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Spontaneous domain formation in disordered
copolymers as a mechanism for chromosome
structuring†

Matteo Negri,‡a Marco Gherardi, a Guido Tiana ab and
Marco Cosentino Lagomarsino *cde

Motivated by the problem of domain formation in chromosomes, we studied a co-polymer model

where only a subset of the monomers feel attractive interactions. These monomers are displaced

randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system.

Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold

into structures characterized by multiple distinct domains of consecutive segments. In each domain,

attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-

exchange simulations that adding disorder in the position of the interacting monomers further stabilizes

these domains. The model suggests that the partitioning of the chain into well-defined domains of

consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes,

evolution could have acted on the spacing of interacting monomers to modulate in a simple way the

underlying domains for functional reasons.

Introduction

Simple heteropolymer models provide a candidate explanation
for the formation of intermediate- and large-scale domains in
prokaryotic and eukaryotic chromatin.1–5 Such domains may be
defined as extended contiguous regions along the DNA chain in
which the DNA interacts preferentially with sites of the same
domain. As such, they appear as squared blocks in the contact
matrix of the polymer, which is measurable by chromosome
capture and sequencing techniques.3 The interaction between
chromosome-bound proteins provides a simple description of
such domain formation. For example, in mammals, the protein
CTCF has been shown to form dimers8 that can stabilize
chromatin loops. In bacteria, the proteins H-NS and MatP have
the same bridging capabilities.4,9 More complex mechanisms,

such as loop extrusion6,7 may also contribute to explaining
domains formation.

One main question is what drives domain identity, size and
stability, and to what extent intra-specific interactions are
needed to form domains. In other words, while it is reasonable
to think that the domain formation is mediated by proteins
that are bound to chromatin and that interact with each other,
we do not know how many species are needed to program a
certain number of domains into a polymer.3 Since there are
thousands of domains at different scales in mammalian genomes,
trivially associating one-to-one interactions would require the
presence of thousands of different types of intra-specific DNA-
binding proteins. It is more reasonable to think that only a
small number of proteins is responsible for the interactions
between the chromatin sites.

Focusing on the direct interaction between chromatin struc-
ture factors, various kinds of heteropolymer models3,10–12 have
been proposed, to explain various aspects of domain formation,
specification and stability. In particular, ‘‘epigenomic’’ block-
copolymer models using different families of biologically
justified interacting proteins with intra-specific bindings have
succeeded in capturing several properties of chromosomal
domains.3,13 Perhaps the simplest model is a polymer chain
in which equally-spaced monomers attract monomers of the
same type.12,14 This is a specific type of co-polymer model in
which only one of the two chemical species exerts attractive
interactions (and the linear density of this species is typically
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considered to be low). This model shows that multiple-domain
states are possible without any intra-specific interaction.14

In such states, the polymer is collapsed into a multiple rosette
configuration. Analytical arguments support the hypothesis
that such multi-domain phase is stable, and due to the trade-
off between the surface-tension cost of keeping a core of
bridging proteins and the entropy cost of the arms of the rosette
states.

Here, we use replica-exchange Monte Carlo (MC) simula-
tions to explore the equilibrium states of the disordered version
of this model, where the interacting monomers are not equally
spaced, but arranged randomly along the backbone in a fixed
(quenched) configuration. We ask about the role played by
these disordered interactions into the thermodynamic stability
of the collapsed states with one and multiple domains, i.e.,
contiguous regions of the polymers where segments tend to be
in frequent proximity. We also address the possible role of the
disorder into localizing the domains in a specific region of the
chain, which may lead to pre-programmed spatial domains
without intra-specific interactions. Note that domains are
defined in our work strictly with respect to the model we study,
and that our considerations may apply to different biological
contexts where sparse attractive interactions may emerge due to
different mechanisms, and give rise to compartmentalized
structures with different properties (e.g. so-called topological
domains in eukaryotes, macrodomains in bacteria, or tran-
scription factories1,3,15).

