still learned

by standard gradient ascent on Eq. (67) across trajectories from different tasks.

The adaptability of the recurrent model to different tasks can be further enhanced by providing the recurrent block

also with the output 𝒖ℎ´1 of the previous observation (and, when available, the reward 𝑅ℎ´1), in addition to the last

observation 𝒚ℎ (or output of the preceding layer) [38]. In this way, the internal network state keeps track also of

specific information of the task distribution, as the evolution of the controls and rewards, and the network output will

be specifically tuned on the structure and statistics of the problem at hand. A previous study by the authors already

demonstrated that an LSTM-based meta-RL approach is able to consistently improve the network performance when

dealing with an environment with scattered initial conditions [41], as in the present application.

V. Numerical Results
This section presents the numerical results obtained on the mission scenario selected as a study case, that is, the

terminal guidance of the DART spacecraft towards Dimorphos.

A. Mission Scenario

The terminal phase of the DART mission is assumed to start about 4 hours before the impact with Dimorphos.

In fact, this is when, according to the current mission schedule [15], SMARTNav starts operating and guiding the

spacecraft in autonomy. So, a maximum mission time equal to 𝑡 𝑓 “ 4 h has been used in all simulations. Furthermore,

as for mission specifications [15], the spacecraft’s engines must be turned off a couple of minutes before the impact, to

avoid creating blurry images of Dimorphos because of vibrations induced to the solar panels. So, for the last 120 s, the

thrust 𝑻 returned by the control policy has been set to zero.

The orbital parameters of the two asteroids of the 65803 Didymos system, together with their gravitational parameter

𝜇 and mean radius 𝜌, are listed in Table 1. The spacecraft and camera characteristics used in this work are instead

reported in Table 2. Specifically, 𝑖ℎ ˆ 𝑖𝑤 defines the camera resolution in pixels, FOV indicates the camera field of view,

while𝑊 is the camera sensor size, which determines the sensor area sensitive to light. It is worthwhile noticing that the

actual resolution of DRACO’s images processed by SMARTNav is 1024 ˆ 1024 pixels [56]. In this study, the images

are directly rendered in Blender at a lower resolution (256 ˆ 256) both to speed up the network training process and to

test the guidance algorithm performance in a more penalizing scenario.

The range of variation of the nominal values of the quantities at impact time, as described in Section II.C, is given in

Table 3. A maximum angular deviation equal to 𝛿𝑀 “ 10 deg has been used to express the uncertainty on the initial
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orbital position of Dimorphos.

Table 1 65803 Didymos orbital parameters in ICRF‹ and physical data [57].

Asteroid 𝑎 𝑒 𝑖, deg Ω, deg 𝜔, deg 𝑀 , deg 𝜇, km3/s2 𝜌, m
𝑝2 1.644 AU 0.384 3.408 73.199 319.319 136.650 3.567 ˆ 10´8 390
𝑝3 1.190 km 0 160 149 - - 3.693 ˆ 10´10 85

‹ The parameters are referred to the epoch: 2021 Jul 01 at 00:00:00 UTC.

Table 2 Spacecraft and camera characteristics [16, 56, 58].

Parameter Value
𝑚0, kg 560
𝑇max, N 0.137
𝑐, km/s 30.33
𝐴, m2 22
𝑖ℎ ˆ 𝑖𝑤 , px 256ˆ256
FOV, deg 0.29
𝑊 , mm 13.27

Table 3 Ranges of the nominal quantities at impact [58, 59].

𝑡𝐼 , UTC 𝑣𝐼 , km/s 𝜑𝐼 , deg 𝜓𝐼 , deg 𝜑𝑆 , deg
[25 Sep 2022, 11pm, 1 Oct 2022, 11pm] [6.12, 6.76] [170, 180] [-33.5, -6.9] [58.3, 59.9]

B. Training Behavior

The results presented in this section have been obtained by using pyRLprob∗, an in-house python library for training,

evaluation, and postprocessing of OpenAI-Gym environments through the open-source library Ray [60], which includes

both a multiple-CPU and GPU implementation of PPO. The value of the hyperparameters used for PPO is listed in

Table 4. The learning rate 𝛼p𝑘q decreases with a linear law along training. These specific values have been selected after

an extensive trial-and-error procedure carried out on a fully-observable version of the problem, that is, by using the full

spacecraft state as input to the control policy, in order to reduce the overall computational burden. This preliminary

analysis has been run on a computer with an 8-core Intel Core i7-9700K CPU @3.60 GHz.

