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ABSTRACT
◥

Epitranscriptomic studies of miRNAs have added a new layer of
complexity to the cancer field. Although there is fast-growing interest
in adenosine-to-inosine (A-to-I)miRNA editing and alternative cleav-
age that shifts miRNA isoforms, simultaneous evaluation of both
modifications in cancer is still missing. Here, we concurrently profiled
multiple miRNAmodification types, including A-to-I miRNA editing
and shifted miRNA isoforms, in >13,000 adult and pediatric tumor
samples across 38 distinct cancer cohorts from The Cancer Genome
Atlas and The Therapeutically Applicable Research to Generate
Effective Treatments data sets. The differences between canonical
miRNAs and the widermiRNAome in terms of expression, clustering,
dysregulation, and prognostic standpoint were investigated. The com-
bination of canonical miRNAs and modified miRNAs boosted the
quality of clustering results, outliningunique clinicopathologic features
among cohorts. Certain modified miRNAs showed opposite expres-
sion from their canonical counterparts in cancer, potentially impacting
their targets and function. Finally, a shifted and editedmiRNA isoform
was experimentally validated to directly bind and suppress a unique
target. Thesefindings outline the importance of going beyond thewell-
established paradigm of one mature miRNA per miRNA arm to
elucidate novel mechanisms related to cancer progression.

Significance: Modified miRNAs may act as cancer biomarkers
and function as allies or antagonists of their canonical counterparts

in gene regulation, suggesting the concurrent consideration of
canonical and modified miRNAs can boost patient stratification.

Introduction
MicroRNAs (miRNA) are small noncoding RNAs (�21 nucleo-

tides) that posttranscriptionally regulate gene expression (1) and
whose dysregulation correlates with human diseases (2), including
cancer (3). Until recently, most miRNA studies were built upon the
miRNA biogenesis paradigm “one mature miRNA per miRNA

precursor arm” (1). However, the latest advancements in next-
generation sequencing technologies unveiled a more intricate sce-
nario (4), in which expressed miRNAs somehow differ from their
canonical reference (5). These miRNA “variants,” along with
canonical miRNAs, are termed “miRNA isoforms or isomiRs” and
are classified into five main categories: (i) canonical miRNAs, (ii) 50

isomiRs, (iii) 30 isomiRs, (iv) polymorphic isomiRs, and (v) mixed
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isomiRs (6). 50 isomiRs, 30 isomiRs, and mixed isomiRs undergo
sequence shifting (addition or trimming of nucleotides; refs. 7, 8),
affecting the 50, 30, or both ends, respectively. Besides, mixed
isomiRs and polymorphic isomiRs are characterized by single-
nucleotide variants (SNV), specifically, DNA and RNA modifica-
tions, such as single-nucleotide polymorphisms (SNP; ref. 9),
somatic mutations, and adenosine-to-inosine (A-to-I) RNA editing
events, mammals’ most abundant RNA editing form (10). A single
A-to-I RNA editing event involving the miRNA seed region (MSR)
could compromise the miRNA-mediated gene regulation process,
potentially altering the miRNA function (11). Similarly, shifted
isomiRs, which likely derive from alternative cleavage, may exhibit
targetome differentiation (12). Although initially considered arti-
facts (13), recent studies have reevaluated their function (14) as they
actively interact with genes (8, 12). Any change involving miRNA
ends, especially the 50-end, may diversify the molecules’ targetome,
leading to a more complex gene regulation machinery than previ-
ously thought (15).

In recent years, efforts to assess the biological implications of A-to-I
edited miRNAs have boosted the interest in using such molecules as
potential biomarkers for cancer prognosis and therapy (16, 17). Mean-
while, a surge in shifted isomiR-oriented studies led to the first pan-
cancer study (18) over 32 tumor cohorts from The Cancer Genome
Atlas (TCGA) data set. Although these studies have proven the
importance of investigating such miRNA modifications, the concur-
rent profiling of these molecules in cancer is still missing.

In this work, we simultaneously profiled canonical and modified
miRNAs from the most prominent and reliable cancer public
resources, TCGA and The Therapeutically Applicable Research to
Generate Effective Treatments (TARGET), analyzing >13,000 adult
and pediatric cancer samples spread across 38 distinct cohorts. Anno-
tated molecules were benchmarked to assess the benefits and draw-
backs of using specific miRNA modification types for clustering and
survival purposes. We investigated dysregulated molecules across
different cohorts/tissues. Lastly, we experimentally demonstrated the
phenomenon of targetome shifting amongmiRNA isoforms generated
by the same locus in two case studies: (i) the canonical hsa-miR-101–
3p and one of its shifted isomiRs (one nucleotide added at 50-end and
two nucleotides trimmed at 30-end), in lung adenocarcinoma; and (ii)
the canonical hsa-miR-381–3p and its A-to-I edited isomiR at position
4, in breast cancer.

In summary, our findings highlight the importance of considering
the broadermiRNAome, which actively participates in gene regulation
and may offer the opportunity to discover novel cancer biomarkers.

Materials and Methods
The studywas conducted following theHealth Insurance Portability

and Accountability Act (HIPAA) guidelines. The patient cohorts we
used are publicly available data sets collected with patients’ informed
consent, generated by TCGA (https://cancer.gov/tcga) and by the
Therapeutically Applicable Research to Generate Effective Treatments
initiative (TARGET: http://ocg.cancer.gov/programs/target) Research
Networks, both from the NCI (NIH). Furthermore, the TCGA and
TARGET data were downloaded, stored, and analyzed with the
approval of the NIH Data Access Committee with the following
DBGap Project IDs: #11332 for TCGA and #22219 for TARGET.