Importantly, we are not proposing an alternative model to
existing ones claiming that this is a unique explanation for the
formation of so-called ‘‘topological domains’’ in chromosomes.
Rather, our purpose is to investigate the generic consequences
(simply based on polymer physics) of a minimal set of hypoth-
eses concerning the interactions the structuring of the chromo-
somal fiber. Our basic hypothesis is that the chain is composed
of more than one type of interacting units. From the physical
point of view, this is the simplest model capable of giving non-
trivial results (the phase diagram of a homopolymer is well
known and does not display domains).

Model

We study a coarse-grained model consisting in a polymer made
of N consecutive monomers represented as hard-sphere beads
of radius RHC (see Fig. 1). Each monomer represents a region of
the chromosome, and the size can be defined at will to describe
the fiber at any resolution (e.g., from the finest experimental
resolution of Bkb to describe topological associating domains,
to that of Mb to describe chromosomal compartments). In this
model, bead i can interact with bead j with an attractive short-
ranged square well potential uij:

uij ¼

1 if rij oRHC

Bij if RHC o rij oR

0 if rij 4R;

8>>><
>>>:

where rij is the distance between the beads, RHC is the hard-core
radius, R is the range of the interaction and Bij is the interaction
energy, which depends on the types of the monomers i and j. In
order to represent bridging interactions, we place p attractive
monomers along the chain (see Fig. 1). Therefore, the inter-
action energy is

Bij ¼
�e if i and j are attractivemonomers

0 otherwise

(

where e 4 0 since the interaction is always attractive.
Using square-well potentials makes the MC calculations easier

and faster than using smooth short-ranged potential. The uncross-
ability of the polymer chain is guaranteed by the hard-core
repulsion, whose range is RHC = 0.472l. The distance l between
consecutive beads is maintained fixed by the MC moves, and sets
the microscopic length scale, with respect to which all the lengths
of the model are measured. The choice of R and RHC comes by
inference from the model discussed in ref. 16. It corresponds to
the value that optimizes the agreement with experimental 5C data.
In absence of any specific information about the interaction
between loci, we have employed those values assuming that they
reflect the physical interaction range between the reactive units of
chromatin. The small interaction range is realistic, since we expect
it to originate from nanometer-sized proteins interacting with a
larger fiber.

We first studied regular co-polymers, in which interacting
monomers are placed every p other monomers which only repel
each other by hard-core repulsion. Subsequently, we studied a
disordered model in which the (quenched) position of these
interacting monomers is displaced by a random quantity with
prescribed variance from the reference position.

The simulations are performed with an off-lattice MC algo-
rithm whose degrees of freedom are the angles and dihedrals
of the chain, updated with flip and pivot moves through a

Fig. 1 Sketch of the model used in this work. The polymer is made of
two types of monomers. Short-ranged attractive monomers (red) are
separated by regions of non-attractive ones (light-blue). The position
of attractive monomers is fixed at distance extracted from a Gaussian
distribution, and attractive monomers are fixed during each simulation
(quenched disorder). Monomers are described as hard-sphere beads, joint
by inextensible links.
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Metropolis acceptance rule, to ensure an effective sampling of
the canonical ensemble. The algorithm is implemented in a
freely-distributed code.17 To improve the efficiency of the algo-
rithm to sample equilibrium conformations also at low tem-
peratures, the MC algorithm is used in its parallel-tempering
variant, in which 16 replicas of the system are simulated in
parallel at increasing temperature, and the conformations of
adjacent temperatures are exchanged every 1000 MC step with a
Metropolis-like acceptance rule.18 The thermodynamic quanti-
ties are then calculated with a weighted-histogram technique.19

Results
Multi-domain states in absence of disorder are stable

In the case of equally-spaced attractive points, theoretical argu-
ments support the claim that multi-domain states are thermo-
dynamically stable.14 To test this hypothesis, we simulated
polymers from N = 129 up to N = 513 monomers with the
parallel-tempering algorithm until the quantities of interest
reached convergence, keeping constant the density of interacting
monomers Z = p/N. As shown in Fig. 2, polymers with N = 129
monomers collapse into a single domain, while the polymers of
length N = 256 and N = 513 collapse into a multiple-domain state
similar to rosettes. Rosettes are formed by consecutive strands of
the chain. In this range of N, the number of domains seems
to depend linearly on p, as suggested in ref. 14. The collapse
for all values on N happens near a temperature of T C 0.47e
(see Fig. 2). No phase similar to a random globule, in which the
contacts are not correlated with the distance of the interacting
monomers along the chain, was observed (such regime is expected
for the regime of high p/N, not studied here see ref. 14). All the
rosette-like and multiple-rosette configurations appear to be
thermodynamically stable below the coil–globule transition
temperature (see Fig. S1, ESI†).