The final network training by PPO, including the image rendering, has been realized on a cpu-only workstation with

a 56-core Intel Xeon E5-2680 @2.40 GHz. The overall training process took about 20 h on this hardware. During

training, a deterministic version of the policy (i.e., with the exploration switched off) is concurrently deployed into an

evaluation environment for 600 steps to evaluate its performance. The best policy in terms of the average value of the

trajectory return in the evaluation environment is the one returned by the training procedure as putative optimal policy.
∗https://github.com/LorenzoFederici/pyrlprob
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Table 4 PPO hyperparameters.

Hyperparameter Symbol Value

Time horizon 𝐻max 100
Training iterations 𝐾 250
Clip range 𝜖 0.05
Value function coefficient 𝑐𝑣 0.5
Training workers 𝑛𝑤 15
Steps per worker 𝑛𝑠 200
SGA iterations per update 𝑛sga 30
Steps per mini-batch 𝑛𝑏 600
Initial learning rate 𝛼p0q 1 ˆ 10´4

Final learning rate 𝛼p𝐾q 1 ˆ 10´6
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Fig. 8 Performance trend of the RL policy in the training and evaluation environments.

Figure 8 presents the evolution during the net training of the average value (solid curve) and interquartile range

(shaded region) of the episode return 𝐺 (Fig. 8a) and terminal miss distance 𝑑𝑝3 𝑝4 (Fig. 8b), and the mean value of the

episode length 𝐻 (Fig. 8c) in both the training and evaluation environments. The miss distance 𝑑𝑝3 𝑝4 is defined as the
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distance of the spacecraft from the surface of (a spherically-shaped) Dimorphos at the end of the mission

𝑑𝑝3 𝑝4 “ max
`

0,


𝒓𝑝3 𝑝4



 ´ 𝜌𝑝3

˘

(68)

Figure 8a shows that learning proceeded smoothly throughout the training session, with average performance always

increasing monotonously until the very end of the optimization. The non-zero slope of the curve near the final iteration

suggests that a further increase in performance might still have been possible. A similar trend is noticeable in Fig. 8b for

the miss distance. The difference between the stochastic and deterministic policy behavior becomes significant in the

last part of the training when the latter rapidly reaches values very close to zero.

An attentive reader can notice a peculiar shape in both the miss distance and episode return trends when the

policy is in evaluation mode, characterized by a large initial improvement, an intermediate plateau, and a final, slower,

improvement. Indeed, in the first part of the training, the network rapidly learns that is better to almost completely switch

off the control thrust to get closer to the target, being the initial spacecraft conditions designed to let it hit Dimorphos

with a completely ballistic flight in a rather similar dynamical model. At that point, the only way the network has to

further reduce the average distance from the asteroid is to slowly add control points in specific parts of the trajectory to

progressively eliminate the residual error due to the dynamical perturbations. This behavior is confirmed by the number

of time steps 𝐻 in each episode, which shows a slowly-increasing trend in the second half of the training (Fig. 8c). It can

be also noted a consistent difference (of about 3 to 4 steps) in the mean number of steps per episode between training

and evaluation. This difference is mainly an effect of the intrinsic randomness of the policy in the training rollouts. In

fact, in the final part of the trajectory, where the control points are very close to each other, it is sufficient to have a

slightly longer value of the thrusting time to prematurely meet one of the terminal conditions of the episode. In the

evaluation phase, when a deterministic version of the policy is used, this effect is no longer present.

C. Monte Carlo Analysis

The effectiveness of the trained network as a control policy has been verified by means of a Monte Carlo analysis,

involving the deployment of the optimal policy in 500 evaluation episodes. The results in terms of minimum, mean and

maximum value of the miss distance and overall success rate (i.e., the fraction of trajectories that hit Dimorphos) are

summarized in Table 5. For comparison, the results obtained in the same mission scenarios without any control thrust

have been reported too. In this case, increasingly complex dynamical models have been considered to better highlight,

in absence of any control action, the contribution on the final miss distance of each perturbative effect considered in this

study. The terminal part of the spacecraft trajectories in the orbital plane of the asteroids (both in frame 𝑃 and 𝑁) are

reported in Fig. 9 for both the controlled and uncontrolled case in the full dynamical model. In these plots, the central

gray circle represents Didymos, the black dashed circle Dimorphos’ orbit and the black circle markers the position of

28



Dimorphos at impact time in the different test scenarios. All objects are plotted to scale.

Table 5 Monte Carlo campaigns w/ and w/o the control thrust with different dynamics.