Data sources
We downloaded miRNA-seq (v20) BAM files from 33 TCGA

(11,082 samples) and 5 TARGET (2,378 samples) cohorts. Paired-

end RNA-seq (v32) BAM files were collected for the 33 TCGA
(11,123 samples) and 5 TARGET (1,127 samples) cohorts. We
used four data sets of known DNA and RNA modifications: SNPs
from dbSNP (v155; ref. 19), A-to-I miRNA editing sites from
MiREDiBase (v1; ref. 20), and somatic mutations from COSMIC
(v96; ref. 21) and TCGA/TARGET (v20). Cohorts’ essential char-
acteristics are summarized in Table 1. See Supplementary Infor-
mation for more details.

miRNA isoform annotation
We applied an in-house workflow to annotate a wide range of

miRNA isoforms, including novel molecules. Downloaded miRNA-
seq BAM files were converted into FASTQ files, quality-checked,
trimmed, and then annotated using miRge 2.0 (22), one of the major
pipelines for canonical miRNA/modified miRNA profiling. Novel
molecules were retained according to a prediction probability greater
than 0.95 (computed bymiRge 2.0). At the same time, annotated SNVs
were inspected to ensure a minimum Phred quality score of 30,
corresponding to a sequencing error probability of less than 0.1%.
Samples with less than one million miRNA mapped reads were
removed to improve data quality for batch correction (23).

miRNA isoform SNV filtering and annotation
SNVs were further filtered via a multistep process, which first

reduced the population of unknown SNVs using the four SNV data
sets. Afterward, molecules with unknown SNVs involving the first (at
50-end) or one of the last two nucleotides (at 30-end) were removed,
potentially due to sequencing errors or flaws in the linker ligation
during the assembly of the cDNA library. We calculated the SNV
statistical significance via binomial test, adjusting the resultingP values
via the Benjamini–Hochberg correction. Adjusted P values were used
to retain molecules showing significant SNVs (adjusted P < 0.05) in at
least 5% of the sample population (12,857). See Supplementary
Information for more details.

miRNA isoform nomenclature
We adopted a human-readable way to label annotatedmolecules and

their modifications, using a combination of five factors: canonical
miRNA, pre-miRNA, 50- and 30-end shifting, and the “Compact Idio-
syncratic Gapped Alignment Report” string, shortened CIGAR, to
indicate SNVs. A label “miR-21-5p__mir-21__-1__þ1__2MG21M”
represents a mixed isomiR that withstands: (i) a single-nucleotide
addition at both 50- and 30-end, and (ii) an A-to-I miRNA editing at
position 3 (2Mstands for twogenomicmatches, a guanosine (G) inplace
of a genomic adenosine (A), whereas 21M indicates 21 genomic
matches). See Supplementary Information for more details.

Clustering analysis
We benchmarked four distinct groups (G1, G2, G3, and G4) of

molecules using an in-house workflow, investigating the benefits and
drawbacks of using specific miRNA modification types for clustering
cancer samples across cohorts. We filtered molecules for each group
according to a geometric mean >3 reads per million miRNA mapped
reads (RPM), corresponding to 10.6� 3.1 (SD) raw read counts across
cohorts. Then, the raw read count expression of the filtered molecules
was corrected for batch effects using tumor purity and platform and
reduced into a two-dimensional matrix via a nonlinear dimensionality
reduction technique (uniform manifold approximation and projec-
tion: UMAP; ref. 24). A density-based clustering (DBSCAN; ref. 25)
was finally applied to the reduced matrix to cluster cancer samples. All
clustering results were filtered according to a percentage of mislabeled
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samples (noise) lower than 5% and evaluated via (adjusted rand index
(ARI), adjusted mutual information (AMI), and Fowlkes–Mallows
index scores. See Supplementary Information for more details.

Differential miRNA isoform expression analysis
We investigated dysregulated molecules across cancer cohorts,

performing differential expression (DE) analyses considering a min-
imum of 5 samples per cohort/condition (e.g., tumor vs. normal). We
filtered molecules according to a geometric mean >3 RPM in at least
one of the two conditions, correcting the expression for batch effects
using tumor purity and preclinical factors, such as gender, age at initial
pathologic diagnosis, tumor stage, and platform. The resulting P values
were adjusted via the Benjamini–Hochberg correction. We retained
dysregulated molecules according to an adjusted P < 0.05 and |linear
fold change| >1.5. See Supplementary Information for more details.

Cell lines
HEK293 (ATCC; cat. #CRL-1573), A549 (ATCC; cat. #CCL-185),

H1299 (NCI-H1299; ATCC; cat. #CRL-5803), MDA-MB-231 (ATCC;

cat. #HTB-26), and HCC70 (ATCC; cat. #CRL-2315) were seeded and
grown in RPMI-1641 medium supplemented with 10% of FBS and
penicillin–streptomycin (100 U/mL penicillin and 0.1 mg/mL strep-
tomycin; Millipore Sigma). All cell lines were authenticated through
the short-tandem repeat profiling method and tested to be free of
Mycoplasma contamination using theMycoplasma PCRDetection Kit
(Applied Biological Materials).

Cell transfection
HEK293, A549, H1299, MDA-MB-231, and HCC70 cell lines were

plated in a 6- or 12-well plate 24hours before transfection. 100nmol/L of
mirVana miRNA mimic (Thermo Fisher Scientific) of canonical miR-
101-3p (miR-101-3p__mir-101-1__0__0__21M; Assay ID: MC11414),
shifted miR-101-3p (miR-101-3p__mir-101-1__-1__-2__20M; custom
assay), canonical miR-381-3p (miR-381-3p__mir-381__0__0__22M;
Assay ID: MC10242), and edited miR-381-3p (miR-381-3p__mir-
381__0__0__3MG18M; custom assay) were transfected using Lipofec-
tamine 2000 Transfection Reagent (Thermo Fisher Scientific) diluted in
transfectionmedium (RPMI-1641 without FBS or antibiotics). mirVana

Table 1. Essential characteristics of cohorts.

Cohort Cancer type
No. of
cases

Age at diagnosis
(mean � SD /NA)

Gender
(M/F/NA)

Race (White/
AA/Other/NA)