For longer chains (N 4 129), after a first collapse at higher
temperature, the polymer displays a second collapse at lower

temperature from a phase with higher number of domains to a
phase with a lower number of domains (e.g., see Fig. 2, red solid
curve). While the first energy jump displays features similar to a
first-order phase transition, as suggested in ref. 14, the fusion
of two domains resembles a nucleation-like phenomenon, and
we speculate that this could be similar to a second order phase
transition. The low-temperature phases are difficult to sample
for longer polymers and thus we could not equilibrate the chain
with N = 513 below T = 0.14e. Although we have seen in this
range of low temperatures conformations with three and two
rosettes, we are not able to assess if they are equilibrium states.
Equally, we could not equilibrate the system at even lower
temperatures, at which we expect the equilibrium state to form
a single rosette, because this is certainly the zero-temperature
equilibrium state of the system.

Summing up, our results indicate that new stable multi-
domain phases become available with increasing system size,
and that the system can cross several hierarchical levels of
organization with decreasing number of domains as equili-
brium states as the temperature is decreased, before collapsing
into a single domain.

Disorder enhances the stability of multi-domain configurations

Starting from polymers with equally spaced monomers (placed
every Z�1 other monomers), we generate an ensemble of
quenched polymers with disordered spacing between interacting
monomers by displacing such monomer by a (discretized)
Gaussian random variable of zero mean and variance s. For
s = 0 we recover the ordered case, while for s \ Z�1 we expect a
nearly uniform distribution of interacting monomers, with no
memory of the reference configuration.

The outcome of the model depends on the specific realization
of a stochastic variable, setting the distribution of interacting
beads on the chain. The study of a single realization is not
necessarily insightful, because its behavior may depend on the
detail of that specific realization. The correct way to investigate the
system is thus to generate several realizations of the stochastic
positioning of the interacting beads, obtaining some properties
(energies, distances, etc.) for each realization, then asking whether
the averages of these properties at fixed single realizations typi-
cally agree or differ. If the averages over single realizations
typically agree, the observables are called ‘‘self-averaging’’. In this
case, the average over the disorder is representative of a typical
situation. As a rule, extensive quantities, such as the internal
energy, are self-averaging, as predicted by a classic argument
given by Brout.20 More precisely, Brout’s argument states that in
a disordered system with finite-ranged interactions, all the quan-
tities that result from the sum of some property of the system over
all its parts (such as e.g. the potential energy) are self-averaging.
However, this argument cannot be applied straightforwardly to
disordered polymers, and we verified explicitly in two cases (s = 7
and s = 16, using four realizations of the disorder) that the energy
curves and the number of rosettes do not depend on the specific
realization of the disorder (see Fig. S2 in the ESI†).

We then performed equilibrium simulations with Z�1 = 15
and s varying from 0 to 32 for N = 257. In all these cases,

Fig. 2 Energy density for co-polymers with an ordered pattern of inter-
acting monomers. In these simulations the density of interacting mono-
mers Z = p/N was kept constant to the value 1/16. Simulations were
performed with e = 2.4, R = 0.77, l = 1.42 for 3 � 109 Monte Carlo sweeps.
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as shown in Fig. 3, we observe a transition from a random coil at
high temperatures to multi-rosette states. The transition becomes
less sharp with increasing s. Moreover, the disorder has the
unexpected effect of stabilizing the multi-domain phase, as the
transition temperatures become higher. This effect is accompa-
nied by a broadening of the range of temperatures in which the
multiple domain phase is stable, roughly proportional to s. The
inset of Fig. 3 shows the specific heat of the system, whose peaks
are associated with the transitions. Two peaks in the specific heat
are typically visible in this plot, corresponding, respectively, to the
collapse from coil to multi-domain state (high temperature) and to
the transition from two-domain state to one-domain state (low
temperature). These peaks shift apart at increasing s. The disorder
smoothens the collapse curve of the higher transition only, since
the height of the specific-heat peak decreases with s, while it
becomes wider. This suggests that the transition from coil to
multiple-domain states may no longer be switch-like, due to the
emergence of domains of different size at different temperatures.