Control policy Dynamical model
𝑑𝑝3 𝑝4 , m

SR, %
min mean max

none

2BP 0 0.07 13.5 99.0
4BP 163.3 238.8 316.6 0
4BP + SRP 172.9 247.3 325.8 0
4BP + SRP + 𝛿𝑀 173.6 259.0 345.4 0

𝜋𝜃 4BP + SRP + 𝛿𝑀 0 0.24 34.4 98.4
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Fig. 9 Spacecraft trajectory on the binary system’s orbital plane.

It is clear that a pure ballistic flight would drive the spacecraft toward Dimorphos in any test case in a two-body

dynamical model (2BP), unless for minor deviations due to the patched-conics approximation. Indeed, this is the model

that was used in Sec. II.C to derive the nominal initial state of the spacecraft. The major perturbation is due to the

4th-body effect (4BP), i.e. Sun’s gravity, which tends to deviate the spacecraft trajectory outwards (see Fig. 9), causing

it to miss the target in all scenarios with an average error around 240 m. The solar radiation pressure (SRP) and the

uncertain initial position of Dimorphos (𝛿𝑀) give rise to an additional 10-m error each, for a total average miss distance

of about 260 m (that is, more than 3 times the mean radius of the asteroid), and a maximum distance of up to 345 m.

The control policy 𝜋𝜃 is able to almost completely compensate for the considered dynamical perturbations and guide

the spacecraft to collide with Dimorphos in 492 scenarios out of 500 (with just 5 trajectories missing the spherical
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approximation of the target asteroid by more than 10 mq.

Figure 10 shows the distribution of the impact points on plane 𝑥-𝑧 of frame 𝑁 for both the controlled and uncontrolled

full-dynamics scenarios. The corresponding error ellipses at 75%, 95%, and 99% confidence levels are also included.

As mentioned previously, without any control action the spacecraft tends to move outwards with respect to the binary

system as an effect of the perturbations not considered in the trajectory design process. Moreover, the impact points

feature a greater dispersion than in the controlled case, as clearly highlighted by the dimension of the error ellipses.

When using the optimal control policy 𝜋𝜃 , almost all the impact points fall within the mean outline of Dimorphos

(reported as a black dashed circle in the figure). Furthermore, they are concentrated near the central region of the

asteroid, thus also showing some level of robustness against possible non-spherical shapes of Dimorphos.
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Fig. 10 Impact points w/ and w/o control in-plane 𝑥-𝑧.

The thrust magnitude along the Monte Carlo trajectories is shown in Fig. 11. The corresponding thrust components

in frame 𝑁 are instead shown in Fig. 12. It is interesting to note that, in all cases, the spacecraft realizes a pure ballistic

flight until 1 hour before the designated impact time. At that point, the spacecraft performs a long burn lasting more

than half an hour, followed by a series of other burns whose norm varies greatly among the different trajectories

and whose time-length tends to decrease while approaching the impact time. To be noted that the thrust modulus is

always significantly lower than the maximum value, represented as a black dashed line. The corresponding propellant

consumption is always below 10 g, and, for this reason, it has not been included in the merit index.

This trend of the thrust law can be explained by looking at Fig. 13, which shows the images fed as observations to

the network in four key moments along a sample trajectory (bottom half of the figure). For comparison, a high-definition

version of the same frames, with the same resolution as the real DRACO camera, is reported in the top half. An hour
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before the impact (Fig. 13a), the camera starts seeing the binary system as a handful of white pixels. So, the spacecraft

becomes able to determine its relative position, velocity, and approach direction with respect to the system and start

maneuvering accordingly. At the end of a long first burn (Fig. 13b), the camera can distinguish the two asteroids from

each other, as Dimorphos is seen as a separate dot of light. So, the guidance network, thanks to the recurrent unit, can

start predicting what will be the final position of the asteroid’s moon at arrival. This information will become clearer

the closer the spacecraft gets to the system (Fig. 13c), so it can start controlling its trajectory with more precision with a

sequence of shorter-duration burns. The controlled phase is forced to terminate 2 minutes before the impact (Fig. 13d)

when the last coasting drives the spacecraft towards the target.
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Fig. 11 Thrust magnitude.

Figure 13 shows also that, with a higher-resolution camera, the spacecraft would have been able to distinguish

the two asteroids much sooner (see Fig. 13a). So, it is plausible that, in this case, the maneuvering sequence would

have been different from the one presented above. Further analysis with the real camera resolution are thus due to

better understand the dependence of the control law on the image size. Anyway, as clear from Fig. 13d, the differences

between the two cameras’ resolutions become less and less important as the spacecraft approaches the asteroids.