TARGET-ALL-P2 Acute lymphoblastic leukemia—Phase II 191 6.8 � 5.3 /0 101/90/0 133/20/7/31
TARGET-ALL-P3 Acute lymphoblastic leukemia—Phase III 38 8.4 � 5.3 /0 21/17/0 1/1/0/36
TARGET-AML Acute myeloid leukemia 701 9.1 � 6.1 /22 344/335/22 502/77/33/89
TARGET-RT Rhabdoid tumors 66 1.2 � 2.2 /0 35/31/0 49/8/0/9
TARGET-WT Wilms tumor 127 4.1 � 2.8 /0 53/74/0 95/18/0/14
TCGA-ACC Adrenocortical carcinoma 80 46.4 � 15.9 /0 31/49/0 67/1/1/11
TCGA-BLCA Bladder urothelial carcinoma 409 68.0 � 10.6 /1 302/107/0 324/23/44/18
TCGA-BRCA Breast invasive carcinoma 1,079 58.6 � 13.2 /17 12/1066/1 746/182/62/89
TCGA-CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 307 48.2 � 13.8 /2 0/307/0 211/30/30/36
TCGA-CHOL Cholangiocarcinoma 36 63.0 � 12.8 /0 16/20/0 31/2/3/0
TCGA-COAD Colon adenocarcinoma 444 66.8 � 13.1 /4 231/211/2 213/59/12/160
TCGA-DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 47 56.3 � 14.1 /0 22/25/0 28/1/18/0
TCGA-ESCA Esophageal carcinoma 184 62.5 � 11.9 /0 157/27/0 114/5/45/20
TCGA-GBM Glioblastoma multiforme 5 0 � 0 /5 0/0/5 0/0/0/5
TCGA-HNSC Head and neck squamous cell carcinoma 524 60.9 � 11.9 /1 383/141/0 449/47/13/15
TCGA-KICH Kidney chromophobe 66 51.5 � 14.3 /0 39/27/0 58/4/2/2
TCGA-KIRC Kidney renal clear cell carcinoma 516 60.5 � 12.1 /0 335/181/0 445/56/8/7
TCGA-KIRP Kidney renal papillary cell carcinoma 291 61.5 � 12.1 /5 214/77/0 207/61/8/15
TCGA-LAML Acute myeloid leukemia 188 54.9 � 16.2 /0 101/87/0 171/13/2/2
TCGA-LGG Brain lower grade glioma 512 43.0 � 13.4 /2 281/230/1 471/21/9/11
TCGA-LIHC Liver hepatocellular carcinoma 373 59.3 � 13.4 /4 254/119/0 183/17/163/10
TCGA-LUAD Lung adenocarcinoma 513 65.3 � 9.9 /30 239/274/0 387/52/8/66
TCGA-LUSC Lung squamous cell carcinoma 478 67.4 � 8.6 /9 354/124/0 333/30/9/106
TCGA-MESO Mesothelioma 87 63.0 � 9.8 /0 71/16/0 85/1/1/0
TCGA-OV Ovarian serous cystadenocarcinoma 489 59.9 � 11.5 /11 0/486/3 422/32/18/17
TCGA-PAAD Pancreatic adenocarcinoma 178 64.6 � 10.9 /0 98/80/0 157/6/11/4
TCGA-PCPG Pheochromocytoma and paraganglioma 179 47.3 � 15.1 /0 78/101/0 148/20/7/4
TCGA-PRAD Prostate adenocarcinoma 494 61.0 � 6.8 /11 494/0/0 146/7/2/339
TCGA-READ Rectum adenocarcinoma 161 64.2 � 11.8 /1 86/74/1 81/6/1/73
TCGA-SARC Sarcoma 259 60.8 � 14.7 /1 119/140/0 227/18/6/8
TCGA-SKCM Skin cutaneous melanoma 448 58.1 � 15.6 /8 276/172/0 425/1/12/10
TCGA-STAD Stomach adenocarcinoma 436 65.7 � 10.7 /9 281/155/0 273/13/88/62
TCGA-TGCT Testicular germ cell tumors 150 32.0 � 9.3 /16 134/0/16 119/6/4/21
TCGA-THCA Thymoma 506 47.3 � 15.8 /0 136/370/0 334/27/53/92
TCGA-THYM Thyroid carcinoma 124 58.2 � 13.0 /1 64/60/0 103/6/13/2
TCGA-UCEC Uterine carcinosarcoma 550 63.9 � 11.2 /15 0/539/11 367/107/33/43
TCGA-UCS Uterine corpus endometrial carcinoma 57 69.7 � 9.2 /0 0/57/0 44/9/3/1
TCGA-UVM Uveal melanoma 80 61.6 � 13.9 /0 45/35/0 55/0/0/25

Note: The table reports cohorts’ essential characteristics, including the number of cases, age at diagnosis, gender, and race.

miRNA Isoforms Pan-Cancer Study
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miRNA Mimic, Negative Control #1 (Thermo Fisher Scientific; cat.
#4464058), and Anti-miR miRNA Inhibitor-negative Control #1
(Thermo Fisher Scientific; cat. #AM17010) were used as scrambled
controls. After 5 hours, the transfection medium was replaced with
RPMI-1641 supplemented with 10% FBS and penicillin–streptomycin
and, only for H1299 cells, with mitomycin C (Millipore Sigma) at the
concentration of 15 mg/mL. After 24 or 48 hours, cells were harvested
and subjected to luciferase assay or RNA isolation and protein lysis. See
Supplementary Information for more details.

Risk score–based prognostic signature
Weapplied an in-houseworkflow for estimating optimal prognostic

signatures, benchmarking the four groups introduced in the clustering
analysis via a 10-fold cross-validation strategy. Molecule expression
was corrected for batch effects using tumor purity and platform. We
explored both overall survival (OS; event: death; nonevent: alive) and
relapse-free survival (RFS; event: relapse; nonevent: no relapse),
requiring a minimum of 20 patients per event type for reliable results.
We used a stratified shuffle splitting policy to ensure a proportional
balance of event/nonevent patients among training (66% of patients)
and validation (34% of patients) sets. The workflow exploited a
combination of several strategies to narrow down the number of
molecules included in each identified prognostic signature. Briefly,
strategies ranged from recursive feature elimination for best-molecule
selection to a combination of univariate and multivariate Cox hazard
regression models for assessing the relationship between molecule
expression and patients’ survival. After stratifying patients into high-
and low-risk groups using the patients’ risk scores, we used the two
groups to calculate the P value (log-rank test) and prognostic signature
accuracy (area under the curve: AUC). The essential clinical char-
acteristics of cohorts are summarized in Table 2. See Supplementary
Information for more details.

Data availability
The source code of analyses and expression data generated in this

study are available via the Zenodo repository (https://zenodo.org/
record/6902726; ref. 26).