We also considered the average contact probability between
monomers as a function of their distance |i � j| along the
chain, which is typically measured from genome contact maps.1,3

Fig. 4 compares this function for the case of equally-spaced and
disordered interacting monomers. In the ordered case (s = 0), the
spacing with the closest interacting induces oscillations in the
function, but the overall trend agrees with a power law with

exponent close to 0.5 for values of |i � j| up to distances
comparable to N (and therefore affected by finite-size effects).
Disordered chains display exponents that increase with the
temperature between, 0.7 and 1 in the multi-rosette phase,
and up to 1.9 in the coil region (this value is comparable to the
expectation for a self-avoiding chain). The exponents appear
to depend weakly on the specific realization of the disorder
(cf. purple and green symbols in Fig. 4).

Scaling argument for the entropy of a disordered star polymer

In order give some theoretical support to the computational
result that the multi-rosette configurations are thermodynami-
cally stable in presence of disorder, we generalized the scaling
argument given in ref. 14. In a configuration made of q rosettes,
each domain has a core made of p/q monomers and a corona
made of p/q loops. Each rosette is approximated as a star
polymer made of f = p/q arms. This description allows a simple
estimate of the entropic contribution of the corona to the free
energy. In absence of disorder the leading term in this contri-
bution is f 3/2. The energetic contribution to the free energy is the
surface tension of each core, which is proportional to the surface
of a single core (p/q)2/3 multiplied by the number of domains.
Therefore, the free energy in absence of disorder reads

bDF C p3/2q�1/2 + e(p)2/3q1/3, (1)

where b = 1/kBT sets the energy scale. This equation can be
minimized with respect to the number of domains q, to find the
number of rosettes at equilibrium

qeq B e�6/5. (2)

Fig. 3 Disorder in the positioning of the interacting monomers shifts the
domain-formation transition towards higher temperatures. The plot shows
collapse curves of internal energy of a polymer of length N = 257 mono-
mers. Each dashed curve relates to a different value of the variance s. Two
snapshots at the same temperature are highlighted comparing the case of
regularly-spaced interacting monomers (A) to the disordered case (B):
while the former is clearly in a coil state, the latter appears collapsed into a
two-domain state. This is also visible in the specific heat vs. kT/e plot
(inset), in which the peak corresponding to the transition point smoothens
and shifts towards higher temperatures in presence of disorder. The
simulations were performed with N = 257, Z = 17/257, R = 0.77, l = 1.42,
1.8 � 109 MC moves.

Fig. 4 The model shows power-law like scaling of the contact probability
with arc-length distance. The plot shows the mean logarithm of the
contact probability obtained from simulations. The average is performed
over configurations and over all monomers i and j, whose inter-monomer
distance is |i � j|. The different curves correspond to the case of ordered
interacting monomers (s = 0, orange points) and disordered interacting
monomers, s = 16 at temperatures T = 0.49 (red), T = 0.50 (cyan), T = 0.52
(green and purple, for two different realizations of the disorder), T = 0.53
(blue). The solid lines are linear fits, giving slopes (exponents) 0.53 for s = 0,
0.72 for s = 16 at T = 0.49, 0.87 at T = 0.50, 1.01 and 1.05 at T = 0.52 and
1.86 at T = 0.53.
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We now estimate how DF changes for disordered distributions
of attractive points in the polymer. At fixed rosette state, the
changes in the positions of the attractive monomers along the
chain do not affect the energetic term, so we need to compute
only the entropic term for a rosette with loops of random length.
To do this, we approximate the disordered rosette to a star poly-
mer with arms of random length, and use the blob model for star
polymers21,22 to describe the system with a mean-field ansatz (see
the sketch in Fig. S3, ESI†). Here we omit intermediate calcula-
tions, which can be found in the ESI,† Section S1. To account for
the different lengths of the arms, we impose that the number of
arms f is a decreasing function of the radius,

f ðrÞ ¼ f0
r

b

� ��g
; (3)

where b is the radius of the core of the star and g Z 0. It is
possible to show that this is equivalent to a power-law distribu-
tion of the distance between consecutive attractive monomers
(see ESI,† Section S1, last paragraph). This assumption does not
correspond to the displacements of the attractive points from
equally-spaced positions used in our simulations, and is moti-
vated mainly by the ease of carrying out the calculation.