It is worth underlining that the control policy has been left free to autonomously determine the time-length of each

simulation step with the aim of not biasing the obtained solutions with design choices taken externally, such as a fixed

time-step size or a lower guidance frequency in the first part of the simulation. Indeed, in principle, the optimization

algorithm could have determined that a non-zero control was also necessary during the early phases of the mission,

when the network receives completely dark images. Conversely, numerical results showed that properly controlling the

spacecraft just in the last hour of the mission is sufficient to impact the target asteroid in (almost) all considered scenarios.

So, a posteriori, one can safely say that, with the camera resolution considered in this study, similar performance could

be probably achieved in a shorter training time by starting the image-based guidance just an hour before the impact.
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Fig. 12 Components of the thrust.

A final note concerns the computational effort required to computing the control when the trained network is

deployed on the flight hardware, which is one of the main advantages of the proposed neural-network-based guidance

approach. On a standard pc equipped with an NVIDIA GeForce GTX 1050 Ti GPU, the average computational time

required for computing a single action through the network is 3.8 ms, that is, much lower than the minimum step-size

considered in this application (1 s). A computational time of the same order of magnitude is expected on a typical

onboard architecture (for example, an NVIDIA Jetson Nano) with roughly half the clock speed, but which features more

optimized deep learning libraries.

VI. Conclusion
This paper presented a guidance algorithm based on meta-reinforcement learning to accomplish, in autonomy, the

terminal mission phase of an asteroid impactor in a binary system. The guidance system consists of a convolutional-

recurrent neural network, which takes as input the current mission time and the images collected in real-time by the

onboard camera, and returns as output the corresponding control thrust and firing time. Specifically, the neural network
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Fig. 13 Example image sequence. Bottom: low-resolution images used for training; top: high-resolution version.

is composed of four convolutional layers, a fully-connected layer, and a final long short-term memory block. The

policy-gradient method proximal policy optimization (PPO) is used as a training algorithm.

The performance of the guidance system is tested in a mission scenario that simulates the final phase of the DART

mission to the minor asteroid (Dimorphos) of the 65803 Didymos system. The spacecraft state at the beginning of the

considered scenario, that is, four hours before the impact, is derived starting from the conditions at impact time provided

by mission specifications by using simplified dynamics (two-body). A bi-elliptic restricted four-body problem, with the

solar radiation pressure perturbation, is considered as real dynamical model to propagate the spacecraft motion along

its approach trajectory. A random uncertainty on the initial mean anomaly of Dimorphos is also taken into account

to reflect a non-perfect knowledge of the binary system dynamics. A final two-minute coasting is also enforced to

meet DART mission requirements. The presence of the perturbative accelerations not modeled during mission design,

together with the random error on Dimorphos’ position, causes the spacecraft to miss the target in absence of control

actions. So, the objective of the guidance system was to still enable the spacecraft to hit the asteroid in all the possible

environment realizations.

The final Monte Carlo simulations demonstrated that a image-based guidance network trained by PPO is perfectly

able to compensate for unmodeled dynamics, scattered initial conditions and uncertainties on the target asteroid position,

bringing the spacecraft back on the right collision path in more than 98% of the analyzed scenarios. The solutions

found, where the control effort is concentrated in the last quarter of the trajectory, are a direct consequence of the lower
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camera resolution than the real one mounted on DART spacecraft. Anyway, even with poorer information about the

spacecraft state, the guidance network managed to achieve the mission goals by adapting at its best to the surrounding

environment. The use of a recurrent layer inside the policy network was paramount to reconstruct the system state at

any time, simply receiving the last captured image as input, thus carrying out the task of the navigation system. The

presence of the recurrent layer also provided the network with increased adaptivity to variations in the environment

definition caused by uncertain initial conditions (meta-reinforcement learning).

As a final remark, the aim of this preliminary study was to understandmeta-RL ability to cope with the asteroid-impact

problem when considering biased and scattered initial conditions, as well as an uncertain knowledge of the target

position. Anyway, thanks to its model-independence, the current approach can be easily extended to take into account

also other types of uncertainties, such as control errors, dynamical perturbations or uncertain model parameters, and

noisy observations. The spacecraft attitude can be considered as well as part of the controllable dynamics without any

specific issue nor modifications to the RL framework. In principle, the generalization capability of neural networks may

also allow the control policy to meet the mission objectives when deployed in a dynamical model with higher fidelity

than the training one, provided that the observation space is similar between the two scenarios.
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