Results
miRNA isoform profiling in cancer

We investigated the miRNAome in cancer, profiling canonical and
modified miRNAs at a large scale (Fig. 1A and B), obtaining �8,300
molecules across cohorts (Supplementary Fig. S1A). On average, we
identified 1,533�189 (SD) expressedmolecules per cohort (geometric
mean >3 RPM across cohort’s samples), with modified miRNAs
outmatching the number of canonical miRNAs by more than a factor
of five (Fig. 1C, “columns in blue”). The 30 isomiRs resulted in themost
abundant expressedmolecules (�45% per cohort), showing an expres-
sion (median of percentiles) close to that of canonical miRNAs
(Fig. 1C, “columns in red color”). Of all cancer cohorts, TCGA-TGCT,
TARGET-RT, TCGA-PCPG, TCGA-THYM, and TCGA-SKCM
showed, in order, the highest number of expressed molecules (above
75th quartile; Fig. 1C, “square in red color”) across miRNA modifi-
cation types (e.g., 30 isomiR). TCGA-GBM represented the sole
exception (normal tissue only) above 75th. The TARGET-ALL-P3,
TCGA-LAML, and TCGA-TGCT cohorts were characterized by the
highest number of 50 isomiRs, which could potentially extend the
miRNA targetome due to MSR shifting. In terms of miRNA ends
stability, the 50-end resulted in the most stable, with shiftings mainly
limited to �1 nucleotide (Supplementary Table S1, “50-end shifting

distribution”). In contrast, the 30-end revealed greater mobility,
with most molecules showing large trimming (up to 5) and addition
(up to 2) of nucleotides (Supplementary Table S1, “30-end shifting
distribution”).

As for SNVs, DNA modifications were mainly located near the 30-
end (Supplementary Table S1, “DNA SNV distribution”), whereas
A-to-I miRNA editing sites were distributed within the MSR (Sup-
plementary Table S1, “A-to-I SNV distribution”). Interestingly, the
nervous tissues and thymoma showed the highest number of A-to-I
edited molecules. Although most A-to-I edited miRNA molecules did
not positively correlate (rho < 0.25 and P > 0.05) with ADAR1/2 gene
expression (enzymes that catalyze the chemical conversion of aden-
osine to inosine in double-stranded RNAs; ref. 10), there were some
exceptions. In the TCGA-LGG and TCGA-UVM cohorts, edited
molecules positively correlated (rho > 0.25 and P < 0.05) with ADAR2,
whereas TCGA-TGCT and TCGA-PCPG showed a positive correla-
tion (rho > 0.25 and P < 0.05) with ADAR1.

Finally, we investigated the relationship between the differences
in the abundance of expressed miRNA isoforms and genes across
cohorts’ cancer samples. For each cohort/cancer tissue, we extracted
two groups of samples, one with a lower (below 25th quartile) and
the other with a higher (above 75th quartile) number of expressed
miRNA isoforms. We performed a gene DE analysis based on these
two groups, retaining significantly dysregulated genes. Each DE
analysis included, as covariates, tumor purity and preanalytical
variables, such as age at initial pathologic diagnosis, tumor stage,
and gender (see Supplementary Information for more details). We
then performed a pathways enrichment analysis via Ingenuity
Pathway Analysis software, reporting the most significant pathways
enriched in at least five cohorts/cancer tissues in Supplementary
Fig. S1B. Notably, the abundance of expressed miRNA isoforms
correlated with the activation/deactivation of critical carcinogenesis
pathways, such as the p38 MAPK, Wnt/b-catenin, HGF, and IL6-
signaling pathways.

miRNA isoform–based cancer sample clustering
We benchmarked four distinct groups (G1, G2, G3, and G4) of

molecules (Fig. 2A), investigating the benefits and drawbacks of using
specific miRNA modification types for clustering cancer samples
across cohorts (Fig. 2B). We observed a significant improvement in
sample stratification when leveraging G4 (expressed canonical and
modified miRNAs; Fig. 2C). Clustering results were examined from a
clinicopathologic perspective, using available cohorts’ clinicopatho-
logic features from TCGA and TARGET (Supplementary Table S2).
Clinicopathologic stratification significance was assessed via Pearson
chi-squared test, reporting the most significant (Chi-square P < 0.01)
and notable features from a clinicopathologic standpoint (Supple-
mentary Table S2). Throughout the analysis, the G1-, G2-, G3-, and
G4-based findings showed different behaviors in clustering cancer
samples.

In TCGA-ESCA, G1, G2, and G4 classified patients according to
their clinical stages and histologic subtypes (adeno vs. squamous cell
carcinoma), whereas G3 failed to identify any notable clinicopatho-
logic feature. We observed a similar trend in TCGA-TGCT, in which
G3 could not cluster cancer samples according to their clinical stage, in
stark contrast with what was obtained with G1, G2, and G4. These
results suggest that, at least in these settings, canonical miRNAs play a
fundamental, predictive role.

Nonetheless, adding additional molecules boosted the capability
of identifying notable clinicopathologic features rather than relying
solely on canonical miRNAs. In TCGA-KIRC, G2 was able to separate
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late-stage (IV stage) cancer samples from the rest. In TCGA-BRCA,G2
exclusively clustered cancer samples according to the expression of
the hormone receptors. It then stratified, similarly to G3 and G4,
samples according to their histologic characteristics (ductal versus
lobular). The TCGA-BRCA cohort represents an example in which
G1 failed to identify significant clinical features. We observed the
same behavior in TCGA-STAD, with the sole G2, G3, and G4
dividing cancer samples into clusters characterized by different
clinical stages.

In other cohorts, G3 and G4 showed similar capabilities in strat-
ifying cancer samples according to their clinicopathologic features. In
particular, G3 andG4 classified cancer samples at different stages of the
disease in TCGA-LUSC, whereas in TCGA-HNSC, they recognized
well-differentiated tumors (g1 neoplasm histologic grade).

We identified cases in which G4 outperformed the other groups. In
TCGA-CESC, G4 clustered cancer samples according to their histo-
logic subtypes (adeno vs. squamous cell carcinoma). In TCGA-READ,

G4 identified low-grade tubular adenocarcinomas among all the
others.

Altogether, our results highlighted a substantial improvement in
clustering, particularly when not limiting the analysis to the sole
canonical miRNAs. In this context, G4 performed better than all the
other benchmarked groups.

Differentially abundant miRNA isoforms across cancer
tissues

To determine whether miRNA isoforms were dysregulated across
cohorts/cancer tissues, we performed a DE analysis comparing pri-
mary solid, recurrent solid, metastatic, and normal tissues. Each DE
analysis included, as covariates, tumor purity and preanalytical vari-
ables, such as age at initial pathologic diagnosis, stage of disease,
gender, and platform (see Supplementary Information for more
details). Dysregulated molecules were retained according to an adjust-
ed P < 0.05 and |linear fold change| >1.5 (27).