We can now plug eqn (3) into a scaling argument similar
to the one found in ref. 22. This calculation gives a leading
term in the entropy that is identical to the one in absence of
disorder,

DFentropic ’ f0 S � gf0�1=2
S2

2
þ g2

4
f0
�1S

3

3

� �
(4)

with

S ’ 2

g
f0

1=2;

which implies

DFentropic C ( f0)3/2. (5)

Thus, this argument supports the existence of stable states in
presence of disorder in the attractive points, and predicts that
the disorder does not change the leading term in the entropy
of the rosettes, and the collapse is qualitatively the same. Since
the leading-order term of the entropy is unaffected in the
extreme power-law spacing between attracting monomers along
the chain, we also expect that this prediction applies for more
compact distributions of the spacing between possible attrac-
tive points, such as the one used in our simulations. Indeed, we
find that the collapsed phase of the polymer of length N = 257
exhibits two domains for all values of s we tested, just as the
model in absence of disorder.

In order to rationalize why the simulations show a shift of
the transition towards higher temperatures, which is not pre-
dicted by the above argument, we can notice that the above
argument only considers the star-polymer contribution to the
free energy. We can also compare the typical value of the loop
entropy in presence and absence of disorder, but at fixed Z. In
absence of disorder the total entropy of p loops of length N/p is

Stot B p log(N/p). (6)

For sufficiently small disorder (i.e. when s is much smaller than
Z�1), there are p loops of random length li = |xi � xi+1|, where xi

and xi+1 are the positions of two consecutive attractive mono-
mers. If the distribution of xi is Gaussian, the distribution of li

is still a Gaussian with mean hlii = N/p. Thus, we can compute
the total entropy for the system in presence of disorder:

Sdis
tot �

Xp
i¼1

logðliÞ: (7)

We can rewrite eqn (7) to obtain a relation with Stot:

Sdis
tot ’ p

Xp
i¼1

1

p
log lið Þ

Cphlog(li)i o p loghlii

where in the last line we used the Jensen inequality for concave
functions. This means that

Sdis
tot o Stot,

namely that the entropy cost for p loops decreases in the
disordered model, so that the transition temperature increases.
For the same reason, allowing for collapsed states with multiple
domains, one can also speculate that the transition becomes
broader because different regions of the polymer with different
local densities of attractive monomers start to collapse at different
temperatures.

Localization of domains caused by disorder

In long ordered co-polymers with equally-spaced attracting
monomers, the positions of the domains are invariant for
translations along the chain, and they are free to move along
the chain (see Fig. 5, left column). Different equilibrium con-
formations can break this symmetry, displaying domains at
specific positions, but the equilibrium contact map averages
out the domains, re-establishing the translational symmetry
(cf. the lowest-left contact map in Fig. 5). Only a small effect due
to the finiteness of the chain is observable at the polymer ends;
this would further reduce in longer polymers.

Disorder in the spacing of the attracting monomers has
the effect of localizing the domains. To illustrate this point, the
three rightmost columns of Fig. 5 show the result of simula-
tions performed with a realization of disorder with s = 3 and
two realizations with s = 16, choosing N = 257 and p = 17.
Disorder breaks the translational symmetry of the system,
favouring the stabilization of domains in specific regions of
the chain. As a consequence, the average map is no longer
uniform. For example, at s = 3 (Zs C 0.2), contact maps show
with high probability a two-blocks structure (Fig. 5, second
column, bottom panel) that contributes to specify the average
map (shown below).