Table 2. Clinical characteristics of cohorts.

OS RFS

Cohort # Cases Stages (I/II/III/IV/NA) # Events # Censored

Median
follow-up
(months) # Events # Censored

Median
follow-up
(months)

TARGET-ALL-P2 191 0/0/0/0/191 80 68 56.05 0 0 0.00
TARGET-ALL-P3 38 0/0/0/0/38 12 17 29.33 0 0 0.00
TARGET-AML 701 0/0/0/0/701 265 413 59.30 0 0 0.00
TARGET-RT 66 2/13/27/0/24 32 26 7.98 0 0 0.00
TARGET-WT 127 17/49/41/14/6 52 75 54.27 0 0 0.00
TCGA-ACC 80 9/37/16/16/2 29 51 39.42 36 39 27.40
TCGA-BLCA 409 2/131/139/135/2 179 229 17.87 79 232 16.50
TCGA-BRCA 1,079 182/609/244/20/24 149 929 27.57 31 363 33.27
TCGA-CESC 307 163/70/46/21/7 71 236 21.27 26 172 21.12
TCGA-CHOL 36 19/9/1/7/0 18 18 21.50 17 13 10.72
TCGA-COAD 444 73/168/125/65/13 101 340 22.30 30 1 21.80
TCGA-DLBC 47 7/17/5/12/6 9 38 26.37 6 21 26.37
TCGA-ESCA 184 18/82/62/16/6 77 107 13.35 43 126 12.60
TCGA-GBM 5 0/0/0/0/5 0 0 0.00 0 0 0.00
TCGA-HNSC 524 27/85/92/320/0 223 300 21.50 64 107 23.77
TCGA-KICH 66 21/25/14/6/0 9 56 74.93 10 54 73.67
TCGA-KIRC 516 253/55/123/82/3 172 344 39.38 2 32 13.60
TCGA-KIRP 291 180/25/52/16/18 44 246 25.62 18 140 20.40
TCGA-LAML 188 0/0/0/0/188 114 63 12.17 0 0 0.00
TCGA-LGG 512 0/0/0/0/512 124 385 22.60 65 186 20.13
TCGA-LIHC 373 173/86/85/5/24 129 243 19.83 102 174 13.78
TCGA-LUAD 513 277/121/84/24/7 182 322 21.88 31 156 18.40
TCGA-LUSC 478 230/158/80/6/4 199 273 22.25 30 139 17.00
TCGA-MESO 87 10/16/45/16/0 73 13 17.10 48 32 11.80
TCGA-OV 489 1/27/374/80/7 308 177 34.87 60 0 18.43
TCGA-PAAD 178 21/147/3/4/3 93 85 15.48 56 106 13.08
TCGA-PCPG 179 0/0/0/0/179 6 173 25.17 15 163 23.48
TCGA-PRAD 494 0/0/0/0/494 10 484 30.80 60 44 24.87
TCGA-READ 161 29/48/50/24/10 26 134 20.58 10 0 27.15
TCGA-SARC 259 0/0/0/0/259 98 161 31.57 91 141 22.52
TCGA-SKCM 448 74/128/164/23/59 210 229 37.47 221 215 27.58
TCGA-STAD 436 58/128/180/43/27 168 263 14.07 45 177 13.42
TCGA-TGCT 150 59/14/14/0/63 4 130 42.03 30 99 28.80
TCGA-THCA 506 284/52/113/55/2 16 490 31.50 25 355 33.98
TCGA-THYM 124 0/0/0/0/124 9 114 41.77 16 107 38.13
TCGA-UCEC 550 339/49/123/28/11 88 450 30.32 28 165 34.47
TCGA-UCS 57 22/5/20/10/0 35 22 20.37 29 25 12.97
TCGA-UVM 80 0/39/37/4/0 23 57 26.13 17 62 22.33

Note: The table shows cohorts’ clinical characteristics for both OS and RFS, including the number of cases, stages, and the number of events/no events (censored).
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Figure 1.

Data preprocessing workflow, miRNA isoforms classification, and miRNA modification types distribution. A–C, In-house data preprocessing workflow and data
sources (A), examples of annotatedmiRNA isoforms (B), and distribution of expressedmolecules (geometricmean >3 RPM) across cohorts andmiRNAmodification
types (C). Panel C reports, for each cohort, the number of molecules per miRNAmodification type as a percentage (%), along with the median (M) of the percentiles
computed using molecules’ expression average. Squares in green and red indicate (column-wise) whether a cohort belongs to the lower (25th) or upper quartile
(75th), respectively.
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Figure 2.

miRNA isoform-based clustering better delineates clinicopathologic stratification. A–C, Type of miRNA isoforms used by the four benchmarked groups of
molecules (A), workflow used to benchmark the four groups (B), and clustering results for the four groups (C). Panel C reports quality scores, the number of
identified clusters, and the number of unique significant (Chi-square P < 0.01) clinicopathologic features identified for each benchmarked group. See
Supplementary Table S2 for the list of specified clinicopathologic features, with the most prominent and significant features highlighted in green. See
Supplementary Information for more details.
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Overall, dysregulated molecules (Fig. 3) followed a pattern com-
parable to what we reported in Fig. 1C, with 30 isomiRs being the most
abundant molecules across cohorts/tissues. Dysregulated molecules
were similarly distributed acrossmiRNAarms (5p and 3p), withA-to-I
edited molecules being the sole exception (�4 times more abundant
for the 3p arm). Considering the negligible difference between the two
miRNA arms, we focused on the sole distribution of dysregulated
molecules across miRNA modification types. Our results confirmed
the higher stability of the 50-end, with most dysregulated molecules
characterized by shifting of�2 nucleotides, whereasmolecules with 30-
end shifting showed wider additions (up toþ3) and trimmings (up to
�6). DNAmodifications weremainly located near the 30-end, whereas
A-to-I miRNA editing sites were distributed within the MSR.

Dysregulated canonical miRNAs and isomiRs with opposite
expression trends in cancer reveal different behavior

Among differentially expressed molecules (adjusted P < 0.05 and |
linear fold change| >1.5), we identified 85 dysregulated canonical
miRNAs (out of 392) showing opposite expression trends compared
with their modified miRNAs (canonical miRNA downregulated and
modifiedmiRNAs upregulated, or vice versa; Supplementary Table S3,
“miRs with opposite expr. trend”). Out of the 85molecules, we selected
the canonicalmiR-101–3p (among the top-five dysregulated canonical
miRNAs with opposite expression trends), whose expression resulted
in being downregulated in four cohorts (TCGA-LUAD, TCGA-LIHC,
TCGA-HNSC, and TCGA-CHOL), as the candidate to assess the
potential targeting shifting among different miRNA isoforms. In
TCGA-LUAD, the downregulated canonical miR-101–3p presented
an upregulated shifted miRNA isoform (with no SNVs), termed miR-
101–3p (�1|�2), characterized by shifting at 50-end (addition of one
nucleotide) and 30-end (trimming of two nucleotides). The 50-end
shifting facilitated the research of exclusive putative targets using
predictor tools due to the different MSR, whereas 30-end shifting
made the design of a customTaqMan probe for real-time PCR analysis
specific for the miRNA isoform easier. Moreover, we verified that both
molecules were correctly loaded by AGO2 (Supplementary Fig. S2A–
B). Finally, the interest in such a canonical miRNA was corroborated
by a recent work inwhich authors assessed one shiftedmiRNA isoform
of canonical miR-101–3p in the human brain (28).

As shown in Fig. 4A andB, the twomolecules were characterized by
an opposite expression trend, with the canonical miRNA downregu-
lated in TCGA-LUAD cancer samples. Looking for putative and
exclusive targets, we retained dysregulated genes (Supplementary
Table S4) based on their significance (see Supplementary Information)
and opposite expression trends (i.e., miRNA isoform up and genes
down, or vice versa; Fig. 4C and D). Finally, we intersected dysregu-
lated genes with the list of predicted targets generated by isoTar
(Supplementary Table S4; ref. 29), requiring a minimum consensus
of two prediction tools. Out of the reduced set of genes, we elected
prostaglandin-endoperoxide synthase 2 (PTGS2 or COX2), an onco-
gene studied in cancers (30, 31), which is also a validated target for
miR-101-3p and overexpressed in lung cancer (32), and desmocollin-2
(DSC2), a putative target for the miR-101–3p (�1|�2), that was
recently characterized as an oncogene in lung cancer (33). In line
with the literature, we confirmed the direct binding (Supplementary
Fig. S2C) through luciferase assay (Fig. 4E) between PTGS2 and the
downregulated canonical miR-101–3p. After miR-101–3p ectopic
overexpression in HEK293 cells, we observed a �40% reduction of
luciferase activity compared with the scramble-negative control
(SCR; Fig. 4E). In contrast, miR-101–3p (�1|�2) overexpression
resulted in a minor reduction in luciferase activity (Fig. 4E). The

direct binding miRNA gene was confirmed by using a mutated
psiCHECK-2-PTGS2 30 UTR vector, holding the deletion of the
binding sites for the canonical miR-101–3p. In this case, the assay
showed no decrease in luciferase activity after overexpressing the two
miR-101–3p molecules (Supplementary Fig. S2D).

After transfecting the canonical miR-101-3p (Supplementary
Fig. S2E), Western blotting experiments highlighted a significant
downregulation of endogenous PTGS2 in the A549 and H1299 lung
cancer cell lines, whereas no PTGS2 protein level variation was
observed transfecting miR-101-3p (-1|-2; Fig. 4F andG). Our findings
demonstrated that of the two molecules, only the downregulated
canonical miR-101–3p exclusively targeted PTGS2 (upregulated in
lung cancer).

DSC2 is a protein implicated in mediating cell adhesion, epithelial
cell proliferation, and tumorigenesis (33). Likewise PTGS2, we dem-
onstrated via luciferase assay, using both wild-type (WT) andmutated
psicheck2-DSC2 30UTR (Fig. 4H; Supplementary Fig. S2D), and
Western blotting (Fig. 4I and J), the exclusive targeting of DSC2
by miR-101-3p (�1|�2).

Although the two miRNA isoforms arise from the same locus, our
experiments demonstrated that shifting a few nucleotides led to a
distinct targetome for these two molecules in lung cancer.

Dysregulated A-to-I edited miRNA isoforms in cancer
We measured the A-to-I RNA editing abundance across cancer

cohorts/tissues, detecting 59 unique dysregulated A-to-I edited
miRNA isoforms (Supplementary Table S3, “Edited miRs dysreg. in
cancer”) that originated from 18 distinct miRNA arms. The edited
miR-381–3p (A-to-I RNA editing at position 4) resulted in one of the
most diffused dysregulated edited molecules. Its downregulation
interested 7 of 26 cohorts/tissues, a trend confirmed by previous
studies (16, 17) and observed in several tumors, including breast
cancer (34).

We investigated the canonical miR-381–3p and the above-
mentioned edited forms (shortenedmiR-381-3p_4_A_G) in the breast
cancer cohort (TCGA-BRCA). The expression of the two molecules
exhibited a significant downregulation in cancer samples (Fig. 4K
and L). In line with the previous section, we applied a similar workflow
(see Supplementary Information) to assess potential target variability
between the two molecules. After retaining significantly dysregulated
genes (Supplementary Table S4), characterized by an opposite expres-
sion trend (miRNA isoform down, genes up; Fig. 4M and N), we
crossed them with the list of gene targets predicted by isoTar (Sup-
plementary Table S4). Out of the reduced set of potential direct targets
for miR-381–3p, we elected to study ubiquitin conjugating enzyme E2
C (UBE2C), a gene that promotes breast cancer proliferation, migra-
tion, and invasion, whose overexpression correlates with poor clinical
outcomes (35). Using luciferase reporter vectors containing the WT
or mutated 30 UTR of the gene, the latter lacking the miR-381–3p
binding site, together with the two miRNA molecules (canonical and
edited miRNAs) in HEK293 cells, we demonstrated the direct binding
between UBE2C and miR-381–3p (Fig. 4O; Supplementary Fig. S2D).
Following the miR-381–3p overexpression (Supplementary Fig. S2E),
Western blotting experiments in triple-negative breast cancer (TNBC)
cell lines MDA-MB-231 and HCC70 corroborated our findings,
demonstrating a significant downregulation of UBE2C (�50%), as
depicted by densitometry (Fig. 4P and Q). At the same time, among
miR-381-3p_4_A_G targets, we selected synaptotagmin 13 (SYT13),
an oncogene involved in different cancers (36, 37). We validated
the direct binding (Supplementary Fig. S2C) between SYT13 and
miR-381-3p_4_A_G through luciferase assay in HEK293 cells, with
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Figure 3.