As shown in the case s = 16 (Zs C 1 last two columns of
Fig. 5), the degree of localization depends on the specific
realization of the disorder. The figure shows two contact maps
of conformations obtained with two different realizations of
the same distribution of disorder. In the first realization,
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the two-block structure has well-defined borders that correspond
the regions around monomer 25 and 110. Instead, the second
realization of the same distribution does not show a clear
compartmentalization into two fixed spatial domains, and reallo-
cation of attractive points is observed around a coarse-grained
nearly equally-spaced structure of organizing centers. The degree
of localization of the domains does not seem to depend trivially
on the organization of the interacting monomers into linear
clusters along the chain (green dots along the diagonal of Fig. 5).
In some cases the interacting monomers act as aggregation
points, in some cases they appear to act as ‘‘spacers’’, reminis-
cent of the behavior of CTCF as an epigenomic barrier.23 In the
case s = 3, the displacement from the ordered case is small, but
still there is a higher degree of localization than the case s = 16
shown in the rightmost column, where there is a more marked
partitioning of interacting monomers. Thus, the degree of
localization appears to result from a complex balancing between
energy and entropy, and cannot be easily predicted from the
location of the interacting monomers.

Discussion and conclusions

Our model can be regarded as a null model to investigate how
evolution could establish specific chromosomal structures that
are segregated into domains, in order, for example, to diversify
the transcriptional control on the genes. Our result is that
if different loci of the chromosome interact differently, the
system has a natural tendency to organize into domains. The
disordered arrangement of sparse interacting points increases
this tendency and can cause the emergence of localized domains
of different sizes.

Our extensive MC simulations give access to the equilibrium
properties of polymers up to up to N = 513, characterized by a
small linear density of fixed attractive monomers, which can be
equally spaced or disordered. Both in the ordered and dis-
ordered case, the phase diagram of the polymer displays a high-
temperature coil phase and a sharp transition to globular
phases with multi-rosette structures. The states with different
number of rosettes are clearly separated from each other by

Fig. 5 A disordered distribution of interactions can localize the domains along the chain. The figure shows contact matrices for different conformations
of a polymer made of N = 257 monomers and p = 17 interacting monomers (in green) distant 16 monomers from each other. The lowest contact maps
are the equilibrium average of the system. Each column is obtained with a specific realization of the disorder, while the two columns with s = 16 are
obtained, respectively, with two different realizations of the placement of interacting beads. These simulations were performed with N = 257, Z = 17/257,
R = 0.77, l = 1.42, 1.8 � 109 Monte Carlo sweeps. The replicas used in this image are at the temperature kBT/e = 0.3.
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jumps in the internal energy which resemble first-order transi-
tions. At highest temperatures we observe states with the largest
number of rosettes, and this number decreases with the tem-
perature to the one-rosette zero-temperature state. Although the
system size is limited in our simulations by the high computa-
tional cost of equilibrating the system, we can speculate that a
hierarchy of states exists with varying number of rosettes. The
maximum observed number, nmax C N/128, is reached just
below the coil–globule transition temperature. The observed
rosettes have the specific feature of involving monomers that
are close along the chain.

The formation of rosette-like domains is a form of micro-
phase separation (MPS), which in the thermodynamic limit is
known to take place in ordered co-polymers and to produce
well-defined structures with few allowed symmetries (lamellar,
hexagonal and cubic) in the vicinity of the homogeneous
phase.24 If disorder is added in the position of the chemical
species, mean-field calculations by de Gennes show that the
MPS phase is suppressed in favour of a glassy state.25 Beyond
mean field, Shakhnovich and coworkers showed that fluctua-
tions reduce the glassy temperature re-establishing the MPS,26

by a perturbative approach in the number of neighbouring
monomers common to different conformations of the chain
(disregarded in the mean field). Our results suggest that correla-
tions between neighbouring monomers play an important role
in defining the phase diagram of this polymer. Although the size
of our polymers is limited by computational constrains, the
rosette-like domains we observed are formed by consecutive
segments of the chain, and suggest that effect of correlations
could be much larger than that suggested by the perturbative
approach. In fact, while the latter predicts a phase diagram with
a second-order transition from a disordered globule to MPS, we
observe what looks like a first-order transition from a random
coil directly to a domain-separated phase. Moreover, at increas-
ing disorder, the range of temperatures at which MPS occurs
increases not only because the freezing temperature decrease, as
predicted in ref. 26, but also because the high-energy states are
affected (as observed in ref. 27), increasing the coil–globule
transition temperature.