miRNA isoforms dysregulation across cohorts and tissues. Distribution of dysregulated molecules per cohort/tissues and miRNA modification type. The figure
reports the number of significant (adjusted P <0.05) upregulated (U; linear fold change >1.5) and downregulated (D; linear fold change <�1.5) molecules, including
A-to-I edited miRNA isoforms.
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a reduced luciferase activity of �80% (Fig. 4R). Then, we confirmed
these data by repeating the luciferase assay using amutated psicheck2-
SYT12 30 UTR without the miR-381-3p_4_A_G MSR, observing an
unvaried luciferase activity even after the overexpression of the edited
miRNA (Supplementary Fig. S2D). Finally, after miR-381-3p_4_A_G
overexpression (Supplementary Fig. S2E), Western blotting experi-
ments in MDA-MB-231 and HCC70 cell lines confirmed the down-
regulation of SYT13 as shown by densitometry (Fig. 4S and T).

Once again, our results pointed out the importance of not limiting
studies solely to canonical miRNAs, as outlined by the editedmiRNA’s
ability to target one oncogene exclusively.

Prognostic miRNA isoform signature
We explored OS and RFS (Supplementary Fig. S3), benchmarking

the four groups (G1, G2, G3, and G4) introduced in the clustering
analysis (Fig. 2A). Overall, we observed higher performance when
including modified miRNAs. Without relying solely on canonical
miRNAs (G1), we were able to achieve a greater number of significant
prognostic signatures (log-rank test-based P < 0.05 and AUC ≥ 0.7;
Fig. 5A). Notably, we identified 2 (G1), 4 (G2), 3 (G3), and 6 (G4) OS
prognostic signatures, whereas the RFS ones were 1 (G1), 2 (G2), 3
(G3), and 4 (G4). The complete list of identified signatures and
additional details are reported in Supplementary Table S5.

It would be fair to think that adding more molecules might increase
the number of identified signatures. To test such a hypothesis, we
randomly extracted expressed molecules (geometric mean >3 RPM)
from G4, sampling them into five groups of different sizes (10%, 25%,
50%, 75%, and 100% of all expressed molecules in G4), and repeating
the process ten times per group size.We applied the repeated-measures
ANOVA and Wilcoxon rank-sum tests, which ultimately rejected the
initial hypothesis, confirming neither statistically significant differ-
ences across group sizes nor moving from one group size to the next in
order (e.g., from 10% to 25%; Fig. 5B).

Discussion
Several scientific contributions have magnified our understanding

of the so-called miRNA Epitranscriptome, igniting the interest in
miRNA modifications such as A-to-I RNA editing (10, 16, 17, 38–40)
and alternative miRNA cleavage (7, 14, 18, 41–45). However, the
concurrent occurrence of A-to-I miRNA editing, DNA modifications
(SNPs or somatic mutations), and shifted isomiRs has yet to be widely
explored.

In this work, we simultaneously characterized a broader set of
microRNA modification types, processing miRNA-seq data from

>13,000 adult and pediatric cancer samples across 38 distinct TCGA
and TARGET cohorts. Overall, the number of expressed modified
miRNAs exceeded by 5-fold the canonical counterpart. The 30 isomiR
resulted in the most predominant miRNA modification type among
identified ones, which similarly affected both 5p and 3p arms. The 30-
end showed less stability than the 50-end (8), with larger trimming of
nucleotides, whereas the absence of broader additions (>3 nts) could be
due to degradation processes carried out by some enzymes that remove
the exceeding part spurting out the RISC complex (46). As known, 50-
and 30-end regions perform different functionalities, with the first
carrying out themiRNA::mRNApartial base-pairing throughMSR (1)
and the latter playing a role in miRNA::mRNA interaction stabiliza-
tion (47, 48), especially in the presence of mismatches or bubbles (49).
Changes at the 50-end alter the MSR and may affect the molecule’s
targetome (50). Meanwhile, the higher number of expressed 30-end
shifted molecules could be attributed to the cell’s attempt to modulate
miRNAs activity, perhaps trying to overcome the weakness of specific
miRNA::mRNA bindings under particular conditions (49).

The A-to-I RNA editing phenomenon may represent another
way to alter the MSR and, consequently, the molecules’ biological
function (10). Noteworthy, 76% of dysregulated edited molecules
reported at least one A-to-I editing site within the MSR. The
TCGA-LGG cohort presented the highest number of expressed
edited miRNA isoforms, which is in line with the literature, as it is
well known that such a phenomenon is abundantly present in the
nervous system (51).

By contrast, the distribution of themost representative knownDNA
variant forms (top-five) observed across dysregulated miRNA iso-
forms mostly falls near the 30-end (between the 21st and 24th
nucleotides), potentially influencing either the miRNA lifespan or the
targeting stability (46, 52).

We then explored the underlying differences in the abundance of
expressed miRNA isoforms in each cohort/cancer tissue from a
functional standpoint. We compared cancer samples with a lower
(first quartile) and higher (third quartile) number of expressedmiRNA
isoforms. A functional analysis displayed the activation/deactivation of
several critical pathways involved in proliferation, metastasization,
tumor immune escape, invasion, and angiogenesis, such as the Wnt/
b-catenin, p38 MAPK, IL6, and HGF signaling pathways. Our results
confirm the hypothesis that a different abundance of miRNA isoforms
could be associated with the enrichment of, but not limited to, cancer-
related pathways as a consequence of a not-necessarily direct dysre-
gulation of crucial genes.