Whether this behaviour is a result of the finiteness of the
chain or is a feature that survives in the thermodynamic limit,
we cannot tell based on our simulations, which are necessarily
limited in terms of the size of the chain. However, the scaling
arguments that support the simulations are not expected to fail
in the large-N limit, suggesting that the phase diagram we
propose is stable with respect to N.

An important effect of the disorder is that of localizing the
structural domains in the chain, analogously to what happens
with spin diffusion in the presence of impurities.28 While the
system, at least in the thermodynamic limit, is invariant for
translation of the domains, and consequently its average equili-
brium contact map is uniform, in presence of quenched dis-
order the domains can become localized, resulting in a block
equilibrium contact map. The detailed pattern of blocks, and
even how well-defined they are, does not appear to be a self-
averaging quantity, and depends on the specific positioning of

the interacting monomers. These properties do not seem to be
easily predicted from the knowledge of the exact realization of
disorder, in agreement with the general observation that the
identification of the equilibrium states of disordered systems is
a NP-hard problem.29

The results obtained with this simple co-polymer model can
be useful to get some insight in the structural organization of
chromosomes,30 which display a hierarchical set of nested
domains.31 Little is known about the actual molecular mecha-
nisms responsible for the formation of domains, at different
length scales, in the chromatin fiber and several models were
proposed to account for such an organization. Some years ago it
was suggested that they are the result of the rapid collapse of
the fiber into a non-equilibrium crumpled globule.32 A model
that generates blocks that are similar to the smallest-scale
domains observed in chromatin is the loop-extrusion, based
on the hypothesis that the interaction between regions of the
fiber are mediated by an active, ATP-fueled protein complex.6,7

In other, equilibrium, models, such as the one we study here,
the number of domains is determined by the number of
different interacting species,33,34 and the formation of domains
is essentially energy-driven. With the present simple model we
showed that it is not necessary to resort to very complicated
ingredients, but the balance between entropy and energy is
sufficient to generate stable and localized domains even with a
single type of interacting protein. The phenomenology of the
disorder stabilizing the multi-domain phase is reminiscent
of the ‘‘order by disorder’’ phenomenon, whereby a particular
low-entropy state is selected. It is therefore interesting to quan-
tify the selection of specific regions organized into domains by
specific realizations of the interaction points.12 As we previously
pointed out,14 for the ordered case the transition to the collapsed
state made of one or more domains is first order, in contrast
with the second-order like coil-to-globule (‘‘theta’’) transition of a
self-attracting homopolymer. In presence of disorder in the
interaction points, this transition ‘‘smoothens’’ due to the
existence of domains of different sizes that collapse at different
energies or temperatures. However, looking at the susceptibility
shows that this transition still keeps the key properties of a
first-order transition, and, for example, coexistence is expected
(and observed in simulations) around the critical point. Similar
considerations are expected to apply to more complex models
in the literature where multiple species are present3,13 or where
binding points can move.10

Considering chromosomes, confinement may be an impor-
tant ingredient of the system. However, even in case of strong
confinement (which is not sure to be justified empirically) we
believe that our results should apply at sufficiently short length
scales compared to the total size of the genome (e.g. Mbp in the
genome of a higher eukaryote). Indeed, if we considered a
relatively short scale compared to the full polymer, the local
structure of the segment under study would be uncorrelated to
the structure of the spatially neighboring segments belonging
to the rest of the fiber.

Finally, a feature of chromosomes that emerges from experi-
mental data and that was widely studied in the past years is that
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the contact probability between pairs of regions of the same
chromosome roughly scales with their genomic distance with a
power law controlled by an atypical exponent that is variable,
but typically lower than 1.5, behavior that is unexpected for
simple homopolymers at equilibrium.35,36 Also in this case
several physical mechanism were proposed.6,35,37,38 Our results
suggest that even a simple model as the one we propose here
produces equilibrium contact probability functions that can be
fitted with power laws of genomic distance, with exponents that
are lower than those of homopolymers, and in overall agreement
with the trends of experimental data. In our model, the slopes of
this contact probability depend on the disorder strength and on
the stabilization energy of the domains.
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