We explored molecules’ ability to cluster cancer samples across
cohorts, benchmarking four different groups ofmolecules according to

Figure 4.
miRNA isoforms experimental gene targeting validation.miR-101-3p (A,C, andE–G) andmiR-101-3p (�1|�2) (B,D, andH–J) experimental targeting validation in lung
cancer cells. Expression of miR-101-3p (A) and miR-101-3p (�1|�2) (B) in normal and tumor samples in TCGA-LUAD cohort. PTGS2 (C) and DSC2 (D) expression in
TCGA-LUAD samples in miR-101-3p/miR-101-3p (�1|�2) first (Q1) and third (Q3) quartile. Luciferase assay for psiCHECK-2-PTGS2 30 UTRWT (E) and psiCHECK-2-
DSC2 30 UTR WT (H) constructs cotransfected with mirVana miRNA mimics for miR-101-3p, miR-101-3p (�1|�2), and negative scramble miRNA control (SCR) in
HEK293 cells performed 24 hours after the transfection. Western blotting depicts the downregulation of PTGS2 (F and G) or DSC2> (I and J) proteins in A549 and
H1299 cells, respectively, after miR-101-3p and miR-101-3p (�1|�2) overexpression. Densitometric quantification of Western blotting signals (F, G, I and J) was
performed using ImageJ (NIH; https://imagej.nih.gov/ij/, 1997–2018). miR-381-3p (K, M, and O–Q) and miR-381-3p_4_A_G (L, N, and R–T) experimental targeting
validation in TNBC cells. Expression of both miR-381-3p miRNA isoforms in normal and breast cancer samples in TCGA-BRCA cohort (K and L). Luciferase assay for
psiCHECK-2-UBE2C 30 UTR WT (O) and psiCHECK-2-SYT13 30 UTR WT (R) constructs cotransfected with mirVana miRNA mimics for miR-381-3p, miR-381-
3p_4_A_G, and negative scramblemiRNA control (SCR) in HEK293 cells performed 24 hours after the transfection.Western blotting represents the downregulation
of UBE2C (P andQ) and SYT13 (S and T) proteins in MDA-MB-231 and HCC70 cells after miR-381-3p andmiR-381-3p_4_A_G upregulation via mirVana miRNAmimic
transfection. The histogram reports densitometric quantification ofWestern blotting signals (P,Q, S, and T) performed using ImageJ (NIH; https://imagej.nih.gov/ij/,
1997–2018). Pictures are representative of at least three experiments. The fold of increase in the graphics is the mean value of 3 replicates. P < 0.05 was considered
statistically significant. Annotations for � , 0.01≤P<0.05; �� , 0.001≤P<0.01; ��� ,P <0.001 are provided accordingly. Error bars indicate the three biological replicates’
SD. The horizontal bar in each violin-like plot indicates the median. In Western blot experiments. VCL, VINCULIN.
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specific miRNA modification types. Going from canonical miRNAs
(G1) to all expressed canonical andmodifiedmiRNAs (G4) allowed us
to gain a higher cluster fragmentation that reflected an in-depth
clinicopathologic stratification. Altogether, our results depicted amore
complex scenario in which canonical and modified miRNAs work
together to uncover the underlying histopathologic differences among
cancers. Thus, excluding one of the two may substantially limit our
understanding of tumor heterogeneity.

Canonical and modified miRNAs were significantly dysregulated
across cohorts/tissues. We identified 85 dysregulated canonical miR-
NAs (out of 392) showing opposite expression trends compared with
their modified miRNAs. Among these 85 molecules, we elected to
study miR-101-3p and its upregulated shifted isomiR, with one
nucleotide added at 50-end and two trimmed at 30-end (shortened
miR-101–3p (�1|�2)), investigating bothmolecules inTCGA-LUAD.
As known, the most robust miRNA::mRNA binding occurs when the

Figure 5.

Overall and RFS risk score–based sig-
natures. A and B, Overview of risk
score–based signatures for OS and
RFS (A) and results of statistical tests
performed across groups ofmolecules
of different sizes (B). Panel A reports
the number of identified signatures
per benchmarked group, the AUC,
and the P (log-rank test). See Supple-
mentary Fig. S3 and Supplementary
Table S5 for more detailed informa-
tion regarding the workflow used
and the list of identified signatures.
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miRNA50-end starts with uracil (U), and the opposite nucleotide in the
mRNA is adenine (A; known as t1A; ref. 53). Although the shifted
isomiR started with guanosine (G) as opposed to the canonical miR-
101–3p, which began with U, we demonstrated that both molecules
were correctly loaded byAGO2 (Supplementary Fig. S2A and S2B) and
targeted unique mRNAs. Our findings are in line with a previous
study (28).

Aiming to assess differences in targeting efficiency, we examined
dysregulated and predicted gene targets for the two molecules. We
chose PTGS2 (COX-2), an oncogene in lung cancer (32), which is a
validated canonical miR-101–3p target gene in different can-
cers (30, 31). Although the predicted binding sites for both miRNA
molecules on PTGS2’s 30 UTR were comparable in terms of binding
free energy, we experimentally proved that the sole canonical miR-
101–3p targeted PTGS2, highlighting the specificity of the miRNA–
target gene match. At the same time, DSC2, a protein involved in cell
adhesion and recently characterized as a metastasis mediator in lung
cancer (33), is exclusively targeted by miR-101–3p (�1|�2). Although
the two molecules show opposite expression trends, one could spec-
ulate that this does not necessarily translate into different biological
functions, as they both target unique oncogenic genes. It might
represent a hidden “backup system” of the cancer cells to sidestep
the loss of function given the canonical miR-101–3p downregulation.

In the second case study, we assessed the targetome shifting between
the canonical miR-381–3p and its edited form (A-to-I editing site at
position 4). In our results, the edited miR-381–3p resulted among the
most downregulated molecules across cohorts/cancer tissues.
Although the role of the canonical miR-381–3p is broadly acknowl-
edged as a tumor suppressor (54), particularly in breast cancer (55),
very little is known about the edited form in cancer (16, 17). Among the
potential targets of the edited miR-381–3p, we elected to investigate
SYT13 in breast cancer (TCGA-BRCA), a well-known oncogene in
different tumor models (36, 37). Unlike the canonical miR-381–3p,
which did not show any binding site, our predictions and experiments
outlined the ability of the edited miR-381–3p to regulate the SYT13
expression exclusively. Afterward, we experimentally validated a
unique target (UBE2C) for miR-381-3p to point out the difference
in targeting for the two molecules.

Finally, the OS and RFS results highlighted the importance of
including all miRNA isoforms (G4) over other groups benchmarked
in our study (G1, G2, and G3), which allowed us to identify 6 (OS) and
4 (RFS) significant prognostic signatures. We tested the correlation
between using different amounts of molecules and the number of
identified signatures. Interestingly, our results ultimately show no
significant improvements in varying the number of molecules used,
confirming that modified miRNAs may carry biological information.

In conclusion, we can consider modified miRNAs as independent
functional molecules that may work in support or contrast to their
canonical counterpart. The potential of such molecules as novel
diagnostic and prognostic cancer biomarkers is indisputable, making
the characterization of the widermiRNAome essential to help uncover
miRNA-related mechanisms in cancer.
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